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Abstract

We study the minimal complexity of tilings of a plane with a given tile set. We note that every tile
set admits either no tiling or some tiling withO(n) Kolmogorov complexity of its(n×n)-squares. We
construct tile sets for which this bound is tight: all(n×n)-squares in all tilings have complexity at least
n. This adds a quantitative angle to classical results on non-recursivity of tilings – that we also develop
in terms of Turing degrees of unsolvability.

Keywords: Tilings, Kolmogorov complexity, recursion theory

1 Introduction

Tilings have been used intensively as powerful tools in various fields such as mathematical logic (see,
e.g., [Borger Gradel Gurevich 96] and references within), complexity theory [Gurevich 91, Levin 86], or in
physics for studying quasicrystals (see for instance the review paper [Ingersent 91]). In all of these branches
the ability of tile sets to generate “complicated” tilings is essential — it was already clear in Wang’s original
papers [Wang 61, Wang 62].

A tile is an unit square with colored edges (each of the four sides has some color). Assume that a finite
setτ of tiles is given. We want to form aτ-tiling, i.e., to cover plane with translated copies of tiles fromτ in
such a way that adjacent tiles have a common edge which has thesame color in both tiles.

Tiles placed in the plane can be seen as a dual view of crosses on a grid. Across in a grid is a combination
of four (colored) edges sharing a corner. Given a set of allowed crosses, one may wish to color all edges of a
grid in such a way that all crosses are allowed. This questionis equivalent to the original one. (Turning each
edge orthogonally around its own center turns the grid of edges into its dual graph and tiles into crosses and
vice versa.) Thus, one can use either representation for best visual advantages.

We call apalette a finite set of tiles that can be used to tile the plane (+palette for crosses). The problem
to know whether a set of tiles is or is not a palette, is the so-calleddomino problem.

In order to prove its undecidability left open in [Wang 61, Wang 62], Berger [Berger 66] constructed
an aperiodic set of tiles,i.e., a paletteτ such that allτ-tilings are aperiodic (no translation keeps them
unchanged) (see also [Robinson 71] and [Allauzen Durand 96]).
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Hanf in [Hanf 74] (for the origin constrained case) and then Myers in [Myers 74] (for the general case)
have strengthened this result and constructed a palette that has only non-computable (non-recursive) tilings.

The aim of this paper is to understand how “complexity-demanding” a palette can be, and we measure
the complexity of a palette by the minimal Kolmogorov complexity of tiling it can form. More specifically,
we measure the complexity of regions in the simplest tiling that can be formed (a formal definition is given
in the next section).

Some information about the complexity of tiling from the recursion-theoretic viewpoint is also provided
(section 11).

What can be said about Kolmogorov complexity of a tiling? Tiling is an infinite object, so we look at
(n×n)-squares and measure their Kolmogorov complexity.

Item 1 of Theorem 1 below states that for each palette there exists a tiling such that complexity of its
(n× n)-squares isO(n). This bound is tight: item 2, our main result, constructs a palette τ that has only
complex tilings: in each tiling, every(n× n)-square has complexity at leastn. The construction is rather
complicated and is based on Berger’s construction in [Berger 66] and its further developments.

If τ is a palette with all tilings of at least linear complexity, then allτ-tilings are aperiodic and non-
computable because for every computable (a fortiori periodic) tiling, the complexity of its centered(n×n)-
squares isO(logn).

Note that the right question is “what is the minimal complexity of a τ-tiling” (for a given paletteτ) but
not “what is the maximal complexity of aτ-tiling”. Indeed, the maximal complexity could be large fora
trivial τ such as the set of all tiles having black and white edges whererandom tiling has complexityΩ(n2).

Theorem 1 uses the same idea of embedding computations into tilings that was used to construct palette
that has only non-computable tilings ([Hanf 74, Myers 74]).However, in our case we need embedding that
is “dense” enough, and its construction (in non-constrained case) requires additional efforts.

It seems likely to one of us that Kurdiumov-Gacs hierarchical cellular automata (see, e.g., [Gacs 01])
could be used instead of Berger’s square hierarchy. This waya stronger result (allowing a constant fraction
of missing tiles in random places) might possibly be achieved. We, however, are confident in our inability to
use these (enormously complex) constructions and, in any case, the simplicity of the structure we propose
has independent merits.

A more structural approach can be used to handle the complexity of tilings: a palette can always form
“quasiperiodic” tilings (see [Durand 99]). We can measure the regularity of quasiperiodic tiling by the
growth of the function assigning to an integern the minimal “window” size in which all patterns smaller
thann×n must appear (for every position of the window and for all patterns that appear somewhere in the
tiling). This approach was further developed in [Cervelle Durand 00].

Theorem 1 also implies lower and upper bounds for the number of different (n× n)-squares in a tiling
(Corollary 1).

Let us make some remarks about the complexity of tilings fromthe viewpoint of hierarchy of Turing-
degrees of unsolvability. Hanf and Myers result in [Hanf 74,Myers 74] says that some palettes can generate
only non-recursive tilings (i.e., of degree> 0). This cannot be improved significantly: we cannot find a
palette for which all tilings are, say, 0′-hard, since for every paletteτ , and undecidable setA, there exists a
τ-tiling T such thatA is not Turing-reducible toT . This result is a corollary of classical results in recursion
theory because the set of all tilings with a given palette is aΠ0

1-set (see Odifreddi book p.508 [Odifreddi 89]
and references within1). However, we present (see Proposition 3) a short direct proof of this fact (that goes
back to Albert Muchnik and Elena Dyment and was communicatedto us by Andrei Muchnik [Muchnik 00]).

1Thanks to Frank Stephan for references.
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2 The Main Results

There are several versions of Kolmogorov complexityK(x) expressing “the minimal description length”
(see [Li Vitanyi 97]). For our purposes it does not matter which of them we use.

Theorem 1

1. For each palette τ , there exists a τ-tiling in which all n×n squares n have complexity O(n).

2. There exists a palette τ such that in every τ-tiling all n×n squares have complexity ≥ n.

(The second part can be slightly generalized. A pattern on a connected subsetP of a tiled planar grid
is the list of tiles inP and their coordinates relative to the center ofP. We encode all objectsx in binary
denoting their length as‖x‖. In Theorem 1.2 we can replacen×n squares by patterns of diametern.)

Item 1 of this Theorem and the following Corollary are provenin section 3. The proof of item 2 involves
several constructions and will be split into several parts.Section 4 considers the easier origin-constrained
case. Section 5 describes aperiodic tilings used as a background in the rest of the proof. Section 6 explains
the general structure of the computation embedded in a tiling; Section 8 considers computational power of
stripes (modules of different ranks that interact during the computation). Finally, section 9 considers the
communication between stripes and explains how all the stripes working in parallel achieve the declared
goal (preventing low-complexity fragments from appearingin the tiling).

Corollary 1 Let Dn(α) be the number of different n×n squares that appear in tiling α .

1. Each palette τ has a τ-tiling α such that Dn(α) = 2O(n).

2. There exists a palette τ such that Dn(α) ≥ 2n for every τ-tiling α and every n.

(See section 3 for the proof.)
Theorem 1 has a finitary version that says, informally speaking, that (for some palette) a patternx whose

complexity is less than its diameterd cannot appear in aN ×N-square whereN is the polynomial of the
time needed to establish thatK(x) < d.

Let U : p → x be the universal algorithm defining Kolmogorov ComplexityK(x) of x as the minimal
length of its co-imagep. LetU ′(p) = (U(p),‖p‖) enumerate the super-graph ofK. Let Tk(x) be the optimal
inversion time ofU ′ on (x,k) andSk(x) be the minimal spaceU(p) needs to compute each digit ofx from
somep ∈ {0,1}k.

Theorem 2 1. Every palette τ , for each N,k ≥ K(N)+ O(1), has τ-tiled N ×N squares x
with K(x) ≤ k and Sk(x) = O(N)+ Sk(N).

2. There exists a palette τ such that no pattern x of diameter d > K(x) can be extended to a τ-tiled
square of diameter Td(x)5.

See Section 10 for the proof.
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3 Proof: the Upper Bound (Theorem 1.1)

Proof of the upper bound.
Fix a paletteτ . A border coloring b of a (n× n)-square assigns colors to 4n tile sides on the square

border. A border coloringb is calledconsistent if it can be extended to a tiling of the entire(n×n)-square,
i.e., there exists a tiling of(n×n)-square that matchesb. Consider the following algorithm that, applied to a
consistent border coloring of a square of sizen×n wheren = 2k, extends it to the tiling of the entire square:

A. Find the alphabetically first coloring of the central lines dividing the square into four equal squares
such that all four squares get a consistent border coloring.

B. Apply the algorithm recursively to four border coloringsof smaller squares. (For(1× 1)-square
consistent border coloring is just a tile coloring.)

When this algorithm is applied to a square with side 2k, it generates a tree of recursive calls for sub-
squares with sides 2l for all l (“standard” sub-squares). On each standard sub-square thecomplexity of tiling
is proportional to square side (since tiling is computed by our algorithm starting from border coloring).

Each non-standard sub-square with sidem is contained in 4 standard sub-squares with sides smaller than
2m and therefore has complexityO(m). This argument shows that for some constantc and for allk there
exists a tiling of size 2k ×2k such that all(m×m)-sub-squares in this tiling have complexity at mostcm.

Using compactness argument, we conclude that there exists an infinite tiling with the same property.
(Here are the details. For a fixedc let us call a tiling of(n×n)-squaregood if all (m×m)-subsquares of it

have complexity at mostcm. As we have seen, for somec there exist good(n×n)-tilings for arbitrarily large
n. Call a tiling of(n×n)-squareextendible if it appears as a central part of some good tiling of arbitrary large
size. Note that each extendible tiling can be extended to some extendible tiling of(n+2)× (n+2)-square
by adding one more layer. Continuing this process, we get a tiling of the entire plane.) �

Proof of the Corollary. The first statement of Corollary 1 is a direct consequence of upper bound in Theo-
rem 1, since the number of different objects with complexityO(n) is 2O(n).

To prove the second statement we use the lower bound from Theorem 1. Letτ be the palette such that
all τ-tilings have complexity at least 5k for (k× k)-squares. (We have weaker boundk in Theorem 1, but it
does not matter since we can combine several tiles into one larger tile.)

Let α be aτ-tiling. Assume that for somen the number of(n×n)-squares inα is less than 2n. Consider
a square of sizek×k wherek is a large multiple ofn, and its “border” formed by(n×n)-squares. Since each
border square can be described byn bits (there are less than 2n of them), the whole border has complexity
approximately 4k (for largek). Then we can change the tiling, replacing the interior of(k×k)-square by the
alphabetically first tiling that is compatible with the border. Then new interior is determined by the border,
therefore the complexity of new(k× k)-square is less than 5k and this contradicts to our lower bound (that
is valid for all tilings). �
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4 Proof: Origin Constrained Case

To prove the lower bound, we start with the much simpler “origin constrained case”. It means that we
consider only those tilings of the plane that have a fixed tileat the origin. This allows us to enforce the tiling
to be a time-space diagram of a Turing machine.

4.1 Computation Performed

Let us agree that each horizontal line in a tiling representsa Turing machine’s tape at timet wheret is the
vertical position of that line. The tile used at position(x, t) encodes the contents of cell numberx at timet
(including the head state if the head is inside cellx at timet).

The rules of Turing machine are local and therefore can be encoded in terms of tilings (one may represent
overlapping groups of cells on time-space diagram by a tile). This technique is well known (see, e.g.,
[Wang 61]) and we won’t go into details here. It works only forconstrained case; we require the origin to
be the tile that contains head of TM, otherwise a tiling may contain no computation.

Since tilings can simulate the behavior of a TM with an infinite tape, it remains to construct a TM that
will ensure high complexity of its time-space diagram.

Imagine that we have a TM with a double tape: each cell is the Cartesian product of a workspace and an
“input bit”. The TM may change only the workspace of each cell, the input bit is read-only. This TM can
checks that input sequence is “complex enough”, that is, itsinput string has Kolmogorov complexity at least
ck for a constantc < 1 in eachk consecutive columns. More precisely, the set of all finite strings with low
Kolmogorov complexity is enumerable (we can try all the programs in parallel and look for the cases when
the output of a program is significantly longer than the program itself). Our TM can enumerate such simple
finite strings, compare them with segments of the input tape,rejecting the tiling if any match is found.

This addresses Theorem 1.2 for patterns of width (equal to the number of input bits) close to their di-
ameter. For narrow patterns we must superimpose two orthogonal copies of this construction. This suffices,
since diameter of any pattern equals, within a factor of 2, toeither its width or height.

We need now to prove existence of sequences our machine does not reject.

4.2 Complexity Lemma

Lemma 1 For each c< 1 there exists a binary sequence ω with K(x) ≥ c‖x‖−O(1) for all its substrings x.

Remark 1. For our purposes it is enough to prove this lemma for some positive c (however small). Still,
the more general statement (for allc < 1) is of some independent interest, so we prove it in this stronger
form. We cannot strengthen this Lemma further since for eachsequenceω the above inequality fails for
somec < 1 and an infinite set of substrings of unbounded lengths. (If every binary string is a substring of
ω , then this is evident. If some stringX does not appear inω , then the boundK(x) ≤ c‖x‖+O(1) is true
for somec and for each substringx of ω .)

Remark 2. It is not important which version of complexity to use in thelemma sincec is not fixed and
all versions differ by a logarithmic term. However, in the proof it is convenient to use prefix complexity.

Remark 3. In this lemma we speak about sequences that are infinite in one direction (though the
sequence of indices on the tape is bi-infinite). However, this is not important: if there exists an infinite in
one direction sequence with this property, there are arbitrary long finite sequences with this property, and
the standard compactness argument shows that there are bi-infinite sequences with this property.

[In fact, compactness is not even needed here. We can construct a bi-infinite sequence with this property
from a one-way infinite one by putting bits alternatively left and right at the small cost of a multiplicative
factor 2 on(1− c).]
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Thus our lemma proves that the above constructed TM does not halt for some input sequences (having
this property).2

Proof of Lemma 1.
Let us prove first for some constantsc′,c′′ that for every stringx and natural numbern there exists an

n-bit stringy such that

KP(xy)+ KP(n)+ c′ ≥ KP(〈x,y〉)+ c′′ ≥ KP(x)+ n

Here〈x,y〉 stands for the encoding of the ordered pair formed byx andy. The second inequality is true since
of 2n such pairs with a givenx some must have a universal semimeasure smaller thanx at least by a factor
of 2n and thus ann bits higher complexity.

And the first inequality is true since〈x,y〉 can be reconstructed fromxy and‖y‖ = n.
Now we can prove the lemma as follows. For a givenc < 1 we choosem such that

m−KP(m)− c′ ≥ cm.

Then, starting with an empty sequence, we add blocks of length m to it in such a way that each block
increases the complexity at least bycm. Adding several blocks, we increase the length by someM (which is
a multiple ofm) and the complexity at least bycM. Since

KP(uv) ≤ KP(〈u,v〉)+ O(1) ≤ KP(u)+ KP(v)+ c′′′,

the group of added blocks has complexity at leastcM− c′′′. Thus we have proved our Lemma for segments
that start and end at coordinates that are multiples ofm. The boundary effects can be compensated by a
small change inc. �

5 Proof: Self-similar Pattern

Now we have to consider the general case, no more requiring a fixed tile at the origin. Let us start with some
informal remarks. The palette must prevent individual tilings from being periodic. This can be provided by
a “self-similar” structure: tiling is divided into “mega-tiles” — blocks of large sizes (squares of size 2n ×2n

for all n) that behave like individual tiles.
A self-similarity of this type was used in Robinson’s construction of an aperiodic tiling (see Robinson’s

original paper [Robinson 71] and an exposition given in [Allauzen Durand 96]). A slightly more rigid con-
struction (where all “mega-tiles” are aligned, which was not the case for Robinson’s palette), is explained
in [Levin 04] and [Durand Levin Shen 04]. We do not repeat the latter construction here but just describe
the self-similar pattern that can be enforced by it.

Consider a grid of 2×2 squares separated by two cells (Fig. 1).
Then group these squares into groups of four squares whose centers form a twice larger square (Fig. 2).

We get a rank 2 grid formed by(4×4)-squares separated by four cells; this grid is twice larger than the rank
1 grid.

Then we group rank 2 squares into groups of four squares whosecenters are corners of rank 3 square
etc. We will refer to the edges on the borders of squares of allranks asdark. (Fig. 3 shows one rank 4 square
and underlying hierarchy of smaller squares.)

2Note that time-space diagram occupies only the upper half-plane where time is positive, but this does not matter since high
complexity of squares is guaranteed by input bits which propagate vertically in both directions. Similarly in extendedabstract of
this article (STOC 2001 [Durand Levin Shen 01]) the complexity of all squares was assured by each square propagating its input
bits vertically, horizontally, and diagonally. (The last direction of propagation was among many details missing in that abstract. It
referred to the version posted at arXiv.org simultaneouslywith STOC 2001 for more details; now, we give an entirely different, and
simpler, proof of a stronger result.)
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Figure 1: Rank 1 squares Figure 2: Rank 2 squares

Figure 3: Hierarchy of squares

Note that we have described not one specific pattern but an uncountable family of patterns: at each
rank we have a two-bit choice while grouping squares into 4-groups. Therefore, a pattern (together with a
specified cell in it) is determined by an infinite sequence of bits.

Note also that the dark pattern may be either connected or not. The latter happens if there exists a
“separating line” (a vertical or horizontal line that does not intersect any dark square). The dark pattern
in these cases has 2 or 4 connected components separated by either a horizontal or vertical line, or by an
infinite cross. For the case of one separating line we requireit to be of uniform color (either light or dark).
For the case of two separating lines they must form a dark corner (four possible orientations).

Looking at some non-separating line, we see that it consistsof alternating dark and light segments of
length 2k+1 wherek is the rank of dark squares adjacent to it. We say that this line has rankk (is ak-line).

We assign infinite rank to separating lines. The non-connected case (when separating lines exist) is
called thedegenerated case in the sequel and requires special treatment, see Subsection 9.5.

Proposition 1 There exists a palette and a projection of its colors into {dark, light} such that every tiling is
projected onto some pattern of the described type.
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See [Levin 04] and [Durand Levin Shen 04] for the proof. This paletteP (+palette, actually) provides
two orientation bits which will help us below. These bits on each edgex show vertical and horizontal
direction to the nearest center of the dark square with border co-linear tox. These bits form distinct crosses
at the intersections of lines of the same rank, of adjacent ranks, and of more distant ranks. In a more informal
language (that will be used in the sequel) one can say that each edge on a dark square “knows” (i.e., this
information is encoded in its color) whether it belongs to the left or to the right half of the square. The same
is true for the lower and upper half of the square (and vertical edge). The corner node “knows” (i.e., this
information is encoded in the neighbor colors) that it is a corner node, etc.

To provide more formal description of the pattern, it is convenient to use a kind of 2-adic coordinates.
Consider lines that go in-between 2×2 squares (one line per four cells). Taking them as referencelines, we
provide “modulo 4” coordinates, or just 4-coordinates, as shown in Figure 4.

The same can be done modulo 8 for rank 2 squares, as shown in Figure 5.

01 10 11

01

10

11

Figure 4: 4-coordinates and rank 1 squares

001 010 011 100 101 110 111

001

010

011

100

101

110

111

Figure 5: 8-coordinates and rank 2 squares

Note that 8-coordinates are consistent with 4-coordinates(two last bits of the 8-coordinate form the 4-
coordinate). We can then consider 16-coordinates, 32-coordinates etc. They extend each other, and for each
point of the grid we get a 2-adic coordinate that is an infinite(to the left) sequence of bits.

Vertical sides of rankk squares havex-coordinates. . .10k−1; the same is true fory-coordinates of hor-
izontal sides. So we can assign rank to vertical and horizontal lines (1 plus the number of zeros at the end
of their coordinates). Lines of rankk contain sides of rankk squares. Each line has some uniquely defined
rank, except for the line with zero coordinates. This line can exist or not depending on the pattern (this is
the separating line we mentioned above).

The centers of rankk squares have coordinates that end withk zeros, i.e., lie on the rank(k + 1) lines.
Other features of the pattern can be also easily expressed interms of coordinates. For example, a vertical
grid line with coordinatex intersects (the interior of) rankk squares if and only if lastk+1 digits ofx belong
to the open interval(010k−1,110k−1).
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6 Proof: Stripes and Grids

Let us start with some informal remarks. The high complexityof tilings comes from aninput sequence I,
horizontal and infinite in both directions. Each bit occupies a vertical line. A Turing Machine (TM) verifies
thatI has no low complexity segments. This computation represented by tilings as space-time diagrams.

As it was done for the origin-constrained case, the configuration of a TM (the contents of its tape
including the head position) is represented by colors of horizontal edges. Their shifts in the vertical direction
represent time evolution. The consistency of states in subsequent moments of time is achieved via vertical
edges that carry the state information from one horizontal line to another. The correctness of state transitions
is assured by a palette that restricts the coloring of crosses of these vertical and horizontal lines.

In the origin-constrained case the whole tiling represented one computation. Now, instead, we arrange
infinitely many coexisting and interacting computations. It is not a problem to combine two computations
at the same location: the Cartesian product of two finite alphabets is still finite. But this cannot be done for
infinitely many computations. Instead, they are separated in space and time so that each edge is used only
by a limited number of them. All the computations should thencommunicate with each other to check that
every substring of the input sequence has high complexity.

The organization of these processes “formats” the plane using the self-similar Block Pattern (described
above). This formatting is used to arrange space for infinitely many “computations”. Each computation is
performed by asubgrid that consist of finite number of (infinite) vertical lines andinfinite number of (finite)
horizontal lines arranged as in Fig. 6. Their intersection points are callednodes of the subgrid.

t
im

e

s1 s2 s3 sn

. . .

Figure 6: Subgrid for one computation

Each horizontal line is divided by nodes into segments (s1, . . . ,sn). Each segment carries one symbol
of TM tape or the state of one cell in the cellular automaton. The changes happens in nodes only (both for
horizontal and vertical lines). All this can be:

• organized locally if each edge of the subgrid knows its placein the subgrid (whether it is at the node,
lies on the left/right boundary, or between nodes, etc.).

• used in a usual way to simulate computations of TM (or cellular automata) with the tape of fixed size.
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Note that the “physical” distances between the grid lines can be arbitrary, they do not affect at all the
computation performed on the grid. (In fact all the verticaldistances will be the same, but not the horizontal
distances. This is somehow shown in Figure 6.)

Note also that the edges included in the grid do not know how far they are from the nodes they connect
(it is not needed and also there is not enough colors to encodethis).

Now we describe how the subgrids are localized. Let us introduce some terminology. Each dark square
of rank k is included in a twice largerk-block. For eachk, the plane is split intok-blocks. A bi-infinite
column of vertically alignedk-blocks forms ak-stripe (see Fig. 7).

The borderlines betweenk-blocks have 2-adic coordinates that end withk +1 zeros.
Eachk-stripe is a union of two(k− 1)-stripes, called itschildren (see Fig. 8). (For example, 3-stripe

[. . .00000, . . .10000] that lies between vertical lines with coordinates. . .00000 and. . .10000 is the union of
two 2-stripes: the left is[. . .00000, . . .01000], the right is[. . .01000, . . .10000].

k-stripe

k-block

Figure 7: Grid ofk-blocks andk-stripe

k-stripe

(k − 1)-stripe (k − 1)-stripe

Figure 8: Stripe and its two children

We provide for each stripe a subgrid that is located inside the stripe. (This subgrid hosts a computa-
tion that is finite in space but infinite in time.) These computations are not completely independent: each
computation communicates with its parent computation (located in the parent stripe) and its two children
computations (located in children stripes). The communication is implemented by sharing some vertical
lines, communication lines. There are three communication lines in each subgrid:the center line and the
vertical lines that contain the vertical side ofk-square; the latter two lines are the leftmost and rightmost
lines in the subgrid and are called “border lines”.

Note that the center line ofk-square is at the same time the border line for thek+1-level subgrid. Using
the center line,k-computation can communicate with its parent(k + 1)-computation, and using the border
lines,k-computation can communicate with its two children(k−1)-computations.

We need also to specify the other vertical lines that are included in thek-level subgrid. They are called
k-channels and lie between the border lines (see below about their exactlocation). The horizontal lines of
the subgrid, calledk-tapes in the sequel, are just bottom lines ofk-squares (see Fig. 9).
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Figure 9: Horizontal and some vertical subgrid lines for ak-stripe

7 Designation of k-channels

Designatingk-channels, we should have in mind that:
(1) Each vertical line should be shared by a limited number ofcomputation subgrids (in fact, three in

the construction explained below: it can be a communicationline in two subgrids and a channel in the third
one).

(2) There should be sufficiently manyk-channels to provide enough space for the computation performed
by a subgrid. (In our construction thek-level subgrid hasΘ(2k/2) vertical lines, which is about the square
root of its geometric size.)

(3) Each node should know its role in every subgrid it belongsto. (Since the number of subgrids is
limited, this is a finite amount of information that can be encoded in the finite number of colors. What is
important, we need the correct information be enforced by local rules.)

Let us explain how all three goals can be achieved. First, letus agree that we have two types of dark
squares, say,red and blue squares, and the colors alternate (so 2k-squares are red and(2k + 1)-squares
are blue or vice versa). This is very easy to arrange: an additional bit distinguishes between red and blue
squares, and this bit should differ for two intersecting dark squares (note that if two squares intersect, their
ranks differ by 1).

Then for a vertical line we define its color (red or blue) as thecolor of the square whose side it contains.
Since the vertical sides of ak-square have coordinates. . .010k−1 and. . .110k−1, the color of a vertical line
depends on whether the number of trailing zeros is even or odd. (The color is defined uniquely for all lines
except for the separating vertical line if it exists in the pattern; the separating line can have arbitrary color.)
Note that we can easily distribute the color along the line, so each point on the line knows the line color.

Now the rule:

for each lineL we look for the smallest square of the same color that intersects L (not taking
into account the square that hasL as its border); if this square is of rankk, theL line is declared
to bek-channel and belongs to the computational subgrid for the correspondingk-stripe.

11



In other terms, consider a line of rankk. It is a border line fork-squares. The construction guarantees
that it is a center line for(k − 1)-squares and does not intersect smaller squares. So we should look for
squares of rankk +2, k +4 etc. until we find a square that intersects this line. (Note that rankk line cannot
go through the center or along the sides of those squares.)

For 2-adic coordinates: first we find the rank of the line looking at trailing zeros. Rankk means that
there arek−1 trailing zeros, i.e., the coordinate ends with 10k−1. Then we split bits on the left into 2-bit
blocks, as shown in Figure 10. Going from right to left, we findthe first block that contains 01 or 10 (this
means that the line intersects the corresponding square).

01 0. . .

Figure 10: Finding the square

So we see that goal (1) is achieved.
To estimate the number ofk-channels in a givenk-subgrid, we can either use the coordinate description

or geometric argument. The coordinate description shows that we can use blocks 00 or 11 after the 01/10
block and the trailer of the form 1. . .0. This gives 2k/2+O(1) options fork-squares. (For each ofk/2+ O(1)
levels we exclude two of four possible blocks 00, 01, 10 and 11, i.e., half of the lines.)

We can count also thek-channels for a givenk in a top-down fashion. Eachk-square has two(k−1)-
children of the opposite color and four(k−2)-grandchildren of the same color, see Figure 11. (This figure
does not keep the vertical distances since only horizontal positions matter now.) Two grandchildren (and all
their descendants) lie outside the zone ofk-square (i.e., on the left or on the right ofk-square). Two other
provide fourk-channels that are lines of rankk−2.

Figure 11: Grandchildren and their grandchildren

Each of these two grandchildren has four grandchildren; twoof them are shadowed by(k−2)-squares
(and produce(k− 2)-channels, notk-channels); each of two other produces twok-channels, so we get 8
k-channels that are lines of rankk−4.

We continue by induction and conclude that ourk-square has 4t descendants of rankk− 2t; some of
them are shadowed by squares of intermediate level (together with the whole stripe), some lie outside the
zone of the initialk-square (together with the whole stripe), and 2t (together with the whole stripe) are not
shadowed and lie inside the zone (together with the entire stripe) producing 2t+1 k-channels being lines of
rankk−2t.

So the total number ofk-channels in the zone of somek-square is 4+ 8+ 16+ . . ., and this sum has
k/2+ O(1) terms, so it is equal toΘ(2k/2). The goal (2) is achieved.

For (3), let us look at some vertical line. It knows its color.Also the points where it intersects the squares
of the same color are locally known. We can consider them as “brackets” (opening bracket means that line
comes in the square, and closing bracket means that is goes out). So we reduce our task to the following
problem: having a correct bracket structure on a line, find the innermost brackets. It is easy to do by local
rules, if each brackets sends a signal in the outside direction: the innermost bracket is the bracket that does
not receive that signal.

12



8 Proof: Computational Subgrids and their Power

Looking at a computational subgrid, we may ignore the rest ofthe plane as well as the geometric parameters
of the embedding of this subgrid (distances between the lines etc.). For us it is just a vertical stripe that
obeys some local rules (rules for the left/right boundary could differ).

Such a tiling represents the time-space diagram of a finite cellular automaton (finite number of cells that
change their state depending on the previous states of themselves and of their neighbors, according to some
rule which is the same for all automata except for the leftmost and rightmost one, who have special rules).

This confronts us with the problem we started with: how to initiate a computation? But now the situation
is different: we work in a stripe of a finite size, so the leftmost and rightmost cells know that they are on the
boundary, and this allows us to restart computation “once inan exponential while” using a counter.

This type of self-stabilization is easy to achieve. We may simulate a time-space diagram of a Turing
machine. To ensure that a head of TM exists and is unique, we may require that some bit is 0 at the left end,
is 1 at the right end, is monotonic (local rule) and the place where the bit changes behaves like a head of
TM. This machine can perform counting in a positional numbersystem adding 1 to the counter all the time.
When an overflow happens, we have to restart some other computation simulated in parallel by the stripe.
If the base of our positional number system is large enough, the counting process takes more time that the
other computation we simulate (if the latter computation does not repeat itself).

Let us illustrate this technique using the model example of an isolated stripe.
Consider a vertical stripe (finite in horizontal direction and bi-infinite in vertical (temporal) direction.

Assume that left and right borders of the stripe have special“left” and “right” colors. We want to tile the
stripe with tiles from a given tile set (respecting the border colors).

Let us assume also that all tiles of our palette are divided into two types (0-tiles and 1-tiles) and tiling
rules guarantee that all tiles on a vertical line have the same type. This guarantees that each vertical line in
a tiling carries one bit (its type) and thus each tiling of stripe of widthw determines a bit string of lengthw.

So for each paletteτ we get a set of stringsLτ that corresponds to allτ-tilings of stripes (strings of length
n in Lτ correspond to the tilings of the stripe of widthn).

Proposition 2 1. For every tile set τ the language Lτ belongs to PSPACE.

2. Every language L that is decidable in linear space can be represented as Lτ for some tile set τ .

Proof. Part 1 can be proved in the same way as Savitch theorem (NPSPACE = PSPACE). Aτ-tiling of
an infinite stripe exists if and only if there exists a tiling of a w× h rectangle (wherew is stripe width and
h ∈ 2O(w)) that has the same colors on top and bottom lines. Indeed, rectangles with this property can be
combined into a (periodic) tiling of the entire stripe. On the other hand, there is only 2O(w) possible colorings
in a horizontal section, so in every tiling of an infinite stripe identical sections appear at distance at most
2O(w). Now we can write a recursive procedure that checks whether there exists a tiling of a rectangle of
width w and heighth with given top and bottom that runs in space(w logh)O(1) and use it to determine
whether a given string of lengthw belongs toLτ . (Consider sequentially all possibilities for the colors along
the middle line of the tiling and for each possibility make two recursive calls for the two parts of the tiling.)

Part 2 uses self-synchronization technique explained above: since every computation with spaceO(w)
terminates in time 2O(w), we can superimpose the computation with a TM computation that keeps aO(w)-bit
integer (counter) in each horizontal line and increases it by 1 all the time. When an overflow happens, the
main computation is “rebooted” in that line. As we have mentioned, this rebooting procedure gives the main
computation enough time to terminate.

This proposition is not directly used in the proof of main theorem. It is presented here as an illustration
of the self-stabilization technique used in in our main construction together with other key ingredient, the
hierarchical communication between the stripes. �
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9 Proof: Hierarchy of Computations

We have seen that a subgrid can compute every predicate that can be computed in linear (in its effective
width: Θ(

√
N) for square with sideN) space.

However, our construction of tiling with linear complexityof squares will use subgrids in a more sub-
tle way: different computations communicate with each other and therefore become parts of some global
computation. Let us explain how it is done.

9.1 Input Bits

We assume (as we have done in the constrained case) that each vertical line carries one bit (that propagates
vertically). Therefore, tiling determines a (horizontal)bi-infinite sequence of bits. Our goal is to guarantee
that this sequence does not contain substrings with low Kolmogorov complexity (in the same way as for
origin-constrained case).

9.2 Zones of Responsibility

Recall that computation subgrid based on rankk squares was located in the middle part of a stripe twice
wider than the squares themselves. This stripe contains 2N vertical lines (and input bits) and we say that
these lines and bits are in the “zone of responsibility” of this subgrid. Figure 8 showsk-stripe that is the
zone of responsibility for a computational subgrid based onthe large square in the middle; thisk-stripe
is the union of its two children who are(k− 1)-stripes. These stripes are zones of responsibility for two
computation subgrids based on the smaller squares.

For eachk the entire plane is divided into non-overlappingk-stripes that are zones of responsibility for
subgrids based onk-squares. Each zone is divided into two children who are zones of responsibility for
smaller subgrids; these zones are then divided into smallerzones etc. So we get a tree-like structure of
degree 2 whose vertices are computation subgrids. Each has two children and one parent, except for the
smallest ones that do not have children.

9.3 Communication Between Stripes

Communication between parent and child subgrids is easy to organize since parent and child share some
line that can be used as a meeting point for the correspondingcomputations (Turing machines). Of course,
the heads of two machines need not to be at the same time at the meeting point, and this creates some delay.

Note that visibility of finite number of bits is enough for asynchronous communication (one of the bits
can be used as “ready” flag while other are used as informationbits), and the delay (O(

√
N) steps for each

transaction, if TM visits regularly the meeting points) is acceptable (see below). Therefore we assume that
serial asynchronous communication between parent and its children is possible.

9.4 Bit Servers

It remains to explain what each subgrid computes. It runs in parallel (for example, using time sharing — or
we can simulate two-head TM) two processes. The first processis called BitServer; the second one is called
ComplexityCheck. Let us explain first what BitServer does.

It serves requests about bits in the zone of responsibility of the subgrid where it runs. Such a request
contains bit address (relative to the start of the zone) of logarithmic length and should be answered by
providing a value of the input bit with given address. BitServer uses the most significant bit of the address to
determine to which child it should forward the remaining part of the address, and then waits until this child
provides a reply (which is then sent to BitServer’s client).
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This recursion stops at the lowest rank where each ofO(1) required input bits is atO(1) distance from
the computation, so we may assume that these bits are directly accessible.

Note that BitServer is able to provide inputs bits from the entire zone of responsibility (even outside of
the physical location of the subgrid) due to its children.

9.5 Complexity Check

BitServers are useless if nobody uses them, so we need to describe the second process, ComplexityCheck.
This process runs in each subgrid and tries to check whether the sequence of input bits in its zone of respon-
sibility has no substrings with small Kolmogorov complexity (as it was done for origin-constrained case).
The ComplexityCheck process gets bits from the BitServer ofthe same computational stripe. BitServer
interleaves requests from ComplexityCheck with external requests (see “Time bounds” below).

The problem is that (compared to the origin-constrained case) each computation stripe has limited abili-
ties: it can perform only

√
N-space computations to checkO(N) bits. Therefore, each stripe should rely on

higher ranks for complete check (the computation time needed to find that some string has low Kolmogorov
complexity is not bounded by any computable function of string’s length).

This cooperation between ranks is indeed possible if ComplexityCheck is organized in a proper way.
This process generates the list of “forbidden” string (strings with low complexity). Thus all ranks compute
the same list in the same order (computation terminates whenit meets time/space constraints). When a
forbidden string appears in a computation it is tested against all substrings of the same length that are in
the responsibility zone of the involved computation stripe. (This testing is performed by requiring bits from
BitServer.) If a forbidden string is found in the input sequence, then the computation halts (making the tiling
impossible).

If some string has low complexity, then it appears in the listof forbidden strings and therefore the
computational stripes of sufficiently high rank will have enough time first to generate it and then to check
all substrings against it.

Can we conclude now that all the substrings in the bi-infinitesequence of input bits have high complexity
because they are ultimately checked in the computational stripes of all ranks? No. The problem is that the
tree-like structure of computational stripes may consist of two disjoint parts that never meet. (This is a
“degenerate case” discussed earlier.) But this does not hurt us because in this case each substring of the
input (in the worst case) consists of two parts that are checked separately. Taking the longer part, we see that
it is not forbidden and has high complexity. Therefore, every (sufficiently long) substring of input sequence
has complexity at leastcn wheren is its length andc is some constant. We can then increasec by combining
several tiles into one bigger tile.

9.6 Time Bounds

The only thing that we still have to check is that all this communication and computation can be performed in√
N-space (and exp(

√
N)-time). Indeed, each bit address takes logarithmic space (and this is much smaller

than
√

N-space that is available). The depth of recursion is logarithmic. So if we assume that BitServer
interleaves internal requests (from ComplexityCheck of the same rank) with external requests, the time to
fulfill them will be still exp(O(log)), i.e., polynomial. Note also that the slowdown induced by testing a
forbidden string (when it appears) against all substrings in the zone of responsibility is polynomial (in the
width of the zone), while the time bound is exponential. So this slowdown does not prevent the generating
process from generating every forbidden string (at a high enough rank).

This ends the proof of Theorem 1.
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10 Proof: Theorem 2

Proof. To prove Theorem 2.1, denotesN the space used by the algorithm of Section 3 that checks consistency
of a border coloring of a square. Thens2N = sN + O(N), and so,sN = O(N).

The proof of 2.2 is essentially the same as the proof of Theorem 1 with two additions addressing minor
issues. First, the self-stabilization counter of Section 8restarts computation very rarely, with exponential
intervals. Thus, a meaningless computation can run for a long time before the re-initiation. It can fail to
discover low complexity of the input, and thus allow it in a large tiled square. This is easy to remedy just
by restricting the counters to (sufficiently large) polynomial values. Such counters are implemented by a
constant number of unary integers.

The second issue is thatx may appear near the border of largeN ×N squares. Formally speaking,
Proposition 1 says nothing about finite tilings. However, its proof (see [Levin 04, Durand Levin Shen 04])
guarantees that rankk structure can be distorted only near the border of the tiled region: for eachk there
exists somem(k) = O(2k) such that the part of tiling that ism(k) tiles apart from the border, has a correct
structure at rankk (i.e., for 2k × 2k squares). This can be proved by induction overk since the argument
in [Durand Levin Shen 04] (that shows that 1-tiles are grouped into 2-tiles in a regular way) uses only a
small neighborhood.

So the checking goes on in the internal part of the tiled region (square) and guarantees that the bit
sequences there have no simple substrings whose simplicitycan be established fast. The problem is to bring
these complex bits to the border of the tiled region. This canbe easily done with the following trick: let
us overlap four constructions of the described type that propagate bits along the lines with direction(2,1),
(2,−1), (1,2), (1,−2) instead of vertical lines that we have used for bit propagation. For every point on the
border at least one of these four directions brings us in the internal part of the tiled region (square), so the
bits on the border are also complex.

�
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11 Turing Degrees of Tilings

In this section we are concerned with Turing-degrees of tilings; we provide a simple direct proof of the
following theorem.

Proposition 3 For each palette τ and for every undecidable set A there exists a τ-tiling T such that A is not
Turing-reducible to T .

Corollary 2 For every palette τ , there exists a τ-tiling T such that T is not 0′-hard.

Proof. Let us consider the spaceT of all configurations made ofτ-tiles (both tilings and configurations with
tiling errors). This space can be considered asτZ

2
and thus endowed with the product (Cantor) topology.

The setτ of local rules defines a closed (compact) subsetC of T consisting of all tilings. This subset
is an effectively closed subset (its complement is a union ofan enumerable family of basic open sets that
correspond to violations of local rules). By our assumptionC 6= /0.

Let M be some oracle machine that uses a tilingT ∈T as an oracle. Letx be some input forM anda be
some output value forM (i.e., a = 0 or a = 1 if we consider machines that decide some set). Consider the
set of all oraclesT ∈ T such thatM usingT produces answera on x. This set depends onM, x anda; we
denote it byU(M,x,a). It is easy to see thatU(M,x,a) is an effectively open set: we have to simulateM on
input x for all possible oracles and look for all computation branches that end with answera. In this way we
generate basic open sets whose union isU(M,x,a).

If C ⊂ U(M,x,a), thenM produces answera on inputx for all τ-tilings. The crucial observation: if it
is the case, we can find it out eventually. Indeed, in this casethe enumerable family of base open sets that
form U(M,x,a) and the enumerable family of base open sets that formT \C together form a covering of
compact spaceT . For compactness reasons, finite number of sets are enough. Enumerating both families,
we will discover this finite covering at some point.

Now we can prove that there is no machineM that reduces the undecidable setA to everyτ-tiling. (This
statement is a weak form of our theorem.) Indeed, this means that correct answer (we denote it byA(x))
is produced for every inputx and every oracleT ∈ C, i.e., C ⊂ U(M,x,A(x)) for all x. But then we can
computeA(x) without oracle by looking for alla such thatC ⊂ U(M,x,a). The correct valueA(x) will be
found; no other one can appear sinceU(M,x,a) andU(M,x,a′) are disjoint whena 6= a′.

The next step is to use diagonal argument and findτ-tiling T such that no machine decidesA usingT as
an oracle. LetM1,M2, . . . be the enumeration of all (oracle) machines. We construct a sequence

C0 ⊃C1 ⊃C2 ⊃ . . .

of effectively closed sets such thatC0 = C, all Ci are non-empty andMi does not reduceA to any of the
oracles inCi. Then the intersection of allCi is non-empty because of compactness; every its elementT is a
τ-tiling (sinceC0 = C) and no machine reducesA to T .

Assume thatCi−1 is already constructed. There are two possibilities:
(1) If Ci−1 ⊂ U(M,x,A(x)) for all x, thenA(x) is computable for the same reason as before (where we

hadC instead ofCi−1); to computeA(x) without oracle we look fora such thatCi−1 ⊂U(M,x,a).
(2) If Ci−1 is not a subset ofU(M,x,A(x)) for somex, then choose somex with this property and let

Ci = Ci−1\U(M,x,A(x))

ThenCi is non-empty, effectively closed andM does not produce correct answerA(x) with input x and any
oracleT ∈Ci.

Note that the construction ofCi is not effective (the choice ofx is not effective) but this is not needed:
the only thing we need is that eachCi is effectively closed (though not uniformly ini). �
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