
To the memory of Andrei Muchnik

Preface

The notion of algorithmic complexity (also sometimes called “algorithmic en-
tropy”) appeared in 1960s inbetween the theory of computation, probability theory
and information theory.

The idea of A.N. Kolmogorov was to measure the amount of information in
finite objects (and not in random variables, as it is done in classical Shannon infor-
mation theory). His famous paper [77], published in 1965, explains how this can
be done (up to a bounded additive term) using the algorithmic approach.

Similar ideas was suggested few years earlier by R. Solomonoff (see [185] and
his other papers; the historical account and reference can be found in [102]).1

The motivation of Solomonoff was quite different. He tried to define the notion
of “a priori probability”. Imagine there is some experiment (random process) and
we know nothing about its internal structure. Can we say something about the
probabilities of different outcomes in this situation? One can relate this to the
complexity measures saying that simple objects have greater a priori probability
than complex ones. (Unfortunately, Solomonoff’s work become popular only after
Kolmogorov mentioned it in his paper.)

In 1965 G. Chaitin (then an 18-years-old undergaduate student) submitted
two papers [28] and [29]; they were published in 1966 and 1969 respectively. In
the second paper he proposed the same definition of algorithmic complexity as
Kolmogorov.

The basic properties of Kolmogorov complexity were established in 1970s.
Working independently, C.P. Schnorr and L. Levin (who was a student of Kol-
mogorov) found a link between complexity and the notion of algorithmic random-
ness (introduced in 1966 by P. Martin-Löf [114]). To achieve this, they introduced
a slightly different version of complexity, the so-called monotone complexity. Also
the Solomonoff’s ideas about a priori probability were formalized in the form of pre-
fix complexity, introduced by Levin and later by Chaitin. The notions of complexity
turned out to be useful both for theory of computation and probability theory.

The Kolmogorov complexity became popular (and for a good reason: it is a
basic and philosophically important notion of algorithms theory) after M. Li and
P. Vitányi published a book on the subject [102] (first edition appeared in 1993).
Almost everything about Kolmogorov complexity that was known at the moment
was covered in the book or at least mentioned as an exercise. This book also
provided a detailed historical account, references to first publications, etc. Then
the books of C. Calude [25], and A. Nies [146] appeared, as well as the book of
R. Downey and D. Hirschfeldt [49]. These books cover many interesting results

1Kolmogorov wrote in [78]: “I came to a similar notion not knowing about Solomonoff’s

work”.

3

4 PREFACE

obtained recently (in particular, the results that relate complexity and randomness
with classical recursion theory).

Our book does not try to be comprehensive (in particular, we do not say much
about the recent results mentioned above). Instead, we tried to select the most
important topics and results (both from technical and philosophical viewpoint)
and explain them clearly. We do not say much about the history of the topic: as
it is usually done in textbooks, we formulate most statements without references,
and this does not mean (of course) any authorship claim.

We start the book with a section “What is this book about?” where we try to
overview briefly the main ideas and topics related to Kolmogorov complexity and
algorithmic randomness, so the reader can browse this section to decide whether
the book is worth reading.

As an appendix we reproduce the (English translation) of a small brochure
written by one of the authors (V.U.), based on his talk for high school students
and undergraduates (July 23, 2005) delivered during the “Modern Mathematics”
Summer School (Dubna near Moscow); the brochure was published in 2006 by
MCCME publishing house (Moscow). The lecture was devoted to different notions
of algorithmic randomness, and the reader who has no time or incentive to study
the corresponding chapters of the book in detail, still can get some acquaintance
with this topic.

Unfortunately, the notation and terminology related to Kolmogorov complexity
is not very logical (and different people often use different notation). Even the same
authors used different notation in different papers. For example, Kolmogorov used
both the letters 𝐾 and 𝐻 in his two basic publications [77, 78]. In [77] he used the
term “complexity” and denoted the complexity of a string 𝑥 by 𝐾(𝑥). Later he used
for the same notion the term “entropy” used in Shannon information theory (and
earlier in physics). Shannon information theory is based on probability theory;
Kolmogorov had an ambitious plan to construct a parallel theory that does not
depend on the notion of probability. In [78] Kolmogorov wrote, using the same
word ‘entropy’ in this new sense:

The ordinary definition of entropy uses probability concepts, and
thus does not pertain to individual values, but to random val-
ues, i.e., to probability distributions within a group of values.
⟨. . .⟩ By far, not all applications of information theory fit ratio-
nally into such an interpretation of its basic concepts. I believe
that the need for attaching definite meanings to the expressions
𝐻(𝑥|𝑦) and 𝐼(𝑥|𝑦), in the case of individual values 𝑥 and 𝑦 that
are not viewed as a result of random tests with a definite law
of distribution, was realized long ago by many who dealt with
information theory.

As far as I know, the first paper published on the idea of
revising information theory so as to satisfy the above conditions
was the article of Solomonoff [185]. I came to similar conclu-
sions, before becoming aware of Solomonoff’s work in 1963–1964,
and published my first article on the subject [77] in early 1965.
⟨. . .⟩

PREFACE 5

The meaning of the new definition is very simple. Entropy
𝐻(𝑥|𝑦) is the minimal [bit] length of a ⟨. . .⟩ program 𝑃 that per-
mits construction of the value of 𝑥, the value of 𝑦 being known,

𝐻(𝑥 |𝑦) = min
𝐴(𝑃,𝑦)=𝑥

𝑙(𝑃).

This concept is supported by the general theory of “computable”
(partially recursive) functions, i.e., by theory of algorithms in
general.

⟨. . .⟩ The preceding rather superficial discourse should prove
two general theses.

1) Basic information theory concepts must and can be
founded without recourse to the probability theory, and in such
a manner that “entropy” and “mutual information” concepts are
applicable to individual values.

2) Thus introduced, information theory concepts can form
the basis of the term random, which naturally suggests that ran-
domness is the absence of regularities.2

And earlier (April 23, 1965), giving a talk “The notion of information and the
foundations of the probability theory” at the Institute of Philosophy of the USSR
Academy of Sciences, Kolmogorov said:

So the two problems arise sequentially:
1. Is it possible to free the information theory (and the

notion of the “amount of information”) from probabilities?
2. It is possible to develop the intuitive idea of randomness

as incompressibility (the law describing the object cannot be
shortened)?

(the transcript of his talk was published in [84] on p. 126).
So Kolmogorov uses the term “entropy” for the same notion that was named

“complexity” in his first paper, and denotes it by letter 𝐻 instead of 𝐾.
Later the same notion was denoted by 𝐶 (see, e.g., [102]) while the letter 𝐾

is used for prefix complexity (denoted by KP(𝑥) in the Levin’s papers where prefix
complexity was introduced).

Unfortunately, the attempts to unify the terminology and notation made by
different people (including the authors) have lead mostly to increasing confusion.
In the English version of this book we follow the terminology that is most used
nowadays, with few exceptions, and mention the other notations used. For reader’s
convenience, the list of the used notation and the index are provided.

2The published English version of this paper says “random is the absence of periodicity”, but

this evidently is a translation error, and we correct the text following the Russian version.

6 PREFACE

* * *
In the beginning of 1980s Kolmogorov (with the assistance of A. Semenov)

initiated a seminar at the Mathematics and Mechanics Department of Moscow
State (Lomonosov) University called “Description and computation complexity”;
now the seminar (still active) is known as “Kolmogorov seminar”. The authors are
deeply grateful to their colleagues working in this seminar, including A. Zvonkin,
E. Asarin, V. Vovk (they were Kolmogorov’s students), S. Soprunov, V. Vyu-
gin, A. Romashchenko, M. Vyalyi, S. Tarasov, A. Chernov, M. Vyugin, S. Posit-
selsky, K. Makarychev, Yu. Makarychev, M. Ushakov, M. Ustinov, S. Salnikov,
A. Rumyantsev, D. Musatov, V. Podolskii, I. Mezhirov, Yu. Pritykin, M. Raskin,
A. Khodyrev, P. Karpovich, A. Minasyan, E. Kalinina, G. Chelnokov, I. Razen-
shteyn, M. Andreev, A. Savin, M. Dektyarev, A. Savchik, A. Kumok, V. Arzu-
manyan, A. Makhlin, G. Novikov, A. Milovanov; the book would not be possible
without them.

The frog drawing for the cover was made by Marina Feigelman; the cover itself
was designed by Olga Lehtonen. As usual, we are grateful (in particular, for the
help in the preparation of a camera-ready copy for the Russian edition) to Victor
Shuvalov.

Authors were supported by International Science Foundation (Soros founda-
tion), STINT (Sweden), Russian Fund for Basic Research (01-01-00493-a, 01-01-
01028-a, 06-01-00122-a, 09-01-00709-a, 12-01-00864-a), CNRS and ANR (France,
ANR-08-EMER-008 NAFIT and ANR-15-CE40-0016-01 RaCAF grants).

The book was made possible by the generous support of our colleagues, in-
cluding Bruno Bauwens, Laurent Bienvenu, Harry Buhrman, Cris Calude, Bruno
Durand, Péter Gács, Denis Hirschfeldt, Rupert Hölzl,, Mathieu Hoyrup, Michal
Koucký, Leonid Levin, Wolfgang Merkle, Joseph Miller, Andre Nies, Christopher
Porter, Jan Reimann, Jason Rute, Michael Sipser, Steven Simpson, Paul Vitányi,
Sergey Vorobyov, and many others.

We are thankful to American Mathematical Society (in particular, Sergey
Gelfand) for the suggestion to submit the book for publication in their book pro-
gram and for the kind permission to keep the book available freely in electronic
form at our homepages. We thank the (anonymous) referees for their attention and
suggestions, and the language editors for correcting our English errors.

For many years the authors had the privilege to work in a close professional and
personal contact with Andrej Muchnik (1958–2007), an outstanding mathematician,
deep thinker and an admirable person, who participated in the work of Kolmogorov
seminar and inspired a lot of work done in this seminar. We devote this book to
his memory.

A. Shen, V. Uspensky, N. Vereshchagin September 1, 2016

Contents

Preface 3

What is this book about? 11
What is Kolmogorov complexity? 11
Optimal description modes 12
Kolmogorov complexity 14
Complexity and information 15
Complexity and randomness 18
Non-computability of 𝐶 and Berry’s paradox 19
Some applications of Kolmogorov complexity 20

Basic notions and notations 25

Chapter 1. Plain Kolmogorov complexity 29
1.1. The definition and main properties 29
1.2. Algorithmic properties 35

Chapter 2. Complexity of pairs and conditional complexity 45
2.1. Complexity of pairs 45
2.2. Conditional complexity 48
2.3. Complexity as the amount of information 58

Chapter 3. Martin-Löf randomness 67
3.1. Measures on Ω 67
3.2. The Strong Law of Large Numbers 69
3.3. Effectively null sets 72
3.4. Properties of Martin-Löf randomness 79
3.5. Randomness deficiencies 84

Chapter 4. A priori probability and prefix complexity 89
4.1. Randomized algorithms and semimeasures on N 89
4.2. Maximal semimeasures 93
4.3. Prefix machines 96
4.4. A digression: machines with self-delimiting input 99
4.5. The main theorem on prefix complexity 105
4.6. Properties of prefix complexity 110
4.7. Conditional prefix complexity and complexity of pairs 116

Chapter 5. Monotone complexity 129
5.1. Probabilistic machines and semimeasures on the tree 129
5.2. Maximal semimeasure on the binary tree 135

7

8 CONTENTS

5.3. A priory complexity and its properties 136
5.4. Computable mappings of type Σ → Σ 140
5.5. Monotone complexity 143
5.6. Levin–Schnorr theorem 158
5.7. The random number Ω 170
5.8. Effective Hausdorff dimension 185
5.9. Randomness with respect to different measures 189

Chapter 6. General scheme for complexities 205
6.1. Decision complexity 205
6.2. Comparing complexities 209
6.3. Conditional complexities 212
6.4. Complexities and oracles 214

Chapter 7. Shannon entropy and Kolmogorov complexity 225
7.1. Shannon entropy 225
7.2. Pairs and conditional entropy 229
7.3. Complexity and entropy 237

Chapter 8. Some applications 245
8.1. There are infinitely many primes 245
8.2. Moving information along the tape 245
8.3. Finite automata with several heads 248
8.4. Laws of Large Numbers 250
8.5. Forbidden substrings 253
8.6. A proof of an inequality 267
8.7. Lipschitz transformations are not transitive 270

Chapter 9. Frequency and game approaches to randomness 273
9.1. The original idea of von Mises 273
9.2. Set of strings as selection rules 274
9.3. Mises–Church randomness 276
9.4. Ville’s example 279
9.5. Martingales 282
9.6. A digression: martingales in probability theory 287
9.7. Lower semicomputable martingales 289
9.8. Computable martingales 291
9.9. Martingales and Schnorr randomness 294
9.10. Martingales and effective dimension 296
9.11. Partial selection rules 299
9.12. Non-monotonic selection rules 302
9.13. Change in the measure and randomness 308

Chapter 10. Inequalities for entropy, complexity and size 323
10.1. Introduction and summary 323
10.2. Uniform sets 328
10.3. A construction of a uniform set 331
10.4. Uniform sets and orbits 333
10.5. Almost uniform sets 334
10.6. Typization trick 335

CONTENTS 9

10.7. Combinatorial interpretation: examples 338
10.8. Combinatorial interpretation: the general case 340
10.9. One more combinatorial interpretation 342
10.10. The inequalities for two and three strings 345
10.11. Dimensions and Ingleton’s inequality 347
10.12. Conditionally independent random variables 352
10.13. Non-Shannon inequalities 353

Chapter 11. Common information 359
11.1. Incompressible representations of strings 359
11.2. Representing mutual information as a string 360
11.3. The combinatorial meaning of common information 365
11.4. Conditional independence and common information 370

Chapter 12. Multisource algorithmic information theory 375
12.1. Information transmission requests 375
12.2. Conditional encoding 376
12.3. Conditional codes: Muchnik’s theorem 377
12.4. Combinatorial interpretaion of Muchnik’s theorem 381
12.5. A digression: on-line matching 383
12.6. Information distance and simultaneous encoding 385
12.7. Conditional codes for two conditions 387
12.8. Information flow and network cuts 391
12.9. Networks with one source 392
12.10. Common information as an information request 396
12.11. Simplifying a program 397
12.12. Minimal sufficient statistics 397

Chapter 13. Information and logic 409
13.1. Problems, operations, complexity 409
13.2. Problem complexity and intuitionistic logic 411
13.3. Some formulas and their complexity 413
13.4. More examples and the proof of Theorem 238 416
13.5. Proof of a result similar to Theorem 238 using Kripke models 421
13.6. A problem whose complexity is not expressible in terms of the

complexities of tuples 425

Chapter 14. Algorithmic statistics 433
14.1. The framework and randomness deficiency. 433
14.2. Stochastic objects 436
14.3. Two-part descriptions 439
14.4. Hypotheses of restricted type 446
14.5. Optimality and randomness deficiency 455
14.6. Minimal hypotheses 458
14.7. A bit of philosophy 460

Appendix 1. Complexity and foundations of probability 463
Probability theory paradox 463
Current best practice 463
Simple events and events specified in advance 464

10 CONTENTS

Frequency approach 466
Dynamical and statistical laws 467
Are “real-life” sequences complex? 467
Randomness as ignorance: Blum–Micali–Yao pseudorandomness 468
A digression: thermodynamics 469
Another digression: quantum mechanics 471

Appendix 2. Four algorithmic faces of randomness 473
Introduction 473
Face One: Frequency stability and stochasticness 476
Face Two: Chaoticness 478
Face Three: Typicalness 483
Face Four: Unpredictability 484
Generalization for arbitrary computable distributions 488
History and bibliography 494

Bibliography 499

Index 511

Glossary 517

What is this book about?

What is Kolmogorov complexity?

Roughly speaking, Kolmogorov complexity means “compressed size”. Pro-
grams like zip, gzip, bzip2, compress, rar, arj, etc., compress a file (text, image,
or some other data) into a presumably shorter one. The original file can then be
restored by a “decompressing” program (sometimes both compression and decom-
pression are performed by the same program). Note that we consider here only
lossless compression.

A file that has a regular structure can be compressed significantly. Its com-
pressed size is small compared to its length. On the other hand, a file without
regularities hardly can be compressed, and its compressed size is close to its origi-
nal size.

This explanation is very informal and contains several inaccuracies—both tech-
nical and more essential. First, instead of files (sequences of bytes) we will consider
binary strings (finite sequences of bits, that is, of zeros and ones). The length of
such a string is the number of symbols in it. (For example, the string 1001 has
length 4, and the empty string has length 0.)

Here are the more essential points:

∙ We consider only decompressing programs; we do not worry at all about
compression. More specifically, a decompressor is any algorithm (a pro-
gram) that receives a binary string as an input and returns a binary string
as an output. If a decompressor 𝐷 on input 𝑥 terminates and returns
string 𝑦, we write 𝐷(𝑥) = 𝑦 and say that 𝑥 is a description of 𝑦 with
respect to 𝐷. Decompressors are also called description modes.

∙ A description mode is not required to be total. For some 𝑥, the compu-
tation 𝐷(𝑥) may never terminate and therefore produces no result. Also
we do not put any constraints on the computation time of 𝐷: on some
inputs the program 𝐷 may halt only after an extremely long time.

Using the recursion theory terminology, we say that a description mode is a
partial computable (=partial recursive) function from Ξ to Ξ, where Ξ = {0, 1}*
stands for the set of all binary strings. Let us recall that we associate with every
algorithm 𝐷 (whose inputs and outputs are binary strings) a function 𝑑 computed
by 𝐷; namely, 𝑑(𝑥) is defined for a string 𝑥 if and only if 𝐷 halts on 𝑥, and 𝑑(𝑥) is
the output of 𝐷 on 𝑥. A partial function from Ξ to Ξ is called computable if it is
associated with (=computed by) some algorithm 𝐷. Usually we use the same letter
to denote the algorithm and the function it computes. So we write 𝐷(𝑥) instead of
𝑑(𝑥) unless it causes a confusion.

Assume that a description mode (a decompressor) 𝐷 is fixed. (Recall that 𝐷 is
computable according to our definitions.) For a string 𝑥 consider all its descriptions,

11

12 WHAT IS THIS BOOK ABOUT?

that is, all 𝑦 such that 𝐷(𝑦) is defined and equals 𝑥. The length of the shortest
string 𝑦 among them is called the Kolmogorov complexity of 𝑥 with respect to 𝐷:

𝐶𝐷(𝑥) = min{ 𝑙(𝑦) | 𝐷(𝑦) = 𝑥}.
Here 𝑙(𝑦) denotes the length of the string 𝑦; we use this notation throughout the
book. The subscript 𝐷 indicates that the definition depends on the choice of the
description mode 𝐷. The minimum of the empty set is defined as +∞, thus 𝐶𝐷(𝑥)
is infinite for all the strings 𝑥 outside the range of the function 𝐷 (they have no
descriptions).

At first glance this definition seems to be meaningless, as for different 𝐷 we ob-
tain quite different notions, including ridiculous ones. For instance, if 𝐷 is nowhere
defined, then 𝐶𝐷 is infinite everywhere. If 𝐷(𝑦) = Λ (the empty string) for all 𝑦,
then the complexity of the empty string is 0 (since 𝐷(Λ) = Λ and 𝑙(Λ) = 0), and
the complexity of all the other strings is infinite.

A more reasonable example: consider a decompressor 𝐷 that just copies its
input to output, that is, 𝐷(𝑥) = 𝑥 for all 𝑥. In this case every string is its own
description and 𝐶𝐷(𝑥) = 𝑙(𝑥).

Of course, for any given string 𝑥 we can find a description mode 𝐷 that is
tailored to 𝑥 and with respect to which 𝑥 has small complexity. Indeed, let 𝐷(Λ) =
𝑥. This implies 𝐶𝐷(𝑥) = 0.

More general, if we have some class of strings, we may look for a description
mode that favors all the strings in this class. For example, for the class of strings
consisting of zeros only we may consider the following decompressor:

𝐷(bin(𝑛)) = 000 . . . 000 (𝑛 zeros),

where bin(𝑛) stands for the binary notation of natural number 𝑛. The length of
the string bin(𝑛) is about log2 𝑛 (does not exceed log2 𝑛 + 1). With respect to
this description mode, the complexity of the string consisting of 𝑛 zeros is close
to log2 𝑛. This is much less that the length of the string (𝑛). On the other hand,
all strings containing symbol 1 have infinite complexity 𝐶𝐷.

It may seem that the dependence of complexity on the choice of the decom-
pressor makes impossible any general theory of complexity. However, it is not the
case.

Optimal description modes

A description mode is better when descriptions are shorter. According to this,
we say that a description mode (decompressor) 𝐷1 is not worse than a description
mode 𝐷2 if

𝐶𝐷1(𝑥) 6 𝐶𝐷2(𝑥) + 𝑐

for some constant 𝑐 and for all strings 𝑥.
Let us comment on the role of the constant 𝑐 in this definition. We consider a

change in the complexity bounded by a constant as “negligible”. One could say that
such a tolerance makes the complexity notion practically useless, as the constant 𝑐
can be very large. However, nobody managed to get any reasonable theory that
overcomes this difficulty and defines complexity with better precision.

Example. Consider two description modes (decompressors) 𝐷1 and 𝐷2. Let
us show that there exists a description mode 𝐷 which is not worse than both of

OPTIMAL DESCRIPTION MODES 13

them. Indeed, let

𝐷(0𝑦) = 𝐷1(𝑦),

𝐷(1𝑦) = 𝐷2(𝑦).

In other words, we consider the first bit of a description as the index of a description
mode and the rest as the description (for this mode).

If 𝑦 is a description of 𝑥 with respect to 𝐷1 (or 𝐷2), then 0𝑦 (respectively, 1𝑦)
is a description of 𝑥 with respect to 𝐷 as well. This description is only one bit
longer, therefore we have

𝐶𝐷(𝑥) 6 𝐶𝐷1(𝑥) + 1,

𝐶𝐷(𝑥) 6 𝐶𝐷2
(𝑥) + 1

for all 𝑥. Thus the mode 𝐷 is not worse than both 𝐷1 and 𝐷2.
This idea is often used in practice. For instance, a zip-archive has a preamble;

the preamble says (among other things) which mode was used to compress this
particular file, and the compressed file follows the preamble.

If we want to use 𝑁 different compression modes, we need to reserve initial
log2 𝑁 bits for the index of the compression mode.

Using a generalization of this idea, we can prove the following theorem:

Theorem 1 (Solomonoff–Kolmogorov). There is a description mode 𝐷 that is
not worse than any other one: for every description mode 𝐷′ there is a constant 𝑐
such that

𝐶𝐷(𝑥) 6 𝐶𝐷′(𝑥) + 𝑐

for every string 𝑥.

A description mode 𝐷 having this property is called optimal.

Proof. Recall that a description mode by definition is a computable function.
Every computable function has a program. We assume that programs are binary
strings. Moreover, we assume that reading the program bits from left to right we
can determine uniquely where it ends, that is, programs are “self-delimiting”. Note
that every programming language can be modified in such a way that programs are
self-delimiting. For instance, we can double every bit of a given program (changing
0 to 00 and 1 to 11) and append the pattern 01 to its end.

Define now a new description mode 𝐷 as follows:

𝐷(𝑃𝑦) = 𝑃 (𝑦)

where 𝑃 is a program (in the chosen self-delimiting programming language) and
𝑦 is any binary string. That is, the algorithm 𝐷 scans the input string from the
left to the right and extracts a program 𝑃 from the input. (If the input does not
start with a valid program, 𝐷 does whatever it wants, say, goes into an infinite
loop. The self-delimiting property guarantees that the decomposition of input is
unique: if 𝑃𝑦 = 𝑃 ′𝑦′ for two programs 𝑃 and 𝑃 ′, then one of the programs is a
prefix of the other one.) Then 𝐷 applies the extracted program 𝑃 to the rest of the
input (𝑦) and returns the obtained result. (So 𝐷 is just an “universal algorithm”,
or “interpreter”; the only difference is that program and input are not separated
and therefore we need to use a self-delimiting programming language.)

Let us show that indeed 𝐷 is not worse than any other description mode 𝑃 . We
assume that the program 𝑃 is written in the chosen self-delimiting programming

14 WHAT IS THIS BOOK ABOUT?

language. If 𝑦 is a shortest description of the string 𝑥 with respect to 𝑃 , then 𝑃𝑦
is a description of 𝑥 with respect to 𝐷 (though not necessarily a shortest one).
Therefore, compared to 𝑃 , the shortest description is at most 𝑙(𝑃) bits longer, and

𝐶𝐷(𝑥) 6 𝐶𝑃 (𝑥) + 𝑙(𝑃).

The constant 𝑙(𝑃) depends only on the description mode 𝑃 (and not on 𝑥). �

Basically, we used the same trick as in the preceding example, but instead
of merging two description modes we join all of them. Each description mode
is prefixed by its index (program, identifier). The same idea is used in practice.
A “self-extracting archive” is an executable file starting with a small program (a
decompressor); the rest is considered as an input to that program. This program
is loaded into the memory and then it decompresses the rest of the file.

Note that in our construction optimal decompressor works for a very long time
on some inputs (as some programs have large running time), and is undefined on
some other inputs.

Kolmogorov complexity

Fix an optimal description mode 𝐷 and call 𝐶𝐷(𝑥) the Kolmogorov complexity
of the string 𝑥. In the notation 𝐶𝐷(𝑥) we drop the subscript 𝐷 and write just 𝐶(𝑥).

If we switch to another optimal description mode, the change in complexity is
bounded by an additive constant: for every optimal description modes 𝐷1 and 𝐷2

there is a constant 𝑐(𝐷1, 𝐷2) such that

|𝐶𝐷1(𝑥) − 𝐶𝐷2(𝑥)| 6 𝑐(𝐷1, 𝐷2)

for all 𝑥. Sometimes this inequality is written as follows:

𝐶𝐷1(𝑥) = 𝐶𝐷2(𝑥) + 𝑂(1),

where 𝑂(1) stands for a bounded function of 𝑥.
Could we then consider the Kolmogorov complexity of a particular string 𝑥

without having in mind a specific optimal description mode used in the definition
of 𝐶(𝑥)? No, since by adjusting the optimal description mode we can make the
complexity of 𝑥 arbitrarily small or arbitrarily large. Similarly, the relation “string 𝑥
is simpler than 𝑦”, that is, 𝐶(𝑥) < 𝐶(𝑦), has no meaning for two fixed strings 𝑥
and 𝑦: by adjusting the optimal description mode we can make any of these two
strings simpler than the other one.

One may wonder then whether Kolmogorov complexity has any sense at all.
Trying to defend this notion, let us recall the construction of the optimal description
mode used in the proof of the Solomonoff–Kolmogorov theorem. This construction
uses some programming language, and two different choices of this language lead
to two complexities that differ at most by a constant. This constant is in fact the
length of the program that is written in one of these two languages and interprets
the other one. If both languages are “natural”, we can expect this constant to be
not that huge, just several thousands or even several hundreds. Therefore if we
speak about strings whose complexity is, say, about 105 (i.e., a text of a long and
not very compressible novel), or 106 (which is reasonable for DNA strings, unless
they are compressible much more than the biologists think now), then the choice
of the programming language is not that important.

Nevertheless one should always have in mind that all statements about Kol-
mogorov complexity are inherently asymptotic: they involve infinite sequences of

COMPLEXITY AND INFORMATION 15

strings. This situation is typical also for computational complexity: usually upper
and lower bounds for complexity of some computational problem are asymptotic
bounds.

Complexity and information

One can consider the Kolmogorov complexity of 𝑥 as the amount of informa-
tion in 𝑥. Indeed, a string of zeros, which has a very short description, has little
information, and a chaotic string, which cannot be compressed, has a lot of informa-
tion (although that information can be meaningless—we do not try to distinguish
between meaningful and meaningless information; so, in our view, any abracadabra
has much information unless it has a short description).

If the complexity of a string 𝑥 is equal to 𝑘, we say that 𝑥 has 𝑘 bits of
information. One can expect that the amount of information in a string does not
exceed its length, that is, 𝐶(𝑥) 6 𝑙(𝑥). This is true (up to an additive constant, as
we have already said).

Theorem 2. There is a constant 𝑐 such that

𝐶(𝑥) 6 𝑙(𝑥) + 𝑐

for all strings 𝑥.

Proof. Let 𝐷(𝑦) = 𝑦 for all 𝑦. Then 𝐶𝐷(𝑥) = 𝑙(𝑥). By optimality, there
exists some 𝑐 such that

𝐶(𝑥) 6 𝐶𝐷(𝑥) + 𝑐 = 𝑙(𝑥) + 𝑐

for all 𝑥. �

Usually this statement is written as follows: 𝐶(𝑥) 6 𝑙(𝑥) + 𝑂(1). Theorem 2
implies, in particular, that Kolmogorov complexity is always finite, that is, every
string has a description.

Here is another property of “amount of information” that one can expect: the
amount of information does not increase when algorithmic transformation is per-
formed. (More precisely, the increase is bounded by an additive constant depending
on the transformation algorithm.)

Theorem 3. For every algorithm 𝐴 there exists a constant 𝑐 such that

𝐶(𝐴(𝑥)) 6 𝐶(𝑥) + 𝑐

for all 𝑥 such that 𝐴(𝑥) is defined.

Proof. Let 𝐷 be an optimal decompressor that is used in the definition of the
Kolmogorov complexity. Consider another decompressor 𝐷′:

𝐷′(𝑝) = 𝐴(𝐷(𝑝)).

(We apply first 𝐷 and then 𝐴.) If 𝑝 is a description of a string 𝑥 with respect to 𝐷
and 𝐴(𝑥) is defined, then 𝑝 is a description of 𝐴(𝑥) with respect to 𝐷′. Let 𝑝 be a
shortest description of 𝑥 with respect to 𝐷. Then we have

𝐶𝐷′(𝐴(𝑥)) 6 𝑙(𝑝) = 𝐶𝐷(𝑥) = 𝐶(𝑥).

By optimality we obtain

𝐶(𝐴(𝑥)) 6 𝐶𝐷′(𝐴(𝑥)) + 𝑐 6 𝐶(𝑥) + 𝑐

for some 𝑐 and all 𝑥. �

16 WHAT IS THIS BOOK ABOUT?

This theorem implies that the amount of information “does not depend on the
specific encoding”. For instance, if we reverse all bits of some string (replace 0
by 1 and vice versa), or add a zero bit after each bit of that string, the resulting
string has the same Kolmogorov complexity as the original one (up to an additive
constant). Indeed, the transformation itself and its inverse can be performed by an
algorithm.

Here is one more example of a natural property of Kolmogorov complexity. Let
𝑥 and 𝑦 be strings. How much information has their concatenation 𝑥𝑦? We expect
that the quantity of information in 𝑥𝑦 does not exceed the sum of those in 𝑥 and 𝑦.
This is indeed true, however, a small additive term is needed.

Theorem 4. There is a constant 𝑐 such that for all 𝑥 and 𝑦

𝐶(𝑥𝑦) 6 𝐶(𝑥) + 2 log𝐶(𝑥) + 𝐶(𝑦) + 𝑐

Proof. Let us try first to prove the statement in a stronger form, without
the term 2 log𝐶(𝑥). Let 𝐷 be the optimal description mode that is used in the
definition of Kolmogorov complexity. Define the following description mode 𝐷′.
If 𝐷(𝑝) = 𝑥 and 𝐷(𝑞) = 𝑦 we consider 𝑝𝑞 as a description of 𝑥𝑦, that is, we let
𝐷′(𝑝𝑞) = 𝑥𝑦. Then the complexity of 𝑥𝑦 with respect to 𝐷′ does not exceed the
length of 𝑝𝑞, that is, 𝑙(𝑝) + 𝑙(𝑞). If 𝑝 and 𝑞 are minimal descriptions, we obtain
𝐶𝐷′(𝑥𝑦) 6 𝐶𝐷(𝑥) +𝐶𝐷(𝑦). By optimality the same inequality holds for 𝐷 in place
of 𝐷′, up to an additive constant.

What is wrong with this argument? The problem is that 𝐷′ is not well defined.
We let 𝐷′(𝑝𝑞) = 𝐷(𝑝)𝐷(𝑞). However, 𝐷′ has no means to separate 𝑝 from 𝑞. It may
happen that there are two ways to split the input into 𝑝 and 𝑞 yielding different
results:

𝑝1𝑞1 = 𝑝2𝑞2 but 𝐷(𝑝1)𝐷(𝑞1) ̸= 𝐷(𝑝2)𝐷(𝑞2).

There are two ways to fix this bug. The first one, which we use now, goes
as follows. Let us prepend the string 𝑝𝑞 by the length 𝑙(𝑝) of string 𝑝 (in binary
notation). This allows us to separate 𝑝 and 𝑞. However, we need to find where
𝑙(𝑝) ends, so let us double all the bits in the binary representation of 𝑙(𝑝) and then
put 01 as separator. More specifically, let bin(𝑘) denote the binary representation
of integer 𝑘 and let 𝑥 be the result of doubling each bit in 𝑥. (For example,

bin(5) = 101, and bin(5) = 110011.) Let

𝐷′(bin(𝑙(𝑝)) 01𝑝𝑞) = 𝐷(𝑝)𝐷(𝑞).

Thus 𝐷′ is well defined: the algorithm 𝐷′ scans bin(𝑙(𝑝)) while all the digits are
doubled. Once it sees 01, it determines 𝑙(𝑝) and then scans 𝑙(𝑝) digits to find 𝑝.
The rest of the input is 𝑞 and the algorithm is able to compute 𝐷(𝑝)𝐷(𝑞).

Now we see that 𝐶𝐷′(𝑥𝑦) is at most 2𝑙(bin(𝑙(𝑝))) + 2 + 𝑙(𝑝) + 𝑙(𝑞). The length
of the binary representation of 𝑙(𝑝) is at most log2 𝑙(𝑝) + 1. Therefore, 𝑥𝑦 has a
description of length at most 2 log2 𝑙(𝑝) + 4 + 𝑙(𝑝) + 𝑙(𝑞) with respect to 𝐷′, which
implies the statement of the theorem. �

The second way to fix the bug mentioned above goes as follows. We could
modify the definition of Kolmogorov complexity by requiring descriptions to be
“self-delimiting”; we discuss this approach in detail in Chapter 4.

COMPLEXITY AND INFORMATION 17

Note also that we can exchange 𝑝 and 𝑞 and thus prove that

𝐶(𝑥𝑦) 6 𝐶(𝑥) + 𝐶(𝑦) + 2 log2 𝐶(𝑦) + 𝑐.

How tight is the inequality of Theorem 4? Can 𝐶(𝑥𝑦) be much less than
𝐶(𝑥) +𝐶(𝑦)? According to our intuition, this happens when 𝑥 and 𝑦 have much in
common. For example, if 𝑥 = 𝑦, we have 𝐶(𝑥𝑦) = 𝐶(𝑥𝑥) = 𝐶(𝑥) + 𝑂(1), since 𝑥𝑥
can be algorithmically obtained from 𝑥 and vice versa (Theorem 3).

To refine this observation we will define the notion of the quantity of information
in 𝑥 that is missing in 𝑦 (for every strings 𝑥 and 𝑦). This value is called the the
Kolmogorov complexity of 𝑥 conditional to 𝑦 (or “given 𝑦”) and denoted by 𝐶(𝑥 |𝑦).
Its definition is similar to the definition of the unconditional complexity. This time
the decompressor 𝐷 has access not only to the (compressed) description, but also
to the string 𝑦. We will discuss this notion later in Section 2. Here we mention
only that the following equality holds:

𝐶(𝑥𝑦) = 𝐶(𝑦) + 𝐶(𝑥 |𝑦) + 𝑂(log 𝑛)

for all strings 𝑥 and 𝑦 of complexity at most 𝑛. The equality reads as follows: the
amount of information in 𝑥𝑦 is equal to the amount of information in 𝑦 plus the
amount of new information in 𝑥 (“new” = missing in 𝑦).

The difference 𝐶(𝑥)−𝐶(𝑥 |𝑦) can be considered as “the quantity of information
in 𝑦 about 𝑥”. It indicates how much the knowledge of 𝑦 simplifies 𝑥.

Using the notion of conditional complexity we can ask questions like this: How
much new information has DNA of some organism compared to another organism’s
DNA? If 𝑑1 is the binary string that encodes the first DNA and 𝑑2 is the binary
string that encodes the second DNA, then the value in question is 𝐶(𝑑1 |𝑑2). Sim-
ilarly we can ask what percentage of information has been lost when translating a
novel into another language: this percentage is the fraction

𝐶(original |translation)/𝐶(original).

The questions about information in different objects were studied before the
invention of algorithmic information theory. The information was measured using
the notion of Shannon entropy. Let us recall its definition. Let 𝜉 be a random
variable that takes 𝑛 values with probabilities 𝑝1, . . . , 𝑝𝑛. Then its Shannon entropy
𝐻(𝜉) is defined as follows:

𝐻(𝜉) =
∑︁

𝑝𝑖(− log2 𝑝𝑖).

Informally, the outcome having probability 𝑝𝑖 carries log(1/𝑝𝑖) = − log2 𝑝𝑖 bits of
information (=surprise). Then 𝐻(𝜉) can be understood as the average amount of
information in an outcome of the random variable.

Assume that we want to use Shannon entropy to measure the amount of infor-
mation contained in some English text. To do this we have to find an ensemble of
texts and a probability distribution on this ensemble such that the text is “typical”
with respect to this distribution. This makes sense for a short telegram, but for a
long text (say, a novel) such an ensemble is hard to imagine.

The same difficulty arises when we try to define the amount of information in
the genome of some species. If we consider as the ensemble the set of the genomes
of all existing species (or even all species ever existed), then the cardinality of this
set is rather small (it does not exceed 21000 for sure). And if we consider all its

18 WHAT IS THIS BOOK ABOUT?

elements as equiprobable, then we obtain a ridiculously small value (less than 1000
bits); for the non-uniform distributions the entropy is even less.

So we see that in these contexts Kolmogorov complexity looks like a more
adequate tool than Shannon entropy.

Complexity and randomness

Let us recall the inequality 𝐶(𝑥) 6 𝑙(𝑥) + 𝑂(1) (Theorem 2). For most of
the strings its left hand side is close to the right hand side. Indeed, the following
statement is true:

Theorem 5. Let 𝑛 be an integer. Then there are less than 2𝑛 strings 𝑥 such
that 𝐶(𝑥) < 𝑛.

Proof. Let 𝐷 be the optimal description mode used in the definition of Kol-
mogorov complexity. Then only strings 𝐷(𝑦) for all 𝑦 such that 𝑙(𝑦) < 𝑛 have
complexity less than 𝑛. The number of such strings does not exceed the number of
strings 𝑦 such that 𝑙(𝑦) < 𝑛, i.e., the sum

1 + 2 + 4 + 8 + . . . + 2𝑛−1 = 2𝑛 − 1

(there are 2𝑘 strings for each length 𝑘 < 𝑛). �

This implies that the fraction of strings of complexity less than 𝑛− 𝑐 among all
strings of length 𝑛 is less than 2𝑛−𝑐/2𝑛 = 2−𝑐. For instance, the fraction of strings
of complexity less than 90 among all strings of length 100 is less than 2−10.

Thus the majority of strings (of a given length) are incompressible or almost
incompressible. In other words, a randomly chosen string of the given length is
almost incompressible. This can be illustrated by the following mental (or even
real) experiment. Toss a coin, say, 80000 times and get a sequence of 80000 bits.
Convert it into a file of size 10000 bytes (8 bits = 1 byte). One can bet that no
compression software (existing before the start of the experiment) can compress the
resulting file by more than 10 bytes. Indeed, the probability of this event is less
than 2−80 for every fixed compressor, and the number of (existing) compressors is
not so large.

It is natural to consider incompressible strings as “random” ones: informally
speaking, randomness is the absence of any regularities that may allow us to com-
press the string. Of course, there is no strict borderline between “random” and
“non-random” strings. It is ridiculous to ask which strings of length 3 (i.e., 000,
001, 010, 011, 100, 101, 110, 111) are random and which are not.

Another example: assume that we start with a “random” string of length 10000
and replace its bits by all zeros (one bit at a step). At the end we get a certainly
non-random string (zeros only). But it would be näıve to ask at which step the
string has become non-random for the first time.

Instead, we can naturally define the “randomness deficiency” of a string 𝑥 as
the difference 𝑙(𝑥) −𝐶(𝑥). Using this notion, we can restate Theorem 2 as follows:
the randomness deficiency is almost non-negative (i.e., larger than a constant).
Theorem 5 says that the randomness deficiency of a string of length 𝑛 is less than
𝑑 with probability at least 1 − 1/2𝑑 (assuming that all strings are equiprobable).

Now consider the Law of Large Numbers; it says that most of the 𝑛-bit strings
have frequency of ones close to 1/2. This law can be translated into Kolmogorov
complexity language as follows: the frequency of ones in every string with small

NON-COMPUTABILITY OF 𝐶 AND BERRY’S PARADOX 19

randomness deficiency is close to 1/2. This translation implies the original state-
ment since most of the strings have small randomness deficiency. We will see later
that actually these formulations are equivalent.

If we insist on drawing a strict borderline between random and non-random
objects, we have to consider infinite sequences instead of strings. The notion of
randomness for infinite sequences of zeros and ones was defined by Kolmogorov’s
student P. Martin-Löf (he came to Moscow from Sweden). We discuss it in Section 3.
Later C. Schnorr and L. Levin found a characterization of randomness in terms of
complexity: an infinite binary sequence is random if and only if the randomness
deficiency of its prefixes is bounded by a constant. This criterion, however, uses
another version of Kolmogorov complexity called monotone complexity.

Non-computability of 𝐶 and Berry’s paradox

Before discussing applications of Kolmogorov complexity, let us mention a fun-
damental problem that reappears in any application. Unfortunately, the function 𝐶
is not computable: there is no algorithm that given a string 𝑥 finds its Kolmogorov
complexity. Moreover, there is no computable nontrivial (unbounded) lower bound
for 𝐶.

Theorem 6. Let 𝑘 be a computable (not necessarily total) function from Ξ
to N. (In other words, 𝑘 is an algorithm that terminates on some binary strings
and returns natural numbers as results.) If 𝑘 is a lower bound for Kolmogorov
complexity, that is, 𝑘(𝑥) 6 𝐶(𝑥) for all 𝑥 such that 𝑘(𝑥) is defined, then 𝑘 is
bounded: all its values do not exceed some constant.

The proof of this theorem is a reformulation of the so-called “Berry’s paradox”.
This paradox considers

the minimal natural number that cannot be defined by at most
fourteen English words.

This phrase has exactly fourteen words and defines that number. Thus we get a
contradiction.

Following this idea consider the first binary string whose Kolmogorov complexity
is greater than a given number 𝑁 . By definition, its complexity is greater than 𝑁 .
On the other hand, this string has a short description that includes some fixed
amount of information plus the binary notation of 𝑁 (which requires about log2 𝑁
bits), and the total number of bits needed is much less than 𝑁 for large 𝑁 . That
would be a contradiction if we knew how to effectively find this string given its
description. Using the computable lower bound 𝑘, we can convert this paradox into
the proof.

Proof. Consider the function 𝐵(𝑁) whose argument 𝑁 is a natural number;
it is computed by the following algorithm:

perform in parallel the computations 𝑘(Λ), 𝑘(0), 𝑘(1), 𝑘(00),
𝑘(01), 𝑘(10), 𝑘(11), . . . until some string 𝑥 such that 𝑘(𝑥) > 𝑁
appears; then return 𝑥.

If the function 𝑘 is unbounded then the function 𝐵 is total and 𝑘(𝐵(𝑁)) > 𝑁
by construction for every 𝑁 . As 𝑘 is a lower bound for 𝐾, we have 𝐶(𝐵(𝑁)) > 𝑁 .
On the other hand 𝐵(𝑁) can be computed given the binary representation bin(𝑁)

20 WHAT IS THIS BOOK ABOUT?

of 𝑁 , therefore

𝐶(𝐵(𝑁)) 6 𝐶(bin(𝑁)) + 𝑂(1) 6 𝑙(bin(𝑁)) + 𝑂(1) 6 log2 𝑁 + 𝑂(1)

(the first inequality is provided by Theorem 3, the second one is provided by The-
orem 2; term 𝑂(1) stands for a bounded function). So we obtain

𝑁 < 𝐶(𝐵(𝑁)) 6 log2 𝑁 + 𝑂(1),

which cannot happen if 𝑁 is large enough. �

Some applications of Kolmogorov complexity

Let us start with a disclaimer: the applications we will talk about are not real
“practical” applications; we just establish relations between Kolmogorov complexity
and other important notions.

Occam’s razor. We start with a philosophical question. What do we mean
when we say that a theory provides a good explanation for some experimental data?
Assume that we are given some experimental data and there are several theories to
explain the data. For example, the data might be the observed positions of planets
in the sky. We can explain them as Ptolemy did, with epicycles and deferents,
introducing extra corrections when needed. On the other hand, we can use the
laws of the modern mechanics. Why do we think that the modern theory is better?
A possible answer: the modern theory can compute the positions of planets with
the same (or even better) accuracy given less parameters. In other words, Kepler’s
achievement is a shorter description of the experimental data.

Roughly speaking, experimenters obtain binary strings and theorists find short
descriptions for them (thus proving upper bounds for complexities of those strings);
the shorter the description is, the better is the theorist.

This approach is sometimes called “Occam’s razor” and is attributed to the
philosopher William of Ockham who said that entities should not be multiplied be-
yond necessity. It is hard to judge whether he would agree with such interpretation
of his words.

We can use the same idea in more practical contexts. Assume that we design
a machine that reads handwritten zip codes on envelopes. We are looking for a
rule that separates, say, images of zeros from images of ones. An image is given as
a Boolean matrix (or a binary string). We have several thousands of images and
for each image we know whether it means 0 or 1. We want to find a reasonable
separating rule (with the hope that it can be applied to the forthcoming images).
What means “reasonable” in this context? If we just list all the images in our list
together with their classification, we get a valid separation rule—at least it works
until we receive a new image—however, the rule is way too long. It is natural to
assume that a reasonable rule must have a short description, that is, it must have
low Kolmogorov complexity.

Foundations of probability theory. The probability theory itself, being
currently a part of measure theory, is mathematically sound and does not need any
extra “foundations”. The difficult questions arise, however, if we try to understand
why this theory could be applied to the real world phenomena and how it should
be applied.

Assume that we toss a coin thousand times (or test some other hardware ran-
dom number generator) and get a bit string of length 1000. If this string contains

SOME APPLICATIONS OF KOLMOGOROV COMPLEXITY 21

only zeros or equals 0101010101 . . . (zeros and ones alternate), then we definitely
will conclude that the generator is bad. Why?

Usual explanation: the probability of obtaining thousand zeros is negligible
(2−1000) provided the coin is fair. Therefore the conjecture of a fair coin is refuted
by the experiment.

The problem with this explanation is that we do not always reject the generator:
there should be some sequence 𝛼 of thousand zeros and ones which is consistent
with this conjecture. Note, however, that the probability of obtaining the sequence
𝛼 as a result of fair coin tossing is also 2−1000. So what is the reason behind our
complaints? What is the difference between the sequence of thousand zeros and
the sequence 𝛼?

The reason is revealed when we compare Kolmogorov complexities of these
sequences.

Proving theorems of probability theory. As an example, consider the
Strong Law of Large Numbers. It claims that for almost all (according to the the
uniform Bernoulli probability distribution) infinite binary sequences the limit of
frequencies of 1s in their initial segments equals 1/2.

More formally, let Ω be the set of all infinite sequences of zeros and ones.
The uniform Bernoulli measure on Ω is defined as follows. For every finite binary
string 𝑥 consider the set Ω𝑥 consisting of all infinite sequences that start with 𝑥.
For example, ΩΛ = Ω. The measure of Ω𝑥 is equal to 2−𝑙(𝑥). For example, the
measure of the set Ω01 that consists of all sequences starting with 01, equals 1/4.

For each sequence 𝜔 = 𝜔0𝜔1𝜔2 . . . consider the limit of the frequencies of 1s in
the prefixes of 𝜔, that is,

lim
𝑛→∞

𝜔0 + 𝜔1 + . . . + 𝜔𝑛−1

𝑛

We say that 𝜔 satisfies the Strong Law of Large Numbers (SLLN) if this limit exists
and is equal to 1/2. For instance, the sequence 010101 . . . , having period 2, satisfies
the SLLN and the sequence 011011011 . . ., having period 3, does not.

The Strong Law of Large Numbers says that the set of sequences that do not
satisfy SLLN has measure 0. Recall that a set 𝐴 ⊂ Ω has measure 0 if for all 𝜀 > 0
there is a sequence of strings 𝑥0, 𝑥1, 𝑥2, . . . such that

𝐴 ⊂ Ω𝑥0
∪ Ω𝑥1

∪ Ω𝑥2
∪ . . .

and the sum of the series

2−𝑙(𝑥0) + 2−𝑙(𝑥1) + 2−𝑙(𝑥2) + . . .

(the sum of the measures of Ω𝑥𝑖) is less than 𝜀.
One can prove SLLN using the notion of a Martin-Löf random sequence men-

tioned above. The proof consists of two parts. First, we show that every Martin-Löf
random sequence satisfies SLLN. This can be done using Levin–Schnorr random-
ness criterion (if the limit does not exist or differs from 1/2, then the complexity
of some prefix is less than it should be for a random sequence).

The second part is rather general and does not depend on the specific law of
probability theory. We prove that the set of all Martin-Löf non-random sequences
has measure zero. This implies that the set of sequences that do not satisfy SLLN
is included in a set of measure 0 and hence has measure 0 itself.

The notion of a random sequence is philosophically interesting in its own right.
In the beginning of XXth century Richard von Mises suggested to use this notion

22 WHAT IS THIS BOOK ABOUT?

(he called it in German “Kollektiv”) as a basis for probability theory (at that time
the measure theory approach was not developed yet). He considered the so-called
“frequency stability” as a main property of random sequences. We will consider
von Mises’ approach to the definition of a random sequence (and the subsequent
developments) in Chapter 9.

Lower bounds for computational complexity. Kolmogorov complexity
turned out to be a useful technical tool when proving lower bounds for computa-
tional complexity. Let us explain the idea using the following model example.

Consider the following problem: Initially a string 𝑥 of length 𝑛 is located in
the 𝑛 leftmost cells of the tape of a Turing machine. The machine has to copy 𝑥,
that is, to get 𝑥𝑥 on the tape (the string 𝑥 is intact and its copy is appended) and
halt.

Since the middle of 1960ies it is well known that (one-tape) Turing machine
needs time proportional to 𝑛2 to perform this task. More specifically, one can show
that for every Turing machine 𝑀 that can copying every string 𝑥 there exists some
𝜀 > 0 such that for all 𝑛 there is a string 𝑥 of length 𝑛 whose copying requires at
least 𝜀𝑛2 steps.

Consider the following intuitive argument supporting this claim. The number
of internal states of a Turing machine is a constant (depending on the machine).
That is, the machine can keep in its memory only a finite number of bits. The
speed of the head movement is also limited: one cell per step. Hence the rate of
information transfer (measured in bit·cell/step) is bounded by a constant depending
on the number of internal states. To copy a string 𝑥 of length 𝑛, we need to move 𝑛
bits by 𝑛 cells to the right, therefore the number of steps should be proportional
to 𝑛2 (or more).

Using Kolmogorov complexity, we can make this argument rigorous. A string
is hard to copy if it contains maximal amount of information, i.e., its complexity is
close to 𝑛. We consider this example in detail in Section 8.2 (p. 245).

A combinatorial interpretation of Kolmogorov complexity. We con-
sider here one example of this kind (see Chapter 10, p. 323, for more details).
One can prove the following inequality for complexity of three strings and their
combinations:

2𝐶(𝑥𝑦𝑧) 6 𝐶(𝑥𝑦) + 𝐶(𝑥𝑧) + 𝐶(𝑦𝑧) + 𝑂(log 𝑛)

for all strings 𝑥, 𝑦, 𝑧 of length at most 𝑛.
It turns out that this inequality has natural interpretations that are not related

to complexity at all. In particular, it implies (see [65]) the following geometrical
fact:

Consider a body 𝐵 in a three-dimensional Euclidean space with coordinate axes
𝑂𝑋, 𝑂𝑌 and 𝑂𝑍. Let 𝑉 be 𝐵’s volume. Consider 𝐵’s orthogonal projections onto
coordinate planes 𝑂𝑋𝑌 , 𝑂𝑋𝑍 and 𝑂𝑌 𝑍. Let 𝑆𝑥𝑦, 𝑆𝑥𝑧 and 𝑆𝑦𝑧 be the areas of
these projections. Then

𝑉 2 6 𝑆𝑥𝑦 · 𝑆𝑥𝑧 · 𝑆𝑦𝑧.

Here is an algebraic corollary of the same inequality. For every group 𝐺 and
its subgroups 𝑋, 𝑌 and 𝑍 we have

|𝑋 ∩ 𝑌 ∩ 𝑍|2 > |𝑋 ∩ 𝑌 | · |𝑋 ∩ 𝑍| · |𝑌 ∩ 𝑍|
|𝐺|

,

where |𝐻| denotes the number of elements in 𝐻.

SOME APPLICATIONS OF KOLMOGOROV COMPLEXITY 23

Gödel incompleteness theorem. Following G. Chaitin, let us explain how
to use Theorem 6 in order to prove the famous Gödel incompleteness theorem. This
theorem states that not all true statements of a formal theory that is “rich enough”
(the formal arithmetic and the axiomatic set theory are two examples of such a
theory) are provable in the theory.

Assume that for every string 𝑥 and every natural number 𝑛, one can express
the statement 𝐶(𝑥) > 𝑛 as a formula in the language of our theory. (This statement
says that the chosen optimal decompressor 𝐷 does not output 𝑥 on any input of
length at most 𝑛; one can easily write this statement in the formal arithmetic and
therefore in the set theory.)

Let us generate all the proofs (derivations) in our theory and select those of
them who prove some statement of the form 𝐶(𝑥) > 𝑛 where 𝑥 is some string
and 𝑛 is some integer (statements of this type have no free variables). Once we
have found a new theorem of this type, we compare 𝑛 with all previously found 𝑛’s.
If the new 𝑛 is greater than all previous 𝑛’s we write the new 𝑛 into the “records
table” together with the corresponding 𝑥𝑛.

There are two possibilities: either (1) the table will grow infinitely, or (2) there
is the last statement 𝐶(𝑋) > 𝑁 in the table which remains unbeaten forever. If (2)
happens, there is an entire class of true statements that have no proof. Namely, all
true statements of the form 𝐶(𝑥) > 𝑛 with 𝑛 > 𝑁 have no proofs. (Recall that by
Theorem 5 there are infinitely many such statements.)

In the first case we have infinite computable sequences of strings 𝑥0, 𝑥1, 𝑥2 . . .
and numbers 𝑛0 < 𝑛1 < 𝑛2 < . . . such that all statements 𝐶(𝑥𝑖) > 𝑛𝑖 are provable.
We assume that the theory proves only true statements, thus all the inequalities
𝐶(𝑥𝑖) > 𝑛𝑖 are true. Without loss of generality we can assume that all 𝑥𝑖 are
pairwise different (we can omit 𝑥𝑖 if there exists 𝑗 < 𝑖 such that 𝑥𝑗 = 𝑥𝑖; every string
can occur only finitely many times in the sequence 𝑥0, 𝑥1, 𝑥2 . . . since 𝑛𝑖 → ∞ as
𝑖 → ∞). The computable function 𝑘, defined by the equation 𝑘(𝑥𝑖) = 𝑛𝑖, is then an
unbounded lower bound for Kolmogorov complexity. This contradicts Theorem 6.

Basic notions and notations

This section is intended for people who are already familiar with some notions
of Kolmogorov complexity and algorithmic randomness theory and want to take
a quick look at the terminology and notation used throughout this book. Other
readers can (and probably should) skip it and look back only when needed.

The set of all integer numbers is denoted by Z, the notation N refers to the
set of all non-negative integers (i.e. natural numbers), R stands for the set of all
reals. The set of all rational numbers is denoted by Q. Dyadic rationals are those
rationals having the form 𝑚/2𝑛 for some integer 𝑚 and 𝑛.

The cardinality of a set 𝐴 is denoted by |𝐴|.
When the base of the logarithmic function is omitted, it is assumed that the

base equals 2, thus log 𝑥 means the same as log2 𝑥 (as usual, ln𝑥 denotes the natural
logarithm).

We use the notation ⌊𝑥⌋ for the integer part of a real number 𝑥 (the largest
integer number that is less than or equal to 𝑥). Similarly, ⌈𝑥⌉ denotes the smallest
integer number that is larger than or equal to 𝑥.

Order of magnitudes. The notation 𝑓 6 𝑔+𝑂(1), where 𝑓 and 𝑔 are expressions
containing variables, means that for some 𝑐 the inequality 𝑓 6 𝑔 + 𝑐 holds for all
values of variables. In a similar way we understand the expression 𝑓 6 𝑔 + 𝑂(ℎ)
(where ℎ is non-negative): it means that for some 𝑐 for all values of variables the
inequality 𝑓 6 𝑔 + 𝑐ℎ holds. The notation 𝑓 = 𝑔 + 𝑂(ℎ) (where ℎ in non-negative)
means that for some 𝑐 for all values of variables we have |𝑓 −𝑔| 6 𝑐ℎ. In particular,
𝑓 = 𝑂(ℎ) holds if |𝑓 | 6 𝑐ℎ for some constant 𝑐; the notation 𝑓 = Ω(ℎ) means that
|𝑓 | > 𝑐ℎ for some constant 𝑐 > 0 (usually 𝑓 is positive). The notation 𝑓 = Θ(ℎ)
means that 𝑐1ℎ 6 |𝑓 | 6 𝑐2ℎ (again, usually 𝑓 is positive).

B denotes the set {0, 1}. Finite sequences of 0s and 1s are called binary strings.
The set of all binary strings is denoted by Ξ. If 𝐴 is a finite set (an alphabet) then
𝐴𝑛 denotes the set of all strings of length 𝑛 over the alphabet 𝐴, that is, the set
of all sequences of length 𝑛, whose terms belong to 𝐴. We denote by 𝐴* the set
of all strings over the alphabet 𝐴 (including the empty string Λ of length 0). For
instance, Ξ = B*. The length of a string 𝑥 is denoted by 𝑙(𝑥). The notation 𝑎𝑏
refers to the concatenation of strings 𝑎 and 𝑏, that is, the result of appending 𝑏
to 𝑎. We say that a string 𝑎 is a prefix of a string 𝑏 if 𝑏 = 𝑎𝑥 for some string 𝑥. We
say that 𝑎 is a suffix of a string 𝑏 if 𝑏 = 𝑥𝑎 for some string 𝑥. We say that 𝑎 is a
substring of 𝑏, if 𝑏 = 𝑥𝑎𝑦 for some strings 𝑥 and 𝑦 (in other words, 𝑎 is a suffix of
a prefix of 𝑏 or the other way around).

We consider also infinite sequences of zeros and ones and Ω denotes the set of
all such sequences. The set of infinite sequences of elements of a set 𝐴 is denoted
by 𝐴∞, thus Ω = B∞. For a finite sequence 𝑥 we use the notation Ω𝑥 for the set
of all infinite sequences that start with 𝑥 (i.e., have 𝑥 as a prefix); sets of this form

25

26 BASIC NOTIONS AND NOTATIONS

are called intervals. The concatenation 𝑥𝜔 of a finite sequence 𝑥 and an infinite
sequence 𝜔 is defined in a natural way.

In some contexts it is convenient to consider finite and infinite sequences to-
gether. We use the notation Σ for the set of all finite and infinite sequences of zeros
and ones, i.e., Σ = Ξ∪Ω, and Σ𝑥 denotes the set of all finite and infinite extensions
of a string 𝑥.

We consider computable functions whose arguments and values are binary
strings. Unless it is stated otherwise functions are partial (not necessarily total).
A function 𝑓 is called computable if there is a machine (a program, an algorithm)
that for all 𝑥 such that 𝑓(𝑥) is defined halts on input 𝑥 and outputs the result 𝑓(𝑥)
and does not halt on all inputs 𝑥 outside the domain of 𝑓 . We also consider com-
putable functions whose arguments and values are finite objects of different type,
like natural numbers, integer numbers, finite graphs etc. We assume that finite
objects are encoded by binary strings. The choice of an encoding is not important
provided different encodings can be translated to each other. The latter means that
we can algorithmically decide whether a string is an encoding of an object and, if
this is the case, we can find an encoding of the same object with respect to the
other encoding.

Sometimes we consider computable functions of infinite objects, like real num-
bers or measures. Such considerations require rigorous definitions of the notion of
computability, which are provided when needed (see below).

A set of finite objects (binary strings, natural numbers etc.) is called computably
enumerable, or just enumerable, if there is a machine (a program, an algorithm)
without input that prints all elements from the set (and no other elements) with
arbitrary delays between printing consecutive elements. The algorithm is not re-
quired to halt even when the set is finite. The order in which the elements are
printed can be arbitrary.

A real number 𝛼 is computable if there exists an algorithm that computes 𝛼
with any given precision: for any given rational 𝜀 > 0 the algorithm must produce a
rational number at distance at most 𝜀 from 𝛼 (in this case we say that the algorithm
computes the number). A real number 𝛼 is lower semicomputable if it can be
represented as a limit of a non-decreasing computable sequence of rational numbers.
An equivalent definition: 𝛼 is lower semicomputable if the set of rational numbers
that are less than 𝛼 is enumerable. A sequence of real numbers is computable if
all its terms are computable, and given any 𝑛 we are able to find an algorithm
computing the 𝑛th number in the sequence. The notion of a lower semicomputable
sequence of reals is defined in an entirely similar way (for any given 𝑛 we have to
find an algorithm that lower semicomputes the 𝑛th number).

We consider measures (more specifically, probability measures, or probability
distributions) on Ω. Every measure can be identified by its values on intervals Ω𝑥.
So measures are identified with non-negative functions 𝑝 on strings which satisfy
the following two conditions: 𝑝(Λ) = 1 and 𝑝(𝑥) = 𝑝(𝑥0) + 𝑝(𝑥1) for all 𝑥. Such
measures are called measures on the binary tree. We consider also semimeasures
on the binary tree, which are probability measures on the space Σ of all finite and
infinite binary sequences. They correspond to functions 𝑝 such that 𝑝(Λ) = 1 and
𝑝(𝑥) > 𝑝(𝑥0)+𝑝(𝑥1). We consider also semimeasures on natural numbers, which are
defined as sequences {𝑝𝑖} of non-negative reals with

∑︀
𝑖∈N 𝑝𝑖 6 1. It is natural to

BASIC NOTIONS AND NOTATIONS 27

identify such sequences with probability distributions on the set N⊥, which consists
of natural numbers and of the special symbol ⊥ (“undefined value”).

Among all semimeasures (on the tree or on natural numbers) we distinguish
lower semicomputable ones. Both the class of lower semicomputable semimeasures
on the tree and the class of lower semicomputable semimeasures on natural numbers
have a maximal semimeasure (up to a multiplicative constant). Any maximal lower
semicomputable semimeasure is called a priori probability (on the tree or on natural
numbers). A priori probability of a natural number 𝑛 is denoted by 𝑚(𝑛); a priori
probability of a node 𝑥 in the binary tree (that is, of the string 𝑥) is denoted by
𝑎(𝑥). We use also the notation 𝑚(𝑥) for a binary string 𝑥, which means a priory
probability of the number of 𝑥 with respect to some fixed computable one-to-one
correspondence between strings and natural numbers.

The plain Kolmogorov complexity is denoted by 𝐶(𝑥), the prefix Kolmogorov
complexity is denoted by 𝐾(𝑥) (and by 𝐾 ′(𝑥) when we want to stress that we are
using prefix-free description modes). The same letters are used to denote complexi-
ties of pairs, triples etc. and to denote conditional complexity. For instance, 𝐶(𝑥 |𝑦)
stands for the plain conditional complexity of 𝑥 when 𝑦 is known, and 𝑚(𝑥, 𝑦 |𝑧)
denotes a priori probability of the pair (𝑥, 𝑦) (that is, of the corresponding num-
ber) when 𝑧 is known. The monotone Kolmogorov complexity is denoted by KM ,
a priori complexity (negative logarithm of the a priory probability on the tree)
is denoted by KA . (In the literature monotone complexity is sometimes denoted
by Km and 𝐾𝑚 and a priori complexity is denoted by KM.) Finally the decision
complexity is denoted by KR .

BB (𝑛) denotes the maximal halting time of the optimal decompressor on inputs
of length at most 𝑛 (if the optimal prefix decompressor is meant, then we use the
notation BP (𝑛)). The function BB (𝑛) is closely related to the function 𝐵(𝑛)
defined as the maximal natural number of Kolmogorov complexity at most 𝑛.

We use also several topological notions. The space N⊥ consists of natural
numbers and of a special element ⊥ (“undefined value”); the family of open sets
consists of the whole space and of all sets that do not contain ⊥. This topological
space, as well as the space Σ (where the family of open sets consists of all unions of
sets of the form Σ𝑥), is used for the general classification of complexities. For the
spaces Ω and Σ and for the space of real numbers we call a set effectively open if it
is a union of a computably enumerable family of intervals (sets of the form Σ𝑥 for
the second space and intervals with rational endpoints for the space of reals).

Most notions of computability theory (including Kolmogorov complexity) can
be relativized, which means that all involved algorithms are supplied by an external
procedure, called an oracle. That procedure can be asked whether any given number
belongs to a set 𝐴. That set is also called an oracle. Thus we get the notions of
“decidability relative to an oracle 𝐴”, “computability relative to 𝐴”, etc. In the
corresponding notations we use the superscript 𝐴, for example, 𝐶𝐴(𝑥).

In the chapter on classical information theory, we use the notion of Shannon en-
tropy of a random variable 𝜉. If the variable has 𝑘 possible outcomes and 𝑝1, . . . , 𝑝𝑘
are their probabilities then its Shannon entropy 𝐻(𝜉) is defined as −

∑︀
𝑘 𝑝𝑘 log 𝑝𝑘.

This definition makes sense also for pairs of jointly distributed random variables.
For such a pair the conditional entropy of a random variable 𝜉 when 𝜂 is known
is defined as 𝐻(𝜉, 𝜂) − 𝐻(𝜂). The difference 𝐻(𝜉) + 𝐻(𝜂) − 𝐻(𝜉, 𝜂) is called the

28 BASIC NOTIONS AND NOTATIONS

mutual information in random variables 𝜉 and 𝜂 and is denoted by 𝐼(𝜉 :𝜂). A sim-
ilar notation 𝐼(𝑥 :𝑦) is used in the algorithmic information theory. As 𝐼(𝑥 :𝑦) is
commutative only up to a small error term, we usually say “the information in 𝑥
about 𝑦” and define this notion as 𝐶(𝑦) − 𝐶(𝑦 |𝑥).

CHAPTER 1

Plain Kolmogorov complexity

1.1. The definition and main properties

Let us recall the definition of Kolmogorov complexity from the Introduction.
This version of complexity was defined by Kolmogorov in his seminal paper [77].
In order to distinguish it from later versions we call it the plain Kolmogorov com-
plexity. Later, starting from Chapter 4, we will consider also other versions of
Kolmogorov complexity, including the prefix one and the monotone one, but for
now by Kolmogorov complexity we always mean the plain one.

Recall that a description mode, or a decompressor , is a partial computable
function 𝐷 from the set of all binary strings Ξ into Ξ. A partial function 𝐷 is
computable if there is an algorithm that terminates and returns 𝐷(𝑥) on every
input 𝑥 in the domain of 𝐷 and does not terminate on all other inputs. We say
that 𝑦 is a description of 𝑥 with respect to 𝐷 if 𝐷(𝑦) = 𝑥.

The complexity of a string 𝑥 with respect to description mode 𝐷 is defined as

𝐶𝐷(𝑥) = min{𝑙(𝑦) | 𝐷(𝑦) = 𝑥}.
The minimum of the empty set is +∞.

We say that a description mode 𝐷1 is not worse than a description mode 𝐷2

if there is a constant 𝑐 such that 𝐶𝐷1
(𝑥) 6 𝐶𝐷2

(𝑥) + 𝑐 for all 𝑥 and write this as
𝐶𝐷1(𝑥) 6 𝐶𝐷2(𝑥) + 𝑂(1).

A description mode is called optimal if it is not worse than any other description
mode. By Kolmogorov–Solomonoff universality theorem (Theorem 1, p. 13) optimal
description modes exist. Let us recall shortly its proof. Let 𝑈 be an interpreter of
a universal programming language, that is, 𝑈(𝑝, 𝑥) is the output of the program 𝑝
on input 𝑥. We assume that programs and inputs are binary strings. Let

𝐷(𝑝𝑥) = 𝑈(𝑝, 𝑥).

Here 𝑝 ↦→ 𝑝 stands for any computable mapping having the following property:
given 𝑝 we can effectively find 𝑝 and also the place where 𝑝 ends (in particular, if 𝑝
is a prefix of 𝑞, then 𝑝 = 𝑞). This property implies that 𝐷 is well defined. For any
description mode 𝐷′ let 𝑝 be a program of 𝐷′. Then

𝐶𝐷′(𝑥) 6 𝐶𝐷(𝑥) + 𝑙(𝑝).

Indeed, for every description 𝑦 of 𝑥 with respect to 𝐷′ the string 𝑝𝑦 is a description
of 𝑥 with respect to 𝐷.

Fix any optimal description mode 𝐷 and let 𝐶(𝑥) (we drop the subscript)
denote the complexity of 𝑥 with respect to 𝐷. (As we mentioned, in the first paper
of Kolmogorov [77] the letter 𝐾 was used, while in his second paper [78] the letter
𝐻 was used. We follow here the notation used by Li and Vitányi [102].)

29

30 1. PLAIN KOLMOGOROV COMPLEXITY

As the optimal description mode is not worse than the identity function 𝑥 ↦→ 𝑥,
we obtain the inequality 𝐶(𝑥) 6 𝑙(𝑥) + 𝑂(1) (Theorem 2, p. 15).

Let 𝐴 be a partial computable function. Comparing the optimal description
mode 𝐷 with the description mode 𝑦 ↦→ 𝐴(𝐷(𝑦)), we conclude that

𝐶(𝐴(𝑥)) 6 𝐶(𝑥) + 𝑂(1),

showing the non-growth of complexity under algorithmic transformations (Theo-
rem 3, p. 15).

Using this inequality, we can define Kolmogorov complexity of other “finite
objects” like natural numbers, graphs, permutations, finite sets of strings, etc.,
that can be naturally encoded by binary strings.

For example, let us define the complexity of natural numbers. A natural num-
ber 𝑛 can be written in binary notation. Another way to represent a number by a
string is as follows. Enumerate all the binary strings in the lexicographical order

Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, . . .

using the natural numbers 0, 1, 2, 3, . . . as indexes. This enumeration is more con-
venient compared to binary representation, as it is a bijection. Every string can be
considered as an encoding of its index in this enumeration. Finally, one can also
encode a natural number 𝑛 by a string consisting of 𝑛 ones.

Using either of these three encodings we can define the complexity of 𝑛 as
the complexity of the string encoding 𝑛. Three resulting complexities of 𝑛 differ
at most by an additive constant. Indeed, for every pair of these encodings there
is an algorithm translating the first encoding into the second one. Applying this
algorithm, we increase the complexity at most by a constant. Note that anyway
the Kolmogorov complexity of binary strings is defined up to an additive constant,
so the choice of a computable encoding does not matter.

As the length of the binary representation of a natural number 𝑛 is equal to
log 𝑛 + 𝑂(1), the Kolmogorov complexity of 𝑛 is at most log 𝑛 + 𝑂(1). (By log we
denote binary logarithms.)

Here is another application of the non-growth of complexity under algorithmic
transformations. Let us show that deleting the last bit of a string changes its
complexity at most by a constant. Indeed, all three functions 𝑥 ↦→ 𝑥0, 𝑥 ↦→ 𝑥1,
𝑥 ↦→ (𝑥 without the last bit) are computable.

The same is true for the first bit. However this does not apply to every bit of
the string. To show this, consider the string 𝑥 consisting of 2𝑛 zeros, its complexity
is at most 𝐶(𝑛) +𝑂(1) 6 log 𝑛+𝑂(1). (By log we always mean binary logarithm.)
There are 2𝑛 different strings obtained from 𝑥 by flipping one bit. At least one of
them has complexity 𝑛 or more. (Recall that the number of strings of complexity
less than 𝑛 does not exceed the number of descriptions of length less than 𝑛, which
is less than 2𝑛, Theorem 5, p. 18.)

Incrementing a natural number 𝑛 by 1 changes 𝐶(𝑛) at most by a constant.
This implies that 𝐶(𝑛) satisfies “Lipschitz property”: for some 𝑐 and for all 𝑚,𝑛
we have |𝐶(𝑚) − 𝐶(𝑛)| 6 𝑐|𝑚− 𝑛|.

1 Prove a stronger inequality: |𝐶(𝑚)−𝐶(𝑛)| 6 |𝑚−𝑛|+ 𝑐 for some 𝑐 and for
all 𝑚,𝑛 ∈ N, and, moreover, |𝐶(𝑚)−𝐶(𝑛)| 6 2 log |𝑚−𝑛|+𝑐 (the latter inequality
assumes that 𝑚 ̸= 𝑛).

1.1. THE DEFINITION AND MAIN PROPERTIES 31

We have used several times the upper bound 2𝑛 for the number of strings 𝑥
with 𝐶(𝑥) < 𝑛. Note that, in contrast to other bounds, it involves no constants.
Nevertheless this bound has a hidden dependence on the choice of the optimal
description mode: if we switch to another optimal description mode, the set of
strings 𝑥 such that 𝐶(𝑥) < 𝑛 can change!

2 Show that the number of strings of complexity less than 𝑛 is in the range
[2𝑛−𝑐; 2𝑛] for some constant 𝑐 for all 𝑛. [Hint: the upper bound 2𝑛 is proved in
Introduction, the lower bound is implied by the inequality 𝐶(𝑥) 6 𝑙(𝑥) + 𝑐: the
complexity of all the strings of length less than 𝑛− 𝑐 is less than 𝑛.]

Show that the number of strings of complexity exactly 𝑛 does not exceed 2𝑛

but can be much less: e.g., it is possible that this set is empty for infinitely many 𝑛.
[Hint: Change an optimal description mode by adding 0 or 11 to each description,
so that all descriptions have even length.]

3 Prove that the average complexity of strings of length 𝑛 is equal to 𝑛+𝑂(1).
[Hint: let 𝛼𝑘 denote the fraction of strings of complexity 𝑛 − 𝑘 among strings of
length 𝑛. Then the average compexity is by

∑︀
𝑘 𝑘𝛼𝑘 less than 𝑛. Use the inequality

𝛼𝑘 6 2−𝑘 and the convergence of the series
∑︀

𝑘/2𝑘.]

In the next statement we establish a formal relation between upper bounds of
complexity and upper bounds of cardinality.

Theorem 7. (a) The family of sets 𝑆𝑛 = {𝑥 | 𝐶(𝑥) < 𝑛} is enumerable and
|𝑆𝑛| < 2𝑛 for all 𝑛. Here |𝑆𝑛| denotes the cardinality of 𝑆𝑛.

(b) If 𝑉𝑛 (𝑛 = 0, 1, . . .) is an enumerable family of sets of strings and |𝑉𝑛| < 2𝑛

for all 𝑛, then there exists 𝑐 such that 𝐶(𝑥) < 𝑛 + 𝑐 for all 𝑛 and all 𝑥 ∈ 𝑉𝑛.

In this theorem we use the notion of an enumerable family of sets. It is de-
fined as follows. A set of strings (or natural numbers, or other finite objects) is
enumerable (= computably enumerable = recursively enumerable) if there is an al-
gorithm generating all elements of this set in some order. This means that there
is a program that never terminates and prints all the elements of the set in some
order. The intervals between printing elements can be arbitrarily large; if the set is
finite, the program can print nothing after some time (unknown to the observer).
Repetitions are allowed but this does not matter since we can filter the output and
delete the elements that have already been printed.

For example, the set of all 𝑛 such that the decimal expansion of
√

2 has exactly
𝑛 consecutive nines is enumerable. The following algorithm generates the set: com-
pute decimal digits of

√
2 starting with the most significant ones. Once a sequence

of consecutive 𝑛 nines surrounded by non-nines is found, print 𝑛 and continue.
A family of sets 𝑉𝑛 is called enumerable if the set of pairs {⟨𝑛, 𝑥⟩ | 𝑥 ∈ 𝑉𝑛}

is enumerable. This implies that each of the sets 𝑉𝑛 is enumerable. Indeed, to
generate elements of the set 𝑉𝑛 for a fixed 𝑛 we run the algorithm enumerating the
set {⟨𝑛, 𝑥⟩ | 𝑥 ∈ 𝑉𝑛} and print the second components of all the pairs that have 𝑛
as the first component. However, the converse statement is not true. For instance,
assume that 𝑉𝑛 is finite for every 𝑛. Then every 𝑉𝑛 is enumerable, but at the same
time it may happen that the set {⟨𝑛, 𝑥⟩ | 𝑥 ∈ 𝑉𝑛} is not enumerable (say 𝑉𝑛 = {0}
if 𝑛 ∈ 𝑆 and 𝑉𝑛 = ∅ otherwise, where 𝑆 is any non-enumerable set of integers).
One can verify that a family is enumerable if and only if there is an algorithm that
given any 𝑛 finds a program generating 𝑉𝑛. A detailed study of enumerable sets
can be found in every textbook on computability theory, for instance, in [182].

32 1. PLAIN KOLMOGOROV COMPLEXITY

Proof. Let us prove the theorem. First, we need to show that the set

{⟨𝑛, 𝑥⟩ | 𝑥 ∈ 𝑆𝑛} = {⟨𝑛, 𝑥⟩ | 𝐶(𝑥) < 𝑛},
where 𝑛 is a natural number and 𝑥 is a binary string, is enumerable.

Let 𝐷 be the optimal decompressor used in the definition of 𝐶. Perform in
parallel the computations of 𝐷 on all the inputs. (Say, for 𝑘 = 1, 2, . . . we make 𝑘
steps of 𝐷 on 𝑘 first inputs.) If we find that 𝐷 halts on some 𝑦 and returns 𝑥, the
generating algorithm outputs the pair ⟨𝑙(𝑦) + 1, 𝑥⟩. Indeed, this implies that the
complexity of 𝑥 is less than 𝑙(𝑦) + 1, as 𝑦 is a description of 𝑥. Also it outputs all
the pairs ⟨𝑙(𝑦) + 2, 𝑥⟩, ⟨𝑙(𝑦) + 3, 𝑥⟩ . . . in parallel to printing of other pairs.

For those familiar with computability theory, this proof can be compressed to
one line:

𝐶(𝑥) < 𝑛 ⇔ ∃𝑦 (𝑙(𝑦) < 𝑛 ∧𝐷(𝑦) = 𝑥).

(The set of pairs ⟨𝑥, 𝑦⟩ such that 𝐷(𝑦) = 𝑥 is enumerable, being the graph of
a computable function. The operations of intersection and projection preserve
enumerability.)

The converse implication is a bit harder. Assume that 𝑉𝑛 is an enumerable
family of finite sets of strings and |𝑉𝑛| < 2𝑛. Fix an algorithm generating the
set {⟨𝑛, 𝑥⟩ | 𝑥 ∈ 𝑉𝑛}. Consider the description mode 𝐷𝑉 that deals with strings
of length 𝑛 in the following way. Strings of length 𝑛 are used as descriptions of
strings in 𝑉𝑛. More specifically, let 𝑥𝑘 be the 𝑘th string in 𝑉𝑛 in the order the pairs
⟨𝑛, 𝑥⟩ appear while generating the set {⟨𝑛, 𝑥⟩ | 𝑥 ∈ 𝑉𝑛}. (We assume there are no
repetitions, so 𝑥0, 𝑥1, 𝑥2 . . . are distinct.) Let 𝑦𝑘 be the 𝑘th string of length 𝑛 in
the lexicographical order. Then 𝑦𝑘 is a description of 𝑥𝑘, that is, 𝐷(𝑦𝑘) = 𝑥𝑘. As
|𝑉𝑛| < 2𝑛, every string in 𝑉𝑛 gets a description of length 𝑛 with respect to 𝐷.

We need to verify that the description mode 𝐷𝑉 defined in this way is com-
putable. To compute 𝐷𝑉 (𝑦) we find the index 𝑘 of 𝑦 in the lexicographical ordering
of strings of length 𝑙(𝑦). Then we run the algorithm generating pairs ⟨𝑛, 𝑥⟩ such
that 𝑥 ∈ 𝑉𝑛 and wait until 𝑘 different pairs having the first component 𝑙(𝑦) appear.
The second component of the last of them is 𝐷𝑉 (𝑦).

By construction, for all 𝑥 ∈ 𝑉𝑛 we have 𝐶𝐷𝑉
(𝑥) 6 𝑛. Comparing 𝐷𝑉 with the

optimal description mode we see that there is a constant 𝑐 such that 𝐶(𝑥) < 𝑛 + 𝑐
for all 𝑥 ∈ 𝑉𝑛. Theorem 7 is proven. �

The intuitive meaning of Theorem 7 is as follows. The assertions “the number
of strings with certain property is small” (is less than 2𝑖) and “all the strings with
certain property are simple” (have complexity less than 𝑖) are equivalent provided
the property under consideration is enumerable and provided the complexity is
measured up to an additive constant (and the number of elements is measured up
to a multiplicative constant).

Theorem 7 can be reformulated as follows. Let 𝑓(𝑥) be a function defined on
all binary strings and taking as values natural numbers and a special value +∞.
We call 𝑓 upper semicomputable, or enumerable from above, if there is a computable
function ⟨𝑥, 𝑘⟩ ↦→ 𝐹 (𝑥, 𝑘) defined on all strings 𝑥 and all natural numbers 𝑘 such
that

𝐹 (𝑥, 0) > 𝐹 (𝑥, 1) > 𝐹 (𝑥, 2) > . . .

and
𝑓(𝑥) = lim

𝑘→∞
𝐹 (𝑥, 𝑘),

1.1. THE DEFINITION AND MAIN PROPERTIES 33

for all 𝑥. The values of 𝐹 are natural numbers as well as the special constant +∞.
The requirements imply that for every 𝑘 the value 𝐹 (𝑥, 𝑘) is an upper bound of
𝑓(𝑥). This upper bound becomes more precise as 𝑘 increases. For every 𝑥 there
is a 𝑘 for which this upper bound is tight. However, we do not know the value of
that 𝑘. (If there is an algorithm that given any 𝑥 finds such 𝑘, then the function 𝑓
is computable.) Evidently, any computable function is upper semicomputable.

A function 𝑓 is upper semicomputable if and only if the set

𝐺𝑓 = {⟨𝑥, 𝑛⟩ | 𝑓(𝑥) < 𝑛}
is enumerable. This set is sometimes called the “upper graph of 𝑓”, which explains
the strange names “upper semicomputable” and “enumerable from above”.

Let us verify this. Assume that a function 𝑓 is upper semicomputable. Let
𝐹 (𝑥, 𝑘) be the function from the definition of semicomputability. Then we have

𝑓(𝑥) < 𝑛 ⇔ ∃𝑘 𝐹 (𝑥, 𝑘) < 𝑛.

Thus, performing in parallel the computations of 𝐹 (𝑥, 𝑘) for all 𝑥 and 𝑘, we can
generate all the pairs in the upper graph of 𝑓 .

Assume now that the set 𝐺𝑓 is enumerable. Fix an algorithm enumerating this
set. Then define 𝐹 (𝑥, 𝑘) as the best upper bound of 𝑓 obtained after 𝑘 steps of
generating elements in 𝐺𝑓 . That is, 𝐹 (𝑥, 𝑘) is equal to the minimal 𝑛 such that
the pair ⟨𝑥, 𝑛 + 1⟩ has been printed after 𝑘 steps. If there is no such pair, let
𝐹 (𝑥, 𝑘) = +∞.

Using the notion of an upper semicomputable function we can reformulate
Theorem 7 as follows.

Theorem 8. (a) The function 𝐶 is upper semicomputable and

|{𝑥 | 𝐶(𝑥) < 𝑛}| < 2𝑛

for all 𝑛.
(b) If a function 𝐶 ′ is upper semicomputable and |{𝑥 | 𝐶 ′(𝑥) < 𝑛}| < 2𝑛 for

all 𝑛, then 𝐶(𝑥) 6 𝐶 ′(𝑥) + 𝑐 for some 𝑐 and for all 𝑥.

Note that the upper bound 2𝑛 of the cardinality of |{𝑥 | 𝐶 ′(𝑥) < 𝑛}| in item
(b) can be replaced by a weaker upper bound 𝑂(2𝑛).

Theorem 8 allows to define Kolmogorov complexity as a minimal (up to an
additive constant) upper semicomputable function 𝑘 that satisfies the inequality

|{𝑥 | 𝑘(𝑥) < 𝑛}| = 𝑂(2𝑛).

One can replace the requirement of minimality in this definition by some other
properties of 𝐶. In this way we obtain the following “axiomatic” definition of
Kolmogorov complexity [172]:

Theorem 9. Let 𝑘 be a function defined on binary strings and taking natural
values. Assume that 𝑘 satisfies the following properties:

(a) 𝑘 is upper semicomputable; [enumerability axiom]
(b) for every partial computable function 𝐴 from Ξ to Ξ the inequality

𝑘(𝐴(𝑥)) 6 𝑘(𝑥) + 𝑐

is valid for some 𝑐 and all 𝑥 in the domain of 𝐴; [complexity non-increase axiom]
(c) the number of strings 𝑥 such that 𝑘(𝑥) < 𝑛 is in the range [2𝑛−𝑐1 ; 2𝑛+𝑐2]

for some 𝑐1, 𝑐2 and for any 𝑛. [calibration axiom]

34 1. PLAIN KOLMOGOROV COMPLEXITY

Then 𝑘(𝑥) = 𝐶(𝑥) + 𝑂(1), that is, the difference |𝑘(𝑥) −𝐶(𝑥)| is bounded by a
constant.

Proof. Theorem 8 implies that 𝐶(𝑥) 6 𝑘(𝑥)+𝑂(1). So we need to prove that

𝑘(𝑥) 6 𝐶(𝑥) + 𝑂(1).

Lemma 1. There is a constant 𝑐 and a computable sequence of finite sets of
binary strings

𝑀0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ . . .

with the following properties: the set 𝑀𝑖 has exactly 2𝑖 strings and 𝑘(𝑥) 6 𝑖+ 𝑐 for
all 𝑥 ∈ 𝑀𝑖 and all 𝑖.

Computability of 𝑀0,𝑀1,𝑀2, . . . means that there is an algorithm that given
any 𝑖 computes the list of elements of 𝑀𝑖.

Proof. By axiom (c) there exists a constant 𝑐 such that for all 𝑖 the set

𝐴𝑖 = {𝑥 | 𝑘(𝑥) < 𝑖 + 𝑐}
has at least 2𝑖 elements. By item (a) the family 𝐴𝑖 is enumerable. Remove from
𝐴𝑖 all the elements except 2𝑖 strings generated first. Let 𝐵𝑖 denote the resulting
set. The list of the elements of 𝐵𝑖 can be found given 𝑖: we wait until the first 2𝑖

strings are generated. The set 𝐵𝑖 is not necessarily included in 𝐵𝑖+1. To fix this
we define 𝑀𝑖 inductively. We let 𝑀0 = 𝐵0, and we let 𝑀𝑖+1 be equal to 𝑀𝑖 plus
any 2𝑖 elements of 𝐵𝑖+1 that are outside 𝑀𝑖. Lemma 1 is proven.

Lemma 2. There is a constant 𝑐 such that 𝑘(𝑥) 6 𝑙(𝑥) + 𝑐 for all 𝑥 (recall that
𝑙(𝑥) denotes the length of 𝑥).

Proof. Let 𝑀0,𝑀1,𝑀2, . . . be the sequence of sets from the previous lemma.
There is a computable one-to-one function 𝐴 defined on the union of all 𝑀𝑖 that
maps 𝑀𝑖+1 ∖ 𝑀𝑖 onto the set of binary strings of length 𝑖. (Recall that the set
𝑀𝑖+1 ∖ 𝑀𝑖 has exactly 2𝑖 strings.) By item (b) we have 𝑘(𝐴(𝑦)) 6 𝑘(𝑦) + 𝑐′ for
some 𝑐′ and all 𝑥. For all 𝑥 of length 𝑖 there is 𝑦 ∈ 𝑀𝑖+1 ∖𝑀𝑖 such that 𝐴(𝑦) = 𝑥
hence 𝑘(𝑥) 6 𝑘(𝑦) + 𝑐′ 6 𝑖 + 𝑐 for some 𝑐 and all 𝑖. Lemma 2 is proven.

Let us finish the proof of the theorem. Let 𝐷 be the optimal description mode
and let 𝑝 be a shortest description of 𝑥 with respect to 𝐷. Then

𝑘(𝑥) = 𝑘(𝐷(𝑝)) 6 𝑘(𝑝) + 𝑂(1) 6 𝑙(𝑝) + 𝑂(1) = 𝐶(𝑥) + 𝑂(1).

Note that we have used twice the property (b): in the proof of Lemma 2 and just
now. �

4 Assume that strings over the alphabet {0, 1, 2, 3} are used as descriptions.
Prove that in this case the Kolmogorov complexity, defined as the length of the
shortest description (with respect to an optimal description mode) is equal to the
half of the regular complexity (up to an additive constant).

5 (Continued.) Formulate and prove a similar statement for the 𝑛-letter
alphabet.

6 Assume that 𝑓 : N → N is a total computable increasing function and

lim inf 𝑓(𝑛 + 1)/𝑓(𝑛) > 1.

Let 𝐴𝑛 be an enumerable family of finite sets such that |𝐴𝑛| 6 𝑓(𝑛) for all 𝑛. Prove
that there is a constant 𝑐 such that 𝐶(𝑥) 6 log 𝑓(𝑛) + 𝑐 for all 𝑛 and all 𝑥 ∈ 𝐴𝑛.

7 Prove that for some constant 𝑐 and for every 𝑛 the following holds. For
every string 𝑥 of length 𝑛 one can flip a bit in 𝑥 so that the resulting string 𝑦

1.2. ALGORITHMIC PROPERTIES 35

satisfies the inequality 𝐶(𝑦) 6 𝑛− log 𝑛 + 𝑐. [Hint. For a given natural 𝑘 consider
a Boolean matrix of size 𝑘 × (2𝑘 − 1) whose columns are all nonzero strings of
length 𝑘. (Such matrix is used for Hamming codes.) Consider the linear mapping

B2𝑘−1 → B𝑘 defined by this matrix, where B denotes the field {0, 1}. It is easy to
verify that for every vector 𝑥 one can flip one bit in 𝑥 so that the resulting string 𝑦
is in the kernel of this mapping, and the elements of the kernel have complexity at
most 2𝑘 − 𝑘 + 𝑂(1). This gives the desired result for 𝑛 = 2𝑘 − 1; if 𝑛 has not the
form 2𝑘 − 1, we can flip one of the first 2𝑘 − 1 bits for an appropriate 𝑘.]

1.2. Algorithmic properties

The function 𝐶 is upper semicomputable. On the other hand, it is not com-
putable and, moreover, it has no unbounded computable lower bounds (Theorem 6,
p. 19).

This implies that all optimal description modes are necessarily non-total, that
is, some strings describe nothing. Indeed, if a description mode 𝐷 is total then we
can compute 𝐶𝐷(𝑥) just by trying all descriptions in the lexicographical order until
we find the shortest one.

At first glance, this contradicts to our intuition: the bigger the domain of 𝐷
is, the better 𝐷 is. If optimal decompressor 𝐷 is undefined on some string 𝑦 then
we can define another description mode 𝐷′ as follows. Let 𝐷′(𝑦) be equal to a
string 𝑧 of complexity (with respect to 𝐷) greater than 𝑙(𝑦) and let 𝐷′ coincide
with 𝐷 on all other strings. The description mode 𝐷′ is a bit better than 𝐷, as the
complexity of all strings except 𝑧 remains the same while the complexity of 𝑧 has
been decreased.

There is no formal contradiction here, as 𝐷 is still not worse than 𝐷′ (they differ
only at one point, the difference between the complexities is bounded by a constant,
and both 𝐷 and 𝐷′ are optimal). However, this is still a bit strange. This observa-
tion was made by Yu. Manin in his book “Computable and non-computable” [113]
(by the way, in this book he also discussed the computational power of quantum
mechanics long before quantum computing became fashionable).

A similar argument shows that the domain of every optimal description mode
is undecidable. (The set of strings is called decidable, or computable, if there is an
algorithm that for any given string decides whether it belongs to the set or not.)
Indeed, if there were an algorithm deciding whether 𝐷(𝑥) is defined or not, then
there would be a total computable extension of 𝐷 (for example, let 𝐷(𝑥) = 0 for all
𝑥 outside the domain of 𝐷). This extension would be a total optimal description
mode, but this is impossible as we have seen.

As a byproduct we get an algorithm whose domain is undecidable. This is one
of the central theorems in computability theory (see, for example, [182]).

In general the notion of Kolmogorov complexity has a lot of connections with
computability theory. Recently many interesting facts were discovered, see [146,
49]. We consider here only two basic examples (a simple set of simple strings, and
the complexity of large numbers).

1.2.1. Simple strings and simple sets. In this section, the word “simple”
has two unrelated meanings. First, when applied to strings, it means that the
Kolmogorov complexity of the string is small. Second, it is applied to sets of

36 1. PLAIN KOLMOGOROV COMPLEXITY

strings. The notion of a simple set was introduced by an American logician Emil
Post and has no relation to Kolmogorov complexity.

Definition. An enumerable set 𝐴 is simple (according to Post) if its comple-
ment is infinite but has no infinite enumerable subset.

Call a string 𝑥 “simple” if 𝐶(𝑥) < 𝑙(𝑥)/2.

Theorem 10. The set of all “simple” strings is simple in the sense of Post.

Proof. That set 𝑆 of all “simple” strings is enumerable. Indeed, the function
𝐶 is upper semicomputable, and if 𝐶(𝑥) is less than |𝑥|/2, this can be seen while
approximating 𝐶(𝑥) from above.

The number of strings of complexity less than 𝑛/2 does not exceed 2𝑛/2. There-
fore the fraction of “simple” strings among strings of length 𝑛 is negligible, and the
complement of 𝑆 is infinite.

Assume now that the complement of 𝑆 has an infinite enumerable subset 𝑈 . We
can use 𝑈 to obtain a computable unbounded lower bound of 𝐶. To find a string of
complexity greater than 𝑡 we can generate elements of 𝑈 until we find a string 𝑢𝑡 of
length greater than 2𝑡. As 𝑈 is infinite, there is such a string. The complexity of 𝑢𝑡

is greater than 𝑡, otherwise 𝑢𝑡 is simple. Without loss of generality we can assume
that the strings 𝑢𝑡, 𝑡 = 1, 2, . . . are pairwise different. Thus the function 𝑢𝑡 ↦→ 𝑡
is a computable unbounded lower bound for 𝐶. This contradicts to Theorem 6
(page 19). �

Note that the choice of the threshold 𝑙(𝑥)/2 in the definition of a simple string
was not essential. The proof of Theorem 10 would work as well with 𝑙(𝑥) − 1 or
log log 𝑙(𝑥) in place of 𝑙(𝑥)/2.

1.2.2. Complexity of large numbers. Let us identify a natural number 𝑚
with the binary string having index 𝑚 in the standard enumeration of binary strings.
In this way 𝐶 becomes a function of a natural argument. The function 𝐶(𝑚) goes
to infinity as 𝑚 → ∞. Indeed, for all 𝑛 there are only finitely many integers of
complexity less than 𝑛. However, the convergence is not effective. That is, there
is no algorithm that for every given 𝑛 finds a number 𝑁 such that the complexity
of 𝑁 and of all larger numbers is bigger than 𝑛. Indeed, such an algorithm would
provide an effective way to describe the number 𝑁 , whose complexity is at least 𝑛,
by log𝑛 + 𝑂(1) bits. We have seen this in the proof of Theorem 6 (p. 19).

In this section, we study in detail the rate of convergence of 𝐶 to infinity.
Following Chaitin [31], we consider for every natural 𝑛 the largest number B (𝑛)
whose complexity is at most 𝑛:

B (𝑛) = max{𝑚 ∈ N | 𝐶(𝑚) 6 𝑛}
The function 𝑛 ↦→ B (𝑛) may be called the modulus of the convergence of 𝐶(𝑚) to
infinity. Indeed, 𝐾(𝑥) > 𝑛 for all 𝑥 > B (𝑛) (and B (𝑛) is the minimal number with
this property). Note also that it can happen (for small values of 𝑛) that 𝐶(𝑚) > 𝑛
for all 𝑚. In this case we let B (𝑛) = −1.

The function B can be considered as an inverse function to the function

𝐶>(𝑁) = min{𝐶(𝑚) | 𝑚 > 𝑁}.
The function 𝐶> grows very slowly. It takes the value 𝑛 between 𝐵(𝑛 − 1) and
𝐵(𝑛), more precisely, on the interval (B (𝑛 − 1),B (𝑛)]. The slow increase of 𝐶>

1.2. ALGORITHMIC PROPERTIES 37

𝑚

𝐶(𝑚)

𝑛− 1

𝐵(𝑛− 1)

𝑛

𝐵(𝑛) = 𝐵(𝑛 + 1)

𝑛 + 1

Figure 1. The definition of B (𝑛): the value 𝐶(𝑚) does not exceed
𝑛−1 for 𝑚 = B (𝑛−1) (the case when 𝐶(B (𝑛−1)) = 𝑛−1 is shown),
and 𝐶(𝑚) > 𝑛 for all 𝑚 > B (𝑛 − 1). At the point 𝑚 = B (𝑛)
the value of 𝐶 does not exceed 𝑛 (the case when 𝐶(B (𝑛)) = 𝑛
is shown), and 𝐶(𝑚) > 𝑛 for all 𝑚 > B (𝑛). The case when
𝐶(𝑚) is even greater than 𝑛 + 1 for all 𝑚 > B (𝑛) is shown, thus
B (𝑛 + 1) = B (𝑛). For 𝑚 ∈ (B (𝑛 − 1),B (𝑛)] the value of the
function 𝐶>(𝑚) is equal to 𝑛.

corresponds to the fast increase of B . The latter can be illustrated by the following
result.

Theorem 11. Let 𝑓 be a computable function from N to N. Then B (𝑛) > 𝑓(𝑛)
for all but finitely many 𝑛.

Note that 𝑓 may be a partial function. In this case we claim that B (𝑛) > 𝑓(𝑛)
for all sufficiently large 𝑛 that are in the domain of 𝑓 .

Proof. As algorithmic transformations do not increase complexity, for some
constant 𝑐 for all 𝑛 we have

𝐶(𝑓(𝑛)) 6 𝐶(𝑛) + 𝑂(1) 6 log 𝑛 + 𝑐.

On the other hand, the definition of B and the inequality 𝑓(𝑛) > B (𝑛) imply
𝐶(𝑓(𝑛)) > 𝑛. Thus

𝑛 < 𝐶(𝑓(𝑛)) 6 log 𝑛 + 𝑐

whenever 𝑓(𝑛) > B (𝑛). This can happen only for finitely many 𝑛. �

Let us reformulate the definition of B (𝑛) as follows. Let 𝐷 be the optimal
description mode used in the definition of Kolmogorov complexity. Then B (𝑛) is
the maximal value of 𝐷 on strings of length at most 𝑛:

B (𝑛) = max{𝐷(𝑥) | 𝑙(𝑥) 6 𝑛}.
Recall that we identify natural numbers and binary strings and consider the values
of 𝐷 as natural numbers. The minimum of the empty set is defined as −1.

Consider now any partial computable function 𝑑 : Ξ → N in place of 𝐷 and let

B 𝑑(𝑛) = max{𝑑(𝑥) | 𝑙(𝑥) 6 𝑛 and 𝑑(𝑥) is defined}.
Next theorem shows that the function B is the largest function among all functions
B 𝑑, in the following sense:

38 1. PLAIN KOLMOGOROV COMPLEXITY

Theorem 12. For every function 𝑑 there is a constant 𝑐 such that

B 𝑑(𝑛) 6 B (𝑛 + 𝑐)

for all 𝑛.

Proof. For every 𝑥 of length at most 𝑛 the complexity of 𝑑(𝑥) is less than
𝑛 + 𝑐 for some constant 𝑐. Indeed, the complexity of 𝑑(𝑥) exceeds at most by a
constant the complexity of 𝑥, which is less than 𝑛 + 𝑂(1). Hence 𝑑(𝑥) does not
exceed the largest number of complexity 𝑛 + 𝑐 or less, i.e., B (𝑛 + 𝑐). �

This (trivial) observation is useful in the following special case. Let 𝑀 be an
algorithm and let 𝑋 be a set of binary strings. A halting problem for 𝑀 restricted
to 𝑋 is the following problem: given a string 𝑥 ∈ 𝑋, find out whether 𝑀 terminates
on 𝑥 or not.

A classical result in computability theory states that for some algorithm 𝑀 the
unrestricted halting problem (𝑋 = Ξ) for 𝑀 is undecidable.

We are interested now in the case when 𝑋 is the set of all strings of bounded
length. Fix some algorithm 𝑀 and consider the running time 𝑡(𝑥) of 𝑀 for some
input 𝑥. If 𝑀 does not halt on 𝑥, then 𝑡(𝑥) is undefined. Thus the domains of 𝑡
and 𝑀 coincide. By definition, B 𝑡(𝑛) is the maximal running time of 𝑀 on inputs
of length at most 𝑛. If we know B 𝑡(𝑛) or any larger number 𝑚, we can solve the
halting problem for 𝑀 and every input 𝑥 of length at most 𝑛: Run 𝑀 on input 𝑥;
if the computation does not terminate after 𝑚 steps, it never terminates.

We have seen that B 𝑡(𝑛) 6 B (𝑛 + 𝑐) for some constant 𝑐 (depending on 𝑀).
Therefore the knowledge of B (𝑛 + 𝑐) or any greater number is enough to solve the
halting problem of 𝑀 on inputs of length at most 𝑛. In other words, the following
holds:

Theorem 13. For every algorithm 𝑀 there is a constant 𝑐 and another al-
gorithm 𝐴 having the following property. For every 𝑛 and for every number 𝑡 >
B (𝑛+ 𝑐) the algorithm 𝐴, given 𝑛 and 𝑡, produces the list of all strings 𝑥 of length
at most 𝑛 such that 𝑀 halts on input 𝑥.

This theorem says that the halting problem for inputs of length at most 𝑛 is
reducible to the problem of finding a number greater than B (𝑛 + 𝑐).

If 𝑀 is the optimal decompressor 𝐷 then the converse is also true: given 𝑛 and
the list of all strings 𝑥 of length at most 𝑛 in the domain of 𝐷 we can find B (𝑛).

Continuing this argument, we can prove the following result:

Theorem 14. Let BB (𝑛) denote the maximal running time of the optimal
decompressor 𝐷 on strings of length at most 𝑛 (in the domain of 𝐷). Then

BB (𝑛) 6 B (𝑛 + 𝑐) and B (𝑛) 6 BB (𝑛 + 𝑐)

for some 𝑐 and all 𝑛.

Proof. Let 𝛼𝑛 be the most time-consuming description of length at most 𝑛,
that is, the string 𝑥 of length at most 𝑛 in the domain of 𝐷 that maximizes the
running time of 𝐷 on 𝑥. Knowing 𝑛 and 𝛼𝑛, one can generate the list of all strings
of length at most 𝑛 in the domain of 𝐷, and hence the number BB (𝑛). Both 𝑛 and
𝛼𝑛 can be encoded in one string of length 𝑛 + 1, the string 0 . . . 01𝛼𝑛 (there are
𝑛− 𝑙(𝛼𝑛) zeros in the beginning). Therefore, the Kolmogorov complexity of BB (𝑛)
is at most 𝑛 + 𝑂(1), and BB (𝑛) 6 B (𝑛 + 𝑐) for some 𝑐 and all 𝑛.

1.2. ALGORITHMIC PROPERTIES 39

Let us prove the second inequality of the theorem showing that every 𝑡 > BB (𝑛)
has complexity at least 𝑛−𝑂(1). Assume that 𝑡 has a description 𝑢 of length 𝑘; we
need to show that 𝑘 > 𝑛−𝑂(1). Knowing 𝑢 and 𝑛, one can effectively obtain a string
of complexity greater than 𝑛. Indeed, we reconstruct 𝑡 (from 𝑢) and wait 𝑡 steps for
every description of size at most 𝑛. This gives us all strings of complexity at most
𝑛, and we can take some other string. By definition of B (𝑛) we conclude that the
pair (𝑢, 𝑛) has complexity at least 𝑛 − 𝑂(1). On the other hand, this pair can be
described using 𝑘+𝑂(log(𝑛−𝑘)) bits if we join the self-delimited description of 𝑛−𝑘
and 𝑢. Therefore, 𝑘+𝑂(log(𝑛−𝑘)) > 𝑛−𝑂(1), and (𝑛−𝑘)−𝑂(log(𝑛−𝑘)) 6 𝑂(1),
therefore 𝑛 − 𝑘 6 𝑂(1). (We assumed that 𝑛 > 𝑘, otherwise there is nothing to
prove.) �

This theorem shows that, within to an additive constant in the argument, B (𝑛)
is the maximal running time of the optimal decompressor on descriptions of length
at most 𝑛. A similar function appeared in the literature under the name of “busy
beaver function”. It was introduced by T. Radó [149] and is defined usually as the
maximal number of 1s on the tape of Turing machine with 𝑛 states and binary tape
alphabet (1 and blank) after it terminates (starting with blank tape).

More generally, given 𝑛 and any object from the following list we can find any
other object from the list for a little bit smaller value of 𝑛:

(a): the list of all strings of Kolmogorov complexity at most 𝑛 with their
Kolmogorov complexities;

(b): the number of such strings;
(c): B (𝑛);
(d): BB (𝑛);
(e): the list of all strings of length at most 𝑛 in the domain of the optimal

decompressor (the halting problem for the optimal decompressor restricted
to inputs of length at most 𝑛);

(f): the number of such strings;
(g): the most time-consuming input of length at most 𝑛 for the optimal

decompressor;
(h): the graph 𝑇𝑛 of the function 𝐶(𝑥) on strings 𝑥 of length 𝑛;
(i): the lexicographically first string 𝛾𝑛 of length 𝑛 with Kolmogorov com-

plexity at least 𝑛 (it exists since the number of strings of complexity less
than 𝑛 is less than 2𝑛).

More specifically, the following statement holds.

Theorem 15. The complexity of every object in (a)–(i) is equal to 𝑛 + 𝑂(1).
These objects are equivalent to each other in the following sense: Let 𝑋𝑛 and 𝑌𝑛

are objects described in two items among (a)–(i). Then there is a constant 𝑐 and
an algorithm that given 𝑛 and 𝑋𝑛 finds 𝑌𝑛−𝑐.

Proof. The equivalence of (d), (e), (f) and (g) is easy. Each of the objects (d),
(e), (f) and (g) together with 𝑛 determines the list of all terminating computations
of the optimal decompressor 𝐷 on strings of length at most 𝑛. Indeed, knowing
BB (𝑛) we can run 𝐷 on all inputs of length at most 𝑛 for BB (𝑛) steps. Knowing
(e), that is, the list of strings of length at most 𝑛 in the domain of 𝐷, we can run
𝐷 on all those strings until all the computations terminate (and we know that this
happens). Knowing (f), the number of strings of length at most 𝑛 on which 𝐷
terminates, we run 𝐷 on all strings of length at most 𝑛 until the desired number

40 1. PLAIN KOLMOGOROV COMPLEXITY

of computations do terminate. Knowing the string (g), we run 𝐷 on that string,
count the number of steps 𝑡 and then run 𝐷 on all other strings of length at most
𝑛 for 𝑡 steps.

Conversely, the list of all halting computations of the optimal decompressor 𝐷
on strings of length at most 𝑛 together with 𝑛 identifies each of the objects (d)–(g),
as well as the objects (a)–(c). Therefore, by transitivity (which is easy to check)
all the objects (d)–(g) are equivalent.

Let us prove now that (a)–(c) are equivalent to each other and equivalent to
(d)–(g). Given the list of strings of complexity at most 𝑛 we can find the number of
them (so (a)→(b)) and the largest number of complexity at most 𝑛 (so (a)→(c)).

It is not that easy to find (a) given (b) and 𝑛. Given 𝑛 and the number of strings
of complexity at most 𝑛 we can reconstruct the list of these strings (generating them
until we obtain the desired number of strings), and find a maximal number among
them ((b)→(c)). But we still do not know Kolmogorov complexity of the generated
strings. We will prove the implication (c)→(a) indirectly, by showing (c)→(d);
we know already that (d) implies (a). This will prove that all objects (a)–(g) are
equivalent.

The implication (c)→(d) follows from Theorem 14. We know that B (𝑛) is an
upper bound for BB (𝑛 − 𝑐) (for appropriate 𝑐). Thus, given 𝑛 and B (𝑛), we can
find BB (𝑛− 𝑐) as follows: run 𝐷 on all inputs of length at most 𝑛− 𝑐 within B (𝑛)
steps. Then find BB (𝑛− 𝑐) as the number of steps in the longest run.

It remains to consider the objects (h) and (i). The implication (a)→(h) is easy.
Indeed, for some constant 𝑐 the complexity of every string of length 𝑛− 𝑐 does not
exceed 𝑛. If we know the list (a) and 𝑛, then removing all the strings of length
different from 𝑛− 𝑐 from the list, we get (h) for 𝑛− 𝑐.

The conversion (h)→(i) is straightforward.
Thus it remains to prove (i)→(a). It is enough to show that given the lex-

icographically first string 𝛾𝑛 of length 𝑛 and complexity at least 𝑛 we can find
BB (𝑛 − 𝑂(1)) or a number greater than BB (𝑛 − 𝑂(1)). This can be done as
follows.

Given 𝛾𝑛 find 𝑛 and for each string 𝑥 of length 𝑛 preceding 𝛾𝑛 in the lexicograph-
ical order find a description 𝑝𝑥 of 𝑥 that has length 𝑛 or less, and find out the running
time 𝑡𝑥 of 𝐷 on 𝑝𝑥. (Note that 𝑝𝑥 may be not the shortest description of 𝑥.) Let 𝑇
be the maximum of 𝑡𝑥 for those 𝑥. We claim that 𝑇 > BB (𝑛− 𝑐) for some 𝑐 that
does not depend on 𝑛. Assume that this inequality is false, that is, 𝑇 6 BB (𝑛− 𝑐).
We will prove that then 𝑐 is small. Consider the most time-consuming description
𝛼𝑛−𝑐 of length at most 𝑛− 𝑐; let 𝑛− 𝑐− 𝑑 be its length. Given 𝛼𝑛−𝑐 and 𝑐 + 𝑑 we
can find 𝑛 and BB (𝑛− 𝑐). From this we can find 𝛾𝑛: run 𝐷 on all strings of length
at most 𝑛 within BB (𝑛 − 𝑐) steps. Consider all the strings of length 𝑛 for which
we have found descriptions of length 𝑛 or less. Then 𝛾𝑛 is the lexicographically
first remaining string (since 𝑇 6 BB (𝑛− 𝑐) according to our assumption). As the
complexity of 𝛾𝑛 is at least 𝑛 we have 𝑛 6 𝐶(𝛾𝑛) 6 (𝑛− 𝑐−𝑑)+2 log(𝑐+𝑑)+𝑂(1),
hence (𝑐 + 𝑑) = 𝑂(1).

We have thus proven the equivalence of objects (a)–(h). It remains to prove
that complexity of each of them is 𝑛 + 𝑂(1).

Let 𝑋𝑛 be one of objects (a)–(h). We have just proven that 𝑋𝑛 can be obtained
from 𝛾𝑛+𝑐 and 𝑛 (actually, we do not need 𝑛, as 𝑛 = 𝑙(𝛾𝑛+𝑐) − 𝑐). Therefore,
𝐶(𝑋𝑛) 6 𝐶(𝛾𝑛+𝑐) + 𝑂(1) 6 𝑛 + 𝑂(1).

1.2. ALGORITHMIC PROPERTIES 41

To prove the lower bound of 𝐶(𝑋𝑛) let 𝑛 − 𝑑 be the complexity of 𝑋𝑛. For
some constant 𝑐 the string 𝛾𝑛−𝑐 can be obtained from the shortest description of
𝑋𝑛 of length 𝑛 − 𝑑 and from 𝑑 (note that 𝑛 can be retrieved from the length of
the shortest description and 𝑑). Thus, 𝑛− 𝑐 6 𝐶(𝛾𝑛−𝑐) 6 (𝑛− 𝑑) + 2 log 𝑑 + 𝑂(1).
Therefore 𝑑 6 2 log 𝑑 + 𝑐 + 𝑂(1) and hence 𝑑 = 𝑂(1). �

8 The objects in Theorem 15 depend on the choice of the optimal decompres-
sor. In the proof we assumed that the same optimal decompressor is used in all the
items (a)–(h). Prove that the statement of the theorem remains true if different
decompressors are used.

9 Prove that the complexity of all the objects in Theorem 15 becomes 𝑂(log 𝑛)
if we relativize the definition of Kolmogorov complexity by 0′, that is, if we allow
the decompressor to query the oracle for the halting problem.

We have seen that there exist a constant 𝑐 and an algorithm 𝐴 that given the
string 𝛾𝑛 solves the halting problem for the optimal decompressor on inputs of
length at most 𝑛 − 𝑐. This means that given an “oracle” that finds 𝛾𝑛 for every
given 𝑛 we can solve the halting problem. The same can be done given an oracle
deciding whether a given string 𝑥 is “incompressible”, that is, 𝐶(𝑥) > 𝑙(𝑥). Indeed,
using that oracle we can find 𝛾𝑛 by probing all strings of length 𝑛.

Using the terminology of computability theory, we can say that halting problem
is Turing reducible to the set of incompressible strings (or its complement, the set
of compressible strings). This implies that halting problem is also reducible to the
“upper graph” of 𝐶, that is, to the set {⟨𝑥, 𝑘⟩ | 𝐶(𝑥) < 𝑘}. Using the terminology
of computability theory, we say that the set of compressible strings (as well as the
upper graph of 𝐶) is Turing complete in the class of enumerable sets (this means
that it is enumerable and that the halting problem is Turing reducible to it).

10 Find some upper bound for the number of oracle queries for the set

{⟨𝑥, 𝑘⟩ | 𝐶(𝑥) < 𝑘}
needed to solve the halting problem for a fixed machine 𝑀 and for all strings of
length at most 𝑛.

11 Let 𝑓 be a computable partial function from N to N. Prove that there
is a constant 𝑐 such that for all 𝑛 such that 𝑓(B (𝑛)) is defined the inequality
B (𝑛+ 𝑐) > 𝑓(B (𝑛)) is true. [Hint: the complexity of 𝑓(B (𝑛)) is at most 𝑛+𝑂(1).]

12 Call a set 𝑈 𝑟-separable [136] if every enumerable set 𝑉 disjoint with 𝑈
can be separated from 𝑈 by a decidable set, that is, there is a decidable set 𝑅 that
includes 𝑉 and is disjoint with 𝑈 .

(a) Prove that the the set {⟨𝑥, 𝑘⟩ | 𝐶(𝑥) < 𝑘} (the upper graph of 𝐶) is an
𝑟-separable set. The set of compressible strings is 𝑟-separable, too. [Hint: assume
that the upper graph of 𝐶 is disjoint with some enumerable set 𝑉 . The set of
the second components of pairs in 𝑉 is finite, otherwise we get an unbounded
computable lower bound for 𝐶. That is, 𝑉 is included in a horizontal strip of finite
height. The intersection of the strip with the upper graph is finite.]

(b) We say that a set 𝑈1 is 𝑚-reducible to a set 𝑈2 if there is a total computable
function 𝑓 such that 𝑈1 = 𝑓−1(𝑈2). Prove that if 𝑈2 is 𝑟-separable and 𝑈1 is 𝑚-
reducible to 𝑈2 then 𝑈1 is 𝑟-separable as well. [Hint. If 𝑉 is an enumerable set
disjoint with 𝑈1 then 𝑓(𝑉) is an enumerable set disjoint with 𝑈2. If 𝑅 is a decidable
set separating 𝑓(𝑉) and 𝑈2 then 𝑓−1(𝑅) is a decidable set separating 𝑉 and 𝑈1.]

42 1. PLAIN KOLMOGOROV COMPLEXITY

(c) Prove that there is an enumerable set that is not 𝑟-separable (such set does
not 𝑚-reduce to the upper graph of 𝐶). [Hint: there is a pair of disjoint enumerable
inseparable sets.]

13 Following [73], prove that the problems “for a given integer 𝑛 find some
string of complexity at least 𝑛” and “for a given algorithm without input find some
string that is different from its output” (if the algorithm does not terminate, any
string is OK) are equivalent: an oracle that fulfills one of the tasks can be used to
(effectively) fulfill the other. [Hint: given an algorithm, we can provide an upper
bound for the complexity of its output: it is bounded by complexity (and therefore
the length) of the algorithm itself. On the other hand, to provide a string of high
complexity means to provide a string which is guaranteed to be different from the
outputs of finitely many algorithms. At first, this looks like a more difficult task
than for one algorithm (as the oracle does). However, the following trick helps: we
may assume that the outputs are tuples and construct a tuple that differs from the
output of 𝑖-th algorithm in 𝑖-th position.]

14 (Continued.) Prove that both these problems are equivalent to the problem
of computing a fixed-point free function: “for every algorithm construct another
algorithm that computes a different function” (not the same as the first one).

15 (Continued.) Prove that an enumerable oracle can solve these problems if
and only if it solves the halting problem (M. Arslanov proved this result without
using Kolmogorov complexity). [Hint: Assume that an enumerable oracle 𝐴 allows
us to compute strings of arbitrarily high complexity. Then let us compute a string
of complexity at least 𝑛 using this oracle, and look at all elements of 𝐴 that were
questioned during this computation. How many steps are needed to enumerate all
this elements? This is a big number: any 𝑇 greater than this number, has the
Kolmogorov complexity at least 𝑛, since 𝑇 -approximation of 𝐴 can be used instead
of 𝐴. On the other hand, having an oracle for 𝐴, we can find 𝑇 for a given 𝑛.]

Kolmogorov complexity and functions 𝐵 and BB turn out to be useful to study
the the so-called “generic” and “coarse” algorithms that solve the halting problem
for most inputs (the fraction of errors converges to zero), see [11]. The versions
of these functions based on prefix complexity were introduced by Gács [57], see
also [4] for recent results related to the busy beaver functions for different versions
of Kolmogorov complexity.

We have shown only several (simple) example that show how Kolmogorov com-
plexity is related to computability theory (also called “recursion theory”). This area
now actively grows, so we refer the interested reader to two recent monographs [146]
(by A. Nies) and [49] (by R. Downey and D. Hirschfeldt).

Theorem 15 selects some very special objects among all objects of complexity 𝑛
(in fact, one object up to equivalence described above). At first glance, this seems
strange: our intuition says that all “random” (incompressible) strings of length 𝑛
should be indistinguishable, and any special property of a string could be used to
compress it. However, we have found a very special random string 𝛾𝑛 of length 𝑛.
This paradox can be explained as follows: the individual properties of 𝛾𝑛 does allow
us to find a short description for 𝛾𝑛, but we need the oracle for 0′ to decompress
that description.

We will come back to this question in Section 5.7 discussing “the number of
wisdom” Ω and in Section 14.3 studying two-part descriptions.

1.2. ALGORITHMIC PROPERTIES 43

Finally, let us note that although all the objects in Theorem 15 are equivalent,
they have very different lengths. The lengths of (a), (b), (e)–(i) is about 𝑛 while
the length of (c) and (d) grows faster than every computable function of 𝑛.

CHAPTER 2

Complexity of pairs and conditional complexity

2.1. Complexity of pairs

As we have discussed, we can define complexity of any constructive object using
(computable) encodings by strings. In this section we deal with pairs of strings.
A pair 𝑥, 𝑦 can be encoded, e.g., by a string [𝑥, 𝑦] = 𝑥01𝑦; here 𝑥 stands for 𝑥
with doubled bits. Any other computable encoding 𝑥, 𝑦 ↦→ [𝑥, 𝑦] could be used (of
course, we need that [𝑥, 𝑦] ̸= [𝑥′, 𝑦′] if 𝑥 ̸= 𝑥′ or 𝑦 ̸= 𝑦′). Any two encodings of
this type are equivalent (there are translation algorithms in both directions), so
Theorem 3 (p. 15) guarantees that complexities of the different encodings of the
same pair differ by 𝑂(1).

So let us fix some encoding [𝑥, 𝑦]. Kolmogorov complexity of a pair 𝑥, 𝑦 is
defined as 𝐶([𝑥, 𝑦]) and denoted by 𝐶(𝑥, 𝑦). Here are some evident properties:

∙ 𝐶(𝑥, 𝑥) = 𝐶(𝑥) + 𝑂(1);
∙ 𝐶(𝑥, 𝑦) = 𝐶(𝑦, 𝑥) + 𝑂(1);
∙ 𝐶(𝑥) 6 𝐶(𝑥, 𝑦) + 𝑂(1); 𝐶(𝑦) 6 𝐶(𝑥, 𝑦) + 𝑂(1).

The following theorem gives an upper bound for the complexity of a pair in
terms of complexities of its components:

Theorem 16.

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 2 log𝐶(𝑥) + 𝐶(𝑦) + 𝑂(1);

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + log𝐶(𝑥) + 2 log log𝐶(𝑥) + 𝐶(𝑦) + 𝑂(1);

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + log𝐶(𝑥) + log log𝐶(𝑥) + 2 log log log𝐶(𝑥) + 𝐶(𝑦) + 𝑂(1);

. . .

(We can continue this sequence of inequalities indefinitely. Also, one can ex-
change 𝑥 and 𝑦.)

Proof. This proof (for the first inequality) was already explained in the In-
troduction (Theorem 4, p. 16). The only difference is that we considered the con-
catenation 𝑥𝑦 instead of a pair. Let us repeat the argument for pairs.

A computable mapping 𝑥 ↦→ �̂� (here 𝑥 and �̂� are binary strings) is called a
prefix-free encoding, if for any two different strings 𝑥 and 𝑦 the string �̂� is not a
prefix of the string 𝑦. (In particular, �̂� ̸= 𝑦 if 𝑥 ̸= 𝑦.) This guarantees that both 𝑢
and 𝑣 can be uniquely reconstructed from �̂�𝑣.

An example of a prefix-free encoding: 𝑥 ↦→ 𝑥01, where 𝑥 stands for 𝑥 with
doubled bits. Here the block 01 are used as a delimiter. However, this encoding is
not the most space-efficient one, since it doubles the length. A better prefix-free
encoding:

𝑥 ↦→ �̂� = bin(𝑙(𝑥)) 01𝑥

45

46 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

(bin(𝑙(𝑥)) is the binary representation of the length 𝑙(𝑥) of the string 𝑥). Now

𝑙(�̂�) = 𝑙(𝑥) + 2 log 𝑙(𝑥) + 𝑂(1).

This trick can be “iterated”: for any prefix-free encoding 𝑥 ↦→ �̂� we can construct
another prefix-free encoding

𝑥 ↦→ ̂bin(𝑙(𝑥))𝑥.

Indeed, if ̂bin(𝑙(𝑥))𝑥 is a prefix of ̂bin(𝑙(𝑦))𝑦, then one of the strings ̂bin(𝑙(𝑥)) and
̂bin(𝑙(𝑦)) is a prefix of the other one, and therefore bin(𝑙(𝑥)) = bin(𝑙(𝑦)). Therefore

𝑥 is a prefix of 𝑦, and 𝑙(𝑥) = 𝑙(𝑦), so 𝑥 = 𝑦. (In other terms, we uniquely determine
the length of the string, since a prefix-free code is used for it, and then get the
string itself knowing where it ends.)

In this way we get a prefix-free encoding such that

𝑙(�̂�) = 𝑙(𝑥) + log 𝑙(𝑥) + 2 log log 𝑙(𝑥) + 𝑂(1),

then (one more iteration)

𝑙(�̂�) = 𝑙(𝑥) + log 𝑙(𝑥) + log log 𝑙(𝑥) + 2 log log log 𝑙(𝑥) + 𝑂(1),

etc.
Now we return to the proof. Let 𝐷 be the optimal decompressor used in

the definition of Kolmogorov complexity. Consider a decompressor 𝐷′ defined as
follows:

𝐷′(𝑝𝑞) = [𝐷(𝑝), 𝐷(𝑞)],

where 𝑝 is a prefix-free encoding and [·, ·] is the encoding of pairs (used in the
definition of pairs complexity). Since 𝑝 is a prefix-free encoding, 𝐷′ is well defined
(we can uniquely extract 𝑝 out of 𝑝𝑞).

Let 𝑝 and 𝑞 be the shortest descriptions of 𝑥 and 𝑦. Then 𝑝𝑞 is a description
of [𝑥, 𝑦], and its length is exactly as we need in our theorem. (The more iterations
we use for the prefix-free encoding, the better bound we get.) �

Theorem 16 implies that

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦) + 𝑂(log 𝑛)

for strings 𝑥 and 𝑦 of length at most 𝑛: one may say that the complexity of a
pair does not exceed the sum of the complexities of its component with logarithmic
precision.

16 Suggest a natural definition for the complexity of a triple. Show that
𝐶(𝑥, 𝑦, 𝑧) 6 𝐶(𝑥) + 𝐶(𝑦) + 𝐶(𝑧) + 𝑂(log 𝑛) for every three strings 𝑥, 𝑦, 𝑧 of length
at most 𝑛.

A natural question arises: is it true that 𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦) + 𝑂(1)?
A simple argument shows that this is not the case. Indeed, this inequality would

imply 𝐶(𝑥, 𝑦) 6 𝑙(𝑥) + 𝑙(𝑦) + 𝑂(1). Consider some 𝑁 . For each 𝑛 = 0, 1, 2, . . . , 𝑁
we have 2𝑛 strings 𝑥 of length 𝑛 and 2𝑁−𝑛 strings 𝑦 of length 𝑁 − 𝑛. Combining
them, we (for a given 𝑛) obtain 2𝑁 different pairs ⟨𝑥, 𝑦⟩. The total number of pairs
(all 𝑛 = 0, 1, . . . , 𝑁 give different pairs) is (𝑁 + 1)2𝑁 .

Assume that indeed 𝐾(𝑥, 𝑦) 6 𝑙(𝑥)+ 𝑙(𝑦)+𝑂(1) = 𝑁 +𝑂(1) for all these pairs.
Then we get (𝑁 + 1)2𝑁 different strings [𝑥, 𝑦] of complexity at most 𝑁 +𝑂(1), but
this is impossible (Theorem 7, p. 31, gives the upper bound 𝑂(2𝑁)).

2.1. COMPLEXITY OF PAIRS 47

17 Prove that there is no constant 𝑐 such that

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + log𝐶(𝑥) + 𝐶(𝑦) + 𝑐

for all 𝑥 and 𝑦. [Hint: Replace 𝐶 in the right hand side by 𝑙 and count the number
of corresponding pairs.]

18 (a) Prove that ∑︁
𝑥∈Ξ

2−𝑙(�̂�) 6 1

for any prefix-free encoding 𝑥 ↦→ �̂� (here Ξ is the set of all binary strings).
(b) Prove that if a prefix-free encoding increases the length of a 𝑛-bit string at

most by 𝑓(𝑛), i.e., if 𝑙(�̂�) 6 𝑙(𝑥) + 𝑓(𝑙(𝑥)), then
∑︀

𝑛 2−𝑓(𝑛) < ∞.

This problem explains why a coefficient 2 appears in the Theorem 16 (p. 45):
the series ∑︁ 1

𝑛2
,
∑︁ 1

𝑛(log 𝑛)2
,
∑︁ 1

𝑛 log 𝑛(log log 𝑛)2
, . . .

converge, while the series∑︁ 1

𝑛
,
∑︁ 1

𝑛 log 𝑛
,
∑︁ 1

𝑛 log 𝑛 log log 𝑛
, . . .

diverge.
The following problem describes functions that can be used for bounds similar

to Theorem 16.

19 Let 𝑓 : N → N is a non-decreasing total computable function. Prove that
the following three properties are equivalent:

(a) 𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦) + 𝑓(𝐶(𝑥)) + 𝑂(1);
(b) 𝐶(𝑥, 𝑦) 6 𝑙(𝑥) + 𝑙(𝑦) + 𝑓(𝑙(𝑥)) + 𝑂(1);
(c)
∑︀

𝑛 2−𝑓(𝑛) < ∞. [Hint: (a) obviously implies (b); to get the reverse implica-
tion, consider the shortest descriptions. To derive (a) from (c), one can count pairs
with 𝑙(𝑥) + 𝑓(𝑙(𝑥)) + 𝑙(𝑦) < 𝑛; one can also use results about prefix complexity (see
Chapter 4, Problem 107). Finally, to derive (c) from (b), note that the right hand
side in (b) is at most 𝑛+𝑂(1) if 𝑙(𝑥) = 𝑘 and 𝑙(𝑦) = 𝑛−𝑘− 𝑓(𝑘), for 𝑘+ 𝑓(𝑘) 6 𝑛.
So the number of such pairs is at least

∑︀
2𝑘2𝑛−𝑘−𝑓(𝑘) = 2𝑛

∑︀
𝑘 2−𝑓(𝑘) where the

sum is taken over all 𝑘 such that 𝑘 + 𝑓(𝑘) 6 𝑛.]

20 Prove that all the inequalities of Theorem 16 become false if the coefficient
2 is replaced by 1, but remain true with the coefficient 1 + 𝜀 for any 𝜀 > 0. [Hint:
see the preceding problem.]

21 Prove that

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + log𝐶(𝑥) + 𝐶(𝑦) + log𝐶(𝑦) + 𝑂(1).

22 (Continued) Prove a stronger inequality:

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦) + log(𝐶(𝑥) + 𝐶(𝑦)) + 𝑂(1).

(note that 𝐶(𝑥) + 𝐶(𝑦) can be replaced by max(𝐶(𝑥), 𝐶(𝑦)), this gives a factor at
most 2, which makes 𝑂(1) after taking logarithms).

23 Prove that 𝐶(𝑥,𝐶(𝑥)) = 𝐶(𝑥) + 𝑂(1). [Hint: 𝐶(𝑥,𝐶(𝑥)) > 𝐶(𝑥) + 𝑂(1)
for evident reasons; on the other hand, the shortest description of 𝑥 determines
both 𝑥 and 𝐶(𝑥).]

24 Prove that if 𝐶(𝑥) 6 𝑛 and 𝐶(𝑦) 6 𝑛, then 𝐶(𝑥, 𝑦) 6 2𝑛 + 𝑂(1).

48 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

2.2. Conditional complexity

When transmitting a file, one could try to save communication charges by
compressing it. The transmission could be made even more effective if and old
version of the same file already exists at the other side. In this case we need only
to describe the changes made. This could be considered as a kind of motivation
for the definition of conditional complexity of a given string 𝑥 relative to (known)
string 𝑦.

A conditional decompressor is a computable function 𝐷 of two arguments,
the description and the condition (both arguments and the value of 𝐷 are binary
strings). If 𝐷(𝑦, 𝑧) = 𝑥 we say that 𝑦 is a (conditional) description of 𝑥 when 𝑧 is
known (or relative to 𝑧) The complexity 𝐶𝐷(𝑥 |𝑧) is then defined as the length of
the shortest conditional description:

𝐶𝐷(𝑥 |𝑧) = min{𝑙(𝑦) | 𝐷(𝑦, 𝑧) = 𝑥}.
We say that (conditional) decompressor 𝐷1 is not worse than 𝐷2 if

𝐶𝐷1
(𝑥 |𝑧) 6 𝐶𝐷2

(𝑥 |𝑧) + 𝑐

for some constant 𝑐 and for all 𝑥 and 𝑧. A conditional decompressor is optimal if
it is not worse than any other conditional decompressor.

Theorem 17. There exist optimal conditional decompressors.

Proof. This “conditional” version of Kolmogorov–Solomonoff theorem can be
proved in the same way as the unconditional one (Theorem 1, p. 13).

Fix some programming language where one can write programs for computable
functions of two arguments, and let

𝐷(𝑝𝑦, 𝑧) = 𝑝(𝑦, 𝑧),

where 𝑝(𝑦, 𝑧) is the output of program 𝑝 on inputs 𝑦 and 𝑧, and 𝑝 is the prefix-free
encoding of 𝑝.

It is easy to see now that if 𝐷′ is a conditional decompressor and 𝑝 is a program
for 𝐷′, then

𝐶𝐷(𝑥 |𝑧) 6 𝐶𝐷′(𝑥 |𝑧) + 𝑙(𝑝).

Theorem is proved. �

Again, we fix some optimal conditional decompressor 𝐷 and omit index 𝐷 in
the notation.

Let us start with some simple properties of conditional complexity.

Theorem 18.

𝐶(𝑥 |𝑦) 6 𝐶(𝑥) + 𝑂(1);

𝐶(𝑥 |𝑥) = 𝑂(1);

𝐶(𝑓(𝑥, 𝑦) |𝑦) 6 𝐶(𝑥 |𝑦) + 𝑂(1);

𝐶(𝑥 |𝑦) 6 𝐶(𝑥 |𝑔(𝑦)) + 𝑂(1).

Here 𝑔 and 𝑓 are arbitrary computable functions (of one and two arguments,
respectively); the inequalities are valid if 𝑓(𝑥, 𝑦) and 𝑔(𝑦) are defined.

2.2. CONDITIONAL COMPLEXITY 49

Proof. First inequality: any unconditional decompressor can be considered
as a conditional one that ignores the second argument.

Second inequality: consider 𝐷 such that 𝐷(𝑝, 𝑧) = 𝑧.
Third inequality: Let 𝐷 be the optimal conditional decompressor used to define

complexity. Consider another decompressor 𝐷′ such that

𝐷′(𝑝, 𝑦) = 𝑓(𝐷(𝑝, 𝑦), 𝑦)

and apply the optimality property.
Similar argument works for the last inequality, but 𝐷′ should be defined in a

different way:
𝐷′(𝑝, 𝑦) = 𝐷(𝑝, 𝑔(𝑦)).

Theorem is proven. �

25 Prove that conditional complexity is “continuous as a function of its second
argument”: 𝐶(𝑥 |𝑦0) = 𝐶(𝑥 |𝑦) + 𝑂(1); 𝐶(𝑥 |𝑦1) = 𝐶(𝑥 |𝑦) + 𝑂(1). Using this
property, show that for every string 𝑥 and for every non-negative integer 𝑙 6 𝐶(𝑥)
there exists a string 𝑦 such that 𝐶(𝑥 |𝑦) = 𝑙 + 𝑂(1).

Similar argument based on two-dimensional topology is used in [155].

26 Prove that for any fixed 𝑦 the function 𝑥 ↦→ 𝐶(𝑥 |𝑦) differs from 𝐶 at most
by 2𝐶(𝑦) + 𝑂(1).

27 Prove that 𝐶([𝑥, 𝑧] | [𝑦, 𝑧]) 6 𝐶(𝑥 |𝑦) + 𝑂(1) for any strings 𝑥, 𝑦, 𝑧 (here
[·, ·] stands for the computable encoding of pairs).

28 Fix some “reasonable” programming language. (Formally, we require the
corresponding universal function to be a Gödel one; this means that translation
algorithm exists for any other programming language, see, e.g., [182].) Show that
conditional complexity 𝐶(𝑥 |𝑦) is equal (up to 𝑂(1) additive term) to the minimal
complexity of a program that produces output 𝑥 on input 𝑦. [Hint: Let 𝐷 be an
optimal conditional decompressor. If we fix its first argument 𝑝, we get a program
of complexity at most 𝑙(𝑝) + 𝑂(1). On the other hand, if program 𝑝 maps 𝑦 to 𝑥,
then 𝐶(𝑥 |𝑦) = 𝐶(𝑝(𝑦) |𝑦) 6 𝐶(𝑝) + 𝑂(1).]

This interpretation of conditional complexity as a minimal complexity of a
program with some property will be considered in Chapter 13.

If we restrict ourselves to total programs (that terminate on all inputs), we
get an essentially different notion of conditional complexity that can be called total
conditional complexity.

29 Show that the notion of total conditional complexity CT(𝑥 |𝑦), the minimal
(plain) complexity of a total program that maps 𝑦 to 𝑥, is well defined (i.e., changes
at most by 𝑂(1) when we change the programming language in a reasonable way).
Prove that

𝐶(𝑥 |𝑦) 6 CT(𝑥 |𝑦) 6 𝐶(𝑥)

with 𝑂(1)-precision.

30 Show that the total complexity sometimes exceeds significantly the usual
conditional complexity: for every 𝑛 there exist two 𝑛-bit strings 𝑥 and 𝑦 such that

𝐶(𝑥 |𝑦) = 𝑂(1) while CT(𝑥 |𝑦) > 𝑛.

[Hint: Let us enumerate all programs of complexity less than 𝑛 defined on all 𝑛-bit
strings, and maintain two 𝑛-bit strings 𝑥 and 𝑦 with the following property: none of
the programs found maps 𝑦 to 𝑥. When a new program is found that maps 𝑦 to 𝑥,

50 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

we choose a fresh value of 𝑦 and then choose appropriate 𝑥. This process is effective
if 𝑛 (=length of 𝑦) is given, it defines a partial function 𝑦 ↦→ 𝑥, so 𝐶(𝑥 |𝑦) = 𝑂(1)
for every pair selected.]

31 Let 𝑥 and 𝑦 be two bit strings such that CT(𝑥 |𝑦) 6 𝑛 and CT(𝑦 |𝑥) 6 𝑛.
Prove that there exists a program of a computable permutation of the set of bit
strings that maps 𝑥 to 𝑦 and has complexity at most 2𝑛 + 𝑂(1). [Hint: it is easy
to construct a string 𝑣 of length 2𝑛 + 𝑂(1) that encodes a pair of total programs
𝑓 that maps 𝑥 to 𝑦 and 𝑔 that maps 𝑦 to 𝑥. We may assume without loss of
generality that 𝑥 and 𝑦 have 0 as their first bits. Consider a binary relation on
binary strings that starts with 0, defined as 𝑅(𝑢, 𝑣) : (𝑓(𝑢) = 𝑣) and (𝑔(𝑣) = 𝑢)).
This is a decidable one-to-one correspondence between decidable sets of strings with
infinite complements, and it can be easily extended to a computable permutation.]

32 Show that the upper bound in the preceding problem cannot be improved
significantly: for every 𝑘 there are two strings 𝑥 and 𝑦 of length 𝑛 = 2𝑘 + 𝑂(1)
such that 𝐶(𝑥), 𝐶(𝑦) 6 𝑘 + 𝑂(1) (and therefore CT(𝑥 |𝑦),CT(𝑦 |𝑥) 6 𝑘 + 𝑂(1)),
but every permutation of 𝑛-bit strings that maps 𝑥 to 𝑦 has complexity at least
2𝑘. [Hint: Let us first select (arbitrarily) 2𝑘 strings 𝑦 and pair them with some
string 𝑥. Let us enumerate computable permutations of 𝑛-bit strings that have
complexity less than 2𝑘. If and when all selected pairs are served by some of these
permutations, choose a new string 𝑥 that is connected (by existing permutation)
with at most half of the selected 𝑦-strings. After that Ω(2𝑘) new permutations are
needed to connect new 𝑥 to all 𝑦-strings. Therefore at most 22𝑘/Ω(2𝑘) = 𝑂(2𝑘)
𝑥-strings will be used, so the final 𝑥 and 𝑦 have complexity at most 𝑘 + 𝑂(1). The
selection of 𝑥 connected with at most half of selected 𝑦-strings is always possible,
since each of 𝑦-strings is connected with a small fraction of 𝑥-strings, and we can
change the order of summation in the double sum. Note that this argument may
be used to guarantee that one of the strings 𝑥 and 𝑦 belongs to a given set of 2𝑘

strings.]

See [135] for the detailed proofs of these results about total conditional com-
plexity.

Many properties of unconditional complexity have conditional counterparts
with essentially the same proofs. Here are some of these counterparts:

∙ Function 𝐶(· | ·) is upper semicomputable (this means that the set of triples
⟨𝑥, 𝑦, 𝑛⟩ such that 𝐶(𝑥 |𝑦) < 𝑛 is enumerable).

∙ For any 𝑦 and 𝑛 the set of all strings 𝑥 such that 𝐶(𝑥 |𝑦) < 𝑛 has cardi-
nality less then 2𝑛.

∙ For any 𝑦 and 𝑛 there exists a string 𝑥 of length 𝑛 such that 𝐶(𝑥 |𝑦) > 𝑛.

33 Prove that for any strings 𝑦 and 𝑧 and for any number 𝑛 there exists a
string 𝑥 of length 𝑛 such that 𝐶(𝑥 |𝑦) > 𝑛 − 1 and 𝐶(𝑥 |𝑧) > 𝑛 − 1. [Hint: both
requirements are violated by a minority of strings.]

Theorem 19. Let ⟨𝑥, 𝑦⟩ ↦→ 𝑘(𝑥, 𝑦) be an upper semicomputable function such
that the set {𝑥 | 𝑘(𝑥, 𝑦) < 𝑛} has cardinality less than 2𝑛 for any string 𝑦 and
integer 𝑛. Then 𝐶(𝑥 |𝑦) 6 𝑘(𝑥, 𝑦) + 𝑐 for some 𝑐 and for all 𝑥 and 𝑦.

The proof repeats the proof of Theorem simple-upper-reformulated.
Using conditional complexity, we get a stronger inequality for the complexity

of pairs (compared with Theorem 16, p. 45):

2.2. CONDITIONAL COMPLEXITY 51

Theorem 20.

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 2 log𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(1)

Proof. Let 𝐷1 be an optimal unconditional decompressor and let 𝐷2 be an
optimal conditional decompressor. Construct a new unconditional decompressor
𝐷′ as follows:

𝐷′(𝑝𝑞) = [𝐷1(𝑝), 𝐷2(𝑞,𝐷1(𝑝))].

Here 𝑝 stands for the prefix-free encoding of 𝑝, and [·, ·] is a computable encoding
of pairs used in the definition of the complexity of pairs. Let 𝑝 be the shortest 𝐷1-
description of 𝑥 and 𝑞 be the shortest 𝐷2-description of 𝑦 conditional to 𝑥. Then
the string 𝑝𝑞 is a 𝐷3-description of [𝑥, 𝑦]. Therefore,

𝐶(𝑥, 𝑦) 6 𝐶𝐷′(𝑥, 𝑦) + 𝑂(1) 6 𝑙(𝑝) + 𝑙(𝑞) + 𝑂(1).

As we have seen, one can choose a prefix-free encoding in such a way that 𝑙(𝑝) is
bounded by 𝑙(𝑝) + 2 log 𝑙(𝑝) + 𝑂(1) (see the proof of Theorem 16, p. 45), and we
get a desired inequality. �

As before, we may replace 2 log𝐶(𝑥) by log𝐶(𝑥) + 2 log log𝐶(𝑥) etc., getting a
better bound. We also can use conditional complexity in the logarithmic term and
write

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 2 log𝐶(𝑦 |𝑥) + 𝑂(1).

(In the proof we should then replace 𝐷′(𝑝𝑞) by 𝐷′(𝑞𝑝).)

34 Prove that

𝐶(𝑥 |𝑧) 6 𝐶(𝑥 |𝑦) + 2 log𝐶(𝑥 |𝑦) + 𝐶(𝑦 |𝑧) + 𝑂(1)

for all 𝑥, 𝑦, 𝑧 (a sort of a “triangle inequality”).

If we are not interested in the exact form of the additional logarithmic term,
the statement of Theorem 20 can be reformulated as follows:

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(log 𝑛).

for all strings 𝑥, 𝑦 of length at most 𝑛.
It turns out (and this is the first nontrivial statement in this chapter, and

probably the first non-trivial result about Kolmogorov complexity; it was proven
independently by Kolmogorov and Levin and published in [78, 223]) that this
inequality is in fact an equality.

Theorem 21 (Kolmogorov–Levin).

𝐶(𝑥, 𝑦) = 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(log 𝑛).

for all strings 𝑥, 𝑦 of length at most 𝑛.

Proof. Since we already have one inequality, we need to prove only that

𝐶(𝑥, 𝑦) > 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(log 𝑛)

for all 𝑥 and 𝑦 of length at most 𝑛.
Let 𝑥 and 𝑦 be some strings of length at most 𝑛. Let 𝑎 be the complexity

𝐶(𝑥, 𝑦) of the pair ⟨𝑥, 𝑦⟩. Consider the set 𝐴 of all pairs whose complexity does not
exceed 𝑎. Then 𝐴 is a set of cardinality 𝑂(2𝑎) (in fact, at most 2𝑎+1) and ⟨𝑥, 𝑦⟩ is
one of its elements.

For each string 𝑡 consider the “vertical section” 𝐴𝑡 of 𝐴:

𝐴𝑡 = {𝑢 | ⟨𝑡, 𝑢⟩ ∈ 𝐴}

52 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

𝑡

𝐴𝑡

𝐴

𝑥

𝑦

Figure 1. The section 𝐴𝑡 of the set 𝐴 of all simple pairs.

(Fig. 1). The sum of the cardinalities of all 𝐴𝑡 (over all strings 𝑡) is the cardinality
of 𝐴 and does not exceed 𝑂(2𝑎). Therefore there are few “large” sections 𝐴𝑡, and
this is the basic argument we need for the proof.

Let 𝑚 be equal to ⌊log2 |𝐴𝑥|⌋ where 𝑥 is the first component of the pair ⟨𝑥, 𝑦⟩
we started with. In other terms, assume that cardinality of 𝐴𝑥 is between 2𝑚 and
2𝑚+1. Let us prove that

(1) 𝐶(𝑦 |𝑥) does not exceed 𝑚 significantly;
(2) 𝐶(𝑥) does not exceed 𝑎−𝑚 significantly.
We start with (1). Knowing 𝑎, we can enumerate the set 𝐴. If we know also 𝑥,

we can select only pairs whose first component equals 𝑥. In this way we get an
enumeration of 𝐴𝑥. To specify 𝑦, it is enough to tell the ordinal number of 𝑦 in
this enumeration (of 𝐴𝑥). This ordinal number takes 𝑚 + 𝑂(1) bits, and together
with 𝑎 we get 𝑚 + 𝑂(log 𝑛) bits for the conditional description of 𝑦 given 𝑥. Note
that 𝑎 = 𝐶(𝑥, 𝑦) does not exceed 𝑂(𝑛) for strings 𝑥 and 𝑦 of length 𝑛. Therefore,
we need only 𝑂(log 𝑛) to specify 𝑎 and 𝑛, and

𝐶(𝑦 |𝑥) 6 𝑚 + 𝑂(log 𝑛).

Now let us prove (2). Consider the set 𝐵 of all strings 𝑡 such that cardinality
of 𝐴𝑡 is at least 2𝑚. The cardinality of 𝐵 does not exceed 2𝑎+1/2𝑚, otherwise the
sum |𝐴| =

∑︀
|𝐴𝑡| would be greater than 2𝑎+1. We can enumerate 𝐵 if we know 𝑎

and 𝑚. Indeed, we should enumerate 𝐴 and group together the pairs with the same
first coordinate; if we find 2𝑚 pairs with the same value of the first coordinate, we
put this value into 𝐵. Therefore the string 𝑥 (as well as every element of 𝐵) can be
specified by (𝑎−𝑚) + 𝑂(log 𝑛) bits: 𝑎−𝑚 + 1 bits are needed for ordinal number
of 𝑥 in the enumeration of 𝐵, and 𝑂(log 𝑛) are used to specify 𝑎 and 𝑚. So we get

𝐶(𝑥) 6 (𝑎−𝑚) + 𝑂(log 𝑛),

and it remains to add this inequality and the preceding one. �

This theorem can be considered as the complexity counterpart of the following
combinatorial statement. Let 𝐴 be a finite set of pairs. Its cardinality is (obviously)
bounded by the product of the cardinality of 𝐴’s projection onto the first coordinate,
and the maximal cardinality of the sections 𝐴𝑥. This corresponds to the inequality
𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(log 𝑛). The reverse inequality needs a more subtle
interpretation. Let 𝐴 be a set of pairs and let 𝑝 and 𝑞 be some numbers such that

2.2. CONDITIONAL COMPLEXITY 53

cardinality of 𝐴 does not exceed 𝑝𝑞. Then we can split 𝐴 into parts 𝑃 and 𝑄 with
the following properties: the projection of 𝑃 onto the first coordinate has at most 𝑝
elements, while all the sections 𝑄𝑥 of 𝑄 (for element in 𝑄𝑥 the first coordinate equals
𝑥) have at most 𝑞 elements. (Indeed, let 𝑃 be the union of all sections that have
more than 𝑞 elements. The number of such sections do not exceed 𝑝. Remaining
elements form 𝑄.) We return to this combinatorial translation in Chapter 10.

Note that in fact we have not used the lengths of 𝑥 and 𝑦, only their complex-
ities. So we have proved the following statement:

Theorem 22 (Kolmogorov–Levin, complexity version).

𝐶(𝑥, 𝑦) = 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(log𝐶(𝑥, 𝑦))

for all strings 𝑥 and 𝑦.

35 Give a more detailed analysis of the additive terms in the proof and show
that

𝐶(𝑥) + 𝐶(𝑦 |𝑥) 6 𝐶(𝑥, 𝑦) + 3 log𝐶(𝑥, 𝑦) + 𝑂(log log𝐶(𝑥, 𝑦)).

36 Show that if 𝐶(𝑥, 𝑦 |𝑘, 𝑙) < 𝑘+𝑙, then 𝐶(𝑥 |𝑘, 𝑙) < 𝑘+𝑂(1) or 𝐶(𝑦 |𝑥, 𝑘, 𝑙) <
𝑙 + 𝑂(1). [Hint: This is what we proved actually in the proof of Theorem 22.]

37 Show that 𝑂(log 𝑛) terms are unavoidable in Kolmogorov–Levin theorem
in both directions: for each 𝑛 there exist strings 𝑥 and 𝑦 of length at most 𝑛 such
that

𝐶(𝑥, 𝑦) > 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + log 𝑛−𝑂(1),

as well as strings 𝑥 and 𝑦 of length at most 𝑛 such that

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦 |𝑥) − log 𝑛 + 𝑂(1).

[Hint: For the first inequality we can refer to the remark after Theorem 16 (p. 45).
For the second note that 𝐶(𝑥, 𝑙(𝑥)) = 𝐶(𝑥) for every 𝑥, while 𝐶(𝑥|𝑙(𝑥)) can be
equal to 𝑙(𝑥) +𝑂(1) and 𝐶(𝑥) +𝑂(1). Then we can take a random length between
𝑛/2 and 𝑛 and a random string of this length.]

38 Prove that changing one bit in a string of length 𝑛 changes its complexity
at most by log 𝑛 + 𝑂(log log 𝑛). Prove the same for the conditional complexity
𝐶(𝑥 |𝑛).

As we have seen in Problem 7 (p. 34), for every 𝑛-bit string 𝑥 there exists
another string 𝑥′ of the same length that differs from 𝑥 in one position only such
that 𝐶(𝑥′) < 𝑛 − log 𝑛 + 𝑂(1) (and therefore 𝐶(𝑥′ |𝑛) < 𝑛 − log 𝑛 + 𝑂(1)). In
particular, if 𝑥 is incompressible (given 𝑛), one can change one bit in 𝑥 and decrease
𝐶(𝑥 |𝑛).

One can move also in the other direction: if 𝐶(𝑥 |𝑛) is small enough (this means
that 𝐶(𝑥 |𝑛) 6 𝛼𝑛 for some positive constant 𝛼), we can increase this complexity
by changing one bit in 𝑛: there exists some 𝛼 > 0 such that for each 𝑛-bit string
𝑥 with 𝐶(𝑥 |𝑛) 6 𝛼𝑛 one can change one bit in 𝑥 and get another 𝑛-bit string 𝑥′

such that 𝐶(𝑥′ |𝑛) > 𝐶(𝑥 |𝑛). (The proof of this statement requires more involved
combinatorial argument [24] than the decrease in complexity.)

39 Fix some unconditional decompressor 𝐷. Prove that for some constant 𝑐
and for all integers 𝑛 and 𝑘 the following statement is true: if some string 𝑥 has
at least 2𝑘 descriptions of length at most 𝑛, then 𝐶(𝑥 |𝑘) 6 𝑛 − 𝑘 + 𝑐. [Hint: Fix
some 𝑘. For each 𝑛 consider all strings 𝑥 that have at least 2𝑘 descriptions of length

54 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

at most 𝑛. The number of these strings does not exceed 2𝑛−𝑘, and we can apply
Theorem 19, p. 50.]

Using this problem, we can prove the following statement about unconditional
complexity (see [102, Exercises 4.3.9, 4.3.10]):

40 Let 𝐷 be some optimal unconditional decompressor. Then there exists
some constant 𝑐 such that for any string 𝑥 the number of shortest 𝐷-descriptions
of 𝑥 does not exceed 𝑐.

[Hint: The previous problems show that 𝐶(𝑥) 6 𝑛− 𝑘 + 2 log 𝑘 + 𝑂(1), so for
𝐶(𝑥) = 𝑛 we get an upper bound for 𝑘.]

41 Prove that there exists a constant 𝑐 with the following property: if for
some 𝑥 and 𝑛 the probability of the event 𝐶(𝑥 |𝑦) 6 𝑘 (all strings 𝑦 of lengths 𝑛 are
considered as equiprobable here) is at least 2−𝑙, then 𝐶(𝑥 |𝑛, 𝑙) 6 𝑘 + 𝑙 + 𝑐. [Hint:
Connect each string 𝑦 of length 𝑛 to all strings 𝑥 such that 𝐶(𝑥 |𝑦) 6 𝑘. We get
a bipartite graph that has 𝑂(2𝑛+𝑘) edges. In this graph the number of vertices 𝑥
that have degree at least 2𝑛−𝑙 does not exceed 𝑂(2𝑘+𝑙). Note that 𝐶(𝑥 |𝑛, 𝑙) does
not include 𝑘—this is not a typo!]

This problem could help us to find the average value of 𝐶(𝑥 |𝑦) for given 𝑥 and
all string 𝑦 of some length 𝑛. It is evident that 𝐶(𝑥 |𝑦) 6 𝐶(𝑥 |𝑛) + 𝑂(1) since
𝑛 = 𝑙(𝑦) is determined by 𝑦. It turns out that for most strings 𝑦 (of given length)
this inequality is close to an equality:

42 Prove that there exists some constant 𝑐 such that for each string 𝑥 and for
all natural numbers 𝑛 and 𝑑 the fraction of strings 𝑦 such that 𝐶(𝑥 |𝑦) < 𝐶(𝑥 |𝑛)−𝑑
(among all strings of length 𝑛) does not exceed 𝑐𝑑2/2𝑑. Using this statement, prove
that the average value of 𝐶(𝑥 |𝑦) taken over all strings 𝑦 of a given length 𝑛 equals
𝐶(𝑥 |𝑛) + 𝑂(1) (the constant in 𝑂(1) does not depend on 𝑥 and 𝑛).

43 Prove that 𝐶(𝑥 |𝑘) 6 𝑘 implies 𝐶(𝑥) 6 𝑘 + 𝑂(1). [Hint: See Theorem 7.
One can also note that if a conditional description of 𝑥 given 𝑘 has length 𝑘, then 𝑘
is known anyway, and if this description is shorter, we have enough space to specify
the difference between 𝑘 and the description length.]

A similar (though not identical) statement:

44 Prove that 𝐶(𝑥) = 𝐶(𝑥 |𝐶(𝑥)) +𝑂(1). [Hint: Assume that 𝑥 has a condi-
tional description 𝑞 with condition 𝐶(𝑥) that is shorter than 𝐶(𝑥). Then one can
specify 𝑥 by providing 𝑞 and the difference 𝐶(𝑥)− 𝑙(𝑞), and we get a description of
𝑥 that is shorter than 𝐶(𝑥)—a contradiction.]

45 Prove that for every 𝑛 there exists a 𝑛-bit string 𝑥 such that

𝐶(𝐶(𝑥) |𝑥) = log 𝑛−𝑂(1).

(This is a maximal possible value, since 𝐶(𝑥) 6 𝑛 for 𝑛-bit string 𝑥.)

This result (in a bit weaker form) was proven long ago by P. Gács [55]. Re-
cently E. Kalinina and B. Bauwens suggested a simple game-theoretic proof of this
statement. Here is a sketch is this argument (see [6] for details). Consider a rectan-
gular game board of width 2𝑛 and height 𝑛. Two players, White and Black, make
alternating moves and place pawns of their respective colors into the board cells.
Unlike chess, each cell may contain both white and black pawns (at most one of
each color). At each move player may place several pawns into different cells (or no

2.2. CONDITIONAL COMPLEXITY 55

pawns at all); after a pawn is places, it cannot be moved or removed. Also Black
can irreversibly mark some cells. The players should obey the following restrictions:

(a) each of the players can place at most 2𝑖 pawns at row 𝑖 (the bottom row
has number 0, the upper row has number 𝑛− 1);

(b) Black can mark at most half of the cells in each column.
A white pawn is declared as killed if its cell is marked or if there is a black

paws below it (in the same column). The game does not end formally (though it is
essentially a finite game); White wins if in the limit there is at least one non-killed
white pawn.

White has a winning strategy in this game: place a pawn in the top row and
wait until it is killed. If it is killed by the black pawn below, switch to the next
column (for example, White can go from left to right starting with the leftmost
column). If the pawn was killed by marking its cell, White places another pawn
just below the first one, etc. (We may assume that Black’s moves kill the white
pawn, all other moves can be postponed, since the winner is determined by the
limit position.) Recall that Black can mark at most half of the column, so Black
is forced to put some pawn in the column at some point. It cannot be done in all
columns, since the sum of 2𝑖 for all rows is less (by 1) than the width of the table.
Note also that White will not violate restrictions on the number of pawns in each
row, since in all the columns (except the currently active one) under each white
pawn (in row 𝑖) there is a black paws (in some row 𝑗 < 𝑖), and the sum of 2𝑗 for
all 𝑗 < 𝑖 is less that 2𝑖 and there is a space for one more white pawn.

After a winning strategy for White is described, consider the following “univer-
sal” strategy for Black: the cell (𝑥, 𝑖) is marked as soon as we find that 𝐶(𝑖 |𝑥) <
log 𝑛 − 1; a black pawn in placed at (𝑥, 𝑖) when a conditional description of 𝑥
(given 𝑛) of length 𝑖 is found. It is easy to check that Black obeys the game rules.
White wins, and a live white pawn at the cell (𝑥, 𝑖) means that 𝐶(𝑥 |𝑛) > 𝑖 and
𝐶(𝑖 |𝑥) > log 𝑛−1. Since the actions of White (playing against computable strategy
of Black) are computable, we conclude that 𝐶(𝑥 |𝑛) > 𝑖 + 𝑂(1): the set of white
pawns in row 𝑖 is enumerable and it contains at most 2𝑖 elements.

This argument shows that 𝐶(𝐶(𝑥 |𝑛) |𝑥) > log 𝑛 − 1 (not exactly what we
wanted); to get the desired result, we should change the game and consider in
paraller boards of all sizes.

46 Prove that for some constant 𝑐 for any string 𝑥 and for every number 𝑛
there exists a string 𝑦 of length 𝑛 such that

𝐶(𝑥𝑦) > 𝐶(𝑥 |𝑛) + 𝑛− 𝑐.

[Hint: For a given 𝑛 the number of strings 𝑥 such that 𝐶(𝑥𝑦) < 𝑘 for any 𝑦 of
length 𝑛, does not exceed 2𝑘/2𝑛, and this property is enumerable. So we can apply
Theorem 19 (p. 50).]

47 Let 𝑓 be a function with natural arguments and values. Assume that

𝑓(𝑛) + 𝜀ℎ 6 𝑓(𝑛 + ℎ) 6 𝑓(𝑛) + (1 − 𝜀)ℎ

for some 𝜀 > 0 and for all 𝑛 and ℎ. Prove that there exist an infinite bit sequence
𝜔 whose 𝑛-bit prefix has complexity 𝑓(𝑛) + 𝑂(1) for every 𝑛.

[Hint: let us add blocks of length ℎ where ℎ is large enough. Each new block
being added to 𝑛-bit prefix increases complexity by more than 𝑓(𝑛 + ℎ) − 𝑓(𝑛) or
by less than 𝑓(𝑛 + ℎ) − 𝑓(𝑛), depending on the current situation (whether we are

56 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

below or above the boundary). To find a block with big complexity increase we
may use the previous problem, for a block with small increase we can use a block
or zeros. Note that (large enough) ℎ is fixed, so it is enough to control complexity
on the blocks’ boundaries.]

48 Prove that an infinite sequence 𝑥0𝑥1𝑥2 . . . of zeros and ones is computable
if and only if the values 𝐶(𝑥0 . . . 𝑥𝑛−1 |𝑛) (the complexities of its prefixes conditional
to their lengths) remain bounded by a constant.

[Hint: Consider an infinite binary tree. Let 𝑆 be the enumerable set of vertices
(binary strings) that have conditional complexity (w.r.t. their length) less than
some constant 𝑐. The “horizontal” sections of 𝑆 have cardinality 𝑂(1). We need to
derive from this that each infinite path that lies entirely inside 𝑆, is computable.
We may assume that 𝑆 is a subtree (only strings whose prefixes are in 𝑆, remain
in 𝑆).

Let 𝜔 be an infinite path that goes through 𝑆 only. At each level 𝑛 we count
vertices in 𝑆 on the left of 𝜔 (𝑙𝑛 vertices) and on the right of 𝜔 (𝑟𝑛 vertices). Let
𝐿 = lim sup 𝑙𝑛 and 𝑅 = lim sup 𝑟𝑛. Let 𝑁 be the level such that 𝐿 and 𝑅 are never
exceeded after this level. Knowing 𝐿, 𝑅 and 𝑁 we can compute arbitrarily large
prefixes of 𝜔. We should look for a path 𝜋 in a tree such that at some level above
𝑁 there are at least 𝐿 elements of 𝑆 on the left of 𝜋, and at some (possibly other)
level above 𝑁 there are at least 𝑅 elements on the right of 𝜋. When such a path 𝜋
is found, we can be sure that its initial segment (up to the first of those two levels)
coincides with 𝜔.]

This result was published in [107] (attributed to A.R. Meyer).

49 Prove that in the previous problem a weaker assumption is sufficient:
instead of 𝐶(𝑥0 . . . 𝑥𝑛−1 |𝑛) = 𝑂(1) we can require that 𝐶(𝑥0 . . . 𝑥𝑛−1) 6 log 𝑛 + 𝑐
for some 𝑐 and for all 𝑛. [Hint: In this case we get an enumerable set 𝑆 of strings
(=tree vertices) with the following property: the number of vertices below level 𝑁
is 𝑂(𝑁). This means that the average number of vertices per level is bounded by a
constant. To use the previous problem, we need a bound for all levels and not for
the average value. We can achieve this if we consider only vertices 𝑥 ∈ 𝑆 that have
a extension of length 2𝑙(𝑥) that goes entirely inside 𝑆.]

This result was published in [33].

Following Problem 48, we can suggest different definitions of the complexity
notion for computable bit sequences:

∙ a minimal complexity of a program that, given 𝑛, computes 𝑥0 . . . 𝑥𝑛−1.
We can also consider a program that computes 𝑥𝑛 for input 𝑛, it gives the
same (up to 𝑂(1)) complexity. We denote this complexity by 𝐶(𝑥).

∙ a minimal complexity of a program that, given 𝑛, computes 𝑥0 . . . 𝑥𝑛 for
all sufficiently large 𝑛. For other 𝑛 (finitely many of them) this program
may provide a wrong answer or never terminate. It is denoted by 𝐶∞(𝑥).

∙ max{𝐶(𝑥0 . . . 𝑥𝑛−1 |𝑛) | 𝑛 = 0, 1, . . . }, denoted by 𝑀(𝑥).
∙ lim sup𝑛→∞ 𝐶(𝑥0 . . . 𝑥𝑛−1 |𝑛), denoted by 𝑀∞(𝑥).

There are evident relations between these notions:

𝑀∞(𝑥) 6𝑀(𝑥) 6 𝐶(𝑥)

(up to 𝑂(1) additive term) and

𝑀∞(𝑥) 6 𝐶∞(𝑥) 6 𝐶(𝑥)

2.2. CONDITIONAL COMPLEXITY 57

(with the same precision).

50 Prove that there exists a computable bit sequence 𝑥 such that 𝐶∞(𝑥) is
much less than 𝑀(𝑥) (and, therefore, much less than 𝐶(𝑥)). More precisely, there
exists a sequence 𝑥𝑚 of computable sequences such that 𝐶∞(𝑥𝑚) = 𝑂(log𝑚) and
𝑀(𝑥𝑚) > 𝑚. [Hint: Consider the sequence 𝑥𝑚 = 𝑦𝑚000 . . . , where 𝑦𝑚 is the
lexicographically first string of length 𝑚 that has conditional complexity (given 𝑚)
at least 𝑚.]

51 Prove that for some computable sequence 𝑥 the value of 𝑀(𝑥) is much
less than 𝐶(𝑥). More precisely, there exist a sequence 𝑥𝑚 of computable sequences
such that 𝑀(𝑥𝑚) = 𝑂(log𝑚) and 𝐶(𝑥𝑚) > 𝑚. [Hint: Consider the sequence
𝑥𝑚 = (1BB (𝑚)000 . . .), where the number of 1s before trailing zeros equals BB (𝑚),
defined on p. 38.]

52 Prove that 𝐶∞(𝑥) 6 2𝑀∞(𝑥) + 𝑂(1). [Hint: Use the same argument as
in Problem 48.]

In fact, the constant 2 in the preceding problem is optimal, as shown in [52].

53 Consider strings of length 𝑛 that have complexity at least 𝑛 (incompressible
strings).

(a) Prove that the number of incompressible strings of length 𝑛 is between 2𝑛−𝑐

and 2𝑛 − 2𝑛−𝑐 (for some 𝑐 and for all 𝑛)
(b) Prove that the cardinality of the set of incompressible strings of length 𝑛

has complexity 𝑛−𝑂(1) (note that this implies the statement (a));
(c) Prove that if the string 𝑥 of length 2𝑛 is incompressible, then its halves 𝑥1

and 𝑥2 (of length 𝑛) have complexity 𝑛−𝑂(1).
(d) Prove that if a string 𝑥 of length 𝑛 is incompressible, then each its substring

of length 𝑘 has complexity at least 𝑘 −𝑂(log 𝑛).
(e) Prove that for any constant 𝑐 < 1 all incompressible strings of sufficiently

large length 𝑛 contain a substring of ⌊𝑐 log2 𝑛⌋ zeros.
[Hints: (a) There is at most 2𝑛 − 1 descritions of length less than 𝑛. and part

of them is used for shorter strings: any string of length 𝑛 − 𝑑 (for some 𝑑) has
complexity less than 𝑛. This gives a lower bound for the number of uncompressible
strings. To prove the upper bound, note that strings of length 𝑛 that have prefix
of 𝑘 zeros, could be described by 2 log 𝑘 + (𝑛− 𝑘) bits.

(b) Let 𝑡 be the shortest description of the number of incompressible strings. If
𝑡 has 𝑛−𝑘 bits, then knowing 𝑡 and log 𝑘 additional bits, we can reconstruct first 𝑛
and then the list of all incompressible strings of length 𝑛, so the first incompressible
string has complexity less than 𝑛, a contradiction.

(c) If one part of the string is has a short description, the entire string has a
short description that starts with prefix-free encoding of the difference between the
length and complexity of the compressible part.

(d) If a string has a simple substring, then the entire string can be compressed
(we need to specify the substring, its position and the rest of the string).

(e) Let us count the number of strings of length 𝑛 that do not contain 𝑘 zeros in
a row; a recurrent relation shows that this number grows like a geometric sequence
whose base is the maximal real root of the equation 𝑥 = 2 − (1/𝑥𝑘), and we can
get a bound for complexity of strings that do not have 𝑘 zeros in a row.]

58 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

54 Prove that (for some constant 𝑐) for every infinite sequence 𝑥0𝑥1𝑥2 . . . of
zeros and ones there exist infinitely many 𝑛 such that

𝐶(𝑥0𝑥1 . . . 𝑥𝑛−1) 6 𝑛− log 𝑛 + 𝑐.

Prove that there is a constant 𝑐 and the sequence 𝑥0𝑥1𝑥2 . . . such that

𝐶(𝑥0𝑥1 . . . 𝑥𝑛−1) > 𝑛− 2 log 𝑛− 𝑐

for all 𝑛. [Hint: The series
∑︀

1/𝑛 diverges while the series
∑︀

(1/𝑛2) converges. For
details see Theorem 95 and 99.]

This result was published by Martin-Löf [116] for conditional complexity (and
a reference to an earlier unpiblished work in Russian was given for unconditional
complexity; see also [223, Theorem 2.6]).

55 For a string 𝑥 of length 𝑛 let us define 𝑑(𝑥) and 𝑑𝑐(𝑥) as follows:

𝑑(𝑥) = 𝑛− 𝐶(𝑥) and 𝑑𝑐(𝑥) = 𝑛− 𝐶(𝑥 |𝑛).

Show that they are rather close to each other:

𝑑𝑐(𝑥) − 2 log 𝑑𝑐(𝑥) −𝑂(1) 6 𝑑(𝑥) 6 𝑑𝑐(𝑥) + 𝑂(1).

[Hint: We need to show that 𝐶(𝑥 |𝑛) = 𝑛−𝑑 implies 𝐶(𝑥) 6 𝑛−𝑑+2 log 𝑑+𝑂(1).
Indeed, let us take the conditional description of 𝑥 of length 𝑛− 𝑑 and put it after
the self-delimiting description of 𝑑 that has size 2 log 𝑑+𝑂(1). Knowing this string,
we can reconstruct 𝑑, then 𝑛 and finally 𝑥.]

56 Prove that 𝑑(𝑥𝑦) = 𝑑(𝑥)+𝑑(𝑦 |𝑥)+𝑂(log 𝑑(𝑥𝑦)) for every two 𝑛-bit strings
𝑥 and 𝑦. (Here 𝑑(𝑢) = 𝑙(𝑢) − 𝐶(𝑢).) [Hint: use Problem 36.]

The intuitive meaning of the difference between length and complexity as a
kind of “randomness deficiency” is discussed (for different complexity versions) in
Chapter 5 and Chapter 14.)

57 Prove that for sufficiently large values of a constant 𝑐 the enumerable set
of pairs (𝑥, 𝑦) such that 𝐶(𝑥 |𝑦) < 𝑐, is Turing complete (one can solve halting
problem using an oracle for such a set). [Hint: Use Problem 15 and the fact that
the output of a program has 𝑂(1) conditional complexity given the program.]

2.3. Complexity as the amount of information

As we know (Theorem 18), the conditional complexity 𝐶(𝑦|𝑥) does not exceed
the unconditional one 𝐶(𝑦) (up to a constant). The difference 𝐶(𝑦) − 𝐶(𝑦|𝑥) tells
us how much the knowledge of 𝑦 makes 𝑥 easier to describe. So this difference can
be called the amount of information in 𝑥 about 𝑦. Notation: 𝐼(𝑥 :𝑦).

Theorem 18 says that 𝐼(𝑥 :𝑦) is non-negative (up to a constant): there exists
some 𝑐 such that 𝐼(𝑥 :𝑦) > 𝑐 for all 𝑥 and 𝑦.

58 Let 𝑓 be a computable function. Prove that 𝐼(𝑓(𝑥) :𝑦) 6 𝐼(𝑥 :𝑦) + 𝑐 for
some 𝑐 and for all 𝑥, 𝑦 such that 𝑓(𝑥) is defined.

A generalization of this statement to probabilistic algorithms is possible.

59 Let 𝑓(𝑥, 𝑟) be a computable function of two arguments, and 𝑟 is chosen at
random uniformly among 𝑛-bit strings for some 𝑛. Then for each 𝑙 the probability
of the event

𝐼(𝑓(𝑥, 𝑟) :𝑦) > 𝐼(𝑥 :𝑦) + 𝑙

does not exceed 2−𝑙+𝑂(𝐶(𝑛)+𝐶(𝑙)). [Hint: Use the conditional version of Problem 41.]

2.3. COMPLEXITY AS THE AMOUNT OF INFORMATION 59

These properties of information can be described as “conservation laws” for
information (about something) in algorithmic or random processes. As Leonid
Levin once put it: “by torturing an uninformed person you do not get any evidence
about the crime”. He discusses this property (for different notion of information)
in [99].

Recall that
𝐶(𝑥, 𝑦) = 𝐶(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(log𝐶(𝑥, 𝑦)),

(Theorem 22, p. 53). This allows us to express conditional complexity in terms of
unconditional one: 𝐶(𝑦 |𝑥) = 𝐶(𝑥, 𝑦) − 𝐶(𝑥) + 𝑂(log𝐶(𝑥, 𝑦)). Then we get the
following expression for the information:

𝐼(𝑥 :𝑦) = 𝐶(𝑦) − 𝐶(𝑦 |𝑥) = 𝐶(𝑥) + 𝐶(𝑦) − 𝐶(𝑥, 𝑦) + 𝑂(log𝐶(𝑥, 𝑦)).

This expression immediately implies the following theorem:

Theorem 23 (information symmetry).

𝐼(𝑥 :𝑦) = 𝐼(𝑦 :𝑥) + 𝑂(log𝐶(𝑥, 𝑦))

So the difference between 𝐼(𝑥 :𝑦) and 𝐼(𝑦 :𝑥) is logarithmically small compared
to 𝐶(𝑥, 𝑦). The following problem shows that at the same time this difference could
be comparable with the values 𝐼(𝑥 :𝑦) and 𝐼(𝑦 :𝑥) if they are much less than 𝐶(𝑥, 𝑦).

60 Let 𝑥 be a string of length 𝑛 such that 𝐶(𝑥 |𝑛) > 𝑛. Show that

𝐼(𝑥 :𝑛) = 𝐶(𝑛) + 𝑂(1) and 𝐼(𝑛 :𝑥) = 𝑂(1).

The property of information symmetry (up to a logarithmic term) explains
why 𝐼(𝑥 :𝑦) (or 𝐼(𝑦 :𝑥)) is sometimes called mutual information in two strings 𝑥
and 𝑦. The connection between mutual information, conditional and unconditional
complexities and pair complexity can be illustrated by a (rather symbolic) picture
(Fig. 2).

𝐶(𝑥 |𝑦)
𝐶(𝑦 |𝑥)

𝐼(𝑥 :𝑦)

𝑥 𝑦

Figure 2. Mutual information and conditional complexity

It shows that strings 𝑥 and 𝑦 have 𝐼(𝑥 :𝑦) ≈ 𝐼(𝑦 :𝑥) bits of mutual information.
Adding 𝐶(𝑥 |𝑦) bits (information that is present in 𝑥 but not in 𝑦, the left part),
we obtain

𝐼(𝑦 :𝑥) + 𝐶(𝑥 |𝑦) ≈ (𝐶(𝑥) − 𝐶(𝑥 |𝑦)) + 𝐶(𝑥 |𝑦) = 𝐶(𝑥)

bits (matching the complexity of 𝑥). Similarly, the central part together with
𝐶(𝑦 |𝑥) (the right part) give 𝐶(𝑦). Finally, all three parts together give us

𝐶(𝑥 |𝑦) + 𝐼(𝑥 :𝑦) + 𝐶(𝑦 |𝑥) = 𝐶(𝑥) + 𝐶(𝑦 |𝑥) = 𝐶(𝑥 |𝑦) + 𝐶(𝑦) = 𝐶(𝑥, 𝑦)

bits (all equalities are true up to 𝑂(log 𝑛) for strings 𝑥 and 𝑦 of length at most 𝑛).
In some cases this picture can be understood quite literally. Consider, for

instance, an incompressible string 𝑟 = 𝑟1 . . . 𝑟𝑛 of length 𝑛, so 𝐶(𝑟1 . . . 𝑟𝑛) > 𝑛.

60 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

Then any substring 𝑢 of 𝑥 has complexity 𝑙(𝑢) up to 𝑂(log 𝑛) terms. Indeed, since
𝑢 is a substring of 𝑟, we have 𝑟 = 𝑡𝑢𝑣 for some strings 𝑡, 𝑣. Then

𝑙(𝑟) = 𝐶(𝑟) 6 𝐶(𝑡) + 𝐶(𝑢) + 𝐶(𝑣) 6 𝑙(𝑡) + 𝑙(𝑢) + 𝑙(𝑣) = 𝑙(𝑟)

(up to a logarithmic error) and therefore all the inequalities are equalities (with the
same logarithmic precision).

Now take two overlapping substrings 𝑥 and 𝑦 (Fig. 3). Then 𝐶(𝑥) is the length
of 𝑥, 𝐶(𝑦) is the length of 𝑦 (up to 𝑂(log 𝑛)).

𝑥 :𝑦𝑥 |𝑦 𝑦 |𝑥

𝑥 𝑦

𝑥, 𝑦

Figure 3. Common information in overlapping substrings

The complexity 𝐶(𝑥, 𝑦) is equal to the length of the union of segments (since
the pair ⟨𝑥, 𝑦⟩ is equivalent to this union plus information about lengths requiring
𝑂(log 𝑛) bits).

Therefore, conditional complexities 𝐶(𝑥 |𝑦), 𝐶(𝑦 |𝑥) and the mutual informa-
tion 𝐼(𝑥 :𝑦) are equal to the lengths of the corresponding segments (up to 𝑂(log 𝑛)).

However, not always the mutual information can be extracted in form of some
string (like it happened in our example, where this common information is just the
intersection of strings 𝑥 and 𝑦). As we will see in Chapter 11, there exist two strings
𝑥 and 𝑦 that have large mutual information 𝐼(𝑥 :𝑦) but there is no string 𝑧 that
represents (“materializes”) this information in the following sense: 𝐶(𝑧 |𝑥) ≈ 0,
𝐶(𝑧 |𝑦) ≈ 0 (all information that is present in 𝑧 is also present both in 𝑥 and in 𝑦)
and 𝐶(𝑧) ≈ 𝐼(𝑥 :𝑦) (all mutual information is extracted). In our last example we
can take the intersection substring for 𝑧, but in general this is not possible.

61 Prove that for any string 𝑥 of length at most 𝑛 the expected value of the
mutual information 𝐼(𝑥 :𝑦) in 𝑥 and random string 𝑦 of length 𝑛 is 𝑂(log 𝑛).

Now we move to triples of strings instead of pairs. Here we have an important
tool that can be called relativization: most of the results proved for unconditional
complexities remain valid for conditional complexities (and proofs remain valid with
minimal changes). Let us give some example of this type.

A theorem about the complexity of pairs (p. 45) says that

𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 2 log𝐶(𝑥) + 𝐶(𝑦) + 𝑂(1).

Replacing all complexities by conditional ones (with the same condition 𝑧 in all
cases), we get the following inequality:

𝐶(𝑥, 𝑦 |𝑧) 6 𝐶(𝑥 |𝑧) + 2 log𝐶(𝑥 |𝑧) + 𝐶(𝑦 |𝑧) + 𝑂(1),

By conditional complexity of a pair 𝑥, 𝑦 relative to 𝑧 we mean, as one can expect,
the conditional complexity of its encoding: 𝐶(𝑥, 𝑦 |𝑧) = 𝐶([𝑥, 𝑦] |𝑧). As for un-
conditional complexity, the choice of encoding is not important (the complexity
changes by 𝑂(1)).

2.3. COMPLEXITY AS THE AMOUNT OF INFORMATION 61

The proof of this relativized inequality repeats the proof of the unrelativized
one: we combine description 𝑝 for 𝑥 (with condition 𝑧) and description 𝑞 for 𝑦 (with
condition 𝑧) into a string 𝑝𝑞 that is a description of [𝑝, 𝑞] (with condition 𝑧) relative
to some suitable conditional decompressor.

So this is nothing really new. However, we may express all the conditional
complexities in terms of unconditional ones: recall that 𝐶(𝑥, 𝑦 |𝑧) = 𝐶(𝑥, 𝑦, 𝑧) −
𝐶(𝑧) and 𝐶(𝑥 |𝑧) = 𝐶(𝑥, 𝑧) − 𝐶(𝑧), 𝐶(𝑦 |𝑧) = 𝐶(𝑦, 𝑧) − 𝐶(𝑧) (with logarithmic
precision). Then we get the following theorem:

Theorem 24.

𝐶(𝑥, 𝑦, 𝑧) + 𝐶(𝑧) 6 𝐶(𝑥, 𝑧) + 𝐶(𝑦, 𝑧) + 𝑂(log 𝑛)

for all strings 𝑥, 𝑦, 𝑧 of complexity at most 𝑛.

Sometimes this inequality is called the basic inequality for complexities.
The same relativization can be applied to Theorem 21 (p. 51) that relates

the complexity of a pair and conditional complexity. Then we get the following
statement:

Theorem 25.

𝐶(𝑥, 𝑦 |𝑧) = 𝐶(𝑥 |𝑧) + 𝐶(𝑦 |𝑥, 𝑧) + 𝑂(log 𝑛),

for all strings 𝑥, 𝑦, 𝑧 of complexity at most 𝑛.

Proof. We can follow the proof of theorem 21, replacing unconditional de-
scriptions by conditional ones (with 𝑧 as the condition). Doing this, we replace
𝐶(𝑦 |𝑥) by 𝐶(𝑦 |𝑥, 𝑧). One can say that now we work in three-dimensional space
with coordinates 𝑥, 𝑦, 𝑧 and apply the same arguments simultaneously in all planes
parallel to 𝑥𝑦 plane.

If this argument does not look convincing for you, there is a more formal one.
Express all the conditional complexities in terms of unconditional ones:

𝐶(𝑥, 𝑦 |𝑧) = 𝐶(𝑥, 𝑦, 𝑧) − 𝐶(𝑧),

and for the right-hand side

𝐶(𝑥 |𝑧) + 𝐶(𝑦 |𝑥, 𝑧) = 𝐶(𝑥, 𝑧) − 𝐶(𝑧) + 𝐶(𝑦, 𝑥, 𝑧) − 𝐶(𝑥, 𝑧).

We see that both sides coincide (up to 𝑂(log 𝑛)). (A careful reader may note that
this simplified argument gives larger hidden constants in 𝑂(log 𝑛)-notation.) �

62 Proof that in Theorem 25 a weaker assumption “𝐶(𝑥 |𝑧) and 𝐶(𝑦 |𝑥, 𝑧) do
not exceed 𝑛” is sufficient.

We also relativize the definition of mutual information and let 𝐼(𝑥 :𝑦 |𝑧) be the
difference 𝐶(𝑦 |𝑧) − 𝐶(𝑦 |𝑥, 𝑧). As for the case of (unconditional) information, this
quantity is non-negative (with 𝑂(1) precision). Replacing conditional complexities
by the expressions involving unconditional ones (with logarithmic precision), we
can rewrite the inequality 𝐼(𝑥 :𝑦 |𝑧) > 0 as follows:

𝐶(𝑦 |𝑧) − 𝐶(𝑦 |𝑥, 𝑧) = 𝐶(𝑦, 𝑧) − 𝐶(𝑧) − 𝐶(𝑦, 𝑥, 𝑧) + 𝐶(𝑥, 𝑧) > 0.

So we get the basic inequality of Theorem 24 again.
In fact, almost all known equalities and inequalities that involve complexities

(unconditional and conditional) and information (and have logarithmic precision)
are immediate consequences of Theorems 21 and 24. The first examples of linear

62 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

inequalities for complexities that do not follow from basic inequalities were found
fairly recently (see [220, 221]) and they are rather complicated and not very intu-
itive. We discuss them in Section 10.13; we conclude this discussion by two simple
corollaries of basic inequalities.

Independent strings. We say that strings 𝑥 and 𝑦 are “independent” if
𝐼(𝑥 :𝑦) ≈ 0. We need to specify what we mean by “≈”, but we always ignore the
terms of order 𝑂(log 𝑛) where 𝑛 is the maximal length (or complexity) of the strings
involved.

Independent strings could be considered as some counterpart of the notion of
independent random variables, which is central in the probability theory. There is
a simple observation: if a random variable 𝜉 is independent with the pair of random
variables ⟨𝛼, 𝛽⟩, then 𝜉 is independent with 𝛼 and with 𝛽 (separately).

The Kolmogorov complexity counterpart of this statement (if a string 𝑥 is
independent with a pair ⟨𝑦, 𝑧⟩, then 𝑥 is independent with 𝑦 and 𝑥 is independent
with 𝑧) can be expressed as an inequality:

𝐼(𝑥 :⟨𝑦, 𝑧⟩) > 𝐼(𝑥 :𝑦)

(and the similar inequality for 𝑧 instead of 𝑦). This inequality is indeed true (with
logarithmic precision), and it is easy to see if we rewrite it in terms of unconditional
complexities:

𝐶(𝑥) + 𝐶(𝑦, 𝑧) − 𝐶(𝑥, 𝑦, 𝑧) > 𝐶(𝑥) + 𝐶(𝑦) − 𝐶(𝑥, 𝑦),

which after cancellation of similar terms gives a basic inequality (Theorem 24). (In
classical probability theory one may also apply a similar inequality for Shannon
entropies.)

Complexity of pairs and triples. On the other hand, to prove the following
theorem (which we have already mentioned on p.22), it is convenient to replace
unconditional complexities by conditional ones:

Theorem 26.

2𝐶(𝑥, 𝑦, 𝑧) 6 𝐶(𝑥, 𝑦) + 𝐶(𝑥, 𝑧) + 𝐶(𝑦, 𝑧) + 𝑂(log 𝑛),

for all strings 𝑥, 𝑦, 𝑧 of complexity at most 𝑛.

Proof. Moving 𝐶(𝑥, 𝑦) and 𝐶(𝑥, 𝑧) to the left-hand side and replacing the
differences 𝐶(𝑥, 𝑦, 𝑧) −𝐶(𝑥, 𝑦) and 𝐶(𝑥, 𝑦, 𝑧) −𝐶(𝑥, 𝑧) by conditional complexities
𝐶(𝑧 |𝑥, 𝑦) and 𝐶(𝑦 |𝑥, 𝑧), we get the following inequality:

𝐶(𝑧 |𝑥, 𝑦) + 𝐶(𝑦 |𝑥, 𝑧) 6 𝐶(𝑦, 𝑧) + 𝑂(log 𝑛).

It remains to rewrite the right-hand side of this inequality as 𝐶(𝑦) + 𝐶(𝑧 |𝑦), and
note that 𝐶(𝑧 |𝑥, 𝑦) 6 𝐶(𝑧 |𝑦) and 𝐶(𝑦 |𝑥, 𝑧) 6 𝐶(𝑦). �

Instead we could just add two inequalities (the basic one and the inequality for
the complexity of a pair):

𝐶(𝑥, 𝑦, 𝑧) + 𝐶(𝑦) 6 𝐶(𝑥, 𝑦) + 𝐶(𝑦, 𝑧) + 𝑂(log 𝑛),

𝐶(𝑥, 𝑦, 𝑧) 6 𝐶(𝑦) + 𝐶(𝑥, 𝑧) + 𝑂(log 𝑛),

and then cancel 𝐶(𝑦) in both sides. (This proof, as well as the previous one, has
an important esthetic problem: both treat 𝑥, 𝑦, 𝑧 in a non-symmetric way while the
statement of the theorem is symmetric.)

2.3. COMPLEXITY AS THE AMOUNT OF INFORMATION 63

We return to the inequality of Theorem 26 and to its geometric consequences
in Chapter 10.

We can provide a more systematic treatment of the different complexity quan-
tities related to three strings as follows. There are seven basic quantities: three
of them are complexities of individual strings, another three are complexities of
pairs and one more is the complexity of the entire triple. Other quantities such as
conditional complexity and mutual information can be expressed in terms of these
seven complexities. To understand better what requirements these seven quantities
should satisfy, let us make a linear transformation in the 7-dimensional space and
switch to new coordinates. Consider seven variables 𝑎1, 𝑎2, . . . , 𝑎7 that correspond
to 7 regions shown in Fig. 4.

𝑥 𝑦

𝑧

1
2 3

4
5

6

7

Figure 4. New coordinates 𝑎1, 𝑎2, . . . , 𝑎7.

Formally, the coordinate transformation is given by the following equations:

𝐶(𝑥) = 𝑎1 + 𝑎2 + 𝑎4 + 𝑎5,

𝐶(𝑦) = 𝑎2 + 𝑎3 + 𝑎5 + 𝑎6,

𝐶(𝑧) = 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7,

𝐶(𝑥, 𝑦) = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6,

𝐶(𝑥, 𝑧) = 𝑎1 + 𝑎2 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7,

𝐶(𝑦, 𝑧) = 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7,

𝐶(𝑥, 𝑦, 𝑧) = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7.

Indeed, it is easy to see that these equations determine an invertible linear transfor-
mation of R7: each 7-tuple of complexities corresponds to unique value of variables
𝑎1, . . . , 𝑎7.

Conditional complexities and mutual informations could be expressed in terms
of complexities and therefore could be rewritten in new coordinates. For example,

𝐼(𝑥 :𝑦) = 𝐶(𝑥) +𝐶(𝑦)−𝐶(𝑥, 𝑦) = 𝑎2 + 𝑎5 and 𝐶(𝑥 |𝑦) = 𝐶(𝑥, 𝑦)−𝐶(𝑦) = 𝑎1 + 𝑎4.

What is the intuitive meaning of these new coordinates? It is easy to see that
𝑎1 = 𝐶(𝑥 |𝑦, 𝑧) (with logarithmic precision). The meaning of 𝑎3 (and 𝑎7) is similar.
The coordinate 𝑎2 is (with the same precision) 𝐼(𝑥 :𝑦 |𝑧); coordinates 𝑎4 and 𝑎6
have similar meaning (see Fig. 5). In particular, we conclude that for any strings
𝑥, 𝑦, 𝑧 the corresponding values of coordinates 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 𝑎7 are non-negative
(up to 𝑂(log 𝑛) for strings 𝑥, 𝑦, 𝑧 of complexity at most 𝑛).

The coordinate 𝑎5 is more delicate. Informally, we would like to understand
it as the “amount of mutual information in three strings 𝑥, 𝑦, 𝑧”. Sometimes the

64 2. COMPLEXITY OF PAIRS AND CONDITIONAL COMPLEXITY

𝑥
𝑦

𝑧

𝐶(𝑥 |𝑦, 𝑧)

𝐼(𝑥 :𝑦 |𝑧) 𝐶(𝑦 |𝑥, 𝑧)

𝐼(𝑥 :𝑧 |𝑦)

𝐼(𝑥 :𝑦 :𝑧)

𝐼(𝑦 :𝑧 |𝑥)

𝐶(𝑧 |𝑥, 𝑦)

Figure 5. The complexity interpretation of new coordinates.

notation 𝐼(𝑥 :𝑦 :𝑧) is used. However, the meaning of this expression is not quite
clear, especially if we take into accout that 𝑎5 can be negative.

Consider the following example where 𝑎5 < 0. Let 𝑥 and 𝑦 be two halves of
an incompressible strings of length 2𝑛. Then 𝐶(𝑥) = 𝑛, 𝐶(𝑦) = 𝑛, 𝐶(𝑥, 𝑦) = 2𝑛
and 𝐼(𝑥 :𝑦) = 0 (up to 𝑂(log 𝑛)). Consider a string 𝑧 of length 𝑛 which is a bitwise
sum modulo 2 of 𝑥 and 𝑦 (XOR-operation). Then each of the strings 𝑥, 𝑦, 𝑧 can
be reconstructed if two others are known; therefore the complexities of all pairs
𝐶(𝑥, 𝑦), 𝐶(𝑦, 𝑧), 𝐶(𝑥, 𝑧) are equal to 2𝑛 (again up to 𝑂(log 𝑛)), and the complexity
𝐶(𝑥, 𝑦, 𝑧) is also 2𝑛. The complexity of 𝑧 is equal to 𝑛 (it can not be larger, since
the length is 𝑛; on the other hand, it cannot be smaller, since 𝑧 and 𝑦 form a pair
of complexity 2𝑛).

So we get the following values of 𝑎1, . . . , 𝑎7 for this example (Fig. 6):

0
𝑛 0

𝑛
−𝑛

𝑛

0

Figure 6. Two independent incompressible strings of length 𝑛
and their XOR.

Note that even if 𝑎5 is negative, the sums 𝑎5 + 𝑎2, 𝑎5 + 𝑎4 and 𝑎5 + 𝑎6, being
mutual informations for pairs, are non-negative. (In our examples these sums are
equal to 0.)

This example corresponds to the simple case of secret sharing of secret 𝑧 be-
tween two people: if one of them knows 𝑥 and the other one knows 𝑦, then none of

2.3. COMPLEXITY AS THE AMOUNT OF INFORMATION 65

them has any information about 𝑧 in isolation (since 𝐼(𝑥 :𝑧) ≈ 0 and 𝐼(𝑦 :𝑧) ≈ 0)),
but together they can reconstruct 𝑧 as a bitwise sum of 𝑥 and 𝑦.

One can check that we have already given a full list of inequalities that are true
for complexities of three strings and their combinations (all 𝑎𝑖, except for 𝑎5, are
non-negative, as well as three sums mentioned above). We return to this question
in Chapter 10.

Our diagram is a good mnenonic tool. For example, consider again the inequal-
ity

𝐶(𝑥, 𝑦, 𝑧) 6 𝐶(𝑥, 𝑦) + 𝐶(𝑥, 𝑧) + 𝐶(𝑦, 𝑧).

In our new variables it can be rewritten as 𝑎2 + 𝑎4 + 𝑎5 + 𝑎6 > 0 (you can easily
check it by counting the multiplicity of each 𝑎𝑖 in both sides of the inequality). It
remains to note that 𝑎2 +𝑎5 > 0, 𝑎4 > 0 and 𝑎6 > 0. (Alas, the symmetry is broken
again!)

63 Prove that 𝐼(𝑥𝑦 :𝑧) = 𝐼(𝑥 :𝑧) + 𝐼(𝑦 :𝑧 |𝑥) + 𝑂(log 𝑛) for strings 𝑥, 𝑦, 𝑧 of
complexity at most 𝑛. [Hint: Use the diagram.]

This problem shows that information in 𝑥𝑦 about 𝑧 can be somehow split into
two parts: information in 𝑥 about 𝑧 and information in 𝑦 about 𝑧 (when 𝑥 is
known). This is somehow similar to the equality 𝐶(𝑥, 𝑦) = 𝐶(𝑥)+𝐶(𝑦 |𝑥), but now
complexity is replaced by the quantity of information about 𝑧. As a corollary we
immediately get that if 𝑥𝑦 is independent with 𝑧 then 𝑥 in independent with 𝑧 and,
at the same time 𝑦 is independent with 𝑧 when 𝑥 is known. (Here independence
means that mutual information is negligible.) A symmetric argument shows that 𝑦
is independent with 𝑧 and 𝑥 is independent with 𝑧 when 𝑦 is known.

64 Show that properties “𝑥 is independent with 𝑦” and “𝑥 is independent
with 𝑦 when 𝑧 is known” are quite different: each of them can be true when the
other one is false.

65 We say that strings 𝑥, 𝑦, 𝑧, 𝑡 form a Markov chain (a well known notion
in the probability theory now transferred to the algorithmic information theory) if
𝐼(𝑥 :𝑧 |𝑦) and 𝐼(⟨𝑥, 𝑦⟩ : 𝑡 |𝑧) are negligible. (Of course, we need to specify what is
“negligible” to get a formal definition.) Show that the reversed sequence of strings
also forms a Markov chain, i.e., that 𝐼(𝑡 :𝑦 |𝑧) and 𝐼(⟨𝑡, 𝑧⟩ :𝑥 |𝑦) are negligible. [Hint:
Since 𝐼(⟨𝑥, 𝑦⟩ : 𝑡 |𝑧) = 𝐼(𝑦 : 𝑡 |𝑧) + 𝐼(𝑥 : 𝑡 |𝑦, 𝑧), the left hand side in this equality is
zero if and only if both terms in the right hand side are zero; and the second term
in the right-hand side does not change when the order of 𝑥, 𝑦, 𝑧, 𝑡 is reversed.]

CHAPTER 3

Martin-Löf randomness

Here we interrupt the exposition of Kolmogorov complexity and its properties
and define another basic notion of the algorithmic information theory, the notion
of Martin-Löf random (or “typical”) sequence. This chapter does not refer to the
preceding one and is not used until Chapter 5 where we characterize randomness
in terms of Kolmogorov complexity.

Let us recall some basic facts of measure theory for the case of the Cantor space
of infinite sequences of zeros and ones.

3.1. Measures on Ω

Consider the set Ω = BN whose elements are infinite sequences of zeros and
ones. This set is called Cantor space. For a binary string 𝑥 we consider a set Ω𝑥 of
all infinite sequences that have initial segment 𝑥. For example, Ω00 is the set of all
sequences that start with two zeros, and ΩΛ = Ω (where Λ is the empty string).

The sets Ω𝑥 are called intervals. All intervals and all unions of arbitrary families
of intervals are called open subsets of Ω. In this way we get a topology on Ω, and
this topology corresponds to a standard distance function on Ω defined as follows:
the longer common prefix two sequences 𝜔 = 𝜔0𝜔1 . . . and 𝜔′ = 𝜔′

0𝜔
′
1 . . . have, the

smaller the distance between them is:

𝑑(𝜔, 𝜔′) = 2−𝑛,

where 𝑛 is the smallest index such that 𝜔𝑛 ̸= 𝜔′
𝑛.

66 Prove that topological space Ω is homeomorphic to the Cantor set on the
real line. (This set is obtained from [0, 1] by deleting the middle third, then the
middle thirds of two remaining segments and so on.)

However, we are interested in measure theory rather than topology. A family
of subsets of Ω is called a 𝜎-algebra if it is closed under finite or countable unions
and intersections, and under negation (taking the complement).

A minimal 𝜎-algebra that contains all intervals Ω𝑥 (and therefore all open sets)
is called the algebra of Borel sets.

Consider an arbitrary 𝜎-algebra that contains all intervals. Let 𝜇 be a function
that maps every set in this 𝜎-algebra into a non-negative real number, and has the
following property (called 𝜎-additivity):

if a set 𝐴 is a union of a countable or finite family of disjoint
sets 𝐴0, 𝐴1, 𝐴2, . . . that belong to the 𝜎-algebra on which 𝜇 is
defined, then

𝜇(𝐴) = 𝜇(𝐴0) + 𝜇(𝐴1) + 𝜇(𝐴2) + . . .

(the right-hand side is a finite sum or a converging series with
non-negative terms).

67

68 3. MARTIN-LÖF RANDOMNESS

Then 𝜇 is called a measure on Ω, and the value 𝜇(𝐴) is called the measure of the
set 𝐴. The set 𝐴 for which 𝜇(𝐴) is defined, is called 𝜇-measurable.

A measure 𝜇 such that 𝜇(Ω) = 1 is called a probability distribution on Ω.
Elements of the 𝜎-algebra that is the domain of 𝜇 are called events, and 𝜇(𝐴) is
called the probability of the event 𝐴.

Any measure is monotone (𝐴 ⊂ 𝐵 implies 𝜇(𝐴) 6 𝜇(𝐵)). Indeed,

𝜇(𝐵) − 𝜇(𝐴) = 𝜇(𝐵 ∖𝐴) > 0.

Another important property of measures is continuity: if a set 𝐵 is a union of
increasing sequence of sets

𝐵0 ⊂ 𝐵1 ⊂ 𝐵2 ⊂ . . . ,

then 𝜇(𝐵𝑛) tends to 𝜇(𝐵) as 𝑛 → ∞. (Indeed, let us apply the additivity property
to all sets 𝐴𝑖 = 𝐵𝑖 ∖ 𝐵𝑖−1 and then to all sets 𝐴𝑖 such that 𝑖 6 𝑛.) The similar
property holds for decreasing sequences of sets.

For any measure 𝜇 on Ω let us consider a function 𝑝 defined of binary strings
as follows:

𝑝(𝑥) = 𝜇(Ω𝑥).

This function has non-negative real values and satisfies the following additivity
property:

𝑝(𝑥) = 𝑝(𝑥0) + 𝑝(𝑥1)

for any string 𝑥. (Indeed, the interval Ω𝑥 is the union of its two halves Ω𝑥0 and
Ω𝑥1, which are disjoint sets.)

As we know from measure theory (Lebesgue’s theorem), an inverse transition
is possible. Namely, for every additive function 𝑝 on binary strings that has non-
negative real values, the Lebesgue theorem provides a measure 𝜇 such that 𝜇(Ω𝑥) =
𝑝(𝑥) for all binary strings 𝑥.

The measure provided by Lebesgue theorem has the following additional prop-
erty: if 𝜇(𝐴) = 0 for some set 𝐴 and 𝐵 ⊂ 𝐴, then 𝜇(𝐵) is defined (and therefore
𝜇(𝐵) = 0). In the sequel we consider only measures that have this additional
property.

We do not explain Lebesgue’s construction here and refer the reader to any
textbook in measure theory, e.g., [80, 63]. However, let us recall the definition of
sets having measure 0, since Martin-Löf definition of randomness uses its effective
version.

Let 𝑝 be an additive nonnegative real-valued function on strings. We call 𝑝(𝑥)
the measure of the interval Ω𝑥. A subset 𝐴 ⊂ Ω is a null set (a set of measure 0)
if for every 𝜀 > 0 there exist a finite or countable family of intervals that cover 𝐴
and have total measure at most 𝜀.

In other words, a set 𝐴 is a null set if there exists a function ⟨𝜀, 𝑖⟩ ↦→ 𝑥(𝜀, 𝑖)
(first argument is a positive real, the second argument is a non-negative integer;
values are binary strings) such that

∙ 𝐴 ⊂ Ω𝑥(𝜀,0) ∪ Ω𝑥(𝜀,1) ∪ Ω𝑥(𝜀,2) . . . and
∙ 𝑝(𝑥(𝜀, 0)) + 𝑝(𝑥(𝜀, 1)) + 𝑝(𝑥(𝜀, 2)) + . . . 6 𝜀

for every positive 𝜀. Note that the family of intervals can be finite, since we do not
require the function 𝑥 to be total (undefined values are skipped both in the union
and in the sum).

Here are some simple but useful observations:

3.2. THE STRONG LAW OF LARGE NUMBERS 69

∙ The definition does not change if we restrict ourselves to rational values
of 𝜀 (or even let 𝜀 = 2−𝑘 for integer 𝑘).

∙ Any subset of a null set is a null set.
∙ A finite or countable union of null sets is a null set. (Indeed, to cover the

union by a family of intervals of total measure less than 𝜀, we combine
the covers of its parts that have measure less than 𝜀/2, 𝜀/4, 𝜀/8 etc.).

∙ Assume that 𝑝 is chosen in such a way that any singleton is a null set
(it is equivalent to the following property: for any infinite sequence 𝜔 =
𝜔0𝜔1𝜔2 . . . the limit of 𝑝(𝜔0 . . . 𝜔𝑛) (as 𝑛 → ∞) equals 0). Then every
finite or countable set is a null set.

A uniform measure on Ω assigns to each interval Ω𝑥 the number 2−𝑙(𝑥):

𝑝(𝑥) = 2−𝑛 for all strings 𝑥 of length 𝑛.

The uniform measure is closely related to the standard measure on R (or, more
precisely, on [0, 1]). Formally, the measure of a set 𝐴 ⊂ Ω is equal to the measure
of the set of reals whose binary expansions are elements of 𝐴. (In fact, the cor-
respondence between infinite binary fractions and reals in [0, 1] is not a bijection,
since numbers of the form 𝑘/2𝑙 for integer 𝑘 and 𝑙 have two representations: e.g.,
0.01111 . . . = 0.10000 . . . But this happens only for a countable family of reals and
measure theory easily ignores this.)

Indeed, the reals whose binary expansions start with 𝑥, form an interval, and
the length of this interval is 2−𝑛 where 𝑛 is the length of 𝑥. This implies that for
every interval 𝐼 ⊂ [0, 1] the uniform measure of the sequences that represent reals
in 𝐼 is equal to the length of the interval 𝐼.

Probability theory describes the uniform distribution as the probability distri-
bution for the outcomes of independent fair coin tossing. Indeed, for 𝑛 independent
fair coin tossings all 2𝑛 binary strings of length 𝑛 appear with the same probability
2−𝑛. The set Ω𝑥 is the event “a random sequence of zeros and ones starts with 𝑥”,
and this event has probability 2−𝑙(𝑥).

Similarly, we may consider a biased coin assuming that coin tossings are still in-
dependent. The corresponding measure (probability distribution) is called Bernoulli
measure (or Bernoulli distribution) with parameters 𝑞, 𝑝 (probabilities of 0 and 1
respectively; we assume that 𝑝, 𝑞 > 0, and 𝑝 + 𝑞 = 1).

With respect to this distribution, the event “sequence 𝜔 starts with a string
𝑥” has probability 𝑞𝑢𝑝𝑣 where 𝑢 and 𝑣 are the numbers of zeros and ones in 𝑥. In
other terms, we consider a function

𝑥 ↦→ 𝑞𝑢(𝑥)𝑝𝑣(𝑥)

where 𝑢(𝑥) and 𝑣(𝑥) stand for the numbers of zeros and ones in 𝑥, respectively. (It
is easy to check that this function has the additivity property.)

3.2. The Strong Law of Large Numbers

To see all these notions in action, let us state and prove the so-called Strong
Law of Large Numbers.

Fix some 𝑝, 𝑞 > 0 such that 𝑝+𝑞 = 1. Let 𝐴𝑝 be the set of all infinite sequences
𝜔0𝜔1𝜔2 . . . of zeros and ones such that limit frequency of ones exists and is equal
to 𝑝, i.e.,

lim
𝑛→∞

𝜔0 + 𝜔1 + . . . + 𝜔𝑛−1

𝑛
= 𝑝.

70 3. MARTIN-LÖF RANDOMNESS

Theorem 27. The set 𝐴𝑝 has measure 1 with respect to Bernoulli distribution
with parameters 𝑝 and 𝑞.

In other terms, the complement of 𝐴𝑝, i.e., the set of all sequences that either
do not have limit frequency at all or have a limit frequency different from 𝑝, is a
null set (according to this distribution).

Proof. We prove this theorem for the uniform case (i.e., for 𝑝 = 𝑞 = 1/2) by
an explicit calculation. The general case is left as an exercise (see also Section 9.6).

Let us consider first a finite number of coin tossings and fix some 𝑛. All
binary strings of length 𝑛 have the same probability. We claim that most of them
have approximately 𝑛/2 ones. Assume that some threshold 𝜀 is fixed. How many
sequences have more than (1/2 + 𝜀)𝑛 ones? The answer can be found using the
Pascal triangle: we have to sum up all the terms in the 𝑛th row starting from some
point that is slightly on the right of the midpoint. In this part we have a decreasing
sequence of less than 𝑛 terms, so the sum in question is bounded by the first term
multiplied by 𝑛. (We do not need to be very accurate in our bounds and ignore
factors that are polynomial in 𝑛. So we can omit the factor 𝑛 in our bound.)

The first term of the sum is the binomial coefficient
𝑛!

𝑘!(𝑛− 𝑘)!
,

where 𝑘 is the smallest integer not less than (1/2 + 𝜀)𝑛. We use the Stirling’s
approximation:

𝑚! =
√︀

(2𝜋 + 𝑜(1))𝑚
(︁𝑚
𝑒

)︁𝑚
,

where 𝑒 is the base of natural logarithms. Ignoring polynomial (in 𝑛) factors and
using the notation 𝑢 = 𝑘/𝑛, 𝑣 = (𝑛− 𝑘)/𝑛, we get

𝑛!

𝑘!(𝑛− 𝑘)!
≈ (𝑛/𝑒)𝑛

(𝑘/𝑒)𝑘((𝑛− 𝑘)/𝑒)𝑛−𝑘
=

𝑛𝑛

𝑘𝑘(𝑛− 𝑘)𝑛−𝑘
=

=
𝑛𝑛

(𝑢𝑛)𝑢𝑛(𝑣𝑛)𝑣𝑛
=

1

𝑢𝑢𝑛𝑣𝑣𝑛
= 2𝐻(𝑢,𝑣)𝑛,

where
𝐻(𝑢, 𝑣) = −𝑢 log 𝑢− 𝑣 log 𝑣.

The value 𝐻(𝑢, 𝑣) is called the Shannon entropy of the random variable that has
two values whose probabilities are 𝑢 and 𝑣. (We study the Shannon entropy in
Chapter 7.) Figure 1 shows the corresponding graph (note that 𝑣 = 1 − 𝑢). It
is easy to check that 𝐻(𝑢, 1 − 𝑢) achieves its maximal value (equal to 1) only
at 𝑢 = 1/2.

Now we see that the number of binary strings of length 𝑛 that have frequency of
ones greater than (1/2 + 𝜀) does not exceed poly(𝑛)2𝐻(1/2+𝜀,1/2−𝜀)𝑛 and therefore
is bounded by 2𝑐𝑛+𝑜(𝑛), where 𝑐 is some constant less than 1 (depending on 𝜀).
Therefore, the fraction of these strings (among all strings of length 𝑛) exponentially
decreases as 𝑛 increases. The same is true for the strings that have frequency of
ones less than (1/2 − 𝜀).

Let us see where we are. For each fixed 𝜀 > 0 we have proved the following
statement:

3.2. THE STRONG LAW OF LARGE NUMBERS 71

0 11/2 𝑢

1

𝐻(𝑢, 1 − 𝑢)

Figure 1. Shannon entropy as a function of 𝑢.

Lemma. The fraction of strings of length 𝑛 where frequency of ones differs
from 1/2 at least by 𝜀 (among all strings of length 𝑛) does not exceed some 𝛿𝑛 that
decreases exponentially as 𝑛 increases.

This lemma (without any specific claims for the fast convergence 𝛿𝑛 → 0) is
called the Law of Large Numbers. To prove the Strong Law of Large Numbers we
need to know that the series

∑︀
𝑛 𝛿𝑛 is convergent.

We need to prove that the set 𝐴1/2 of all sequences that have limit frequency
of ones equal to 1/2 has measure 1. In other terms, we need to prove that the
complement of this set (we denote this complement by 𝐵) is a null set.

According to the definition of limit the set 𝐵 is the union (over all 𝜀 > 0) of
the sets 𝐵𝜀. Here 𝐵𝜀 is the set of all sequences such that frequency of ones in their
prefixes exceeds 1/2 + 𝜀 (or is less than 1/2 − 𝜀) infinitely many times.

Evidently, we can consider only a countable set of different 𝜀 (e.g., only rational
values), and the countable union of null sets is a null set. Therefore it remains to
prove that the set 𝐵𝜀 is a null set for each 𝜀.

The set 𝐵𝜀 consists of the sequences that have arbitrarily long “bad” prefixes.
Here “bad” prefix is a string where the frequency of ones differs from 1/2 more
than by 𝜀. Therefore, for each 𝑁 the set 𝐵𝜀 is covered by the family of intervals
Ω𝑥 where 𝑥 ranges over all bad strings of length at least 𝑁 . The total (uniform)
measure of all this intervals does not exceed

𝛿𝑁 + 𝛿𝑁+1 + 𝛿𝑁+2 + . . . ,

and this sum can be made small since the series
∑︀

𝑖 𝛿𝑖 is convergent.
(Probability theorists call this argument Borel–Cantelli lemma. In its general

form this lemma says that if the sum of measures of some sets 𝐴0, 𝐴1, . . . is finite,
then the set of all points that belong to infinitely many 𝐴𝑖 is a null set.) �

One can get a bound for the number of bad strings of length 𝑛 without Stirling’s
approximation. We do it separately for bad strings that have too many and too few
ones. For example, let us consider the set of all “bad” strings that have frequency
of ones greater than 1/2+𝜀. To get a bound for the cardinality of this set, consider
two distributions (measures) on the set of all strings of length 𝑛. The first one,
called 𝐿, is the uniform distribution: all strings have probability 2−𝑛. The second
one, called 𝑆, is biased (ones are more likely than zeros) and corresponds to 𝑛
independent coin tossing where 1 appears with probability 𝑝 = 1/2 + 𝜀. In other

72 3. MARTIN-LÖF RANDOMNESS

terms, 𝑆(𝑥) = 𝑞𝑢𝑝𝑣 for a string 𝑥 that has 𝑢 zeros and 𝑣 ones (here 𝑞 = 1/2 − 𝜀 is
the probability of zero outcome). The ratio 𝑆(𝑥)/𝐿(𝑥) increases when the number
of ones in 𝑥 increases, and for all bad strings this ratio is at least 2𝑛/2𝐻(𝑝,𝑞)𝑛.
Therefore, the total 𝐿-measure of all bad strings does not exceed their total 𝑆-
measure divided by this lower bound. Recalling that the total 𝑆-measure of all bad
strings does not exceed 1, we conclude that the total 𝐿-measure (i.e., the fraction)
of all bad strings does not exceed 2𝐻(𝑝,𝑞)𝑛/2𝑛. So we get another proof of our bound,
which is less technical (though more difficult to find). This proof works not only for
the uniform Bernoulli measure (𝑝 = 1/2), but also for arbitrary 𝑝 (after appropriate
changes).

67 Prove the Strong Law of Large Numbers for arbitrary 𝑝. [Hint: Let
𝑝0 and 𝑞0 be fixed positive reals such that 𝑝0 + 𝑞0 = 1. Then the expression
−𝑝0 log 𝑝 − 𝑞0 log 𝑞, where 𝑝, 𝑞 are arbitrary positive reals such that 𝑝 + 𝑞 = 1, is
minimal when 𝑝 = 𝑝0, 𝑞 = 𝑞0. See also Section 9.6, p. 287.]

People often say that “the Strong Law of Large Numbers guarantees that in
every random (with respect to uniform Bernoulli measure) sequence the frequency
of 1s tends to 1/2”. (The case of nonuniform Bernoulli measures is similar.) How-
ever, in this sentence the word “random” should not be understood literally: the
phrase “every random sequence satisfies 𝛼” (for some condition 𝛼) is an idiomatic
expression that means that the set of all sequences that do not satisfy 𝛼 is a null
set.

A natural question arises: can we define the notion of random sequence in such
a way that this idiomatic expression can be understood literally? Let us fix some
distribution on Ω, say, the uniform Bernoulli distribution. We would like to find
some subset of Ω and call its elements “random sequences”. Our goal would be
achieved if for any condition 𝛼 the following two statements were equivalent:

∙ all random sequences satisfy the condition 𝛼;
∙ the set of all sequences that does not satisfy 𝛼 is a null set.

In other terms, the sets of measure 1 should be exactly those sets that contain
all random sequences (and, may be, some nonrandom ones).

One more reformulation: the set of all random sequences should be the smallest
(with respect to inclusion) set of measure 1, and the set of non-random sequences
should be the largest (with respect to inclusion) null set. Now it easy to see that
our goal cannot be achieved. Indeed, any singleton in Ω is a null set. However, the
union of all these singletons is the entire space Ω.

In 1965 Per Martin-Löf (a Swedish mathematician, who was Kolmogorov’s
student at that time) found that we can save the game if we restrict ourselves to
“effectively null sets”. There exist a largest (with respect to inclusion) effectively
null set, and therefore we can define the notion of a random sequence is such a way
that any condition 𝛼 is satisfied for all random sequences if and only if the set of all
sequences that do not satisfy 𝛼 is an effectively null set. Martin-Löf construction
is explained in the next section.

3.3. Effectively null sets

Let a measure on Ω be fixed and let 𝑝(𝑥) be the measure of the interval Ω𝑥.

3.3. EFFECTIVELY NULL SETS 73

We say that a set 𝐴 ⊂ Ω is an effectively null set (with respect to the given
measure) if for every 𝜀 > 0 one can effectively find a family of intervals that cover
𝐴 and whose total measure does not exceed 𝜀.

Some details should be specified in this definition. First, we consider only
rational values of 𝜀 (otherwise it is not clear how 𝜀 could be given to an algorithm).
Second, we need to specify how the sequence of intervals (that cover 𝐴) is generated.
We do this as follows:

Definition. A set 𝐴 ⊂ Ω is called an effectively null set (with respect to a
given measure) if there exists a computable function 𝑥(·, ·) whose first argument is
a positive rational number, second argument is a natural number and values are
binary strings, such that:

(1) 𝐴 ⊂ Ω𝑥(𝜀,0) ∪ Ω𝑥(𝜀,1) ∪ Ω𝑥(𝜀,2) . . .;
(2) 𝑝(𝑥(𝜀, 0)) + 𝑝(𝑥(𝜀, 1)) + 𝑝(𝑥(𝜀, 2)) + . . . 6 𝜀

for any rational 𝜀 > 0. Note that we do not require the function 𝑥 to be total; if
𝑥(𝜀, 𝑖) is undefined, the corresponding term (in both conditions) is omitted.

68 Show that we get an equivalent version of the definition if we consider an
algorithm that gets 𝜀 > 0 as an input and enumerates a set of binary strings (by
printing its elements with arbitrary delays between elements) such that intervals
Ω𝑥 for generated 𝑥 cover 𝐴 and have total measure (the measure of the union of
the intervals) at most 𝜀. (Note that the total measure can be much smaller than
the sum of measures, if the intervals are not disjoint.)

69 Show that we get an equivalent definition if we consider only rational

numbers of the form 2−𝑘 (for integer 𝑘) instead of all rational 𝜀. Show that the
definition does not change if we replace the sign 6 by < in the second inequality.
[Hint: subtract from each interval its part covered by previous intervals, possibly
splitting it into several intervals.]

70 Show that we get an equivalent definition if we require that for each 𝜀 > 0
the domain of the function 𝑖 ↦→ 𝑥(𝜀, 𝑖) is an initial segment of N (or N itself).

71 Show that we get an equivalent definition if we require that the family
of intervals is decidable (instead of being enumerable). [Hint: An interval can
be split into small parts, so we may assume that intervals in the sequence have
non-increasing length, and the family of intervals becomes decicable.]

Let us give some examples of effectively null subsets of Ω (with respect to the
uniform measure).

A singleton whose only element is a sequence of zeros, is an effectively null
set. Indeed, for every 𝜀 > 0 we find an integer 𝑘 such that 2−𝑘 < 𝜀, and consider a
covering that consists of one interval Ω00...0 (corresponding to the string of 𝑘 zeros).

Formally speaking, 𝑥(𝜀, 0) = 0𝑘, where 0𝑘 stands for the sequence formed by
𝑘 zeros, and 𝑘 is the smallest integer such that 2−𝑘 < 𝜀. The values 𝑥(𝜀, 𝑖) are
undefined for 𝑖 > 0.

In this example the sequence 0000 . . . can be replaced by arbitrary computable
sequence of zeros and ones; we need only to consider its prefix of length 𝑘 instead
of 0𝑘.

However, for noncomputable sequences the situation could be different:

72 Prove that there exists a sequence 𝜔 ∈ Ω such that singleton {𝜔} is not
an effectively null set. [Hint: Consider all computable functions 𝑥 that satisfy

74 3. MARTIN-LÖF RANDOMNESS

the second condition of the definition of effectively null set. There are countably
many such functions. For each of them consider the largest set 𝐴 that satisfies the
requirement (1) of the definition (i.e., the intersection of the unions of coverings
over all 𝜀). This set is an (effectively) null set, and the union of a countable family
of those sets is a null set. Therefore, there exists a sequence 𝜔 which does not
belong to this union.]

Let us note that the statement of this problem is a straightforward corollary
of the Martin-Löf theorem on the existence of the largest effectively null set (The-
orem 28, p. 75) proved later in this section, and the hint just follows its proof. As
we will see later, the set {𝜔} is an effectively null set if and only if the sequence 𝜔
is not “Martin-Löf random”.

It is easy to construct a non-computable sequence 𝜔 such that the singleton {𝜔}
is an effective null set. Indeed, consider any sequence of the form 𝜔 = 0?0?0?0 . . .
(each second term is zero, the rest is arbitrary). Let us show that {𝜔} is indeed an
effectively null set. To find a covering with total measure 2−𝑛, consider all strings
of length 2𝑛 that are formed by 𝑛 arbitrary bits interleaved with 𝑛 zeros (as in 𝜔).
There are 2𝑛 strings of this form, and each corresponds to an interval of length
2−2𝑛, so the total measure is 2−𝑛.

In fact we have proved a bit more: the set of all sequences that have only
zeros at even positions, is an effectively null set. Therefore, each of its subsets (in
particular, every singleton) is an effectively null set.

Let us now return to the definition of an effectively null set and separate the
requirements used in this definition. We say that a computable function 𝑥 is “regu-
lar” if is satisfies the requirement (2). The requirement (1) then says that for every
rational 𝜀 > 0 the set 𝐴 is a subset of the union

Ω𝑥(𝜀,0) ∪ Ω𝑥(𝜀,1) ∪ Ω𝑥(𝜀,2) . . .

Therefore, a regular function “serves” all the subsets of the set⋂︁
𝜀>0

(Ω𝑥(𝜀,0) ∪ Ω𝑥(𝜀,1) ∪ Ω𝑥(𝜀,2) . . .) =
⋂︁
𝜀>0

⋃︁
𝑖

Ω𝑥(𝜀,𝑖)

So for each (computable) regular function 𝑥 we get an effectively null set (defined
by the formula above), and effectively null sets are all these sets (for all regular
functions) and all their subsets, and that’s all.

Before we formulate Martin-Löf theorem, let us give the definition of a com-
putable measure on the set Ω.

A real number 𝛼 is called computable if there exists an algorithm that computes
rational approximations to 𝛼 with any given precision. Formally, 𝛼 is a computable
real if there exists a computable function 𝜀 ↦→ 𝑎(𝜀) defined on all positive rational
numbers and having rational values such that

|𝛼− 𝑎(𝜀)| < 𝜀

for all rational 𝜀 > 0.

73 Show that we get an equivalent definition if we additionally require that
all approximation given by 𝑎 are approximations from below, i.e., 𝑎(𝜀) < 𝛼 for all
𝜀. [Hint: we can transform any approximation to the approximation from below
losing only factor 2 in precision.]

74 Prove that the sum, difference, product and quotient of two computable
reals are computable reals.

3.3. EFFECTIVELY NULL SETS 75

75 Prove that 𝑒 (the base of natural logarithms) and 𝜋 are computable.

76 Prove that elementary function (roots, sine, exponent, logarithm etc.) pre-
serve computability, i.e., have computable values for computable arguments. (We
assume, of course, that the base is computable in case of logarithm and exponent.)

A measure 𝜇 on Ω is computable if measures of all intervals are computable
reals, and, moreover, we can effectively find an approximation algorithm for 𝜇(Ω𝑥)
given 𝑥. Here is a formal definition:

Definition. A measure 𝜇 on the set Ω is computable if there exists a com-
putable function ⟨𝑥, 𝜀⟩ ↦→ 𝑎(𝑥, 𝜀), defined for all strings 𝑥 and all positive rational
numbers 𝜀, such that

|𝜇(Ω𝑥) − 𝑎(𝑥, 𝜀)| < 𝜀

for all 𝑥 and 𝜀.
This definition does not assume that the measure of the entire space Ω equals 1,

but in fact we will use it only in this case (i.e., for probability distributions).

Theorem 28. Let 𝜇 be a computable measure on Ω. Then there exists a largest
effectively null set with respect to 𝜇. In other words, the union of all effectively 𝜇-
null sets is an effectively 𝜇-null set.

Proof. As we have seen, for each regular function 𝑥 we get a corresponding
effectively null set. Since there is countably many regular functions, we get a
countably many effectively null sets and their union contains every effectively null
set. Therefore, the union of all effectively null sets is a null set. (When speaking
about null sets and effectively null sets we have in mind measure 𝜇.)

However, we need more: we have to prove that this union is an effectively null
set. To achieve this goal, we enumerate all regular functions and then use the
effective version of the theorem that says that the countable union of null sets is a
null set.

For technical reasons it is convenient to change a bit the definition of a regular
function. Namely, we now say that a computable function 𝑥(·, ·) is regular if all the
finite partial sums of the series

𝑝(𝑥(𝜀, 0)) + 𝑝(𝑥(𝜀, 1)) + 𝑝(𝑥(𝜀, 2)) + . . .

are less than 𝜀 (note the strict inequality). Here 𝑝(𝑥) stands for 𝜇(Ω𝑥). This makes
our requirements for regular functions a bit stronger (if all partial sums are less
than 𝜀, the sum of the series does not exceed 𝜀, but the reverse is not always true).
However, the notion of the effectively null set is not affected, since we always can
replace 𝜀 by (say) 𝜀/2.

In the sequel the regular functions are understood in this modified sense (in
fact, regular functions are used only locally, in the proof of Martin-Löf theorem).

The following Lemma allows us to enumerate all regular functions.
Lemma. There exists a computable (partial) function

⟨𝑞, 𝜀, 𝑖⟩ ↦→ 𝑋(𝑞, 𝜀, 𝑖)

(where 𝑞 and 𝑖 are natural numbers, 𝜀 is a positive rational number) such that for
any fixed 𝑞 we get a regular function 𝑋𝑞 (of two remaining arguments) and all
regular functions can be obtained in this way.

Proof. Let us enumerate all programs for the functions of two arguments
(whether these functions are regular or not); we get a computable sequence of

76 3. MARTIN-LÖF RANDOMNESS

programs, and 𝑞th term of this sequence is called “𝑞th program” in the rest of the
proof.

Then we define 𝑋(𝑞, 𝜀, 𝑖) as the output of the 𝑞th program on input 𝜀, 𝑖, assum-
ing that some conditions are met; otherwise 𝑋(𝑞, 𝜀, 𝑖) is undefined. The conditions
guarantee that all 𝑋𝑞 are regular, and that regular functions are untouched.

To compute 𝑋(𝑞, 𝜀, 𝑖), we apply 𝑞th program in parallel to all pairs

(𝜀, 0), (𝜀, 1), . . . ,

(starting with one step of the first computation, then making two steps of the first
two computations, etc.)

When some computation terminates with some output, we interrupt this pro-
cess to verify that strings obtained so far do not violate the regularity condition.
This means that we start to compute more and more precise approximations to
𝑝(𝑧) for all these strings until we could guarantee that the sum of all these 𝑝(𝑧) is
less then 𝜀 (this happens if the sum of approximations is less than 𝜀 minus the sum
of approximation errors). (Since 𝜇 is computable, we can compute approximations
to 𝑝(𝑧) for any 𝑧 with any precision.)

It is possible that we do not return from this interrupt; this happens if the sum
of measures is not less than 𝜀.

Now 𝑋(𝑞, 𝜀, 𝑖) is defined as the output of 𝑞th program on (𝜀, 𝑖) if this output
appears and passes the test during the process described.

If 𝑞th program computes a regular function, the verification will never fail and
𝑋𝑞 coincides with this function. On the other hand, for every 𝑞 the function 𝑋𝑞 is
regular: if for some 𝜀 the 𝑞th program (applied to 𝜀 and all 𝑖 = 0, 1, 2, . . .) generates
strings whose total measure is too large, only finitely many of the strings will be
let through, and their total measure is still less than 𝜀. Lemma is proven.

77 Explain why we need to change the definition of correctness. [Answer: if
the sum consists of finite number of terms and their sum is exactly 𝜀, we may newer
know this.]

Now we finish the proof of Martin-Löf theorem. Let 𝑋 be the function provided
by the Lemma. For all 𝑞 = 0, 1, 2, . . . consider the effectively null set 𝑍𝑞 that
corresponds to the regular function 𝑋𝑞. Every effectively null set by definition is
a subset of 𝑍𝑞 for some 𝑞. It remains to show that the union 𝑍0 ∪ 𝑍1 ∪ . . . is an
effective null set.

We do the same trick that is used to prove that a countable union of null sets
is a null set. To find a covering of total measure less that 𝜀 for ∪𝑞𝑍𝑞, we combine
the (𝜀/2)-covering for 𝑍0 with (𝜀/4)-covering for 𝑍1, etc.

More formally, we consider a function 𝑥(𝜀, 𝑖), that is defined as follows:

𝑥(𝜀, [𝑞, 𝑘]) = 𝑋(𝑞, 𝜀/2𝑞+1, 𝑘).

Here [𝑞, 𝑘] stands for the number of pair 𝑞, 𝑘 under some computable bijection
between N2 and N. �

Now we are ready to give the definition of Martin-Löf random sequence. Assume
that some computable measure 𝜇 on the set Ω is fixed.

Definition. A sequence 𝜔 is called Martin-Löf random (ML-random) with
respect to 𝜇 if 𝜔 does not belong to the largest effectively null set (with respect to
𝜇) provided by Theorem 28.

3.3. EFFECTIVELY NULL SETS 77

Reformulation: a sequence is Martin-Löf random if it does not belong to any
effectively null set.

One more version: a sequence 𝜔 is Martin-Löf random if the singleton {𝜔} is
not an effectively null set.

A digression: terminology. The notion of Martin-Löf randomness is a
refinement of the intuitive idea of a “typical sequence”. One could say that a
sequence is “typical” if it does not have any regularities or special features which
separates it from most sequences. (If somebody says that “Mr. X is a typical math
professor”, she probably means that Mr. X has no special characteristics that make
him different from the majority of math professors.) A “special feature” is a feature
that is possessed only by a negligible fraction of the objects considered (sequences).
For example, if a sequence 𝜔 starts with 0, this is not a special feature, since half
of the sequences start with 0. On the other hand, if each other term of 𝜔 is zero,
this is indeed a special feature.

This informal idea is implemented in the Martin-Löf definition: a special fea-
ture is a feature that corresponds to an effectively null set, and therefore typical
sequences are sequences that do not belong to any effectively null set, i.e., Martin-
Löf random sequences.

It would be more logical to use the word “typical” for Martin-Löf’s defini-
tion and reserve the word “random” for more general intuitive notion that can be
formalized in different ways (and the idea of a typical sequence is one of them).
However, the attempts to introduce a new, more logical, terminology often make
the situation worse (authors have to confess that this can be said about their own
attempts!). And there is already a lot of confusion, the term “random sequence” is
already used in different ways.

So we keep the term “Martin-Löf random sequence” (“ML-random sequence”)
for the definition given above keeping the general term “random sequence” for
a vague philosophical notion of randomness that needs additional clarification to
become a mathematical notion. (End of digression.)

The following statement is a trivial corollary of Martin-Löf theorem; however,
it deserves a careful thinking since it looks counter-intuitive.

Theorem 29. A set 𝐴 ⊂ Ω is an effectively null set if and only if all its
elements are not Martin-Löf random (are non-typical).

In particular, the set of all non-ML-random sequences is the largest effectively
null set, and the set of all ML-random sequences has measure 1.

Proof. Indeed, any element of any effectively null set is not ML-random by
definition; on the other hand, if all elements of some set 𝐴 are not ML-random,
then 𝐴 is a subset of the largest effectively null set and therefore 𝐴 is an effectively
null set. �

What is strange here? Intuitively, a set 𝐴 is a null set if it has “few elements”;
the nature of these elements does not matter much. Any singleton {𝜔} ⊂ Ω is a
null set and this does not depend on the properties of the sequence 𝜔.

On the other hand, now we see that if we replace null sets by effectively null
sets, the situation changes drastically: we may put as many non-ML-random (non-
typical) sequences in a set as we wish, and it would remain an effectively null

78 3. MARTIN-LÖF RANDOMNESS

set, but just one ML-random (typical) sequence added is enough to destroy this
property.

For example, recall that any computable sequence forms an effectively null
singleton (with respect to uniform measure). We immediately get the following
corollary:

Theorem 30. The set of all computable sequences of zeros and ones is an
effectively null subset of Ω (with respect to the uniform measure).

It is interesting to note that this observation was made before Martin-Löf gave
the definition of randomness, while developing the constructive version of calculus
(“Zaslavsky construction” [219] used for many counterexamples; it deals with real
numbers instead of bit sequences).

In the next section we explore the properties of ML-random sequences (with re-
spect to the uniform measure). We end this section with the following nice criterion
for ML-randomness which is attributed to R. Solovay in [34].

Theorem 31. A sequence 𝜔 is not ML-random with respect to a computable
measure 𝜇 if and only if there exists s computable sequence of intervals with finite
sum of measures that covers 𝜔 infinitely many times, i.e., a computable sequence
of binary strings 𝑥0, 𝑥1, 𝑥2, . . . such that∑︁

𝑖

𝜇(Ω𝑥𝑖
) < ∞

and 𝜔 ∈ Ω𝑥𝑖
for infinitely many 𝑖.

Proof. Assume that 𝜔 is not ML-random. Then for each 𝜀 we can effectively
find a computable sequence of intervals that covers {𝜔} and has the sum of measures
less than 𝜀. Then we combine these sequences for 𝜀 = 1, 1/2, 1/4, 1/8, . . . and get a
computable sequence of intervals with sum of measures not exceeding 2 that covers
𝜔 infinitely many times (at least once for each 𝜀).

On the other hand, assume that there is a computable sequence 𝑥0, 𝑥1, 𝑥2 . . .
of strings such that the sum of measures of corresponding intervals Ω𝑥𝑖

does not
exceed some constant 𝑐 and infinitely many of them contain 𝜔. We may assume
without loss of generality that 𝑐 is a rational number. To find a covering for 𝜔 that
has sum of measures less than 𝜀, we consider the set 𝑀𝑁 of all sequences in Ω that
are covered at least 𝑁 times. Here 𝑁 is a positive integer such that 𝑐/𝑁 < 𝜀. It
is easy to see that 𝑀𝑁 can be represented as the union of a computable sequence
of disjoint intervals (while reading 𝑥0, 𝑥1, . . ., we discover more and more elements
of 𝑀𝑁 and add respective intervals as they appear). Therefore the set {𝜔} is an
effectively null set and the sequence 𝜔 is not ML-random. �

Remark. This result is a constructive version of Borel–Cantelli Lemma (if the
sum of measures of sets 𝐴0, 𝐴1, . . . is finite, then the set of all points that belong
to infinitely many 𝐴𝑖 is a null set), and our argument is an effective version of
a classical proof of Borel–Cantelli Lemma. However, we should be careful since
not any classical proof can be effectivized. The standard proof (since the series is
converging, its tails could be made as small is needed) does not work here, since
there is no way to find an appropriate tail given 𝜀.

Martin-Löf randomness is defined for computable measures: we used com-
putability to prove that the largest effectively null set exists. One could refor-
mulate the definition and call a sequence random (for an arbitrary measure 𝜇 on

3.4. PROPERTIES OF MARTIN-LÖF RANDOMNESS 79

Ω) if it does not belong to any effectively null set. For this notion B. Kjos-Hansen
suggested the name Hippocratic randomness (and P. Gács suggested more neutral
name blind randomness). This is not the only existing notion of randomness with
respect to non-computable measures; we do not go into details here and mention
only that one can use uniform tests of randomness (following Levin and Gács, see
[13]).

78 Prove that for an upper semicomputable measure there exists the largest
effectively null set. (We do not assume here that the measure of the entire Ω equals
1, otherwise all upper semicomputable measures would be computable.)

79 Construct an example of a (non-computable) measure for which there is no
largest effectively null set. [Hint: Construct a measure that has two properties at
the same time: (1) every computable sequence forms a singleton that is an effective
null set (moreover, some prefix already has measure zero); (2) every algorithm that
pretends to generate an effectively null set, either gives an interval whose measure
is too big, or does not cover some computable sequence. This can be done by a
diagonal argument where we consider one by one all the computable sequences and
all possible algorithms.]

80 Show that there is a non-computable measure for which there exists the
largest effectively null set. [Hint: consider a non-computable measure that is very
close to the uniform one (say, at most twice bigger and at most twice smaller for
all sets).]

3.4. Properties of Martin-Löf randomness

The Strong Law of Large Numbers also provides an example of an effective null
set (with respect to the uniform measure).

Theorem 32. A set of all bit sequences that do no have limit frequency 1/2 is
an effectively null set with respect to the uniform measure.

Proof. It is enough to prove that for every rational 𝜀 > 0 the set of all
sequences such that frequency of ones is greater than 1/2 + 𝜀 infinitely many times
(or less than 1/2 − 𝜀 infinitely many times) is an effective null set.

Indeed, the upper bound for the measure of this set achieved in the proof of
the Strong Law of Large Numbers in the previous section (Theorem 27, p. 70) is
effective: the set of intervals was the set of all sufficiently long strings with large
frequency deviation, and its total measure was effectively bounded by a tail of the
converging geometric series. �

The statement of this theorem can be reformulated as the property of individual
ML-random sequences:

Theorem 33. Let 𝜔 = 𝜔0𝜔1 . . . be a ML-random sequence with respect to the
uniform measure. Then

lim
𝑛→∞

𝜔0 + 𝜔1 + . . . + 𝜔𝑛−1

𝑛
=

1

2
.

The similar statement is true for arbitrary Bernoulli measure. Let 𝑝 and 𝑞 be
computable positive reals such that 𝑝 + 𝑞 = 1. Consider the Bernoulli measure
with parameters 𝑞 and 𝑝 (the sequence of independent coin tossing with success
probability 𝑝). It is easy to check that this is a computable measure (since 𝑝 and 𝑞
are computable).

80 3. MARTIN-LÖF RANDOMNESS

Theorem 34. Any ML-random sequence with respect to Bernoulli measure
with computable parameters 𝑞, 𝑝 has limit frequency 𝑝.

Proof. Indeed, the upper bound for the probability of large deviations (ob-
tained by comparing the given Bernoulli measure with the other one, with shifted
𝑝, see Problem 67, p. 72), gives an explicit bound and an explicit set of intervals,
so we get an effectively null set. �

There are several other properties of ML-randomness with respect to the uni-
form measure:

Theorem 35. Let 𝜔 be a ML-random sequnce with respect to the uniform
measure. Then any other sequence which is obtained from 𝜔 by a finite number of
insertions/deletions/changes, is also ML-random.

Proof. It is enough to show that adding a zero/one in the beginning of a
ML-random sequence or deleting the first term of a ML-random sequence gives a
ML-random sequence. Indeed, assume that sequence 𝜔 is not ML-random, i.e.,
forms an effectively null singleton: for each 𝜀 one can effective construct a covering
by intervals with total measure less than 𝜀. Let us add zero at the beginning of
all these intervals (i.e., the corresponding strings). We get a covering for 0𝜔 whose
measure is twice smaller. This argument shows that if 𝜔 is not ML-random, then
0𝜔 is not ML-random either. (Similar argument works for 1𝜔.)

On the other hand, if we delete the first bit of all strings that form a covering
for 𝜔, we get a family of intervals of twice larger measure that covers 𝜔′ (obtained
from 𝜔 by deleting the first bit). Therefore, 𝜔′ is not ML-random, too. �

81 Prove that by replacing all zeros by ones and vice versa in a ML-random
sequence (with respect to the uniform measure) we get a ML-random sequence.

The folllowing problem shows that a computable subsequence of a ML-random
sequence is ML-random.

82 Let 𝑛0, 𝑛1, 𝑛2, . . . be a computable sequence of different integers (𝑛𝑖 ̸= 𝑛𝑗

if 𝑖 ̸= 𝑗). Let 𝜔 = 𝜔0𝜔1𝜔2 . . . be a ML-random sequence. Then its subsequence

𝜔|𝑛 = 𝜔𝑛0
𝜔𝑛1

𝜔𝑛2
. . .

is ML-random. [Hint: any interval Ω𝑥 in a cover for 𝜔|𝑛 produces a finite family of
intervals whose union is the set of sequences whose (𝑛0, 𝑛1, . . . , 𝑛𝑖−1)-subsequence
coincides with 𝑥 (here 𝑖 is the length of the string 𝑥). The total measure of these
intervals equals 2−𝑖, the measure of Ω𝑥.]

More general selection rules are consider in Chapter 9 (p. 273) where the fre-
quency approach to the notion of randomness (von Mises’ approach) is considered.

83 Let 𝜔 be a ML-random sequence with respect to the uniform measure. Let
us split 𝜔 into two-bit blocks and then replace blocks 00 by zeros and blocks 01, 10
and 11 by ones. Prove that the resulting sequence is ML-random with respect to
Bernoulli measure with parameters 1/4, 3/4. [Hint. We described a transformation
𝐹 : Ω → Ω. The preimage of any open set 𝑈 is open, and the uniform measure of
that preimage equals the (1/4, 3/4)-measure of the set 𝑈 .]

84 (Continued.) Prove that every ML-random sequence with respect to the
nonuniform Bernoulli (1/4, 3/4)-measure can be obtained in this way from a se-
quence that is ML-random with respect to the uniform measure. [Hint: For any

3.4. PROPERTIES OF MARTIN-LÖF RANDOMNESS 81

open set 𝐵 ⊂ Ω consider the set 𝐵′ of all sequences 𝜔 such that 𝐹−1({𝜔}) ⊂ 𝐵
(the set of sequences that do not have a preimage outside 𝐵, i.e., the complement
to the image of the complement of 𝐵). The image of a compact set is a compact
set, therefore 𝐵′ is open. Show that if 𝐵 is a union of an enumerable family of
intervals, then 𝐵′ is also a union of enumerable family of intervals, and Bernoulli
measure of 𝐵′ does not exceed the uniform measure of 𝐵. See also the proof of a
more general statement (Theorem 123, p. 195).]

What can be said about the “complexity” of a ML-random sequence (with
respect to the uniform measure) from the viewpoint of the recursion theory? We
know already that ML-random sequence is not computable. It also cannot be
a characteristic function of an enumerable (recursively enumerable, computably
enumerable) set.

Theorem 36. Let 𝐴 be an enumerable set of natural numbers. Consider its
characteristic sequence 𝑎0𝑎1𝑎2 . . . (𝑎𝑖 = 0 for 𝑖 /∈ 𝐴 and 𝑎𝑖 = 1 for 𝑖 ∈ 𝐴). This
sequence is not ML-random.

Proof. Let 𝑘 be an arbitrary natural number. Let us enumerate the set 𝐴
and see what happens with 𝑘 first bits of its characteristic sequences. As (the
current version of) 𝐴 increases, we get more and more ones in this 𝑘-bit prefix. In
this way we get at most 𝑘 + 1 candidates; at some point we come to a final (true)
one, but we never know that this happened already. Anyway, the set of candidates
is enumerable and the number of candidates does not exceed 𝑘 + 1 (since 𝑘-bit
prefix can have 0 . . . 𝑘 ones). The total measure of these intervals is (𝑘 + 1)/2𝑘 and
therefore can be made arbitrarily small. (Note that the definition of the effectively
null set allows us to enumerate the intervals that form a covering, and this is exactly
what we can do in our case.) �

A natural question arises: in what sense one can provide explicitly a ML-
random sequence? As we have seen, neither computable sequences nor character-
istic sequences of enumerable sets are random. If you are familiar with the basics
of the recursion theory (see, e.g., [182]), you may appreciate the following result:
there exist a ML-random sequence that belongs to the class Σ2 ∩ Π2 of the arith-
metic hierarchy (this class can be also described as the class of all 0′-computable
sequences).

Theorem 37. There exists a 0′-computable sequence that is ML-random with
respect to the uniform measure.

Proof. It is enough to show that for any enumerable set of strings {𝑥0, 𝑥1, . . .}
such that

∑︀
2−𝑙(𝑥𝑖) < 1/2 there exists a 0′-computable sequence that does not have

any of 𝑥𝑖 as a prefix. (Indeed, the largest effective null set has such a covering with
total measure less than 1/2, and any sequence that is not covered is ML-random.)

The intervals Ω𝑥𝑖
are divided into two groups: some of them belong to the left

half of Ω (i.e., 𝑥𝑖 starts with 0) and some belong to the right half. Total measure of
both groups at most 1/2. Therefore, at least one of the groups has total measure
at most 1/4. However, looking at the sequence 𝑥𝑖, we cannot find out which half
has this property (since at any moment new large interval can arrive).

However, 0′-oracle allows us to make this choice, since the event “measure
exceeds 1/4” is enumerable. Then we divide this half into two parts of size 1/4

82 3. MARTIN-LÖF RANDOMNESS

each and choose one of them where the total measure of corresponding intervals
does not exceed 1/8, and so on.

In this way we get a 0′-computable sequence with the following property: each
its prefix is at most half-covered by our intervals. In particular, no prefix of this
sequence can appear in the sequence 𝑥𝑖, and this is what we need. �

A similar but more geometric argument can be given if we consider reals in [0, 1]
instead of binary sequences. A point 𝑥 ∈ [0, 1] is ML-random with respect to the
Lebesgue measure on [0, 1] if its binary representation is ML-random with respect to
the uniform measure on the Cantor space. (A point can have two representations
but in this case both are computable and non-random, so we may ignore this
problem.) One can also give an equivalent definition of randomness directly. A set
𝑋 ⊂ [0, 1] is called an effectively null subset of [0, 1] if there exists an algorithm
that for every rational 𝜀 > 0 enumerates a cover of 𝑋 that consists of intervals with
rational endpoints whose sum of measures is less than 𝜀. Then a ML-random real
is a real not contained in any effectively null subset of [0, 1]. All this is just a simple
reformulation of corresponding notions and results for Cantor space since the only
difference is that some numbers have two representations (but this happens only
for countably many computable reals), and that we consider intervals with rational
endpoints instead of intervals with dyadic-rational endpoints (this does not matter
since we can split an interval with rational endpoints into a computable sequence
of dyadic intervals). In particular, the following statement is true:

85 Prove that there exists the largest effectively null subset of [0, 1], and its
elements are reals whose binary representations are not ML-random with respect
to the uniform measure in the Cantor space.

Now we can point out an “explicit” ML-random point. Consider an enumerable
family of open intervals that have total length less than 1 and cover all non-ML-
random points. The union of this intervals is an open set which is a proper subset
of [0, 1]. Its complement is a closed set, and this closed set has a minimal point.
By construction this point is ML-random.

86 Prove that the minimal point that is not covered by enumerable family of
open intervals with rational endpoints is lower semicomputable, i.e., it is a limit of
an increasing computable sequence of rational numbers (and therefore is computable
with the oracle for halting problem, 0′).

(See Section 5.7 (p. 170) for more details about random reals and for an alter-
native construction of a lower semicomputable ML-random real.)

The proof of Theorem 37 given above is a relativized version of the following
result:

87 Assume that 𝑥0, 𝑥1, 𝑥2, . . . is a computable sequence of binary strings and
the sum ∑︁

𝑖

2−𝑙(𝑥𝑖)

is less than 1 and is a computable real number. Then there exists a computable
sequence of zeros and ones that has neither of 𝑥𝑖 as its prefix.

[Hint: Let this sum be less than some rational 𝑆 < 1. By induction construct
a computable sequence 𝜔0𝜔1𝜔2 . . . with the following property: the fraction of the
set 𝑈 = ∪Ω𝑥𝑖

among the sequences that have prefix 𝜔0 . . . 𝜔𝑘 is less than 𝑆.]

3.4. PROPERTIES OF MARTIN-LÖF RANDOMNESS 83

This problem is related to the definition of randomness suggested by C. Schnorr
in [165]. He gave a more restrictive definition of an effectively null set than Martin-
Löf. The additional requirement: for every (rational) 𝜀 > 0 the total measure of
corresponding intervals is not only less than 𝜀 but also is a computable real (and the
approximation algorithm computably depends on 𝜀). This requirement is equivalent
to the following one: for every 𝜀 > 0 and 𝛿 > 0 one can effectively find out how
many terms in the series

∑︀
𝑖 𝑝(𝑥(𝜀, 𝑖)) are needed to make the tail less than 𝛿.

(For a series with non-negative terms the computability of sum is equivalent to
computable convergence.)

By Schnorr effectively null sets we mean the effectively null sets according
to this modified definition. (Schnorr calls them total rekursive Nullmenge, see
Definition 8.1 in [165]; effectively null sets (as in the Martin-Löf defintion) are
called rekursive Nullmenge, see Definition 4.1.)

88 Let us change the definition of an effectively null set in another way: now
we require that the total measure of all intervals in the covering is exactly 𝜀. Show
that this definition is equivalent to the definition of Schnorr effectively null set.
(One can also consider the measure of the union of all intervals instead of the sum
of measures.)

Problem 87 shows that for every Schorr effectively null set there exists a com-
putable sequence outside this set. (For simplicity let us consider the case of uniform
measure.) On the other hand, every computable sequence (i.e., the singleton made
of it) is a Schnorr effectively null set. Therefore, none of the Schnorr effectively
null sets is the largest one in the class (in other words, the union of all Schnorr
effectively null sets is not a Schnorr effectively null set). Nevertheless we can call a
sequence which does not belong to any Schnorr null set a Schnorr random sequence
(or “Schnorr typical” sequence).

Since now we have less effectively null sets, we may get the broader class of
random sequences, and it is indeed the case. The following problem (together with
the results of Chapter 5) guarantees that there exist Schnorr random sequences
that are not Martin-Löf random.

89 Prove that there exists a Schnorr random sequence 𝜔 = 𝜔0𝜔1𝜔2 . . . whose
prefixes have logarithmic complexity, i.e., 𝐶(𝜔0 . . . 𝜔𝑛−1) = 𝑂(log 𝑛).

[Hint: Problem 87 shows how one can construct a computable sequence that
does not belong to a given Schnorr effectively null set. At some point of this
construction we can take into account another Schnorr effectively null set and get
a computable sequence that does not belong to both. (Indeed, we need to take a
sufficiently small cover for the second set that does not go out of the safety margin
in the construction for the first set.) Moreover, we can consider infinitely many
Schnorr effectively null sets in this way (adding them one after another). This will
not give us a computable Schnorr random sequnce (it does not exist at all), because
we need additional information that says us which algorithms correspond to Schnorr
effectively null sets and which do not. But if we postpone the introduction of a new
algorithm until the moment when the constructed prefix of our sequence is rather
long, this additional information is logarithmic compared to the prefix length.]

We return to Schnorr’s definition of randomness in Section 9.8 where it is
reformulated in terms of computable martingales.

84 3. MARTIN-LÖF RANDOMNESS

90 Prove that a sequence 𝜔 is not Schnorr random if and only if there exists a
computable sequence of strings 𝑥0, 𝑥1, . . . such that the series

∑︀
𝑖 𝑝(𝑥𝑖) computably

converges (has a computable sum) and infinitely many of 𝑥𝑖 are prefixes of 𝜔. [Hint:
This is a version of Theorem 31 for Schnorr randomness and can be proven in a
similar way. In fact, in this case even the standard proof of Borel–Cantelli lemma
works.]

Another version of effectively null sets is obtained if we consider only finite
families of intervals (each family is presented as the list of all intervals in the
family): given a rational 𝜀, the algorithm should output a finite list of intervals
that cover the set and have the sum of measures less than 𝜀. This corresponds to
Jordan contruction of measure often used in the elementary calculus textbooks. In
this way we get a smaller class of null sets (e.g., a null set cannot cover all rational
points).

91 Prove that a set is an effectively null set in this sense if and only if it is
contained in the complement of some effectively open set of measure 1.

The sequences not covered by any effectively null sets in this sense (=contained
in every effectively open set of full measure) are called Kurtz random. In this
definition we again restrict the class of effectively null sets and therefore enlarge
the class of random sequences. Indeed we get more random sequences, as the
following problem shows.

92 Show that every Schnorr random sequence (with respect to the uniform
measure) satisfies the Strong Law of Large Numbers, but there exists a Kurtz
random sequence that does not. [Hint: The proof of the Strong Law of Large
Numbers gives a cover with computable sum of measures since the series converges
exponentially fast. For the second part one can consider generic sequences, see
Section 5.9, p. 192.]

3.5. Randomness deficiencies

Martin-Löf’s definition requires that for an effectively null set 𝐴 there is an
algorithm that, given 𝜀 > 0, produces a cover of 𝐴 by intervals whose total measure
does not exceed 𝜀. The union of these intervals in an open set of measure at most 𝜀.

In general, the unions of computable sequences of intervals are called effectively
open sets. As in the definition of effectively null sets (p. 73), we allow the com-
putable sequence to be non-total, so the empty set is also effectively open. In other
words, an effectively open set is a union of an enumerable family of intervals.

Now the definition of an effectively null set can be reformulated as follows:

Theorem 38. A set 𝐴 is an effectively null set with respect to a measure 𝜇 if
and only if 𝐴 ⊂

⋂︀
𝑛 𝑈𝑛 for some uniformly effectively open sets 𝑈𝑛 with 𝜇(𝑈𝑛) 6

2−𝑛. We may assume also that 𝑈1 ⊃ 𝑈2 ⊃

Speaking about “uniformly effectively open sets”, we mean that there exists an
algorithm that, given 𝑛, enumerates a family of intervals whose union is 𝑈𝑛.

Proof. There are several differences between this definition and the one we
used earlier. First difference (a trivial one) is that we use only 𝜀 = 2−𝑛.

Second, we speak here about the measure of an effectively open set, not about
the sum of measures of intervals whose union it is. This does not matter either, since
we may assume without loss of generality that the intervals forming an effectively

3.5. RANDOMNESS DEFICIENCIES 85

open set are disjoint. (When a new interval appears, we subtract all the intervals
that appeared earlier, and split the rest into a union of disjoint intervals.) For
disjoint intervals the sum of measures is equal to the measure of their union.

Finally, we require that 𝑈𝑖+1 ⊂ 𝑈𝑖. To achieve this, we can consider the
sequence 𝑈1, 𝑈1 ∩ 𝑈2, 𝑈1 ∩ 𝑈2 ∩ 𝑈3, . . . instead of the original one. One needs to
check only that the intersection of a finite number of effectively open sets 𝑈1∩. . .∩𝑈1

is an effectively open set (and the corresponding algorithm can be effectively found
given the algorithms for 𝑈𝑖). Indeed, assume that we have two algorithms that
enumerate intervals for 𝑈1 and 𝑈2. At every stage the current approximations for
𝑈1 and 𝑈2 are finite unions of intervals, and their intersection is also a finite union
of intervals. Let us add all the intervals of this intersection to the enumerable set
of intervals for 𝑈1 ∩ 𝑈2. (We can also make the intervals for 𝑈1 ∩ 𝑈2 disjoint, see
above.) �

In fact, Martin-Löf gave his definition of randomness in this form in [114]; a
family 𝑈𝑛 with these properties was called a randomness test. Given such a test,
we can define the randomness deficiency of a sequence 𝜔 as the maximal 𝑖 such
that 𝜔 ∈ 𝑈𝑖. The randomness deficiency of a sequence 𝜔 is infinite when 𝜔 belongs
to all 𝑈𝑖. In this version, the test not only says that all elements of ∩𝑖𝑈𝑖 are non-
random, but also says for other sequences how close they are to non-randomness
(the deficiency increases as the sequence get closer).

We know that there exists a universal test such that the set ∩𝑖𝑈𝑖 is maximal.
Martin-Löf noted that one can construct a test that is universal even in a stronger
sense:

Theorem 39. There exists a randomness test that corresponds to maximal
deficiency function (up to an additive constant).

Proof. In fact we just need to look closer at the construction given above:
randomness tests

𝑈1 : 𝑈1
1 ⊃ 𝑈1

2 ⊃ 𝑈1
3 ⊃ . . .

𝑈2 : 𝑈2
1 ⊃ 𝑈2

2 ⊃ 𝑈2
3 ⊃ . . .

𝑈3 : 𝑈3
1 ⊃ 𝑈3

2 ⊃ 𝑈3
3 ⊃ . . .

. .

can be combined into a test

(𝑈1
2 ∪ 𝑈2

3 ∪ . . . ∪ 𝑈𝑘
𝑘+1 ∪ . . .) ⊃ (𝑈1

3 ∪ 𝑈2
4 ∪ . . . ∪ 𝑈𝑘

𝑘+2 ∪ . . .) ⊃ . . .

It is indeed a test: the measures of the sets are bounded by 1/4 + 1/8 + . . . 6 1/2
(the first one), 1/8+1/16+ . . . 6 1/4 (the second one), etc. The deficiency function
for this combined test is at least 𝑑𝑖−𝑖 for every 𝑖, where 𝑑𝑖 is the deficiency function
for 𝑖th test. �

The deficiency function can be considered as a compact representation of a
decreasing family 𝑈𝑛; we consider function whose values are natural numbers and
+∞, and for every finite 𝑛 the set 𝑈𝑛 of all 𝜔 where the function exceeds 𝑛 is
effectively open (uniformly in 𝑛).

One can slightly extend this class of functions allowing non-integer values. We
say that a function 𝑢 defined on Ω and having non-negative real values (plus a

86 3. MARTIN-LÖF RANDOMNESS

special value +∞) is lower semicomputable if for every rational 𝑟 the set {𝜔 |
𝑢(𝜔) > 𝑟} is effectively open uniformly in 𝑟.

The following statement provides an equivalent definition of lower semicom-
putable functions on Ω. Let us first consider basic functions on the Cantor space
Ω that have rational values and depend only on some finite prefix of the argument.
To specify a basic function, we say how may input bits it needs to read (the length
of the prefix) and provide a table that specifies the output value for every combi-
nation of input bits. If a basic function reads 𝑚 bits, this table will consist of 2𝑚

rational numbers. Such a table (and a basic function that corresponds to it) is a
finite object, so we may speak about computable sequence of basic functions.

Theorem 40. The following properties of a function 𝑣 with non-negative real
values (+∞ is also allowed) are equivalent :

(a) 𝑣 is lower semicomputable;
(b) 𝑣 is a pointwise supremum of a computable sequence of basic functions;
(c) 𝑣 is a pointwise limit of a non-decreasing computable sequence of basic

functions;
(d) 𝑣 is a sum of a series formed by a computable sequence of non-negative

basic functions.

Proof. Two latter properties are equivalent since the sum and the difference
of two basic functions are basic functions.

To convert supremum into a limit, note that the maximum of a finite set of
basic functions is a basic function.

It remains to show that the first property is equivalent to others (for example,
the second one). Let 𝑣 = sup𝑖 𝑣𝑖. Note that sup𝑖 𝑣𝑖(𝜔) > 𝑟 if and only if 𝑣𝑖(𝜔) > 𝑟
for some 𝑖. This guarantees that the set {𝜔 | 𝑣(𝜔) > 𝑟} is (uniformly) effectively
open.

For the other direction: if for each rational 𝑟 we can effectively enumerate
intervals where 𝑢(𝜔) > 𝑟, then 𝑢 is the pointwise supremum of an enumerable
set of basic functions that are equal to 𝑟 inside the corresponding intervals and 0
otherwise. �

Now we can give the following definition of a randomness test (without the in-
tegrality requirement and switching to the exponential scale): a probability-bounded
randomness test with respect to a computable measure 𝜇 on Ω is a lower semicom-
putable non-negative function 𝑢 such that

𝜇({𝜔 | 𝑢(𝜔) > 𝑐}) < 1/𝑐

for every positive rational 𝑐. Informally, such a test finds “regularities” in 𝜔 in
such a way that (a) sequences with a lot of regularities (where test value is greater
than some 𝑐) form a small set (of measure at most 1/𝑐) and (b) if a sequence has
some regularity (test value is big), this regularity will be eventually found (lower
semicomputablity requirement).

Theorem 41. For every computable measure 𝜇 on the Cantor space there ex-
ists a maximal (up to a constant factor) probability-bounded randomness test with
respect to 𝜇; its binary logarithm coincides with the universal test from theorem 39
up to an additive constant.

Proof. An arbitrary probability bounded test can be replaced by test with
values of the form 2𝑛: we replace 𝑢(𝜔) by the maximal power of 2 that is less than

3.5. RANDOMNESS DEFICIENCIES 87

𝑢(𝜔). The new test is still lower semicomputable and differs from the original one
at most by a constant factor. The probability bounded test of this restricted form
corresponds to a decreasing sequence of uniformly effectively open sets, and the the
probability bound means that this sequence forms a randomness test in Martin-Löf
sense. The reverse translation is also possible. It remains to use Theorem 39. �

There is another slightly different notion of a randomness test. An expectation-
bounded randomness test uses a stronger restriction on the (lower semicomputable
non-negative) function 𝑢: ∫︁

𝑢(𝜔) 𝑑𝜇(𝜔) 6 1.

Theorem 42. For every computable measure on the Cantor space there is a
maximal (up to a constant factor) expectation-bounded randomness test with respect
to this measure.

Proof. We can enumerate all lower semicomputable functions on the Cantor
space. (For example, we can use their representations as supremums of enumer-
able sets of basic functions.) Futhermore, one can “trim” a lower semicomputable
function and guarantee that its integral does not exceed 2, and the functions whose
integral is at most 1, remain unchanged after the trimming. This can be done
effectively (recall that the measure is computable). In this way we get a sequence
of uniformly lower semicomputable functions 𝑢1, 𝑢2, . . . , that includes all tests and
consists only of almost-tests (up to factor 2). Adding all the functions of this se-
quences (with computable coefficients that form a converging series with sum at
most 1/2), we get a maximal expectation-bounded randomness test. �

Fix some maximal probability-bounded (or expectation-bounded) randomness
test with respect to a computable measure 𝜇. The logarithm of it is called probability-
bounded (resp. expectation-bounded) randomness deficiency with respect to 𝜇. We
will denote these deficiencies as d𝑃 and d𝐸 . (We assume that the measure 𝜇 is
fixed and omit it in the notation.)

Theorem 43.

d𝑃 (𝜔) − 2 logd𝑃 (𝜔) 6 d𝐸(𝜔) 6 d𝑃 (𝜔).

Both inequalities are true with 𝑂(1)-precision (and the quantities that appear
in them are well defined with the same precision).

Proof. The second inequality is obvious since every expectation-bounded test
is also probability-bounded. To prove the first inequality, we need to show that the
function

𝑑(𝜔) = 2d
𝑃 (𝜔)−2 logd𝑃 (𝜔)

has finite integral. (We need 𝑑 to be lower semicomputable; this is because the
function 𝑥 − 2 log 𝑥 is an increasing function — strictly speaking, this is not true
for small values of 𝑥, but these values are not important for finite integral, and the
function can be corrected there.)

To check that
∫︀
𝑑(𝜔) 𝑑𝜇(𝜔) is finite, note that the set of 𝜔 such that d𝑃 (𝜔) is

inbetween 𝑛 and 𝑛 + 1, has measure at most 1/2𝑛 (since 2d
𝐸

exceeds 2𝑛 on this
set), and the function 𝑑 on this set is bounded by 𝑂(2𝑛/𝑛2). It remains to note
that the series

∑︀
1/𝑛2 converges. �

88 3. MARTIN-LÖF RANDOMNESS

93 Show that the constant 2 in Theorem 43 can be replaced by an arbitrary
number greater than 1.

We have shown, in particular, that each type of the tests can be used to give an
equivalent definition of Martin-Löf randomness (we have already discussed this for
probability-bounded test): a sequence is ML-random if and only it its randomness
deficiency is finite.

The difference between probability- and expectation-bounded tests resembles
the difference between plain complexity 𝐶 (studied so far) and prefix complexity
𝐾 (see the next chapter).

As we have said, randomness tests were introduced and studied in 1960s and
1970s (probability-bounded tests were introduced in a form of sequences of open
sets by Martin-Löf; expectation-bounded were considered by L. Levin and P. Gács)
but then almost forgotten until recently. For more information about these tests
and their applications see [13].; recently G. Novikov [148] has studied the difference
between different versions of randomness deficiencies.

CHAPTER 4

A priori probability and prefix complexity

4.1. Randomized algorithms and semimeasures on N

In this section we consider algorithms (=programs, machines) equipped with
a random number generator. That is, algorithms may perform instructions of the
following form:

𝑏 := random.

This instruction assigns to the variable (memory cell) 𝑏 a random bit (0 or 1),
both values are assigned with equal probabilities (and independently of all previous
random bits). To perform this instruction we toss a fair coin and write its outcome
(head/tail as 0/1) in the memory cell 𝑏. Algorithms including such instructions are
called randomized or probabilistic.

The result (output) produced by a randomized algorithm depends not only on
its input but also on the result of the coin tossing. That is, for every fixed input,
the output of a randomized algorithm is a random variable.

Speaking formally, the probability that a randomized algorithm 𝐴 outputs 𝑥 is
defined as follows. Consider the uniform Bernoulli distribution on the space Ω of
all infinite 0-1-sequences. The measure of the set Ω𝑢 of all infinite extensions of a
finite string 𝑢 is equal to 2−𝑙(𝑢).

Let 𝑥 be an input for a randomized algorithm 𝐴 and let 𝜔 ∈ Ω be an infinite
sequence of zeros and ones. We denote by 𝐴(𝑥, 𝜔) the output of 𝐴 on input 𝑥, if
random bits used by the algorithm are taken from the sequence 𝜔. More specifically,
each call of a random generator returns the next bit of 𝜔. If the algorithm 𝐴 does
not halt (for given 𝑥 and 𝜔), then the value 𝐴(𝑥, 𝜔) is undefined.

Let 𝑦 be a possible output of 𝐴. Consider the set {𝜔 | 𝐴(𝑥, 𝜔) = 𝑦}. This set
is the union of intervals Ω𝑧 over all outcomes 𝑧 of coin tossing that guarantee that
𝐴 prints 𝑦 having 𝑥 as input. The probability that 𝐴 on input 𝑥 outputs 𝑦 is equal
to the measure of this set.

In this section, we consider machines without input whose outputs are natural
numbers. Here is an example of such machine. It tosses a coin until 1 appears
and outputs the number of 0s preceding the first 1. The probability 𝑝𝑖 of the event
“the output is 𝑖” is equal to 2−(𝑖+1). Indeed, the algorithm outputs 𝑖 if and only
if the first 𝑖 random bits are zeros and the (𝑖 + 1)-th bit is 1. This happens with
probability 2−(𝑖+1).

The sum
∑︀

𝑝𝑖 is equal to 1 in this example. Indeed, the algorithm does not halt
if and only if all random bits are zeros and this happens with zero probability. But
it is also possible that algorithm does not terminate with some positive probability.

We assign to every probabilistic machine (that has no input and produces nat-
ural numbers; after some number is produced, the machine terminates) a sequence
𝑝0, 𝑝1, . . . of reals: 𝑝𝑖 is the probability that the machine outputs 𝑖. We say that the

89

90 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

probabilistic machine generates the sequence 𝑝0, 𝑝1, Which sequences 𝑝0, 𝑝1, . . .
can be obtained in this way? There is an obvious necessary condition:

∑︀
𝑝𝑖 6 1

(since the machine cannot produce two different outputs). However, this inequality
is not sufficient, as there are countably many randomized algorithms and uncount-
ably many sequences satisfying this condition.

Let us answer first a simpler question. Consider the halting probability of a
randomized machine without input, i.e., the probability that the machine halts.
Which real numbers can appear as halting probabilities of probabilistic machines
without input? To answer this question we need to recall the notion of a lower
semicomputable real number.

A real number 𝛼 is lower semicomputable if it is the limit of a computable
non-decreasing sequence of rational numbers.

94 Prove that if 𝛼 is a computable real number (i.e., there is an algorithm that
for any given rational 𝜀 > 0 computes a rational approximation to 𝛼 with precision
𝜀), then 𝛼 is lower semicomputable. [Hint: We can construct an increasing sequence
using approximations from below.]

95 Show that a real number 𝛼 is computable if and only if both numbers 𝛼
and −𝛼 are lower semicomputable.

A real number 𝛼 is lower semicomputable if and only if the set of rational
numbers that are less than 𝛼 is enumerable. (It explains why lower semicomputable
reals are sometimes called enumerable from below.)

Indeed, let us assume that 𝛼 is the limit of a non-decreasing computable se-
quence 𝑎0 6 𝑎1 6 𝑎2 6 . . . of rationals. For each 𝑖 enumerate all rational numbers
that are less than 𝑎𝑖. All rational numbers less than 𝛼 (and no other) will appear
in the enumeration.

Conversely, assume that we can enumerate all rational numbers that are less
than 𝛼. Omitting in this enumeration all numbers that are less than previously
met ones, we obtain a non-decreasing sequence whose limit is 𝛼.

Using the notion of a lower semicomputable real, we obtain the following answer
to the above question:

Theorem 44. (a) Let 𝑀 be a probabilistic machine without input. The halting
probability of 𝑀 is a lower semicomputable real number.

(b) Every lower semicomputable real is the halting probability of some proba-
bilistic machine.

Proof. (a) Let 𝑝𝑛 stand for the probability that 𝑀 halts within 𝑛 steps. The
number 𝑝𝑛 is rational: the algorithm can toss a coin at most 𝑛 times within 𝑛 steps,
thus the halting probability is a multiple of 1/2𝑛.

We can find 𝑝𝑛 by simulating the run of the machine for all possible outcomes
of the coin tossing. The sequence 𝑝0, 𝑝1, . . . is non-decreasing and its limit is equal
to the halting probability of 𝑀 .

(b) Assume that a real 𝑞 is lower semicomputable. That is, there is a com-
putable sequence 𝑞0 6 𝑞1 6 𝑞2 6 . . . of rational numbers such that 𝑞 = lim 𝑞𝑛. We
have to construct a probabilistic machine whose halting probability is equal to 𝑞.
Let the machine toss a coin and let 𝑏0, 𝑏1, 𝑏2, . . . be the obtained random bits. Con-
sider the real number 𝛽 = 0.𝑏0𝑏1𝑏2 . . . ; it is uniformly distributed in [0, 1]. Let the
machine (in parallel to coin tossing) compute the rational numbers 𝑞0, 𝑞1, 𝑞2,
The machine halts when it finds out that 𝛽 < 𝑞. That is, the machine halts if

4.1. RANDOMIZED ALGORITHMS AND SEMIMEASURES ON N 91

for some 𝑖 the rational number 𝛽𝑖 = 0.𝑏0𝑏1 . . . 𝑏𝑖111 . . . (the currently known upper
bound for 𝛽) is less than 𝑞𝑖 (the currently known lower bound for 𝑞). See Fig. 1 for
a symbolic representation of this argument.

𝑞0 𝑞1 𝑞2 . . .

Figure 1. Comparing 𝛽 = 0.𝑏0𝑏1𝑏2 . . . and 𝑞 = lim 𝑞𝑖.

The constructed machine halts if and only if 𝛽 < 𝑞. Indeed, assume that 𝛽 is
less than 𝑞. The numbers 𝑞𝑖 tend to 𝑞 and the upper bounds 𝛽𝑖 for 𝛽 tend to 𝛽, as
𝑖 → ∞. Therefore for some 𝑖 the number 𝑞𝑖 is greater than 𝛽𝑖. On the other hand,
if the machine halts then 𝛽 < 𝑞 by construction.

Thus the halting probability of the machine is equal to the probability of the
event 𝛽 < 𝑞. The latter probability equals the length of the segment [0, 𝑞), that is,
to 𝑞. (Recall that 𝛽 is uniformly distributed in the segment [0, 1].) �

Let us return to probability distributions that can by generated by probabilistic
machines. First, a definition. A sequence 𝑝0, 𝑝1, 𝑝2, . . . is lower semicomputable if
there is a function 𝑝(𝑖, 𝑛), where 𝑖, 𝑛 are integers and 𝑝(𝑖, 𝑛) is either a rational
number or −∞, with the following properties: the function 𝑝(𝑖, 𝑛) is non-decreasing
in the second argument:

𝑝(𝑖, 0) 6 𝑝(𝑖, 1) 6 𝑝(𝑖, 2) 6 . . . ,

and
𝑝𝑖 = lim

𝑛→∞
𝑝(𝑖, 𝑛)

for all 𝑖.
One could say that the sequence 𝑝𝑖 is lower semicomputable if the numbers

𝑝0, 𝑝1, 𝑝2 . . . are “uniformly lower semicomputable”. The next theorem provides an
alternative way to define lower semicomputable sequences.

Theorem 45. A sequence 𝑝0, 𝑝1, 𝑝2 . . . is lower semicomputable if and only if
the set of pairs ⟨𝑟, 𝑖⟩, where 𝑖 is a natural number and 𝑟 is a rational number less
than 𝑝𝑖, is enumerable.

Proof. Recall that a set is enumerable if there is an algorithm that generates
all its elements in some order with arbitrary delays between consecutive elements
(the algorithm may not halt even if the set is finite).

Assume that a sequence 𝑝0, 𝑝1, 𝑝2, . . . is lower semicomputable. Let 𝑝(𝑖, 𝑛) be
the function from the definition of the lower semicomputability. Arrange all the
pairs ⟨𝑟, 𝑖⟩ in a sequence so that every pair appears in the sequence infinitely many
times. The algorithm enumerating all the pairs ⟨𝑟, 𝑖⟩ with 𝑟 < 𝑝𝑖 works in steps.
On step 𝑛 compare 𝑟 and 𝑝(𝑖, 𝑛) where ⟨𝑟, 𝑖⟩ is the 𝑛th pair in the chosen sequence.

92 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

If 𝑟 < 𝑝(𝑖, 𝑛) then output the pair ⟨𝑟, 𝑖⟩, otherwise proceed to the next step. By
definition, 𝑟 < lim𝑛 𝑝(𝑖, 𝑛) if and only if there exists 𝑛 such that 𝑟 < 𝑝(𝑖, 𝑛). Thus
we will output all the pairs in the set, and no other pairs.

Conversely, assume that the property 𝑟 < 𝑝𝑖 is enumerable and let 𝐴 be an
algorithm enumerating all such pairs ⟨𝑟, 𝑖⟩. To compute 𝑝(𝑖, 𝑛) we simulate 𝑛 steps
of the computation performed by 𝐴. Consider all the pairs that appeared within
𝑛 steps and have 𝑖 as the second component. Let 𝑝(𝑖, 𝑛) be equal to the largest
first component of such pairs. If there are no such pairs, let 𝑝(𝑖, 𝑛) = −∞. As 𝑛
increases, new pairs may appear and 𝑝(𝑖, 𝑛) may increase. The limit lim𝑛 𝑝(𝑖, 𝑛) is
equal to 𝑝𝑖, since all the rational numbers less than 𝑝𝑖 will appear in the enumera-
tion. �

We are now able to characterize probability distributions generated by proba-
bilistic machines.

Theorem 46. (a) Let 𝑀 be a probabilistic machine without input that outputs
natural numbers. Let 𝑝𝑖 denote the probability that the machine outputs 𝑖. The
sequence of 𝑝𝑖 is lower semicomputable and

∑︀
𝑖 𝑝𝑖 6 1.

(b) Let 𝑝0, 𝑝1, . . . be a lower semicomputable sequence of non-negative real num-
bers such that

∑︀
𝑖 𝑝𝑖 6 1. There is a probabilistic machine 𝑀 that prints every 𝑖

with probability exactly 𝑝𝑖.

Proof. The proof of item (a) is similar to the proof of corresponding statement
in the previous theorem. We let 𝑝(𝑖, 𝑛) be the probability that 𝑀 outputs 𝑖 within
𝑛 steps.

The proof of item (b) is also similar to the proof of corresponding assertion in
the previous theorem. This time we assign to each natural 𝑖 a subset of [0, 1] and the
machine outputs 𝑖 if the real number 𝛽 = 0.𝑏0𝑏1𝑏2 . . . belongs to the set assigned
to 𝑖. The sets assigned to different values of 𝑖 do not overlap. They may not cover
the entire segment [0, 1]. The set assigned to every 𝑖 is a finite or countable union
of half-open intervals [𝑎, 𝑏) of total length 𝑝𝑖. When an approximation for some 𝑝𝑖
increases, we add a new interval for this 𝑖 (its length is the increase) just on the
right of intervals allocated earlier. (So at each moment the used part of [0, 1] is
[0, 𝑠) for some 𝑠.)

In parallel, we toss a coin and obtain digits of the random number 𝛽. When we
are sure that 𝛽 gets into the set assigned to some natural number we output that
number.

Here is a formal argument. Let 𝑝(𝑖, 𝑛) be the function of two variables from the
definition of lower semicomputability. Without loss of generality we may assume
that 𝑝(𝑖, 𝑛) > 0 for all 𝑖, 𝑛. Indeed, we can replace all negative values by zeros. We
may assume also that for all 𝑛 only finitely many values 𝑝(𝑖, 𝑛) are positive (let
𝑝(𝑖, 𝑛) = 0 for all 𝑖 > 𝑛). The probabilistic algorithm that we construct runs in
steps. On each step we allocate some space inside [0, 1]. Our goal is that after the
𝑛th step the total length of intervals allocated to 𝑖 is equal to 𝑝(𝑖, 𝑛) (for all 𝑖). This
requirement is easy to keep: going from left to right, on step 𝑛 we allocate for each
𝑖 (such that 𝑝(𝑖, 𝑛) > 𝑝(𝑖, 𝑛− 1)) a new interval of length 𝑝(𝑖, 𝑛) − 𝑝(𝑖, 𝑛− 1). We
need to do this only for finitely many 𝑖, as for 𝑖 > 𝑛 we have 𝑝(𝑖, 𝑛) = 𝑝(𝑖, 𝑛−1) = 0.

The total length of used intervals does not exceed 1, as 𝑝(𝑖, 𝑛) 6 𝑝𝑖 and
∑︀

𝑝𝑖 6 1.
Thus we will always be able to allocate the space we needed (at the left of the free
space).

4.2. MAXIMAL SEMIMEASURES 93

In parallel, the probabilistic machine tosses a coin, obtaining a random bit
𝑏𝑛 on step 𝑛. It halts on step 𝑛 and outputs 𝑖 if it is known for sure that 𝛽 =
0.𝑏0𝑏1𝑏2 . . . belongs to the (interior) of the space allocated to 𝑖, i.e., if the closed
interval consisting of all real numbers whose binary expansion starts with 𝑏0𝑏1 . . . 𝑏𝑛
is included in the interior of the space allocated to 𝑖. (The interior of the segment
[𝑢, 𝑣] is the interval (𝑢, 𝑣).) By construction, for all 𝑖 the measure of this set (interior
of the space allocated to 𝑖) equals 𝑝𝑖. �

Any sequence 𝑝𝑖 satisfying the conditions of the previous theorem is called a
lower semicomputable semimeasure (or enumerable from below semimeasure) on N.
Sometimes we will use also the notation 𝑝(𝑖) for 𝑝𝑖. We thus have two alternative
definitions of a lower semicomputable semimeasure: (1) a probability distribution
generated by a randomized algorithm; (2) a lower semicomputable sequence of non-
negative reals whose sum does not exceed 1. The above theorem states that these
definitions are equivalent.

The word “semimeasure” may look strange, but unfortunately there is no other
appropriate term in the literature. Dropping semicomputability requirement, one
can call any function 𝑖 ↦→ 𝑝𝑖 with

∑︀
𝑖 𝑝𝑖 6 1 a semimeasure on N. Every semimea-

sure on N defines a probability distribution on the set N ∪ {⊥} where ⊥ is a spe-
cial symbol meaning “undefined”. The probability of the number 𝑖 is 𝑝𝑖 and the
probability of ⊥ is 1 −

∑︀
𝑖 𝑝𝑖. In the sequel we consider lower semicomputable

semimeasures only (unless stated otherwise explicitly).
We have considered so far (lower semicomputable) semimeasures on the natural

numbers. The definition of a lower semicomputable semimeasure can be naturally
generalized to the case of binary strings or any other constructive objects in place
of natural numbers. For example, to define a notion of a lower semicomputable
semimeasure on the set of binary strings we have to consider probabilistic machines
whose output is a binary string.

Important remark: we will consider in Chapter 5 a notion of a semimeasure
on the space consisting of all finite and infinite 0-1-sequences. Such a semimeasure
is generated by a probabilistic machine that prints its output bit by bit and never
indicates that the output string is finished. In particular the machine never halts.
It leads to a different notion: all the machines considered in this section are required
to halt after printing the output; for such machines, there is no essential difference
between printing a binary string and a natural number.

To stress the difference between these two frameworks, semimeasures defined in
this section are called discrete semimeasures while the ones considered in Section 5
are called continuous semimeasures, or semimeasures on the binary tree.

4.2. Maximal semimeasures

Comparing two semimeasures on N, we will ignore multiplicative constants.
A lower semicomputable semimeasure 𝑚 is called maximal if for any other lower
semicomputable semimeasure 𝑚′ the inequality 𝑚′(𝑖) 6 𝑐𝑚(𝑖) holds for some 𝑐 and
for all 𝑖. (The name greatest (instead of “maximal”) would be more accurate since
we look for the greatest element of some partially ordered set, not the maximal
one.)

Theorem 47. There exists a maximal lower semicomputable semimeasure on N.

94 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

Proof. We have to construct a probabilistic machine 𝑀 with the following
property. The machine 𝑀 should output every number 𝑖 with a probability that is
at most constant times less than the similar probability for each other machine 𝑀 ′

(the constant may depend on 𝑀 ′ but not on 𝑖).
This is easy to achieve: consider a machine 𝑀 that picks at random a proba-

bilistic machine 𝑀 ′ and then simulates 𝑀 ′. The probability to pick each machine
𝑀 ′ should be positive. If a machine 𝑀 ′ is chosen with probability 𝑝, then 𝑀 will
output some 𝑖 with probability at least 𝑝 · (the probability that 𝑀 ′ output 𝑖). Thus
one can let 𝑐 = 1/𝑝.

It remains to explain how to implement the random choice of a probabilistic ma-
chine. Enumerate all probabilistic machines in a natural way; let 𝑀0,𝑀1,𝑀2, . . .
be the resulting sequence. We toss a coin until the first 1 appears. Then we simulate
the machine 𝑀𝑖 where 𝑖 is the number of zeros preceding the first 1. �

It is instructive to prove this theorem once more using the language of lower
semicomputable sequences instead of probabilistic algorithms. Basically, we need to
show that there exists a convergent lower semicomputable series that upperbounds
all other lower semicomputable convergent series (up to a multiplicative constant).
More formally, we should consider only series with the sum at most 1, but this is
not essential since we ignore constant factors.

To find such a series, we sum up with certain weights all the lower semicom-
putable series with sum at most 1. The weights form a computable converging
series. This implies that the resulting series (infinite linear combination) converges.
By construction it will be maximal (up to a multiplicative constant). There is
only one problem left: how to guarantee that the resulting series is lower semicom-
putable.

The lower semicomputability of a semimeasure is witnessed by a computable
function 𝑝 : ⟨𝑖, 𝑛⟩ ↦→ 𝑝(𝑖, 𝑛). There are only countably many such functions, since
there are only countably many algorithms. Enumerating all those functions, we get
a sequence 𝑝(0), 𝑝(1), 𝑝(2), . . . ; then we may consider the function

𝑝(𝑖, 𝑛) =

𝑛∑︁
𝑘=0

𝜆𝑘𝑝
(𝑘)(𝑖, 𝑛)

where 𝜆𝑘 is a computable sequence of rational numbers with
∑︀

𝑘 𝜆𝑘 6 1, say,
𝜆𝑘 = 2−𝑘−1. The resulting function 𝑝 is non-decreasing in 𝑛 for every 𝑖. Indeed, as
𝑛 increases, the number of terms in the sum defining 𝑝 increases and the value of
every term increases, too. And for all 𝑖 we have

lim
𝑛→∞

𝑝(𝑖, 𝑛) =
∑︁
𝑘

𝜆𝑘 lim
𝑛→∞

𝑝(𝑘)(𝑖, 𝑛).

That is, the constructed semimeasure is indeed equal to the sum of all lower semi-
computable semimeasures with weights 𝜆𝑘.

However, there is a fault in this argument: the function 𝑝(𝑖, 𝑛) should be com-
putable, and thus we cannot use arbitrary enumeration of lower semicomputable
functions in our construction. We need to arrange them so that the function
𝑝 : ⟨𝑘, 𝑖, 𝑛⟩ ↦→ 𝑝(𝑘)(𝑖, 𝑛) is computable as a function of all its three arguments.
Note that we cannot just let 𝑝(𝑘) be the function computed by 𝑘th program: it may

4.2. MAXIMAL SEMIMEASURES 95

happen that the 𝑘th program does not define any lower semicomputable semimea-
sure. (It may compute a function which is not total, or a function that sometimes
decreases in the second argument or a function whose sum is greater than 1.)

The bug can be fixed using the following

Lemma. Every program 𝑃 computing a function of two natural arguments and
taking rational values (and possibly the value −∞) can be algorithmically trans-
formed into a program 𝑃 ′ having the following properties. The program 𝑃 ′ defines
a lower semicomputable semimeasure. If the program 𝑃 itself defines a lower semi-
computable semimeasure, then 𝑃 ′ defines the same semimeasure.

Proof. Let 𝑃 be any program satisfying the condition of the Lemma. (We do
not assume that 𝑃 is total.) First we let 𝑃 ′(𝑖, 𝑛) be equal to the maximal number
output within the first 𝑛 steps in the computations of 𝑃 (𝑖, 0), . . . , 𝑃 (𝑖, 𝑛). If none
of this computations terminates within 𝑛 steps or all the results are negative, we
let 𝑃 ′(𝑖, 𝑛) = 0. This definition guarantees that 𝑃 ′(𝑖, 𝑛) is non-negative and is
non-decreasing in 𝑛. For every 𝑖, if 𝑃 (𝑖, 𝑛) is defined for all 𝑛 and is non-negative
and non-decreasing in 𝑛, then lim𝑛 𝑃

′(𝑖, 𝑛) = lim𝑛 𝑃 (𝑖, 𝑛).
It remains to ensure that

∑︀
𝑝′𝑖 6 1 where 𝑝′𝑖 = lim𝑛 𝑃

′(𝑖, 𝑛). To this end first
let 𝑃 ′(𝑖, 𝑛) = 0 for all 𝑛 < 𝑖. This transformation does not change the limit and
preserves monotonicity in 𝑛. The advantage is that now the sum of 𝑃 ′(𝑖, 𝑛) over
all 𝑖 is finite and can be computed for every 𝑛. We need that this sum does not
exceed 1. To enforce this we do not increase 𝑃 ′ if we see that this would violate
our restriction. We trim first the value 𝑃 ′(𝑖, 𝑛) for 𝑛 = 0, then for 𝑛 = 1 etc. The
Lemma is proven.

Using the transformation described in the Lemma, we arrange all the lower
semicomputable semimeasures into a computable sequence. The weighted sum of
all its terms is a maximal lower semicomputable semimeasure. Thus we obtain
another proof of Theorem 47.

Fix any maximal lower semicomputable semimeasure on the natural numbers.
We will use the notation 𝑚(𝑖) or 𝑚𝑖 for the probability of 𝑖 and the letter 𝑚 for the
semimeasure itself. The value 𝑚(𝑖) is called the a priori probability of 𝑖. (Another
name for 𝑚 is the universal semimeasure on N.) Here is an explanation of this
term. Assume that we are given a device (a black box) that after being turned
on produces a natural number. For each 𝑖 we want to get an upper bound for the
probability that the black box outputs 𝑖. If the device is a probabilistic machine
then a priori (without any other knowledge about the box) we can estimate the
probability of 𝑖 as 𝑚(𝑖). This estimate can be much greater than the (unknown)
true probability, but only 𝑂(1) times less than it.

The a priori probability of a number 𝑖 is closely related to its complexity.
Roughly speaking, the less the complexity is, the larger the a priori probability is.
More specifically, we will show that a slightly modified version of complexity (the
so-called “prefix complexity”) of 𝑖 is equal to − log𝑚(𝑖).

96 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

4.3. Prefix machines

The difference between prefix complexity and plain complexity can be explained
as follows. Defining prefix complexity, we consider only “self-delimiting descrip-
tions”. This means that the decoding machine does not know where the descrip-
tion ends and has to find this information itself. One can clarify this idea in several
non-equivalent ways. We will discuss all them further in detail.

Let us start with a following definition. Let 𝑓 be a function whose arguments
and values are binary strings. We say that 𝑓 is prefix-stable, if the following holds
for all strings 𝑥, 𝑦:

(𝑓(𝑥) is defined) and (𝑥 is a prefix of 𝑦) ⇒ 𝑓(𝑦) is defined and 𝑓(𝑦) = 𝑓(𝑥).

Theorem 48. There exists an optimal prefix-stable decompressor (for the fam-
ily of all prefix-stable decompressors).

Proof. Recall that a decompressor (description mode) is a computable func-
tion mapping strings to strings. (All strings are binary.) The plain complexity is
defined using an optimal function in the class of all such functions. Now we restrict
the class of decompressors to computable prefix-stable functions. We assign to each
prefix-stable function 𝐷 the complexity function 𝐾𝐷, which is defined as earlier:
𝐾𝐷(𝑥) is the length of a shortest description of 𝑥 with respect to 𝐷 (i.e., minimal
𝑙(𝑦) among all 𝑦 such that 𝐷(𝑦) = 𝑥). So the definition of 𝐾𝐷(𝑥) coincides with
that of 𝐶𝐷(𝑥); we write 𝐾 instead of 𝐶 just to stress that we consider now only
prefix-stable decompressors.

We have to show that there exists an optimal prefix-stable decompressor 𝐷 (for
the class of all prefix-stable decompressors). The latter means that for any other
prefix-stable decompressor the inequality 𝐾𝐷(𝑥) 6 𝐾𝐷′(𝑥)+ 𝑐 holds for some 𝑐 and
all 𝑥.

Recall that for the plain complexity we have constructed an optimal decom-
pressor 𝐷 by letting

𝐷(𝑝𝑦) = 𝑝(𝑦).

Here 𝑝 is a self-delimiting description of 𝑝, say, 𝑝 = 𝑝01 where 𝑝 stands for the
string 𝑝 with all bits doubled. The notation 𝑝(𝑦) refers to the output of the pro-
gram 𝑝 given input 𝑦 (more precisely, the string 𝑝 is interpreted as a program in a
universal programming language).

Is this decompressor a prefix-stable one? Certainly not. Indeed, there is a
program 𝑝 computing a function that is not prefix-stable, say, 𝑝(0) = 𝑎 and 𝑝(00) =
𝑏 where 𝑎 ̸= 𝑏. Then 𝐷(𝑝0) = 𝑎 and 𝐷(𝑝00) = 𝑏.

To construct an optimal prefix-stable decompressor, we modify the definition of
𝐷 as follows. We enforce prefix-stability of programs by converting every program
𝑝 to another program [𝑝] that works as follows:

(1) Apply 𝑝 to all inputs in parallel. If the computation of 𝑝 on an input 𝑦
halts with output 𝑧 we write down the pair ⟨𝑦, 𝑧⟩. Let ⟨𝑦𝑖, 𝑧𝑖⟩ denote the resulting
sequence of pairs (enumerating the graph of 𝑝: 𝑧𝑖 = 𝑝(𝑦𝑖)).

(2) We delete some terms of the sequence ⟨𝑦𝑖, 𝑧𝑖⟩. Let us call strings 𝑦 and 𝑦′

compatible if one of them is a prefix of the other one (an equivalent definition: both
strings are prefixes of some third string). We say that a pair ⟨𝑦𝑖, 𝑧𝑖⟩ contradicts a
pair ⟨𝑦𝑗 , 𝑧𝑗⟩ if 𝑦𝑖 is compatible with 𝑦𝑗 , but 𝑧𝑖 ̸= 𝑧𝑗 . We delete a pair ⟨𝑦𝑖, 𝑧𝑖⟩ if it
contradicts some other pair ⟨𝑦𝑗 , 𝑧𝑗⟩ with 𝑗 < 𝑖. (The argument would work as well
if we delete a pair only when it contradicts a non-deleted previous pair.)

4.3. PREFIX MACHINES 97

(3) Computing the sequence ⟨𝑦𝑖, 𝑧𝑖⟩ and filtering out some its terms is a process
that does not depend on the input for the program [𝑝]. The input string 𝑦 is taken
into account as follows. We wait until a (non-deleted) pair ⟨𝑦𝑖, 𝑧𝑖⟩ appears such
that 𝑦𝑖 is a prefix of 𝑦. Once we encounter such a pair, we print the result 𝑧𝑖 and
halt.

For every program 𝑝 the function 𝑦 ↦→ [𝑝](𝑦) is prefix-stable. Indeed, assume
that [𝑝](𝑦) = 𝑧. By construction there is a non-deleted pair ⟨𝑦𝑖, 𝑧⟩ such that 𝑦𝑖 is
a prefix of 𝑦. Assume furthermore that 𝑦 is a prefix of 𝑦′. We need to show that
[𝑝](𝑦′) = 𝑧. The string 𝑦𝑖 is a prefix of 𝑦′ as well, therefore [𝑝](𝑦′) = 𝑧 or [𝑝](𝑦′) = 𝑧𝑗
where ⟨𝑦𝑗 , 𝑧𝑗⟩ is a non-deleted pair such that 𝑗 < 𝑖 and 𝑦𝑗 is a prefix of 𝑦′. In the
latter case 𝑦𝑗 is compatible with 𝑦𝑖 and, since the pair ⟨𝑦𝑖, 𝑧⟩ does not contradict
the pair ⟨𝑦𝑗 , 𝑧𝑗⟩, we have 𝑧𝑗 = 𝑧.

If 𝑝 is prefix-stable then no pair is deleted in the run of its transformed ver-
sion [𝑝]. Therefore [𝑝](𝑦) is defined as 𝑝’s output on 𝑦 or a prefix of 𝑦. As we assume
that 𝑝 is prefix-stable, the result is the same.

Now we are able to finish the proof. Let

𝐷(𝑝𝑦) = [𝑝](𝑦).

We have to verify that 𝐷 is prefix-stable and optimal (in the class of all prefix-stable
decompressors).

To prove the first statement, assume that ̂︀𝑝1𝑦1 is a prefix of ̂︀𝑝2𝑦2. We need to
show that 𝐷(̂︀𝑝1𝑦1) and 𝐷(̂︀𝑝2𝑦2) coincide. As both the strings ̂︀𝑝1, ̂︀𝑝2 are prefixes of
the string ̂︀𝑝2𝑦2, they are compatible. Thus 𝑝1 = 𝑝2 (as the encoding 𝑝 ↦→ ̂︀𝑝 is self-
delimiting) and 𝑦1 is a prefix of 𝑦2. Since the program [𝑝1] (=[𝑝2]) is prefix-stable,
we conclude that 𝐷(̂︀𝑝1𝑦1) = [𝑝1](𝑦) = [𝑝2](𝑦) = 𝐷(̂︀𝑝2𝑦2).

So we have shown that 𝐷 is prefix-stable. To prove the optimality assume that
some prefix-stable decompressor 𝐷′ is given, and 𝑝 is its program. Then we have
𝐷(𝑝𝑦) = [𝑝](𝑦) = 𝑝(𝑦). Therefore the complexity of all strings with respect to 𝐷′

is at most 𝑙(𝑝) greater than the complexity with respect to 𝐷. �

Let us fix some optimal prefix-stable decompressor and omit the subscript 𝐷
in 𝐾𝐷(𝑥), speaking about the prefix complexity 𝐾(𝑥) of 𝑥. As well as the plain
complexity, the prefix complexity is defined up to an 𝑂(1) additive term.

There is another way to define prefix complexity. Instead of prefix-stable func-
tions we consider prefix-free functions. A function is called prefix-free if every two
different strings in its domain are incompatible. If a prefix-free function is defined
on a string, it is undefined on all its proper prefixes and extensions.

This time we restrict the class of decompressors to prefix-free ones, that is,
computable prefix-free functions. We have the following theorem that is similar to
Theorem 48:

Theorem 49. The class of all prefix-free decompressors contains an optimal
element.

Proof. The proof is very similar to the proof of Theorem 48. This time we
construct, for every program 𝑝, a prefix-free program {𝑝} that works as follows:

(1) Just as before, run the program 𝑝 on all inputs to obtain a sequence ⟨𝑦𝑖, 𝑧𝑖⟩
of all pairs such that 𝑧 = 𝑝(𝑦).

(2) Delete all pairs ⟨𝑦𝑖, 𝑧𝑖⟩ such that 𝑦𝑖 is compatible with 𝑦𝑗 for some 𝑗 < 𝑖.

98 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

(3) Let 𝑦 denote the input to the program {𝑝}. We find the first non-deleted
pair ⟨𝑦𝑖, 𝑧𝑖⟩ with 𝑦𝑖 = 𝑦 and output 𝑧𝑖 = {𝑝}(𝑦).

It is easy to verify that the mapping 𝑦 ↦→ {𝑝}(𝑦) is prefix-free for every 𝑝 and
coincides with the mapping 𝑦 ↦→ 𝑝(𝑦) if the latter one is prefix-free. The rest of the
proof repeats the corresponding part from the proof of Theorem 48. �

Let us fix some optimal prefix-free decompressor and let 𝐾 ′(𝑥) denote the
corresponding complexity.

Which of the complexity measures 𝐾 and 𝐾 ′ is “the right one”? This is a
matter of taste. We will prove in Section 4.5 that these measures differ by an
additive constant (and that both complexities coincide with the negative logarithm
of the a priory probability). Thus the question is which of the two definitions (of the
same prefix complexity) is more natural. Again this is a matter of taste. Authors
believe that the definition based on prefix-stable functions is more natural than the
other one (which explains why we started with it). However, sometimes the second
definition is more convenient. For instance, its use makes easier the proof of the
theorem on the complexity of a pair (Section 4.6).

One can find the historical account in [18] (see also the arxiv version of this
paper); making the story short, let us mention only that prefix complexity was inde-
pendently introduced by Levin who used prefix-stable decompressors (and denoted
prefix complexity by KP), and Chaitin who used prefix-free ones (and denoted
prefix complexity by 𝐻). Now most English-language papers, following [102], use
letter 𝐾 for prefix complexity.

The properties of 𝐾 and 𝐾 ′ are similar to those of the plain complexity but
differ in some important aspects:

∙ We start with a comparison of 𝐶 and 𝐾:

𝐶(𝑥) 6 𝐾(𝑥) + 𝑂(1) and 𝐶(𝑥) 6 𝐾 ′(𝑥) + 𝑂(1).

These properties are straightforward, as both prefix-stable and prefix-free
decompressors form a subclass in the class of all decompressors.

∙ Recall that 𝐶(𝑥) 6 𝑙(𝑥)+𝑂(1), as the optimal decompressor is better than
the identity function. This argument is not valid for prefix complexity, as
the identity function is neither prefix-stable nor prefix-free. We will show
in Section 4.5 that this inequality is false for the prefix complexity.

∙ Nevertheless there is an upper bound for the prefix complexity in terms
of the length. We will provide such bounds for 𝐾 ′, the same bounds
hold for 𝐾, the proofs being entirely similar. Let us show that 𝐾 ′(𝑥) 6
2𝑙(𝑥) + 𝑂(1). Indeed, consider a decompressor

𝐷(𝑥01) = 𝑥

where 𝑥 stands for the string obtained by doubling all bits in 𝑥. This
decompressor is prefix-free and 𝐾𝐷(𝑥) = 2𝑙(𝑥) + 2. By replacing 𝑥01
by a more efficient self-delimiting encoding �̂� we can obtain better upper
bounds. For example, letting �̂� = bin(𝑙(𝑥))01𝑥 we obtain the bound

𝐾 ′(𝑥) 6 𝑙(𝑥) + 2 log 𝑙(𝑥) + 𝑂(1).

By iterating the construction, we obtain the bound

𝐾 ′(𝑥) 6 𝑙(𝑥) + log 𝑙(𝑥) + 2 log log 𝑙(𝑥) + 𝑂(1)

and so on.

4.4. A DIGRESSION: MACHINES WITH SELF-DELIMITING INPUT 99

∙ Like the plain complexity, the prefix complexity does not increase when
algorithmic transformation is applied:

𝐾 ′(𝐴(𝑥)) 6 𝐾 ′(𝑥) + 𝑂(1).

The constant 𝑂(1) depends on 𝐴 but does not depend on 𝑥. Indeed, if
𝐷 is a prefix-free decompressor then so is the composition 𝑥 ↦→ 𝐴(𝐷(𝑥)).
This is true for prefix-stable decompressors as well, so we obtain a similar
statement for 𝐾 in place of 𝐾 ′. Using this property we can define pre-
fix complexity of other constructive objects like pairs of strings, natural
numbers, finite sets of strings etc., without specifying how to encode them
by binary strings.

∙ For the prefix complexity, the inequality comparing the complexity of a
pair of strings with their separate complexities is true up to a constant
additive error term rather than logarithmic one:

𝐾(𝑥, 𝑦) 6 𝐾(𝑥) + 𝐾(𝑦) + 𝑂(1)

(see below Theorem 60 in Section 4.6, p. 111).
∙ Let 𝐷 be an optimal decompressor (from the definition of the plain com-

plexity). Since the the transformation 𝑝 ↦→ 𝐷(𝑝) does not increase com-
plexity, we have

𝐾(𝐷(𝑝)) 6 𝐾(𝑝) + 𝑂(1) 6 𝑙(𝑝) + 2 log 𝑙(𝑝) + 𝑂(1).

Let 𝑝 be a shortest description of 𝑥 with respect to 𝐷, that is, 𝐷(𝑝) = 𝑥
and 𝑙(𝑝) = 𝐶(𝑥). Then we have

𝐾(𝑥) = 𝐾(𝐷(𝑝)) 6 𝑙(𝑝) + 2 log 𝑙(𝑝) + 𝑂(1) =

= 𝐶(𝑥) + 2 log𝐶(𝑥) + 𝑂(1).

Using stronger bounds in place of the bound 𝐾(𝑝) 6 𝑙(𝑝)+2 log 𝑙(𝑝)+𝑂(1),
we obtain the inequality

𝐾(𝑥) 6 𝐶(𝑥) + log𝐶(𝑥) + 2 log log𝐶(𝑥) + 𝑂(1)

and other similar inequalities.

4.4. A digression: machines with self-delimiting input

This section is not used in the sequel; here we analyze the meaning of the words
“self-delimited input” and show that different interpretation of them lead to prefix-
free and prefix-stable functions (thus providing a motivation for these notions).

Usually the input is given to a machine in such a way that the machine knows
where the input string starts and ends. For example, for Turing machines we usually
assume that initially the head is located at the first symbol of the input string and
that its last symbol is followed be a special marker, say, a blank.

Informally speaking, a machine with a self-delimited input receives the input
bits one by one and has no indication which of them is the last one. At certain
time it should print a result and halt.

100 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

0 1 0 0 0 1 · · ·

Figure 2. A head on a one-way input tape.

4.4.1. Prefix free functions. Here is a refinement of this idea. Consider
Turing machine that has an extra infinite one-way read-only input tape. The left-
most cell of the tape contains a special marker #. All the other cells contain either
0 or 1 (Fig. 2).

Initially the input tape head is located in the leftmost cell and thus scans the
marker. The instruction performed by the machine is determined by the symbol
on the input tape it scans (and also by the symbol on the work tape and machine’s
internal state, as usual). The possible actions are: changing the internal state,
writing a symbol on the work tape, moving some of the heads (in any direction on
the work tape and to the right on the input tape). The result of the computation
should be written on the work tape in the usual way. The work tape is initially
empty.

Let 𝑀 be a Turing machine as described above. Let us run this machine for
all possible contents of the input tape. If some of the computations halts, we write
down two strings: the string 𝑥 consisting of all bits scanned by the input head, and
the result 𝑦 of the computation. Let Γ𝑀 denote the resulting set of pairs ⟨𝑥, 𝑦⟩. If
two different pairs ⟨𝑥1, 𝑦1⟩ and ⟨𝑥2, 𝑦2⟩ are in Γ𝑀 , then the strings 𝑥1 and 𝑥2 are
incompatible. Indeed, assume that 𝑥1 is a prefix of 𝑥2. Since the computation on
𝑥1 does not go outside 𝑥1, it will be valid for 𝑥2 too, and the last bits of 𝑥2 remain
unused, thus the pair ⟨𝑥2, 𝑦2⟩ does not belong to Γ𝑀 (unless 𝑥1 = 𝑥2; in this case
𝑦1 = 𝑦2 and we get the same pair).

In particular, the first components of different pairs in Γ𝑀 are different. This
means that Γ𝑀 is a graph of a function. We denote this function by 𝛾𝑀 . Its
arguments and values are binary strings. We say that 𝑀 computes 𝛾𝑀 in a prefix-
free mode. It is easy to see that the function 𝛾𝑀 is computable in the usual sense.
Indeed, to compute 𝛾𝑀 (𝑥) we write 𝑥 on the input tape and any symbols (say, zeros)
to the right of 𝑥 and then run 𝑀 . If 𝑀 halts with output 𝑦, we verify whether 𝑀
has scanned all symbols of 𝑥 and no symbols beyond 𝑥. If the verification fails, we
output no result, otherwise we output 𝑦 and halt.

It is easy to see that the function 𝛾𝑀 is computable and prefix-free (every two
different strings in its domain are incompatible). The converse statement is true as
well:

Theorem 50. Every computable prefix-free function is computed by some ma-
chine in a prefix-free mode.

Proof. This statement is not that evident. Indeed, a (standard) machine
computing a prefix-free function 𝑓 knows where the input ends and can use this
information. We need to construct another machine 𝑀 such that 𝛾𝑀 = 𝑓 .

The machine 𝑀 works as follows. Fix a machine computing 𝑓 in the usual
sense. We simulate in parallel its computations on all possible inputs. Sometimes
we will interrupt the simulation and scan a new symbol from the input tape. More

4.4. A DIGRESSION: MACHINES WITH SELF-DELIMITING INPUT 101

specifically, when a new pair ⟨𝑥, 𝑦⟩ with 𝑓(𝑥) = 𝑦 appears, we compare 𝑥 with the
already scanned part 𝑟 of the input tape. If 𝑟 is not a prefix of 𝑥 then we do nothing
and wait until the next pair ⟨𝑥, 𝑦⟩ appears. If 𝑟 coincides with 𝑥, we output 𝑦 and
halt. Otherwise 𝑟 is a proper prefix of 𝑥. In this case we read the input tape until
we find the first bit where 𝑥 differs from the contents of the input tape or we find
out that the input tape starts with 𝑥. In the latter case we output 𝑦 and halt. In
the former case we return to the simulation process and continue it until the next
pair ⟨𝑥, 𝑦⟩ appears.

How does 𝑀 start its work? Initially the scanned part of the input tape is
empty. Once the first pair ⟨𝑥, 𝑦⟩ appears, we look whether 𝑥 is empty or not. If 𝑥
is empty, we print 𝑦 and halt. Otherwise we scan the input tape until we read 𝑥
or find the first bit where 𝑥 differs from the contents of the input tape (finding out
that 𝑥 is not a prefix of the input). In the first case we print 𝑦 and halt. In the
second case we wait for the next pair ⟨𝑥, 𝑦⟩.

Formally speaking, we maintain the following invariant relation: after process-
ing each pair, if 𝑟 is the scanned part of the input tape, then either

(1) 𝑓(𝑟) is defined and the machine halts with the output 𝑓(𝑟), or
(2) 𝑟 is not a prefix of 𝑥 for all pairs ⟨𝑥, 𝑦⟩ appeared so far, but every proper

prefix 𝑟′ of 𝑟 is a proper prefix of one of such 𝑥’s.
(A proper prefix of a string is its prefix that is different from the string itself.)
It is easy to verify that this invariant relation implies that 𝑓 = 𝛾𝑀 . We skip

this verification and explain informally the main idea of the construction: if the
scanned part 𝑟 of the input is a proper prefix of a string in the domain of 𝑓 then
𝑓(𝑟) is undefined and we can safely read the next bit of the input. �

An equivalent model can be defined in more “practical” terms. Consider com-
puter programs that have instructions of the form

𝑏 := NextBit.

Executing this instruction, the program shows on the screen a prompt like “Enter
the next bit” and waits until the user hits one of the keys “0” and “1”. After she
does this, the input bit is recorded in 𝑏 and the computation resumes.

One can assign computable function 𝑓 to every program of this type. Namely,
𝑓(𝑥) equals to 𝑦 if the program prints 𝑦 provided the user enters the bits of 𝑥
successively in response to the program’s prompts. If the program prints the result
before the user enters all the bits of 𝑥 or if it asks for a new bit after all the bits of
𝑥 are entered, then 𝑓(𝑥) is undefined.

It is easy to modify the arguments above to prove that programs of this type
compute all the prefix-free functions and no other. (Moving the input head to the
right is just reading the next input bit.)

4.4.2. Prefix stable functions. In the previous section we considered “block-
ing” read primitive: program stops and waits until the next bit arrives. There is
another possibility: bits arrive asynchronously and are placed in the input queue;
the program may ask whether the queue is empty or not, and continue the execu-
tion. Also, if the queue is not empty, the program may get the next bit from the
queue.

To be more specific, we assume that the program may use the instruction

𝑏 := NextExists

102 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

to find out whether the queue is non-empty. To read a new input bit the program
invokes the instruction

𝑏 := NextBit

This instruction removes the first (the oldest) bit from the queue and assigns it to
the variable 𝑏.

One should specify what happens if the instruction NextBit is performed when
the queue is empty. We may agree that this causes a crash, or that the computation
is delayed until the next bit arrives. It is not essential which of these two options
is chosen, since we may guard the input statement by a waiting loop:

while not NextExists do {nothing};
b := NextBit

The advantage of a non-blocking read operation is that we can do some useful
work while waiting for the next input bit. On the other hand, it is not clear now
how to define a function computed by a program, since the output of the program
may depend not only on the input string, but also on timing.

We call a program robust if this is not the case (i.e., if the output is determined
by the input string and does not depend on timing). If the program is robust, for
any input string 𝑥 there are two possibilities: (1) the program does not halt for any
delays between the consecutive bits of 𝑥; or (2) for some 𝑦, the program outputs 𝑦
whatever delays happen between the consecutive bits of 𝑥.

In this way every robust program computes a function 𝑓 such that 𝑓(𝑥) is
undefined in the first case and equals 𝑦 in the second case.

Theorem 51. (a) The function computed by a robust program is both com-
putable and prefix-stable. (b) For every computable prefix-stable function there
exists a robust program that computes it.

Proof. (a) The computability of 𝑓 is straightforward: to compute 𝑓(𝑥) we
start our robust program and enter all the bits of 𝑥 (with arbitrary delays). Then
we wait until the program outputs a result, which by assumption is equal to 𝑓(𝑥)
if 𝑓 is defined on 𝑥 and does not exist otherwise.

Let us prove that 𝑓 is prefix-stable. We have to show (recall the definition from
Section 4.3) that if a robust program produces 𝑦 for some input 𝑥 then it produces
𝑦 on every input 𝑥′ that is an extension of 𝑥. Start the program and enter all the
bits of 𝑥 (with arbitrary delays). By assumption the program produces 𝑦 and then
halts. After that, input all the remaining bits of 𝑥′ (the difference between 𝑥′ and
𝑥) with arbitrary delays. Obviously, these extra bits do not affect the output of
the program. Thus the program produces output 𝑦 for input 𝑥′ at least for some
timing. Being robust, it does the same for arbitrary timing.

(b) Let 𝑓 be a computable prefix-stable function 𝑓 . The robust program 𝑟 that
computes 𝑓 works as follows:

Using a (non-robust) algorithm that computes 𝑓 , program 𝑟 computes in par-
allel 𝑓(𝑥) for all inputs 𝑥. At the same time 𝑟 reads all available input bits. Doing
this, 𝑟 looks for strings 𝑥 and 𝑦 such that 𝑓(𝑥) = 𝑦 and 𝑥 is a prefix of the input
sequence. Once such pair ⟨𝑥, 𝑦⟩ is found, program 𝑟 output 𝑦 and halts.

Assume that 𝑓(𝑥) = 𝑦 and all the bits of 𝑥 are entered (with some delays). We
have to prove that 𝑟 prints 𝑦 and halts whatever the delays are. Indeed, at certain
time 𝑟 knows that 𝑓(𝑥) = 𝑦 and all the bits of 𝑥 have been entered. At that time
the program outputs 𝑦 and halts unless it has been halted earlier. The latter indeed

4.4. A DIGRESSION: MACHINES WITH SELF-DELIMITING INPUT 103

can happen: the program can halt earlier with the result 𝑓(𝑥′) where 𝑥′ is some
string compatible with 𝑥. However, since 𝑓 is assumed to be prefix-stable, we have
𝑓(𝑥′) = 𝑦 and the output is the same.

If 𝑓(𝑥) is undefined and 𝑓 is prefix-stable then 𝑓(𝑥′) is undefined for all prefixes
𝑥′ of 𝑥, hence the program does not terminate. �

This theorem provides a motivation for the notion of a prefix-stable function.

96 Construct an algorithm transforming every program 𝑝 that uses NextBit

and NextExists calls into a robust program 𝑝′ that computes the same function
as 𝑝 does, if 𝑝 is robust (and into some prefix-stable function if 𝑝 is not). [Hint:
Use the construction from the proof of Theorem 51 back and forth.]

97 (Continued.) Prove that there exist no algorithm that for a given pro-
gram 𝑝 decides whether 𝑝 is robust or not. [Hint: This can be done in a standard
way, by reducing the halting problem. See, e.g., [182]]

4.4.3. Continuous computable mappings. There is another, more ab-
stract, motivation for the notion of a prefix-stable function. It goes back to a
general theory of computable functionals of higher type, but we restrict our atten-
tion to a special case we are interested in. (See [175] for a more general approach.)

Let Σ denote the set of all finite and infinite binary sequences: Σ = Ξ∪Ω. For
a finite string 𝑥 let Σ𝑥 denote the set of all finite and infinite extensions of 𝑥. We
will consider Σ as a partially ordered set: 𝑥 6 𝑦 if 𝑥 is a prefix of 𝑦.

Consider a topology on Σ whose base consists of all sets of the form Σ𝑥. This
means that a set is open if it is a union of some sets of this form. It is easy to verify
that we indeed get a topology. (Note that the resulting topological space does not
satisfy the separation axiom.)

The following statement is almost obvious:

Theorem 52. A set 𝐴 ⊂ Σ is open if and only if it satisfies the following
conditions:

(1) if a finite string 𝑥 is in 𝐴, then all finite and infinite extensions of 𝑥 are
in 𝐴;

(2) if an infinite sequence is in 𝐴, then some its finite prefix is in 𝐴.

Proof. Every union of base sets satisfies the conditions (1) and (2). Con-
versely, if a set 𝐴 satisfies both conditions then it is equal to the union of Σ𝑥 over
all finite strings 𝑥 in 𝐴. �

Add to the natural numbers a new element ⊥ (“undefined”) and let N⊥ denote
the resulting set. Consider the following partial order on this set: the element ⊥ is
less than all natural numbers, and all the natural numbers are pairwise incompa-
rable (Fig. 3).

⊥

0 1 2 3 4 . . .

Figure 3. The topological space N⊥

104 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

Consider the following topology on the set N ∪ {⊥}. A set is open if it either
does not include the element ⊥ or coincides with N ∪ {⊥}. It is easy to verify that
we get a topological space (that does not satisfy the separation axiom either).

Let us identify partial mappings from Σ into N with total mappings from Σ
into N⊥; the value ⊥ replaces all undefined values. The next theorem characterizes
continuous mappings (recall that a mapping is continuous if the preimage of every
open set is open).

Theorem 53. A (total) mapping 𝐹 : Σ → N⊥ is continuous if and only if the
following are true:

(1) 𝐹 is increasing, i.e., 𝑥 6 𝑦 implies 𝐹 (𝑥) 6 𝐹 (𝑦) (the signs 6 refer to the
pre-ordering relations on N⊥ and Σ introduced above);

(2) if 𝑥 is an infinite binary sequence and 𝐹 (𝑥) ̸= ⊥, then 𝑥 has a finite prefix
𝑥′ such that 𝐹 (𝑥′) ̸= ⊥.

Proof. Let 𝐹 be a continuous mapping. To verify the condition (1), assume
that 𝑥 6 𝑦 but 𝐹 (𝑥) ̸6 𝐹 (𝑦). Then 𝐹 (𝑥) is a natural number (and not ⊥) and
𝐹 (𝑥) ̸= 𝐹 (𝑦). The preimage of the open set {𝐹 (𝑥)} contains 𝑥 and does not contain
𝑦 hence it is not open.

Let us verify the condition (2). Assume that 𝑥 is an infinite sequence and
𝐹 (𝑥) ̸= ⊥. The preimage of the set {𝐹 (𝑥)} is open and contains 𝑥. Thus it
contains some finite prefix of 𝑥.

It remains to verify that any function 𝐹 satisfying conditions (1) and (2) is
continuous. We need to verify only that the preimage of every natural number
is open (indeed, the preimage of the entire space is open and other open sets are
unions of singletons formed by natural numbers). It is enough to verify that the
preimage of every natural number satisfies the conditions (1) and (2) from the
previous theorem. This is a straightforward corollary of our assumptions. (Note
that if 𝑥′ is a prefix of 𝑥 and 𝐹 (𝑥′) ̸= ⊥ then 𝐹 (𝑥′) = 𝐹 (𝑥), as 𝐹 is increasing.) �

For any given continuous mapping 𝐹 : Σ → N⊥ consider the set Γ𝐹 of all pairs
⟨𝑥, 𝑛⟩ ∈ Ξ×N such that 𝐹 (𝑥) = 𝑛. Note that the set Γ𝐹 is only a part of the graph
of the mapping 𝐹 (we consider only finite strings 𝑥 and require that 𝑛 ̸= ⊥).

Theorem 54. The mapping 𝐹 ↦→ Γ𝐹 is a bijection between continuous map-
pings Σ → N⊥ and sets 𝐴 ⊂ Ξ × N satisfying the following conditions:

(1) ⟨𝑥, 𝑛⟩ ∈ 𝐴, 𝑥 6 𝑦 ⇒ ⟨𝑦, 𝑛⟩ ∈ 𝐴;
(2) ⟨𝑥, 𝑛⟩ ∈ 𝐴, ⟨𝑥,𝑚⟩ ∈ 𝐴 ⇒ 𝑚 = 𝑛.

Proof. Assume that the mapping 𝐹 is continuous. If 𝐹 (𝑥) = 𝑛 ∈ N then the
condition (1) of the previous theorem guarantees that 𝐹 (𝑦) = 𝑛 for every 𝑦 > 𝑥.
This proves that the set Γ𝐹 satisfies the condition (1). As 𝐹 (𝑥) cannot be equal to
two different numbers, the condition (2) is also satisfied. Thus, for every continuous
mapping 𝐹 the set Γ𝐹 has properties (1) and (2).

It is easy to see that the set Γ𝐹 uniquely determines 𝐹 : if 𝑥 is a finite string
then 𝐹 (𝑥) is the second component of the (unique) pair ⟨𝑥, 𝑛⟩ ∈ Γ𝐹 . If there is
no such pair then 𝐹 (𝑥) = ⊥. If 𝑥 is an infinite sequence then 𝐹 (𝑥) is determined
uniquely as 𝐹 (𝑥′) where 𝑥′ is a sufficiently long prefix of 𝑥.

It remains to show that every set 𝐴 having properties (1) and (2) is equal to
Γ𝐹 for certain 𝐹 . For every finite 𝑥 define 𝐹 (𝑥) as the natural number 𝑛 such
that ⟨𝑥, 𝑛⟩ ∈ 𝐴; such a number is unique due to (2). If there is no such 𝑛 then let

4.5. THE MAIN THEOREM ON PREFIX COMPLEXITY 105

𝐹 (𝑥) = ⊥. By condition (1) we get an increasing function. For every infinite 𝑥 ∈ Σ
let 𝐹 (𝑥) be equal to 𝐹 (𝑥′) where 𝑥′ is any prefix of 𝑥 such that 𝐹 (𝑥′) ̸= ⊥. If there
is no such 𝑥′ then let 𝐹 (𝑥) = ⊥. By property (1) the value of 𝐹 (𝑥) is well defined.
The constructed function 𝐹 satisfies both conditions (1) and (2) from the previous
theorem and is continuous. By construction we have Γ𝐹 = 𝐴. �

The conditions (1) and (2) mean that the set 𝐴 is a graph of a prefix-stable
function. We thus have a one-to-one correspondence between continuous mappings
Σ → N⊥ and prefix-stable functions.

Call a continuous mapping 𝐹 : Σ → N⊥ computable if the set Γ𝐹 is enumerable.
It is easy to verify that 𝐹 is computable if and only if the restriction of 𝐹 to those
strings 𝑥 ∈ Ξ for which 𝑓(𝑥) ̸= ⊥ is computable in the standard sense. (A partial
function from Ξ to N is computable if and only if its graph is enumerable.) Thus
computable continuous functions Σ → N⊥ are basically the same as prefix-stable
functions. This gives an extra motivation for the notion of a computable prefix-
stable function.

4.5. The main theorem on prefix complexity

In this section, we prove that all the three complexity measures, 𝐾 (defined
using prefix-stable decompressors), 𝐾 ′ (defined using prefix-free decompressors)
and the negative logarithm of the a priori probability coincide up to an additive
constant. To this end we prove that three inequalities

− log𝑚(𝑥) 6 𝐾(𝑥) 6 𝐾 ′(𝑥) 6 − log𝑚(𝑥)

are true up to a constant error term. We start with two easy inequalities.

Theorem 55.
𝐾(𝑥) 6 𝐾 ′(𝑥) + 𝑂(1)

Proof. This inequality would be evident if every prefix-free function were
prefix-stable. This is not the case: a prefix-free function 𝐷 is undefined on all the
extensions of every string 𝑢 in the domain of 𝐷. On the other hand, a prefix-stable
function 𝐷 is defined on all the extensions 𝑣 of every string 𝑢 in the domain of 𝐷,
and 𝐷(𝑣) = 𝐷(𝑢).

Therefore we need a (simple) construction. Let 𝐷 be a prefix-free decompressor.
Define another decompressor 𝐷′ as follows: 𝐷′(𝑦) = 𝑥 if and only if 𝐷(𝑦′) = 𝑥 for
some prefix 𝑦′ of 𝑦. As 𝐷 is prefix-free, such 𝑦′ is unique, thus 𝐷′ is well defined.
To compute 𝐷′(𝑦) we just apply 𝐷 in parallel to all the prefixes 𝑦′ of 𝑦 until we
find a prefix 𝑦′ such that 𝐷(𝑦′) is defined.

By construction the function 𝐷′ is prefix-stable and extends 𝐷. Therefore the
complexity of each string with respect to 𝐷′ does not exceed its complexity with
respect to 𝐷. (In fact, the complexities with respect to 𝐷 and 𝐷′ coincide, as the
described transformation 𝐷 ↦→ 𝐷′ does not affect shortest descriptions.) �

We could try to prove the converse inequality in a similar way: consider the
restriction of the given prefix-stable decompressor 𝐷 to minimal descriptions. That
is, let 𝐷′(𝑦) = 𝑧 if 𝐷(𝑦) = 𝑧 and 𝐷(𝑦′) is undefined for all proper prefixes 𝑦′ of 𝑦.
This transformation is an inverse of the transformation used in the proof of the
last theorem; the resulting function 𝐷′ is indeed prefix-free. The problem is that it
might be non-computable.

106 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

98 Find a computable prefix-stable function 𝐷 for which the prefix-free func-
tion 𝐷′ constructed in this way is not computable. [Hint: Let 𝐴 be an enumerable
undecidable set, whose complement is thus not enumerable. Let 𝑓(0𝑛11𝑥) = 0 for
all natural numbers 𝑛 and all binary strings 𝑥. Let also 𝑓(0𝑛1𝑥) = 0 for all 𝑛 ∈ 𝐴
and all 𝑥.]

This problem shows that, in a sense, the non-blocking read operation is more
powerful than the blocking one (see Section 4.4).

Theorem 56.
− log𝑚(𝑥) 6 𝐾(𝑥) + 𝑂(1).

Proof. We have to prove that 2−𝐾(𝑥) 6 𝑐𝑚(𝑥) for some constant 𝑐 and for
all 𝑥. Recall that 𝑚 is the maximal lower semicomputable semimeasure. Thus
it suffices to find an upper bound for the function 𝑥 ↦→ 2−𝐾(𝑥) that is a lower
semicomputable semimeasure. (In this section we consider discrete semimeasures
on the set of all binary strings, as defined in Section 4.1.)

Let us construct a probabilistic machine generating this semimeasure. Toss
a coin to obtain a sequence 𝑏0𝑏1𝑏2 . . . of random bits. Simultaneously, apply the
optimal prefix-stable decompressor 𝐷 (from the definition of 𝐾) to all prefixes of
the sequence 𝑏0𝑏1𝑏2, If one of the computations

𝐷(Λ), 𝐷(𝑏0), 𝐷(𝑏0𝑏1), 𝐷(𝑏0𝑏1𝑏2), . . .

terminates with a certain result, output that result and halt. Note that it does not
matter which of the terminating computations we choose: the prefix-stability of 𝐷
guarantees that this choice does not affect the result.

Let 𝑥 be a binary string and let 𝑝 be a shortest description of 𝑥 with respect
to 𝐷. Then the machine outputs 𝑥 with probability at least 2−𝑙(𝑝). Indeed, if
the random sequence starts with 𝑝 then the result of the machine is 𝑥. Thus the
constructed machine generates a measure that is an upper bound for 2−𝐾(𝑥). �

There is a slightly different proof of the same theorem, which does not involve
probabilistic machines. The function 𝑥 ↦→ 2−𝐾(𝑥) is lower semicomputable. Thus
it is enough to show that it is a semimeasure.

Theorem 57. ∑︁
𝑥

2−𝐾(𝑥) 6 1.

Proof. For every string 𝑥 let 𝑝𝑥 be some shortest description of 𝑥 (with respect
to the optimal prefix-stable function from the definition of 𝐾). For every two
different strings 𝑥 and 𝑦 the strings 𝑝𝑥 and 𝑝𝑦 are incompatible. Thus the statement
is a direct corollary of the following

Lemma. Let 𝑝0, 𝑝1, 𝑝2, . . . be pairwise incompatible strings (that is, neither of
the strings is a prefix of another one). Then

∑︀
𝑖 2−𝑙(𝑝𝑖) 6 1.

Indeed, for every 𝑖 consider the set Ω𝑝𝑖
of all infinite extensions of 𝑝𝑖. Its uniform

Bernoulli measure is equal to 2−𝑙(𝑝𝑖). As the strings 𝑝𝑖 are pairwise incompatible,
these sets are disjoint and the sum of the measures of all sets Ω𝑝𝑖

is at most 1. The
Lemma and Theorem 57 are proved. �

Theorem 57 implies that the inequality 𝐾(𝑥) 6 𝑙(𝑥)+𝑂(1) is false (thus showing
the difference between plain complexity 𝐶 and prefix complexity 𝐾) Indeed, if it

4.5. THE MAIN THEOREM ON PREFIX COMPLEXITY 107

were true, the series ∑︁
𝑥

2−𝑙(𝑥)

would converge. However, for every 𝑛 the terms of this series corresponding to
strings 𝑥 of length 𝑛 sum up to 1 (there are 2𝑛 such terms and each of them is
equal to 2−𝑛).

99 Prove that even a weaker inequality 𝐾(𝑥) 6 𝑙(𝑥) + log 𝑙(𝑥) + 𝑂(1) is false
(in other words, the difference 𝐾(𝑥)− 𝑙(𝑥)− log 𝑙(𝑥) is not bounded by a constant).
[Hint: Use the divergence of the harmonic series.]

It remains to prove the last (and most difficult) inequality:

Theorem 58.
𝐾 ′(𝑥) 6 − log𝑚(𝑥) + 𝑂(1).

Proof. We present first a sketch of the proof. The semimeasure 𝑚(𝑥) is lower
semicomputable, so we can generate lower bounds for 𝑚(𝑥) that converge to 𝑚(𝑥),
but no estimates for the approximation error are given. The larger 𝑚(𝑥) is, the
smaller 𝐾 ′(𝑥) should be, that is, the shorter description 𝑝 we have to provide for 𝑥.
The descriptions reserved for different strings must be incompatible. In geometric
terms: for every binary string 𝑝 we consider the interval 𝐼𝑝 formed by all reals
whose binary expansion starts with 𝑝. The descriptions 𝑝1 and 𝑝2 are incompatible
if the intervals 𝐼𝑝1 and 𝐼𝑝2 do not overlap. The inequality 𝑙(𝑝) 6 − log2 𝑚(𝑥) means

that the length of the interval 𝐼𝑝 is at least 𝑚(𝑥), i.e., 2−𝑙(𝑝) > 𝑚(𝑥).
Thus we have to assign to every string 𝑥 an interval of length at least 𝑚(𝑥) so

that the intervals assigned to different strings do not overlap.
Let us specify more carefully what we need. First, for each 𝑥 it suffices to

reserve an interval of the length 𝜀𝑚(𝑥) rather than 𝑚(𝑥), for some fixed positive 𝜀.
This relaxation causes the complexity increase at most by a constant.

Second, we are allowed to use only properly aligned intervals, i.e., intervals 𝐼𝑝
for some binary string 𝑝. However, given the above relaxation, this restriction is
not essential. Indeed, every interval 𝐼 ⊂ [0, 1] contains a properly aligned interval
that is at most four times shorter.

So we arrive to a problem that is quite similar to the problem considered in
Section 4.1. There is a sequence of clients. Each client asks for some space inside
[0, 1]; client may increase its request from time to time. The important difference
is that now the clients are interested not in the total space allocated, but in the
contiguous interval, and this makes our “space management” job more difficult. To
compensate this difficulty, we are allowed to reduce all the requests, multiplying
them by some constant 𝜀.

Imagine that clients are processes running on a computer, and the memory
manager has to allocate contiguous properly allocated memory according to their
requests that increase in time. Once allocated memory cannot be freed (and reused
for other process).

The simplest strategy is to allocate a new interval (in the free memory) each
time the request increases. This does not work, however: if two clients’ requests in-
crease in alternating order and in small steps, the overhead cannot be compensated
by any fixed 𝜀, and we will run out of space.

108 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

The remedy is well known: one should look forward and increase the allocated
interval significantly even if the current increase in the request is small. For exam-
ple, one may allow only powers of 2 as the interval lengths (then the sum of the
lengths is at most twice more than the maximal summand).

It is not hard to present a detailed proof based on this strategy, but we will
not do that. Instead, we present a slightly different proof that uses the following
statement often called Kraft–Chaitin lemma. This lemma can be considered as a
computable version of the Kraft lemma from the information theory (see p. 226).

Lemma. Let 𝑙0, 𝑙1, 𝑙2, . . . be a computable sequence of non-negative integers
such that ∑︁

𝑖

2−𝑙𝑖 6 1.

Then there exists a computable sequence of pairwise incompatible binary strings
𝑥0, 𝑥1, 𝑥2, . . . such that 𝑙(𝑥𝑖) = 𝑙𝑖.

Note that the inequality of the lemma is a necessary condition for the existence
of such a sequence: the intervals 𝐼𝑥𝑖

do not overlap and their lengths are equal to
2−𝑙𝑖 . The lemma states that this necessary condition is also sufficient.

Proof. Again we have an infinite sequence of clients; the 𝑖th client demands
to allocate a properly aligned interval of length 2−𝑙𝑖 for her. The intervals reserved
for different clients should not overlap. We need to design a computable strategy
to fulfill all the clients’ requests.

There are several ways to describe such a strategy. Here is probably the simplest
one: let us maintain the representation of the free space (part of [0, 1] that is not
allocated) as the union of properly aligned intervals of different lengths.

Initially this list contains one interval [0, 1]. We serve the requests 𝑙0, 𝑙1, 𝑙2, . . .
sequentially.

Assume that current request is 𝑙𝑖, so the required length is 𝑤 = 2−𝑙𝑖 . First note
that one of the free intervals has length at least 𝑤. Indeed, if all the free intervals
had smaller lengths, their sum (the total amount of free space) would be less than
𝑤 since they have different lengths and the sum of powers of 2 less that 𝑤 = 2−𝑙 is
less than 𝑤.

If there is a free interval in the list that has size exactly 𝑤, our task is simple. We
just allocate this interval and delete it from the free list (maintaining the invariant
relation).

Assume that this is not the case. Then we have some intervals in the list that
are bigger than requested. Using the best fit strategy, we take the smallest among
these intervals. Let 𝑤′ > 𝑤 be its length. Then we split free interval of size 𝑤′ into
properly aligned intervals of size 𝑤,𝑤, 2𝑤, 4𝑤, 8𝑤, . . . , 𝑤′/2; note that

𝑤 + 𝑤 + 2𝑤 + 4𝑤 + 8𝑤 + . . . + 𝑤′/2 = 𝑤′.

The first interval (of size 𝑤) is allocated, all the other intervals are added to the
free list. We have to check out invariant relation: all new intervals in the list have
different sizes starting from 𝑤 up to 𝑤′/2; old free intervals cannot have this size
since 𝑤′ was the best fit in the list.

Lemma is proven.

100 Prove that the described algorithm can be rephrased as follows: for

each 𝑖 use the the leftmost properly aligned interval of length 2−𝑙𝑖 that does not
overlap with previously allocated intervals. [Hint: the construction used in the proof

4.5. THE MAIN THEOREM ON PREFIX COMPLEXITY 109

maintains also the following property: the lengths of the free intervals increase from
left to right.]

Corollary. Let 𝑙𝑖 be a computable sequence of natural numbers such that∑︀
𝑖 2−𝑙𝑖 6 1. Then 𝐾 ′(𝑖) 6 𝑙𝑖 + 𝑂(1).

Indeed, the Lemma provides a computable sequence of pairwise incompatible
strings 𝑥𝑖 of lengths 𝑙𝑖. Define a computable function 𝐷 by letting 𝐷(𝑥𝑖) = 𝑖. As 𝑥𝑖

are pairwise incompatible, this function is prefix-free. And 𝐷 is computable: given
an input 𝑥 we compare it with 𝑥𝑖 for all 𝑖 = 0, 1, 2, . . . successively. Once we find
that 𝑥 = 𝑥𝑖 we output 𝑖 and halt.

(Note that, in this proof, we go back and forth between natural numbers and
binary strings when we speak about the a priori probability and complexity.)

Let us return to the proof of the theorem. Consider the maximal lower semicom-
putable semimeasure 𝑚. By definition there exists a computable function 𝑚(𝑥, 𝑖)
taking rational values that is non-decreasing in 𝑖 such that

𝑚(𝑥) = lim
𝑖→∞

𝑚(𝑥, 𝑖).

Let 𝑚′(𝑥, 𝑖) stand for the smallest power of two (1, 1/2, 1/4, 1/8, . . .) that is an
upper bound for 𝑚(𝑥, 𝑖). The function 𝑚′(𝑥, 𝑖) is computable and non-decreasing
in 𝑖. Its value is between 𝑚(𝑥, 𝑖) and 2𝑚(𝑥, 𝑖).

Say that a pair ⟨𝑥, 𝑖⟩ is a boundary pair if 𝑚′(𝑥, 𝑖) > 𝑚′(𝑥, 𝑖 − 1) (or if 𝑖 = 0
and 𝑚′(𝑥, 0) > 0).

Let us show that the sum of 𝑚′(𝑥, 𝑖) over all boundary pairs ⟨𝑥, 𝑖⟩ does not
exceed 4. It is enough to show that for every fixed 𝑥 the sum of 𝑚′(𝑥, 𝑖) over all
boundary pairs ⟨𝑥, 𝑖⟩ is at most 4𝑚(𝑥). This is true since for every fixed 𝑥 each
term in this sum is at least twice bigger than the preceding term. Thus the sum
is at most twice bigger than its last term, 𝑚′(𝑥, 𝑖) for some 𝑖, which is less than
2𝑚(𝑥, 𝑖). Now recall that 𝑚(𝑥, 𝑖) 6 𝑚(𝑥). We see that the sum in question is at
most 4𝑚(𝑥).

The set of all boundary pairs ⟨𝑥, 𝑖⟩ is decidable: to find whether a pair ⟨𝑥, 𝑖⟩ is
a boundary pair we have to compare 𝑚′(𝑥, 𝑖) and 𝑚′(𝑥, 𝑖− 1).

Enumerate all the pairs ⟨𝑥, 𝑖⟩ and exclude all non-boundary ones; we get a
sequence ⟨𝑥0, 𝑖0⟩, ⟨𝑥1, 𝑖1⟩, . . . of pairs. Each boundary pair appears in this sequence
exactly once. Define 𝑙𝑛 by the equality

2−𝑙𝑛 = 𝑚′(𝑥𝑛, 𝑖𝑛)/4.

The sequence of 𝑙𝑛 is computable and∑︁
𝑛

2−𝑙𝑛 =
1

4

∑︁
𝑛

𝑚′(𝑥𝑛, 𝑖𝑛) 6 1.

The corollary mentioned above implies that 𝐾 ′(𝑛) 6 𝑙𝑛 + 𝑂(1). As 𝑥𝑛 can be
computed given 𝑛, we have

𝐾 ′(𝑥𝑛) 6 𝐾 ′(𝑛) + 𝑂(1) 6 𝑙𝑛 + 𝑂(1) = − log𝑚′(𝑥𝑛, 𝑖𝑛) + 𝑂(1).

So for every 𝑥 the complexity 𝐾 ′(𝑥) does not exceed − log𝑚′(𝑥, 𝑖) if ⟨𝑥, 𝑖⟩ is a
boundary pair. Taking the maximal 𝑖 with this property we get − log𝑚(𝑥) +𝑂(1),
therefore

𝐾 ′(𝑥) 6 − log𝑚(𝑥) + 𝑂(1).

�

110 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

So all three values 𝐾, 𝐾 ′ and − log𝑚 differ at most by a constant. Given this,
we do not distinguish in the sequel between 𝐾 and 𝐾 ′ (unless the difference in their
definitions becomes essential for some special reason) and use notation 𝐾 for prefix
complexity.

We tried to provide a detailed proof, and it may look complicated. The main
idea is, nevertheless, very simple. Let us try to summarize it again. In one direc-
tion: a short description 𝑝 for a string 𝑥 guarantees that 𝑥 may appear with high
probability (when we decompress a random sequence). In the other direction the
argument is a bit more complicated: high probability does not mean that there is
a short description, the string may have many long descriptions instead. Neverthe-
less our space allocation algorithm manages to consolidate them: when the total
lengths of intervals for 𝑥 reaches 2−𝑘 for some 𝑘, it allocates for 𝑥 a fresh interval of
length Ω(2−𝑘), this can be done from left to right or using Kraft–Chaitin lemma.

Let us note that actually we have proven the following statement that will be
used in Section 5.6:

Theorem 59. For every lower semicomputable sequence of reals 𝑝0, 𝑝1, . . . such
that

∑︀
𝑖 𝑝𝑖 6 1 one can effectively find a prefix-free decompressor 𝐷 such that

𝐾 ′
𝐷(𝑖) 6 − log2 𝑝𝑖 + 2.

This means that given some algorithm enumerating the set of pairs ⟨𝑟, 𝑖⟩ with
𝑟 < 𝑝𝑖, we can find an algorithm for a decompressor 𝐷 satisfying the inequality
for 𝐾 ′

𝐷.

4.6. Properties of prefix complexity

In this section we continue the study of the prefix complexity. We first revisit
some already established properties and present their alternative proofs based on
the a priori probability.

It is well known that the series
∑︀

1/𝑛2 converges. Multiplying its terms by
a constant, we obtain a lower semicomputable semimeasure. Thus the a priori
probability of a natural number 𝑛 is at least 𝑐/𝑛2 for some constant 𝑐. This implies
that

𝐾(𝑛) 6 2 log 𝑛 + 𝑂(1).

Let 𝑥𝑛 be the 𝑛th string in the sequence Λ, 0, 1, 00, 01, 10, 11, 000, . . . of all binary
strings. Then

𝐾(𝑥𝑛) 6 𝐾(𝑛) + 𝑂(1) 6 2 log 𝑛 + 𝑂(1) = 2𝑙(𝑥𝑛) + 𝑂(1);

the last equality is true, since 𝑥𝑛 is 𝑛+ 1 in binary notation without the leading 1,
so the length of 𝑥𝑛 is log 𝑛+𝑂(1). (There is a special case 𝑛 = 0, as both 1/02 and
log 0 are undefined; the changes needed to handle it are trivial.)

So we get the inequality 𝐾(𝑥) 6 2𝑙(𝑥) + 𝑂(1).
To prove a better upper bound for prefix complexity we may consider a con-

verging series ∑︁ 1

𝑛 log2 𝑛
.

(To prove its convergence compare it with the corresponding integral.) Using this
series, we obtain the inequality 𝐾(𝑛) 6 log 𝑛 + 2 log log 𝑛 + 𝑂(1) or (for strings)

𝐾(𝑥) 6 𝑙(𝑥) + 2 log 𝑙(𝑥) + 𝑂(1)

4.6. PROPERTIES OF PREFIX COMPLEXITY 111

(for the alternative proof of this inequality see p. 98).
Using the series

∑︀
1/(𝑛 log 𝑛(log log 𝑛)2),

∑︀
1/(𝑛 log 𝑛 log log 𝑛(log log log 𝑛)2)

etc. we can improve the bound further.
Now we prove the inequality relating the prefix complexity of a pair to prefix

complexities of its components.

Theorem 60.
𝐾(𝑥, 𝑦) 6 𝐾(𝑥) + 𝐾(𝑦) + 𝑂(1).

Just as in the case of plain complexity, we define 𝐾(𝑥, 𝑦) as the complexity of
the string [𝑥, 𝑦] where ⟨𝑥, 𝑦⟩ ↦→ [𝑥, 𝑦] is a computable injective encoding of pairs of
binary strings. The complexity of a pair does depend on the choice of the encoding;
switching to another computable injective encoding changes complexity at most by
an additive constant. Indeed, the translation between any two computable injective
encodings is an algorithmic transformation.

Proof. Consider the function 𝑚′ defined as

𝑚′([𝑥, 𝑦]) = 𝑚(𝑥)𝑚(𝑦);

here 𝑥 and 𝑦 are binary strings, [𝑥, 𝑦] is the encoding of the pair, and 𝑚 stands for
the a priori probability. If 𝑧 is not an encoding of any pair, we let 𝑚′(𝑧) = 0.

The function 𝑚′ is lower semicomputable (take the product of lower bounds
for 𝑚(𝑥) and 𝑚(𝑦) as a lower bound for 𝑚(𝑥)𝑚(𝑦)). Furthermore, we have∑︁

𝑧

𝑚′(𝑧) =
∑︁
𝑥,𝑦

𝑚′([𝑥, 𝑦]) =
∑︁
𝑥,𝑦

𝑚(𝑥)𝑚(𝑦) =
∑︁
𝑥

𝑚(𝑥)
∑︁
𝑦

𝑚(𝑦) 6 1 · 1 = 1.

Thus 𝑚′ is a lower semicomputable semimeasure. Comparing 𝑚′ with the a priori
probability, we obtain the inequality 𝑚′([𝑥, 𝑦]) 6 𝑐𝑚([𝑥, 𝑦]) for some constant 𝑐.
Hence

𝐾([𝑥, 𝑦]) 6 𝐾(𝑥) + 𝐾(𝑦) + 𝑂(1).

Theorem is proved. �

101 Prove that the sum
∑︀

𝑦 𝑚([𝑥, 𝑦]) differs from 𝑚(𝑥) by at most a constant

factor (in both directions). Prove a similar statement for max𝑦 𝑚(𝑥, 𝑦).

102 Let 𝑓 : N → N be a strictly increasing computable function. Prove that
the value

∑︀
{𝑚(𝑘)|𝑓(𝑛) 6 𝑘 < 𝑓(𝑛 + 1)} differs from 𝑚(𝑛) at most by a constant

factor (in both directions). (So if we split the series
∑︀

𝑛 𝑚(𝑛) into groups in a
computable way, the sums of the groups form essentially the same series!)

Let us prove now Theorem 60 using decompressors. It turns out that we need
to use prefix-free (and not prefix-stable) decompressors.

Let us prove that 𝐾 ′([𝑥, 𝑦]) 6 𝐾 ′(𝑥) + 𝐾 ′(𝑦) + 𝑂(1). Let 𝐷 be an optimal
prefix-free decompressor used in the definition of 𝐾 ′. Define a new prefix-free
decompressor 𝐷′. Informally, the algorithm 𝐷′ reads the input until it finds a
description of 𝑥. Then it reads the rest of the input until it finds a description of 𝑦.
Formally, we define 𝐷′ as

𝐷′(𝑝𝑞) = [𝐷(𝑝), 𝐷(𝑞)].

Here 𝑝𝑞 stands for the concatenation of strings 𝑝 and 𝑞. In other words, we try to
split the input into two parts 𝑝 and 𝑞 in such a way that both 𝐷(𝑝) and 𝐷(𝑞) are
defined.

112 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

We need to verify that 𝐷′ is well defined. Indeed, assume that 𝑥 is represented
as 𝑝𝑞 in two different ways, 𝑥 = 𝑝𝑞 = 𝑝′𝑞′, and all the values 𝐷(𝑝), 𝐷(𝑞), 𝐷(𝑝′),
𝐷(𝑞′) are defined. Then 𝑝 and 𝑝′ are compatible (being prefixes of the same string 𝑥)
and thus coincide (as 𝐷 is prefix-free), hence 𝑞 = 𝑞′.

In a similar way we can prove that the function 𝐷′ is prefix-free. Let 𝑝𝑞 be
a prefix of 𝑝′𝑞′ and both belong to the domain of 𝐷. The strings 𝑝 and 𝑝′ are
compatible and both 𝐷(𝑝) and 𝐷(𝑝′) are defined, therefore 𝑝 = 𝑝′. This implies
that 𝑞 is a prefix of 𝑞′. As both 𝐷(𝑞) and 𝐷(𝑞′) are defined, we have 𝑞 = 𝑞′.

The function 𝐷′ is computable: to find 𝐷′(𝑥) we compute in parallel 𝐷(𝑝) and
𝐷(𝑞) for each possible way to split 𝑥 into 𝑝 and 𝑞. We have shown that there is at
most one representation of 𝑥 as 𝑝𝑞 such that 𝐷(𝑝) and 𝐷(𝑞) are defined. If we find
such 𝑝 and 𝑞, we output the string [𝐷(𝑝), 𝐷(𝑞)].

It remains to note that

𝐾𝐷′([𝑥, 𝑦]) 6 𝐾𝐷(𝑥) + 𝐾𝐷(𝑦).

Indeed, let 𝑝 and 𝑞 be shortest descriptions of 𝑥 and 𝑦 with respect to 𝐷. The string
𝑝𝑞 is a description of [𝑥, 𝑦] with respect to 𝐷′ and has length 𝐾𝐷(𝑥) + 𝐾𝐷(𝑦).

In other terms, 𝐷′ reads the input as 𝐷 does until 𝑝 and 𝐷(𝑝) are found, then
reads the rest of the input again to find 𝑞 and 𝐷(𝑞).

103 Prove Theorem 60 using the definition of prefix-free decompressors in
terms of machines with blocking read operation (see Theorem 50 on p. 100).

104 A set of binary strings is called prefix-free if any two elements of it are
incompatible. Show that if sets 𝐴 and 𝐵 both are prefix-free then so is the set

𝐴𝐵 = {𝑎𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
Which proof of Theorem 60 (using a priori probability or using prefix-free

decompressors) is easier and more natural? It is a matter of taste — the authors
believe that the first one is more natural. The next theorem provides an opposite
example: encoding arguments here seem to be simpler than the arguments using
the a priori probability.

Theorem 61.
𝐾(𝑥,𝐾(𝑥)) = 𝐾(𝑥) + 𝑂(1).

(Problem 23 asks to prove the same equality for the plain complexity.)

Proof. The inequality 𝐾(𝑥) 6 𝐾(𝑥,𝐾(𝑥)) + 𝑂(1) is straightforward, as the
string 𝑥 can by computed given the encoding [𝑥,𝐾(𝑥)] of the pair.

To prove the converse inequality let 𝐷 be an optimal prefix-free decompressor
used in the definition of prefix complexity 𝐾 ′. Define a new decompressor 𝐷′ as

𝐷′(𝑝) = [𝐷(𝑝), 𝑙(𝑝)].

The domain of 𝐷 coincides with that of 𝐷, hence 𝐷′ is prefix-free. Let 𝑝 be a
shortest description of 𝑥 with respect to 𝐷. Then 𝑙(𝑝) = 𝐾 ′(𝑥) and therefore 𝑝 is
a description of the string [𝑥,𝐾 ′(𝑥)] with respect to 𝐷′. Thus

𝐾𝐷′([𝑥,𝐾 ′(𝑥)]) 6 𝑙(𝑝) = 𝐾 ′(𝑥).

Is the theorem proven? There is one subtle point in the argument. We have
proved the theorem for the complexity 𝐾 ′, defined via prefix-free decompressors. If
we substitute 𝐾 for 𝐾 ′ in the equality 𝐾 ′(𝑥,𝐾 ′(𝑥)) = 𝐾 ′(𝑥) +𝑂(1), its right hand
side will change by an additive constant. The similar statement for the left hand

4.6. PROPERTIES OF PREFIX COMPLEXITY 113

side is not straightforward, as 𝐾 ′ has two occurrences there, and the second one is
inside the argument. But at least we have 𝐾(𝑥,𝐾 ′(𝑥)) = 𝐾(𝑥) + 𝑂(1).

To finish the proof it remains to show that the function 𝐾(𝑥, 𝑛) changes at
most by a constant, as 𝑛 changes by 1. This easily follows from the computability
of mappings [𝑥, 𝑛] ↦→ [𝑥, 𝑛 + 1] and [𝑥, 𝑛] ↦→ [𝑥, 𝑛− 1]. �

It is instructive to prove Theorem 61 using the a priori probability. Let 𝑚(𝑥)
be the a priori probability of 𝑥. Define the function 𝑚′ as

𝑚′([𝑥, 𝑘]) =

{︃
2−𝑘 if 2−𝑘 < 𝑚(𝑥);

0 otherwise.

This function is lower semicomputable: given 𝑥 and 𝑘, we generate lower bounds
for 𝑚(𝑥) and output 0 until we find that 2−𝑘 < 𝑚(𝑥), and then we output 2−𝑘.

For every fixed 𝑥 the sum of 𝑚′([𝑥, 𝑘]) over all 𝑘 is a geometric series formed
by powers of 2. Therefore this sum is less than 2𝑚(𝑥) (the largest term of the
series is less than 𝑚(𝑥)). Therefore, the sum of 𝑚′([𝑥, 𝑘]) over all 𝑥 and 𝑘 is finite.
Comparing 𝑚′([𝑥, 𝑘]) and the a priori probability of [𝑥, 𝑘], we conclude that

𝑚(𝑥, 𝑘) > 2−𝑘+𝑂(1)

if 2−𝑘 < 𝑚(𝑥). Taking the logarithms, we see that

𝐾(𝑥, 𝑘) 6 𝑘 + 𝑂(1)

whenever 2−𝑘 < 𝑚(𝑥). The latter inequality holds for 𝑘 = −⌊log𝑚(𝑥)⌋ + 1 and
thus we have

𝐾(𝑥,−⌊log𝑚(𝑥)⌋ + 1) 6 𝐾(𝑥) + 𝑂(1).

It remains to recall that the function 𝐾(𝑥, 𝑛) changes at most by a constant, as
𝑛 changes by 1. The second proof of Theorem 61 (in the nontrivial direction) is
finished.

105 This argument proves a bit more: 𝐾(𝑥, 𝑢) 6 𝑢+𝑂(1) whenever 𝐾(𝑥) 6 𝑢.
How to derive this inequality from Theorem 61 (from its statement and not from
its proof)?

We proceed now to the algorithmic properties of the function 𝐾(𝑥). Like the
plain complexity, the prefix complexity is upper semicomputable but not com-
putable. Moreover, there is no computable non-trivial (= unbounded) lower bound
for 𝐾(𝑥). Indeed, since 𝐾(𝑥) 6 2𝐶(𝑥) + 𝑂(1), every non-trivial lower bound of 𝐾
would yield a non-trivial lower bound of 𝐶.

Recall that the plain Kolmogorov complexity 𝐶(𝑥) can be defined as the small-
est upper semicomputable function 𝑘 such that the cardinality of the set {𝑥 | 𝑘(𝑥) <
𝑛} is 𝑂(2𝑛) for all 𝑛 (Theorem 8, p. 33). Here is a similar statement for the prefix
complexity:

Theorem 62. The function 𝐾 is the smallest (up to an additive constant term)
upper semicomputable function 𝑘 (mapping binary strings to natural numbers and
+∞) such that the series

∑︀
𝑥 2−𝑘(𝑥) converges.

Proof. The function 𝐾 is upper semicomputable and the series
∑︀

𝑥 2−𝐾(𝑥)

converges. Let 𝑘 be another function having these properties. Then the function
𝑀(𝑥) = 𝑐2−𝑘(𝑥) where 𝑐 is a small enough constant is a lower semicomputable
semimeasure. As 𝑚(𝑥) is the maximal lower semicomputable semimeasure, we

114 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

have 𝑀(𝑥) = 𝑂(𝑚(𝑥)), that is, log𝑀(𝑥) 6 log𝑚(𝑥)+𝑂(1). It follows that 𝐾(𝑥) 6
𝑘(𝑥) + 𝑂(1). �

In other words, for every upper semicomputable function 𝑘 mapping binary
strings to natural numbers and +∞ two statements

“𝐾(𝑥) 6 𝑘(𝑥) + 𝑂(1)” and “
∑︀

𝑥 2−𝑘(𝑥) < ∞”

are equivalent.
Note that the requirement “the series

∑︀
𝑥 2−𝑘(𝑥) converges” is stronger than

the requirement “the number of 𝑥 such that 𝑘(𝑥) 6 𝑛 is 𝑂(2𝑛)” used in Theorem 8.
Indeed, if

∑︀
𝑥 2−𝑘(𝑥) 6 𝐶, then the number of 𝑥 such that 𝑘(𝑥) 6 𝑛 is at most 𝐶2𝑛.

This observation gives another proof of the inequality 𝐶(𝑥) 6 𝐾(𝑥) + 𝑂(1).

It is instructive to compare plain and prefix complexity in two aspects: the
average complexity of strings of given length and the number of strings that have
complexity not exceeding given bound. Let us start with the first question.

We have seen that the plain complexity of most strings of length 𝑛 is close to 𝑛
(p. 18 and Problem 2, p. 31). One could expect the prefix complexity to be slightly
bigger.

Theorem 63. (a) 𝐾(𝑥) 6 𝑙(𝑥) + 𝐾(𝑙(𝑥)) + 𝑂(1).
(b) For some constant 𝑐 and for all 𝑛, 𝑑 the fraction of strings 𝑥 such that

𝐾(𝑥) < 𝑛 + 𝐾(𝑛) − 𝑑 among all strings of length 𝑛 is at most 𝑐2−𝑑.

Proof. (a) Let 𝑚(𝑥) be the a priory probability of a binary string 𝑥 and
𝑚(𝑛) be the a priory probability of a natural number 𝑛. Consider the function
𝑚′(𝑥) = 2−𝑛𝑚(𝑛) where 𝑛 is the length of 𝑥. The sum of 𝑚′(𝑥) over strings of
length 𝑛 is equal to 𝑚(𝑛) hence

∑︀
𝑥 𝑚

′(𝑥) 6 1. Since the function 𝑚′ is lower
semicomputable, we conclude that 𝑚′(𝑥) 6 𝑐𝑚(𝑥) for some constant 𝑐 and all 𝑥.
Taking the logarithms, we obtain the inequality

𝐾(𝑥) 6 𝑛 + 𝐾(𝑛) + 𝑂(1)

(the constant 𝑂(1) does not depend on 𝑛).
(b) Consider the function

𝑚′(𝑛) =
∑︁

𝑙(𝑥)=𝑛

𝑚(𝑥),

the total a priori probability of all strings of length 𝑛. Since 𝑚′(𝑛) is lower semi-
computable and

∑︀
𝑛 𝑚

′(𝑛) 6 1, we have 𝑚′(𝑛) = 𝑂(𝑚(𝑛)). On the other hand,
the a priori probability of the string consisting of 𝑛 zeros is at least 𝑐𝑚(𝑛) for some
positive contant 𝑐. Thus we have

𝑐1𝑚(𝑛) 6
∑︁

𝑙(𝑥)=𝑛

𝑚(𝑥) 6 𝑐2𝑚(𝑛).

So the sum of 𝑚(𝑥) over all binary strings of length 𝑛 coincides with 𝑚(𝑛) (up
to a constant factor). Thus the average of 𝑚(𝑥) over all strings 𝑥 of length 𝑛 is
𝑚(𝑛)/2𝑛 (up to a constant factor). The fraction of strings 𝑥 such that 𝑚(𝑥) is 2𝑑

times bigger than the average, is at most 2−𝑑 (Chebyshev’s inequality). �

106 Prove that the average prefix complexity of strings of length 𝑛 is equal
to 𝑛 + 𝐾(𝑛) + 𝑂(1).

(Similar question for plain complexity was considered in Problem 3.)

4.6. PROPERTIES OF PREFIX COMPLEXITY 115

Now we estimate the number of strings with complexity at most 𝑛.

Theorem 64. The number of strings 𝑥 with 𝐾(𝑥) < 𝑛 is 2𝑛−𝐾(𝑛)+𝑂(1).

Proof. Let 𝑐𝑛 be the number of strings 𝑥 such that 𝐾(𝑥) < 𝑛. Let us rewrite
the basic property of prefix complexity (the convergence of the series

∑︀
2−𝐾(𝑥)) in

terms of 𝑐𝑛. There are exactly 𝑐𝑛+1 − 𝑐𝑛 strings of complexity 𝑛. Therefore the
series ∑︁

𝑛

2−𝑛(𝑐𝑛+1 − 𝑐𝑛)

converges. Regrouping the terms of this series we conclude that∑︁
𝑛

(2−(𝑛−1) − 2−𝑛)𝑐𝑛 =
∑︁
𝑛

2−𝑛𝑐𝑛 < ∞.

Since the function 𝑐𝑛 is lower semicomputable, this implies that 2−𝑛𝑐𝑛 does not
exceed the a priori probability 𝑚(𝑛) of 𝑛. Hence 𝑐𝑛 6 𝑚(𝑛)2𝑛 = 2𝑛−𝐾(𝑛) (up to a
constant factor).

On the other hand, it is easy to construct an upper semicomputable function
𝑘 whose values are natural numbers (and +∞) that takes the value 𝑛 on (approxi-
mately) 𝑚(𝑛)2𝑛 arguments. This can be done in many ways. For example, let us
agree that for a string 𝑥 of length 𝑛 the value 𝑘(𝑥) can be either +∞ or 𝑛; it is
equal to 𝑛 if the ordinal number of 𝑥 (in the list of all 𝑛-bit strings) is less than
𝑚(𝑛)2𝑛.

For this function 𝑘, the series
∑︀

2−𝑘(𝑥) converges. So 𝐾(𝑥) 6 𝑘(𝑥) + 𝑂(1)
hence 𝑐𝑛+𝑂(1) > 𝑚(𝑛)2𝑛. Both 𝑚(𝑛) and 2𝑛 change at most by a constant factor
as 𝑛 increases by 1. Thus 𝑚(𝑛)2𝑛 = 𝑂(𝑐𝑛). �

These result may create an impression that prefix and plain complexity mea-
sure essentially the same quantity but using slightly different scales, so the prefix
complexity is (slightly) bigger just because of the shifted scale. Or, may be, there
is a more fundamental difference? This question can be formalized as follows:
are there two sequences 𝑎𝑛 and 𝑏𝑛 of strings such that 𝐶(𝑎𝑛) − 𝐶(𝑏𝑛) → +∞,
but 𝐾(𝑎𝑛) − 𝐾(𝑏𝑛) → −∞? This question was answered by An.A. Muchnik and
S. Positselsky who proved that sequences with these properties do exist [136]. An-
other proof was provided by J. Miller in [121]; this paper contains other results
about the relation between plain and prefix complexities, but we restrict ourselves
to several simple remarks (see also Section 4.7.4, p. 126).

Iterating the inequality

𝐾(𝑥) 6 𝑙(𝑥) + 𝐾(𝑙(𝑥)),

we obtain the following series of inequalities:

𝐾(𝑥) 6 𝑙(𝑥) + 𝑙(𝑙(𝑥)) + 𝐾(𝑙(𝑙(𝑥)) + 𝑂(1),

𝐾(𝑥) 6 𝑙(𝑥) + 𝑙(𝑙(𝑥)) + 𝑙(𝑙(𝑙(𝑥))) + 𝐾(𝑙(𝑙(𝑙(𝑥))) + 𝑂(1),

etc. Similar inequalities with 𝐶 instead of 𝑙 can be obtained as follows. Let 𝐷 be
the optimal decompressor for plain (not prefix) Kolmogorov complexity. Combining
the inequalities 𝐾(𝐷(𝑦)) 6 𝐾(𝑦) +𝑂(1) and 𝐾(𝑥) 6 𝑙(𝑥) +𝐾(𝑙(𝑥)) +𝑂(1), we get
the following series of inequalities:

116 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

Theorem 65.

𝐾(𝑥) 6 𝐶(𝑥) + 𝐾(𝐶(𝑥))) + 𝑂(1),

𝐾(𝑥) 6 𝐶(𝑥) + 𝐶(𝐶(𝑥))) + 𝐾(𝐶(𝐶(𝑥)) + 𝑂(1),

etc.

Note that the second inequality (as well as all others) follows from the first one
by iteration.

107 Prove that
𝐶(𝑥, 𝑦) 6 𝐾(𝑥) + 𝐶(𝑦) + 𝑂(1)

for all 𝑥, 𝑦. [Hint: one can compute the number of pairs for which the right hand
side is less than 𝑛, but it is easier to use prefix-free descriptions.]

As we mentioned, one could define random 𝑛-bit strings as strings whose (plain)
complexity is close to 𝑛. But one can also try to use prefix complexity and require
the prefix complexity to be maximal, i.e., close to 𝑛+𝐾(𝑛). The following problem
shows that for such strings the plain complexity is also (almost) maximal.

108 Let 𝑥 be a 𝑛-bit string such that 𝐶(𝑥) 6 𝑛 − 𝑑 for some 𝑑. Show that
𝐾(𝑥) 6 𝑛 + 𝐾(𝑛) − 𝑑 + 𝑂(log 𝑑). [Hint: join the prefix-free descriptions for 𝑛 and
𝑑 and a plain description for 𝑥.]

The reverse statement is not true, as R. Solovay has shown; see the already
mentioned paper of J. Miller [121] or [135, 6]).

4.7. Conditional prefix complexity and complexity of pairs

4.7.1. Conditional prefix complexity. What it conditional prefix complex-
ity? Each of the definitions of prefix complexity can be modified by adding a
condition.

We start with the definition using prefix-stable functions. A function 𝐷(𝑦, 𝑧) is
prefix-stable with respect to 𝑦 if for every 𝑧 the function 𝑦 ↦→ 𝐷(𝑦, 𝑧) is prefix-stable:

𝐷(𝑦, 𝑧) is defined and 𝑦 6 𝑦′ ⇒ 𝐷(𝑦′, 𝑧) = 𝐷(𝑦, 𝑧).

We assume here that the first argument of 𝐷 is a binary string; the notation 𝑦 6 𝑦′

means that 𝑦 is a prefix of 𝑦′.
Recall the definition of the (plain) conditional complexity from Section 2.2. A

conditional decompressor (=description mode) is a computable function that maps
pairs of binary strings to binary strings. If 𝐷(𝑦, 𝑧) = 𝑥 then 𝑦 is called a description
of 𝑥 when 𝑧 is known. The complexity of 𝑥 with condition 𝑧 is the length of the
shortest description. Then we fix an optimal conditional decompressor that gives
minimal complexity (up to a constant).

Now we consider only decompressors that are prefix-stable with respect to the
first argument. This smaller class of decompressors contains an optimal decompres-
sor (for this class). The proof of this statement is similar to the proof of Theorem 48
(p. 96) where an optimal unconditional prefix-stable decompressor is constructed.
We modify this proof by adding the parameter 𝑧 in all formulas. More specifically,
let

𝐷′(𝑝𝑦, 𝑧) = [𝑝](𝑦, 𝑧).

Here [𝑝] stands for the program obtained from 𝑝 via “prefix stabilization with
respect to 𝑦 for each 𝑧”. This mean that for all 𝑝, 𝑧 the function 𝑦 ↦→ [𝑝](𝑦, 𝑧) is
prefix-stable, and if the function 𝑦 ↦→ 𝑝(𝑦, 𝑧) itself is prefix-stable for some 𝑧, then

4.7. CONDITIONAL PREFIX COMPLEXITY AND COMPLEXITY OF PAIRS 117

it coincides with the function 𝑦 ↦→ [𝑝](𝑦, 𝑧). It is easy to verify that this is indeed
possible and that 𝐷′ is an optimal prefix-stable (with respect to the first argument)
decompressor.

Fix an optimal conditional prefix-stable decompressor and denote the resulting
complexity by 𝐾(𝑥 |𝑧), the prefix complexity of 𝑥 with condition 𝑧.

If we consider prefix-free decompressors (instead of prefix-stable ones) we ob-
tain an alternative definition of conditional prefix complexity. The existence of an
optimal function in this class of decompressors is proved in a similar way. The re-
sulting complexity could be denoted by 𝐾 ′(𝑥 |𝑧). Like their unconditional versions,
functions 𝐾(𝑥 |𝑧) and 𝐾 ′(𝑥 |𝑧) differ by at most an additive constant, which does
not depend on 𝑥 and 𝑧:

𝐾 ′(𝑥 |𝑧) = 𝐾(𝑥 |𝑧) + 𝑂(1).

As in the case of unconditional complexities, this is proved using the conditional
a priori probability 𝑚(𝑥 |𝑧). It can be defined in two ways (using probabilistic
machines and lower semicomputable semimeasures).

Let 𝑀 be a probabilistic machine with an input. Let 𝑝𝑀 (𝑥 |𝑧) denote the prob-
ability that 𝑀 outputs the string 𝑥 for input 𝑧. The function ⟨𝑥, 𝑧⟩ ↦→ 𝑝𝑀 (𝑥 |𝑧)
is lower semicomputable and for all 𝑧 the sum

∑︀
𝑥 𝑝𝑀 (𝑥 |𝑧) does not exceed 1.

Conversely, for every lower semicomputable function ⟨𝑥, 𝑧⟩ ↦→ 𝑝(𝑥 |𝑧) that takes
non-negative real values such that

∑︀
𝑥 𝑝(𝑥 |𝑧) 6 1 for all 𝑧, there exists a proba-

bilistic machine 𝑀 with 𝑝𝑀 = 𝑝.
The class of all functions 𝑝𝑀 has an optimal function, that is, the greatest one

up to a constant factor. Fixing an optimal function in this class, we obtain the
conditional a priori probability 𝑚(𝑥 |𝑧) of the string 𝑥 with condition 𝑧.

The inequality 𝐾(𝑥 |𝑧) 6 𝐾 ′(𝑥 |𝑧)+𝑂(1) is easy (as in the unconditional case).
To show that all three quantities 𝐾(𝑥 |𝑧), 𝐾 ′(𝑥 |𝑧) and − log𝑚(𝑥 |𝑧) coincide up
to an additive constant, we need to show that − log𝑚(𝑥 |𝑧) 6 𝐾(𝑥 |𝑧) + 𝑂(1) and
𝐾 ′(𝑥 |𝑧) 6 − log𝑚(𝑥 |𝑧) + 𝑂(1). We omit those proofs since they repeat their
unconditional versions.

One could say that these inequalities and their proofs are “relativizations” of the
respective unconditional inequalities and proofs. The relativization is understood
here in a non-standard way. In the theory of computation, relativization means
that the class of computable functions is replaced by the class of 𝐴-computable
functions, i.e., the class of functions computable with a given oracle 𝐴. (Here 𝐴 is
an arbitrary set of binary strings. A function is computable with oracle 𝐴 if it is
computed by an algorithm that is allowed to make queries of the form “𝑥 ∈ 𝐴?”.
That is, the algorithm calls an external procedure that on input 𝑥 returns true

or false depending on whether 𝑥 is in 𝐴 or not.) Almost all known theorems
in the general computation theory are relativizable, i.e., remain true if we replace
(everywhere) computable functions by 𝐴-computable functions.

By the way, the notion of Kolmogorov complexity can be relativized in a stan-
dard way, too. That is, for every set 𝐴 we can define the plain Kolmogorov complex-
ity 𝐶𝐴(𝑥) and the prefix Kolmogorov complexity 𝐾𝐴(𝑥) (see Section 6.4). However,
we do not consider relativized Kolmogorov complexity now. Instead of algorithms
having an oracle access to a set of strings we consider algorithms having an access
to a finite string 𝑧. In this way we obtain conditional complexity 𝐶(𝑥 |𝑧) or 𝐾(𝑥 |𝑧)
instead of 𝐶(𝑥) (resp. 𝐾(𝑥)). Since 𝑧 is finite, the access to it does not increase the

118 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

power of algorithms (any 𝑧-computable function is computable without 𝑧). How-
ever, the access to 𝑧 changes Kolmogorov complexity, if 𝑧 contains non-negligible
information. Here is another example of this kind of relativization: the quantity
𝐼(𝑥 : 𝑦 |𝑧) can be considered as common information in 𝑥 and 𝑦 relative to 𝑧.

Up to now the structure (prefix relation) used in the definition of prefix-stable
and prefix-free functions was applied to descriptions only. The described objects, as
well as conditions, had no structure at all. The other approach is also possible: we
could take into consideration the binary relation “to be a prefix of” on described
objects as well. This will lead us to monotone complexity (see Chapter 5) and
decision complexity (Chapter 6). On the other hand, we could consider he relation
“to be a prefix of” on conditions as well (see Section 6.3). The resulting complexities
make sense, however, they are not well studied yet.

Note that all the requirements in the definitions of prefix-free and prefix-stable
decompressors treat different conditions separately. For example, requiring that
a machine can tell when the input ends, we allow this decision depend on the
condition. This is an important remark, and we can come to wrong conclusions if
we forget about this. One should be really careful here; for example, the statement
of Problem 28 (p. 49) is not true for prefix complexity:

109 Show that 𝐾(𝑦 |𝑥) does not exceed the minimal prefix complexity of
a program mapping 𝑥 to 𝑦 (up to 𝑂(1) additive term). The converse statement
is false. (Both statements hold for every reasonable programming language, the
additive constant depends on the chosen language.) [Hint. It is easy to see that
𝐾(𝑦 | 𝑙(𝑦)) 6 𝑙(𝑦)+𝑂(1). Indeed, every string 𝑦 is its own self-delimiting description
when 𝑙(𝑦) is known. If the inequality in question were true, there would be 2𝑛

different programs of prefix complexity at most 𝑛.]

4.7.2. Properties of conditional prefix complexity. Let us mention sev-
eral simple results about conditional prefix complexity.

∙ 𝐾(𝑥 |𝑧) 6 𝐾(𝑥) + 𝑂(1).
Indeed, a prefix-stable (or prefix-free) unconditional decompressor

𝑦 ↦→ 𝐷(𝑦) can be considered as prefix-stable (resp. prefix-free) conditional
decompressor ⟨𝑦, 𝑧⟩ ↦→ 𝐷(𝑦) that just ignores the second argument 𝑧.

Using semimeasures: any probabistic machine without input can be
considered as a machine that has input but ignores it. And any lower
semicomputable semimeasure 𝑞(𝑥) can be treated as a family 𝑞′(𝑥 |𝑧) =
𝑞(𝑥) indexed by 𝑧.

∙ 𝐾(𝑥 |𝑥) = 𝑂(1).
Indeed, the decompressor 𝐷(𝑦, 𝑧) = 𝑧 is prefix-stable (recall that

prefix-stability is about 𝑦, not 𝑧) and 𝐾𝐷(𝑥 |𝑥) = 0. We can also change
it to get a prefix-free decompressor: let 𝐷(Λ, 𝑧) = 𝑧 where Λ is an empty
string and let 𝐷(𝑦, 𝑧) be undefined if 𝑦 ̸= Λ. Finally, the family of
semimeasures can be constructed as follows: 𝑞(𝑥 |𝑥) = 1 and 𝑞(𝑧 |𝑥) = 0
for 𝑧 ̸= 𝑥.

∙ 𝐾(𝑓(𝑥, 𝑧) |𝑧) 6 𝐾(𝑥 |𝑧) + 𝑂(1) for any computable function 𝑓 and for
any strings 𝑥, 𝑧 such that 𝑓(𝑥, 𝑧) is defined. (The constant in 𝑂(1) may
depend on 𝑓 but not on 𝑥 and 𝑧.)

4.7. CONDITIONAL PREFIX COMPLEXITY AND COMPLEXITY OF PAIRS 119

Indeed, let 𝐷 be the optimal prefix-stable [prefix-free] conditional de-
compressor. The mapping 𝐷′ : ⟨𝑦, 𝑧⟩ ↦→ 𝑓(𝐷(𝑦, 𝑧), 𝑧) is also a prefix-stable
[resp. prefix-free] decompressor and 𝐾𝐷′(𝑓(𝑥, 𝑧) |𝑧) 6 𝐾𝐷(𝑥 |𝑧).

In terms of semimeasures the same argument goes as follows: let
𝑚(𝑥 |𝑧) be the a priori probability of 𝑥 with condition 𝑧; consider the
semimeasure

𝑞(𝑥 |𝑧) =
∑︁

{𝑚(𝑥′ |𝑧) | 𝑓(𝑥′, 𝑧) = 𝑥}

(for each 𝑧 this is an image of the semimeasure 𝑥 ↦→ 𝑚(𝑥, 𝑧) under the
mapping 𝑥 ↦→ 𝑓(𝑥, 𝑧)); it is easy to check that 𝑞 is lower semicomputable,
that

∑︀
𝑥 𝑞(𝑥 |𝑧) 6 1 and 𝑞(𝑓(𝑥, 𝑧) |𝑧) > 𝑚(𝑥 |𝑧). Since 𝑚 is optimal, we

get the desired inequality for a priori probabilities and their logarithms.
∙ 𝐾(𝑓(𝑥) |𝑥) = 𝑂(1) for any computable 𝑓 and for all 𝑥 such that 𝑓(𝑥) is

defined.
(A simple corollary.)

∙ 𝐾(𝑥 |𝑧) 6 𝐾(𝑥 |𝑓(𝑧)) + 𝑂(1) for every computable function 𝑓 and for all
𝑥, 𝑧 if 𝑓(𝑧) is defined (the constant in 𝑂(1) may depend on 𝑓 but not on
𝑥 and 𝑧).

(Indeed, consider the decompressor ⟨𝑦, 𝑧⟩ ↦→ 𝐷(𝑦, 𝑓(𝑧)) or the condi-
tional semimeasure 𝑞(𝑥 |𝑧) = 𝑚(𝑥 |𝑓(𝑧)).)

∙ 𝐶(𝑥 |𝑧) 6 𝐾(𝑥 |𝑧) + 𝑂(1)
Indeed, prefix-stable and prefix-free decompressors form a subclass in

the class of all decompressors used in the definition of 𝐶(𝑥 |𝑧).
∙ 𝐾(𝑥 |𝑧) 6 𝐶(𝑥 |𝑧) + 2 log𝐶(𝑥 |𝑧) + 𝑂(1)

This is a corollary of previous statements. Indeed, let 𝐷 be the opti-
mal conditional decomressor (not necessarily prefix-stable or prefix-free).
Then

𝐾(𝐷(𝑦, 𝑧) |𝑧) 6 𝐾(𝑦 |𝑧) + 𝑂(1) 6

6 𝐾(𝑦) + 𝑂(1) 6 𝑙(𝑦) + 2 log 𝑙(𝑦) + 𝑂(1).

If 𝑦 is the shortest description of 𝑥 with condition 𝑧, then 𝑙(𝑦) = 𝐶(𝑥 |𝑧).
In the same way one can prove a stronger inequality

𝐾(𝑥 |𝑧) 6 𝐶(𝑥 |𝑧) + log𝐶(𝑥 |𝑧) + 2 log log𝐶(𝑥 |𝑧) + 𝑂(1)

etc.

4.7.3. Prefix complexity of a pair. As we have seen (Theorem 60, p. 111),
𝐾(𝑥, 𝑦) 6 𝐾(𝑥) + 𝐾(𝑦) + 𝑂(1). Let us prove a stronger inequality:

Theorem 66.
𝐾(𝑥, 𝑦) 6 𝐾(𝑥) + 𝐾(𝑦 |𝑥) + 𝑂(1).

Proof. We can use either prefix-free decompressors or semimeasures. Both
versions are instructive.

Using prefix-free decompressors: Let 𝐷 be the optimal unconditional
prefix-free decompressor. Let 𝐷𝑐 be the optimal conditional prefix-free decom-
pressor. Consider the function 𝐷′ defined as follows:

𝐷′(𝑢𝑣) = [𝐷(𝑢), 𝐷𝑐(𝑣,𝐷(𝑢))]

120 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

(for 𝑢 and 𝑣 such that the right hand side is defined). Following the proof of
Theorem 60, we note that 𝐷′ is well defined and is a prefix-free (unconditional) de-
compressor. The concatenation of the shortest 𝐷-description for 𝑥 and the shortest
𝐷𝑐-description for 𝑦 (with condition 𝑥) is a description for [𝑥, 𝑦].

(Note that the order of 𝑢 and 𝑣 is crucial for this argument: replacing 𝑢𝑣 by 𝑣𝑢
we get into a trouble: to find where 𝑣 ends, we have to use the prefix-free property
of 𝐷𝑐, but it is valid only for a fixed condition and 𝐷(𝑢) is not determined yet.)

Using semimeasures: Let 𝑚(𝑥) be the unconditional a priori probability of
𝑥 and let 𝑚(𝑦 |𝑥) be the conditional a priori probability of 𝑦 when 𝑥 is known.
Consider the function 𝑚′ defined as follows:

𝑚′([𝑥, 𝑦]) = 𝑚(𝑥)𝑚(𝑦 |𝑥)

(we assume that 𝑚′(𝑧) = 0 for strings 𝑧 that are not encodings of any pairs). Then
𝑚′ is lower semicomputable (being a product of two non-negative lower semicom-
putable functions), and∑︁

𝑧

𝑚′(𝑧) =
∑︁
𝑥,𝑦

𝑚(𝑥)𝑚(𝑦 |𝑥) =
∑︁
𝑥

[︀
𝑚(𝑥)

∑︁
𝑦

𝑚(𝑦 |𝑥)
]︀
6
∑︁
𝑥

𝑚(𝑥) 6 1.

Therefore, 𝑚([𝑥, 𝑦]) > 𝜀𝑚′([𝑥, 𝑦]) = 𝜀𝑚(𝑥)𝑚(𝑦 |𝑥). �

110 Prove that 𝐶(𝑥, 𝑦) 6 𝐾(𝑥) + 𝐶(𝑦 |𝑥) + 𝑂(1).
[Hint: One may use prefix-free decompressor and append the (plain) description

of 𝑦 given 𝑥 to the prefix-free description of 𝑥. We may also count the number of
pairs such that 𝐾(𝑥) + 𝐶(𝑦 |𝑥) 6 𝑛. We have at most 2𝑘 ·𝑚(𝑘) · 2𝑛−𝑘 = 2𝑛𝑚(𝑘)
pairs such that 𝐾(𝑥) = 𝑘, and the sum over 𝑘 gives 2𝑛 ·𝑂(1).]

Further improvements are possible. First note that we can use pairs of strings
as conditions by using some computable injective encoding (changing the encoding
we change the complexity at most by a constant). For similar reasons we can speak
about complexity of a triple of strings. Now we can write the following chain of
inequalities (the 𝑂(1) terms are omitted):

𝐾(𝑥, 𝑦) 6 𝐾(𝑥,𝐾(𝑥), 𝑦) 6 𝐾(𝑥,𝐾(𝑥)) + 𝐾(𝑦 |𝑥,𝐾(𝑥)) = 𝐾(𝑥) + 𝐾(𝑦 |𝑥,𝐾(𝑥)).

Here the equality 𝐾(𝑥,𝐾(𝑥)) = 𝐾(𝑥) (Theorem 61) is used as well as the inequality
for the entropy of pairs (Theorem 66). We get an inequality that can be considered
as a strong form of Theorem 66, since 𝐾(𝑦 |𝑥,𝐾(𝑥)) 6 𝐾(𝑦 |𝑥) (because 𝑥 can be
produced from [𝑥,𝐾(𝑥)] by an algorithm). As L. Levin (see [55]) and G. Chaitin
(see [32]) have noticed, this refined inequality is (remarkably) an equality:

Theorem 67.

𝐾(𝑥, 𝑦) = 𝐾(𝑥) + 𝐾(𝑦 |𝑥,𝐾(𝑥))) + 𝑂(1).

Proof. In one direction the inequality is already known (see the discussion
above). One can give also a direct argument: to get a prefix-free description of a
pair ⟨𝑥, 𝑦⟩, it is enough to start with the shortest prefix-free description of 𝑥 and
then append the prefix-free description of 𝑦 with conditions 𝑥 and 𝐾(𝑥) (note that
𝐾(𝑥) is just the length of the prefix-free description of 𝑥). After the machine reads
the first part and stops, we know both 𝑥 (its output) and 𝐾(𝑥) (the length of the
input), so we have all needed information to restore 𝑦 (in a self-delimiting way).

4.7. CONDITIONAL PREFIX COMPLEXITY AND COMPLEXITY OF PAIRS 121

Using semimeasures, we can prove the same inequality as follows. Consider a
function 𝑚′ such that

𝑚′([𝑥, 𝑦]) =
∑︁

{𝑘|2−𝑘<2𝑚(𝑥)}

2−𝑘𝑚(𝑦 |𝑥, 𝑘)

This function is lower semicomputable and its sum over all 𝑥, 𝑦 is finite (for each
𝑥 and 𝑘 the sum over all 𝑦 does not exceed 1, then the sum over all 𝑘 such that
2−𝑘 < 2𝑚(𝑥) does not exceed 4𝑚(𝑥), and the sum over 𝑥 does not exceed 4). So we
compare 𝑚′ with the a priori probability and conclude that for 𝑘 = −⌊log2 𝑚(𝑥)⌋
we get the term that we want to estimate.

Note the important technical trick: we cannot write just

𝑚′([𝑥, 𝑦]) = 𝑚(𝑥)𝑚(𝑦 |𝑥,𝐾(𝑥)),

since the semicomputability is no more guaranteed. To avoid the problem, we
extend the sum over all 𝑘 > 𝐾(𝑥).

Now let us consider the reversed inequality:

𝐾(𝑥) + 𝐾(𝑦 |𝑥,𝐾(𝑥)) 6 𝐾(𝑥, 𝑦) + 𝑂(1).

Let us start with a simple (but incorrect!) proof of a stronger (but incorrect!)
statement

𝐾(𝑥) + 𝐾(𝑦 |𝑥) 6 𝐾(𝑥, 𝑦) + 𝑂(1).

In terms of semimeasures this equality can be rewritten as follows:

𝑚(𝑥)𝑚(𝑦 |𝑥) > 𝜀𝑚([𝑥, 𝑦])

(for some 𝜀 and for all 𝑥, 𝑦). Here 𝑚 stands for a priori probabilities (both condi-
tional and unconditional ones). Let us rewrite this inequality as

𝑚(𝑦 |𝑥) > 𝜀
𝑚([𝑥, 𝑦])

𝑚(𝑥)
.

It is enough to show that the function

𝑚′(𝑦 |𝑥) = 𝜀
𝑚([𝑥, 𝑦])

𝑚(𝑥)

for any fixed 𝑥 is a semimeasure (for some 𝜀); after that we can compare it with the
maximal semimeasure 𝑚(𝑦 |𝑥) and get the desired result. We need to show that
the sum of 𝑚′(𝑦 |𝑥) over 𝑦 does not exceed 1:∑︁

𝑦

𝑚′(𝑦 |𝑥) = 𝜀

∑︀
𝑦 𝑚([𝑥, 𝑦])

𝑚(𝑥)
6 1.

Indeed, the function 𝑥 ↦→
∑︀

𝑦 𝑚([𝑥, 𝑦]) is a semimeasure (its sum over all 𝑥 equals∑︀
𝑥,𝑦 𝑚([𝑥, 𝑦]) 6 1) and therefore this function is bounded by 𝑚(𝑥)/𝜀 for some 𝜀.

What is wrong with this argument? We have not checked that the semimea-
sure we constructed is lower semicomputable. There are two cases where we need to
check this. In one of them it it is easy: the function

∑︀
𝑦 𝑚([𝑥, 𝑦]) is lower semicom-

putable since 𝑚 is lower semicomputable. But in the other case, for the function
𝑚([𝑥, 𝑦])/𝑚(𝑥), the lower semicomputable function 𝑚(𝑥) is in the denominator,
and when 𝑚(𝑥) increases, the ratio decreases.

122 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

The correct proof of the weaker ineqality follows the same scheme but uses
some additional tricks. We have to prove that for 𝑧 = 𝐾(𝑥) the inequality

𝑚(𝑦 |𝑥, 𝑧) > 𝜀
𝑚([𝑥, 𝑦])

𝑚(𝑥)

holds. The problem is that the right hand side is not lower semicomputable. But
for 𝑧 = 𝐾(𝑥) we can replace 𝑚(𝑥) ≈ 2−𝐾(𝑥) by 2−𝑧 and consider the function

𝑚′(𝑦 |𝑥, 𝑧) = 𝑚([𝑥, 𝑦])2𝑧.

This function in lower semicomputable. But now it is not a semimeasure: the sum∑︀
𝑦 𝑚

′(𝑦 |𝑥, 𝑧) is bounded by 1 only if∑︁
𝑦

𝑚([𝑥, 𝑦]) 6 2−𝑧

which is not true if 𝑧 is large. However, we know that∑︁
𝑦

𝑚([𝑥, 𝑦]) = 𝑂(𝑚(𝑥)) = 𝑂(2−𝐾(𝑥)),

so there exists a constant 𝑐 such that

𝑧 6 𝐾(𝑥) − 𝑐 ⇒
∑︁
𝑦

𝑚′(𝑦 |𝑥, 𝑧) 6 1.

But this is not enough: we need a family of semimeasures that satisfy this inequality
for all 𝑥 and 𝑧 (and not only for 𝑧 ≈ 𝐾(𝑥), as needed for our result). So we “trim”
the function 𝑚′ and get another function 𝑚′′ such that:

∙ function ⟨𝑦, 𝑥, 𝑧⟩ ↦→ 𝑚′′(𝑦 |𝑥, 𝑧) is lower semicomputable;
∙ the inequality ∑︁

𝑦

𝑚′′(𝑦 |𝑥, 𝑧) 6 1

is true for all 𝑥 and 𝑧;
∙ the exists a constant 𝑐 such that

𝑧 6 𝐾(𝑥) − 𝑐 ⇒ 𝑚′′(𝑦 |𝑥, 𝑧) = 𝑚′(𝑦 |𝑥, 𝑧).

How to perform “trimming”? This trick was explained in Section 4.2: we look at
the increasing approximations from below and let them through only if they do not
violate the required bound for the sum.

Now, comparing 𝑚′′ with the a priori probability and taking the logarithms,
we conclude that

𝑧 6 𝐾(𝑥) − 𝑐 ⇒ 𝐾(𝑦 |𝑥, 𝑧) 6 𝐾(𝑥, 𝑦) − 𝑧 + 𝑐′

for some 𝑐, 𝑐′ and for all 𝑥, 𝑦, 𝑧.
Now we let 𝑧 be equal to 𝑧 = 𝐾(𝑥) − 𝑐. Note also that changing 𝑧 by 1

we change the value 𝐾(𝑦 |𝑥, 𝑧) by at most 𝑂(1) (increasing/decreasing the second
component of a pair is a computable function). Therefore,

𝐾(𝑦 |𝑥,𝐾(𝑥) − 𝑐) = 𝐾(𝑦 |𝑥,𝐾(𝑥)) + 𝑂(1).

�

4.7. CONDITIONAL PREFIX COMPLEXITY AND COMPLEXITY OF PAIRS 123

Note that Theorem 22 (p. 53), saying that 𝐶(𝑥, 𝑦) = 𝐶(𝑥) +𝐶(𝑦 |𝑥) +𝑂(log 𝑛)
for strings of complexity at most 𝑛, can now be proved as a corollary.

Indeed, the replacement of 𝐾 by 𝐶 changes all three terms by at most 𝑂(log 𝑛).
It remains to note that the difference between 𝐶(𝑦 |𝑥,𝐾(𝑥)) and 𝐶(𝑦 |𝑥) is bounded
by 𝑂(log 𝑛). In this way we get a new proof of Theorem 22 that replaces counting
by manipulations with semimeasures.

Recalling that 𝑚(𝑥) ≈
∑︀

𝑦 𝑚([𝑥, 𝑦]) (up to 𝑂(1) factor, Problem 101, p. 111),
we may rewrite the statement of Theorem 67 as follows:

𝑚(𝑦 |𝑥,𝐾(𝑥)) ≈ 𝑚([𝑥, 𝑦])∑︀
𝑦 𝑚([𝑥, 𝑦])

The right hand side of the equation can be interpreted as the conditional probability
of the event “the second component of the pair equals 𝑦” where condition is “the
first component of the pair equals 𝑥” (but one should remember that we deal with
semimeasures, not probability distributions).

111 Prove that

𝐾(𝑥 |𝑧) 6 𝐾(𝑥 |𝑦) + 𝐾(𝑦 |𝑧) + 𝑂(1)

for arbitrary strings 𝑥, 𝑦, 𝑧. (This result can be improved; we may replace 𝐾(𝑥 |𝑦)
by a smaller term 𝐾(𝑥 |𝑦, 𝑧).)

112 Prove the “relativized” version of Theorem 67:

𝐾(𝑥, 𝑦 |𝑧) = 𝐾(𝑥 |𝑧) + 𝐾(𝑦 |𝑥,𝐾(𝑥 |𝑧), 𝑧) + 𝑂(1).

Using Theorem 67 twice, we a get a formula for the prefix complexity of a
triple. Indeed, the triple ⟨𝑥, 𝑦, 𝑧⟩ can be considered as a pair whose first component
is ⟨𝑥, 𝑦⟩ and the second component is 𝑧. Therefore,

𝐾(𝑥, 𝑦, 𝑧) = 𝐾(𝑧 |𝑥, 𝑦,𝐾(𝑥, 𝑦)) + 𝐾(𝑥, 𝑦) + 𝑂(1).

Using Theorem 67 once again, we get the following result:

Theorem 68.

𝐾(𝑥, 𝑦, 𝑧) = 𝐾(𝑧 |𝑥, 𝑦,𝐾(𝑥, 𝑦)) + 𝐾(𝑦 |𝑥,𝐾(𝑥)) + 𝐾(𝑥) + 𝑂(1).

We can change the order of transformations (using the 𝑧-relativized version of
Theorem 67) at the second step:

𝐾(𝑥, 𝑦, 𝑧) = 𝐾(𝑦, 𝑧 |𝑥,𝐾(𝑥)) + 𝐾(𝑥) =

= 𝐾(𝑧 |𝑦,𝐾(𝑦 |𝑥,𝐾(𝑥)), 𝑥,𝐾(𝑥)) + 𝐾(𝑦 |𝑥,𝐾(𝑥)) + 𝐾(𝑥)

(we omit the 𝑂(1)-terms for brevity).
It is interesting that this leads to a slightly different version of Theorem 68: the

two last terms are the same but the first term is different. We still have the con-
ditional complexity of 𝑧 but now we have two conditions 𝐾(𝑥) and 𝐾(𝑦 |𝑥,𝐾(𝑥))
instead of 𝐾(𝑥, 𝑦). Note that the sum of the complexities in the condition is ex-
actly 𝐾(𝑥, 𝑦) according to Theorem 67. Therefore, the pair of complexities has no
less information than 𝐾(𝑥, 𝑦). In fact the reverse is also true (when 𝑥 and 𝑦 are
conditions). Indeed, let 𝑧 be the pair ⟨𝐾(𝑥),𝐾(𝑦 |𝑥,𝐾(𝑥))⟩; in the second formula
the first term is zero (i.e., 𝑂(1)). So we get the following corollary:

124 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

Theorem 69.

𝐾(𝐾(𝑥) |𝑥, 𝑦,𝐾(𝑥, 𝑦)) = 𝑂(1),

𝐾(𝐾(𝑦 |𝑥,𝐾(𝑥)) |𝑥, 𝑦,𝐾(𝑥, 𝑦)) = 𝑂(1).

(Of course the same is true for 𝐾(𝑦) and 𝐾(𝑥 |𝑦,𝐾(𝑦)).)

113 Give a direct proof of Theorem 69. [Hint: Knowing 𝑥, 𝑦 and 𝐾(𝑥, 𝑦), we
may look for an upper bound 𝑑 for 𝐾(𝑥) such that 𝐾(𝑦 |𝑥, 𝑑) + 𝑑 becomes equal
to 𝐾(𝑥, 𝑦). The coincidence (up 𝑂(1)) implies that 𝑑 = 𝐾(𝑥) + 𝑂(1): indeed, if
𝑑 = 𝐾(𝑥) + 𝑚 for some 𝑚, the complexity 𝐾(𝑦 |𝑥, 𝑑) can decrease (because of this
𝑚) at most by 𝑂(log𝑚), and the sum becomes bigger.]

Using Theorem 67 we can easily show that the basic inequality of Theorem 24
(p. 61) is true with 𝑂(1)-precision for prefix complexity (recall that we have loga-
rithmic error term for plain complexity):

Theorem 70.

𝐾(𝑥, 𝑦, 𝑧) + 𝐾(𝑥) 6 𝐾(𝑥, 𝑦) + 𝐾(𝑥, 𝑧) + 𝑂(1)

for arbitrary strings 𝑥, 𝑦, 𝑧.

Proof. Indeed, the right hand side can be rewritten as

𝐾(𝑥) + 𝐾(𝑦 |𝑥,𝐾(𝑥)) + 𝐾(𝑥) + 𝐾(𝑧 |𝑥,𝐾(𝑥)),

and the left hand side equals

𝐾(𝑥) + 𝐾(𝑦, 𝑧 |𝑥,𝐾(𝑥)) + 𝐾(𝑥).

It remains to prove that

𝐾(𝑦, 𝑧 |𝑥,𝐾(𝑥)) 6 𝐾(𝑦 |𝑥,𝐾(𝑥)) + 𝐾(𝑧 |𝑥,𝐾(𝑥)),

and this inequality is a relativized version of Theorem 60 (p. 111). �

Let us provide also a direct proof of Theorem 70 using semimeasures. We have
to show that (up to 𝑂(1)-factors)

𝑚(𝑥, 𝑦, 𝑧)𝑚(𝑥) > 𝑚(𝑥, 𝑦)𝑚(𝑥, 𝑧),

where 𝑚 is the maximal lower semicomputable semimeasure. Dividing by 𝑚(𝑥),
we get an inequality

𝑚(𝑥, 𝑦)𝑚(𝑥, 𝑧)

𝑚(𝑥)
6 𝑚(𝑥, 𝑦, 𝑧).

Let us check that the left hand side of this inequality has a finite sum (over all
triples 𝑥, 𝑦, 𝑧. Indeed, ∑︁

𝑦,𝑧

𝑚(𝑥, 𝑦)𝑚(𝑥, 𝑧)

𝑚(𝑥)
6 𝑚(𝑥)

(since
∑︀

𝑦 𝑚(𝑥, 𝑦) 6 𝑚(𝑥) and
∑︀

𝑧 𝑚(𝑥, 𝑧) 6 𝑚(𝑥); we omit 𝑂(1) factors.)

This is not enough: since we have 𝑚(𝑥) in the denominator, the fraction

𝑚(𝑥, 𝑦)𝑚(𝑥, 𝑧)

𝑚(𝑥)

is not (necessarily) lower semicomputable and we cannot use the maximality prop-
erty. So we need to use the following trick (similar to the trick used in the proof of
Theorem 67) to construct a lower semicomputable upper bound for this fraction.

4.7. CONDITIONAL PREFIX COMPLEXITY AND COMPLEXITY OF PAIRS 125

For each 𝑛 consider the function 𝑚𝑛(𝑥, 𝑦) which is obtained from 𝑚(𝑥, 𝑦)
by 2−𝑛-trimming: the sum

∑︀
𝑦 𝑚(𝑥, 𝑦) is forced to be at most 2−𝑛. Note that∑︀

𝑦 𝑚(𝑥, 𝑦) = 𝑚(𝑥) (up to 𝑂(1)-factors), so 𝑚𝑛(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) for 𝑛 = 𝐾(𝑥).
Then we consider the function

⟨𝑥, 𝑦, 𝑧⟩ ↦→
∑︁

𝑛>𝐾(𝑥)

𝑚𝑛(𝑥, 𝑦)𝑚𝑛(𝑥, 𝑧)

2−𝑛

It is an upper bound since it contains the term with 𝑛 = 𝐾(𝑥). On the other hand,∑︁
𝑥,𝑦,𝑧

∑︁
𝑛>𝐾(𝑥)

𝑚𝑛(𝑥, 𝑦)𝑚𝑛(𝑥, 𝑧)

2−𝑛
6
∑︁
𝑥

∑︁
𝑛>𝐾(𝑥)

∑︀
𝑦 𝑚𝑛(𝑥, 𝑦)

∑︀
𝑧 𝑚𝑛(𝑥, 𝑧)

2−𝑛

6
∑︁
𝑥

∑︁
𝑛>𝐾(𝑥)

2−𝑛 6
∑︁
𝑥

2𝑚(𝑥) 6 2.

(As before, we omit 𝑂(1)-terms and factors; they lead only to 𝑂(1)-factor in the
final inequality.)

114 Show that the inequality of Theorem 26 (p. 62) is true for prefix com-
plexity with 𝑂(1)-precision:

2𝐾(𝑥, 𝑦, 𝑧) 6 𝐾(𝑥, 𝑦) + 𝐾(𝑥, 𝑧) + 𝐾(𝑦, 𝑧) + 𝑂(1)

for all strings 𝑥, 𝑦, 𝑧. [Hint: add the basic inequality

𝐾(𝑥, 𝑦, 𝑧) + 𝐾(𝑧) 6 𝐾(𝑥, 𝑧) + 𝐾(𝑦, 𝑧)

to the inequality 𝐾(𝑥, 𝑦, 𝑧) 6 𝐾(𝑥, 𝑦) + 𝐾(𝑧).]

115 Prove that there exists 𝑐 such that for every string 𝑥 and for every positive
integer 𝑛 there exists a string 𝑦 of length 𝑛 such that

𝐾(𝑥, 𝑦) > 𝐾(𝑥) + 𝑛− 𝑐

[Hint: for every 𝑧 and 𝑛 there exists a string 𝑦 of length 𝑛 such that 𝐾(𝑦 |𝑧) > 𝑛.]

A similar statement can be formulated for 𝑛-bit extensions of a given string 𝑥
(its version for plain complexity makes Problem 46 on p. 55)

Theorem 71.

max{𝐾(𝑥𝑦) | 𝑙(𝑦) = 𝑛} > 𝐾(𝑥 |𝑛) + 𝑛−𝑂(1).

In other terms, for some 𝑐 and all 𝑥 and 𝑛 we can append 𝑛 bits to 𝑥 in such a
way that the complexity becomes at least 𝐾(𝑥 |𝑛)+𝑛−𝑂(1) (this is not exactly the
increase in the complexity since we compare 𝐾(𝑥𝑦) with 𝐾(𝑥 |𝑛) and not 𝐾(𝑥)).

Proof. In terms of a priori probabilities this inequality says that

2𝑛 min{𝑚(𝑥𝑦) | 𝑙(𝑦) = 𝑛} 6 𝑚(𝑥 |𝑛) ·𝑂(1)

The left hand side does not exceed
∑︀

{𝑚(𝑥𝑦) | 𝑙(𝑦) = 𝑛} (the sum may only
decrease is we replace all summands by the least one). But the latter sum is (as a
function of 𝑥 and 𝑛) a lower semicomputable semimeasure, so it remains to compare
it with the maximal semimeasure 𝑚(𝑥 |𝑛). �

116 Show that a bit weaker statement with 𝐾(𝑥) −𝐾(𝑛) instead of 𝐾(𝑥 |𝑛)
(in the right hand side) can be derived from the statement of Problem 115.

126 4. A PRIORI PROBABILITY AND PREFIX COMPLEXITY

4.7.4. Plain and prefix complexities revisited. We have already seen
some bounds for prefix complexity in terms of plain complexity (Theorem 65).
There are many other relations between them. For example, the following observa-
tion (made by Levin) shows that plain complexity can be defined in terms of prefix
(comditional) complexity.

Theorem 72. Plain complexity 𝐶(𝑥) can be defined as the value of 𝑖 such that
𝐾(𝑥 | 𝑖) = 𝑖. More precisely, 𝐾(𝑥 |𝐶(𝑥)) = 𝐶(𝑥) + 𝑂(1); on the other hand, if
𝐾(𝑥 | 𝑖) = 𝑖 + 𝛿, then 𝐶(𝑥) = 𝑖 + 𝑂(𝛿).

Proof. We already noted (see Problem 44 on p. 54), that 𝐶(𝑥) 6 𝐶(𝑥 |𝐶(𝑥))
with 𝑂(1)-precision. On the other hand, 𝐾(𝑥 |𝐶(𝑥)) 6 𝐶(𝑥) with the same preci-
sion. Indeed, the minimal (plain) description for 𝑥 can be considered as a prefix-free
one if its length is given as a condition. So the first statement is proven.

It remains to note that 𝐾(𝑥 | 𝑖) changes slowly (as 𝑖 changes): changing 𝑖 by
𝑑, we change this complexity by 𝑂(log 𝑑). So the equation 𝐾(𝑥 | 𝑖) = 𝑖 has unique
(up to 𝑂(1)) solution; when 𝑖 deviates by some 𝜌 from this solution, the difference
between 𝑖 and 𝐾(𝑥 | 𝑖) is proportional to 𝜌. �

As noted recently by B. Bauwens, this statement can be used to relate plain and
prefix complexity. Let us start with a special case of a formula for the complexity
of a pair:

𝐾(𝑥) = 𝐾(𝑥,𝐾(𝑥)) = 𝐾(𝐾(𝑥)) + 𝐾(𝑥 |𝐾(𝑥),𝐾(𝐾(𝑥))).

Thit is true with 𝑂(1)-precision. If we ignore terms of order 𝑂(𝐾(𝐾(𝐾(𝑥)))), the
pair ⟨𝐾(𝑥),𝐾(𝐾(𝑥))⟩ in the condition can be replaced by 𝐾(𝑥) − 𝐾(𝐾(𝑥)), and
this replacement gives us

𝐾(𝑥) −𝐾(𝐾(𝑥)) = 𝐾(𝑥 |𝐾(𝑥) −𝐾(𝐾(𝑥))) + 𝑂(𝐾(3)(𝑥))

(where 𝐾(𝑖)(𝑥) stands for the 𝑖th iteration of 𝐾). It remains to apply the previous
theorem, and we get the following result by R. Solovay [186]:

Theorem 73.

𝐶(𝑥) = 𝐾(𝑥) −𝐾(𝐾(𝑥)) + 𝑂(𝐾(3)(𝑥)).

This result can be rewritten as

𝐾(𝑥) − 𝐶(𝑥) = 𝐾(𝐾(𝑥)) + 𝑂(𝐾(3)(𝑥)). (*)

Solovay noted also that we can replace 𝐾 by 𝐶 in the right hand side of (*), i.e.,
that

𝐾(𝑥) − 𝐶(𝑥) = 𝐶(𝐶(𝑥)) + 𝑂(𝐶(3)(𝑥)).

In fact, 𝑂(𝐾(3)(𝑥)) and 𝑂(𝐶(3)(𝑥)) denote the same precision, and the equality
𝐾(𝐾(𝑥)) = 𝐶(𝐶(𝑥)) holds with this precision.

Let us explain why. First of all, the already proved formula (*) for 𝐾(𝑥)−𝐶(𝑥)
implies that

|𝐾(𝐾(𝑥)) −𝐾(𝐶(𝑥))| 6 𝐾(3)(𝑥) + 𝑂(log𝐾(3)(𝑥))

and
|𝐶(𝐾(𝑥)) − 𝐶(𝐶(𝑥))| 6 𝐾(3)(𝑥) + 𝑂(log𝐾(3)(𝑥)),

4.7. CONDITIONAL PREFIX COMPLEXITY AND COMPLEXITY OF PAIRS 127

since the difference between complexities of two numbers is bounded by the prefix
complexity of the difference between numbers. On the other hand, we can write
the formula for 𝐾(𝑥)−𝐶(𝑥) for 𝐾(𝑥) in place of 𝑥; in this way we get the equation

𝐾(𝐾(𝑥)) − 𝐶(𝐾(𝑥)) = 𝑂(𝐾(3)(𝑥)).

So all the four versions of complexity of complexity of 𝑥 (combinations of plain and
prefix complexity) differ at most by 𝑂(𝐾(3)(𝑥)). In particular,

𝐾(𝐾(𝑥)) − 𝐶(𝐶(𝑥)) = 𝑂(𝐾(3)(𝑥)).

It remains to show that 𝑂(𝐾(3)(𝑥)) and 𝑂(𝐶(3)(𝑥)) is the same precision. Note
that |𝑢− 𝑣| = 𝑂(𝐾(𝑢)) implies |𝐾(𝑢)−𝐾(𝑣)| = 𝑂(log𝐾(𝑢)), so 𝐾(𝐾(𝐾(𝑥))) and
𝐾(𝐶(𝐶(𝑥))) are “logarithmically close” (we say that 𝑎 is logarithmically close to 𝑏
if |𝑎 − 𝑏| = 𝑂(log 𝑎)). This “closeness” relation is symmetric and transitive (if we
allow to increase the constant in 𝑂-notation). Now note that 𝐶(𝑣) and 𝐾(𝑣) are
logarithmically close for every 𝑣, in particular, for 𝑣 = 𝐶(𝐶(𝑥)), and the transitivity
shows that 𝐾(𝐾(𝐾(𝑥))) and 𝐶(𝐶(𝐶(𝑥))) are also logarithmically close, so indeed
𝑂(𝐾(3)(𝑥)) and 𝑂(𝐶(3)(𝑥)) is the same precision.

In this way we obtained another result of Solovay from [186]:

Theorem 74.

𝐾(𝑥) = 𝐶(𝑥) + 𝐶(𝐶(𝑥)) + 𝑂(𝐶(3)(𝑥)).

In other words, the inequality from Theorem 65 (p. 116) is almost an equality.

117 Give a direct proof of the inequality

𝐶(𝑥) 6 𝐾(𝑥) −𝐾(𝐾(𝑥)) + 𝐾(3)(𝑥) + 𝑂(1)

by estimating the number of 𝑥 that make the right hand side of the inequality small.
[Hint. We have seen in Theorem 64 (p. 115) that the logarithm of the number

of strings such that 𝐾(𝑥) 6 𝑛 is bounded by 𝑛 − 𝐾(𝑛) + 𝑐 for some 𝑐 and for
all 𝑛. Given 𝑛, we can enumerate these strings, and each string 𝑥 of this type can
be reconstructed from 𝑛 and the ordinal number of 𝑥 in this enumeration. This
ordinal number can be represented by a string 𝑢 of length exactly 𝑛 − 𝐾(𝑛) + 𝑐
(add leading zeros to its binary representation). Knowing this representation, we
know 𝑛−𝐾(𝑛) (the constant 𝑐 is fixed), and to reconstruct 𝑛 it is enough to encode
𝐾(𝑛) by a self-delimiting description of length 𝐾(𝐾(𝑛)). Now concatenate this
self-delimiting description and the string 𝑢: we get a (plain) description of 𝑥 of
length 𝐾(𝐾(𝑛)) + 𝑛 − 𝐾(𝑛) + 𝑐. This can be done for arbitrary string 𝑥 with
𝐾(𝑥) 6 𝑛, in particular for all strings of prefix complexity exactly 𝑛.]

CHAPTER 5

Monotone complexity

5.1. Probabilistic machines and semimeasures on the tree

Chapter 4 defines a priori probability by using probabilistic algorithms (ma-
chines) that may print some number as their output and then terminate. In this
chapter we consider another type of probabilistic (=randomized) algorithms. These
algorithms output a binary sequence bit by bit and do not necessarily terminate.
The output, therefore, is a random variable whose values are finite and infinite
sequences of bits (i.e., elements of the set Σ of all finite and infinite sequences of
bits).

Consider the following simple algorithm of this type. It just sends random bits
directly to the output:

while true do
b:=random;
OutputBit(b);

od

Its output therefore is a random variable that is uniformly distributed over Ω, the
set of all infinite binary sequences.

But it is quite possible (for some other algorithm) that some finite sequence
is printed with positive probability. This happens when algorithm with positive
probability stops after sending some bits to the output (or runs forever without
sending more bits to the output).

For each algorithm 𝐴 of the described type we consider a function 𝑎 that is
defined on binary strings and whose values are non-negative reals:

𝑎(𝑥) = Pr[the output of 𝐴 starts with 𝑥]

More formally this function is defined in the following way. Each probabilistic
algorithm defines a mapping 𝐴 of the set Ω (infinite sequences of zeros and ones)
into the set Σ. Namely, 𝐴(𝜔) is a sequence of output bits that appears if we use the
terms of the sequence 𝜔 as random bits (this means that each statement b := random

assigns to b the first unused bit of 𝜔). For example, if 𝐴 is the program mentioned
above, then 𝐴(𝜔) = 𝜔 for all 𝜔.

Then 𝑎(𝑥) is defined as the measure of the preimage of the set Σ𝑥 under the
mapping 𝐴 (where Σ𝑥 is the set of all finite and infinite sequences having prefix 𝑥).
We say that 𝐴 generates the distribution 𝑎.

118 What are 𝐴 and 𝑎, if the algorithm 𝐴 prints an infinite sequence of zeros
(not using random bits at all)?

A natural question arises: what is the class of all functions 𝑎 that correspond
to randomized algorithms 𝐴 of the described type? The next two theorems provide

129

130 5. MONOTONE COMPLEXITY

the answer (given already in one of the first papers on algorithmic information
theory, [223]):

Theorem 75. Let 𝐴 be a randomized algorithm of the described type and let 𝑎
be the corresponding function. Then:

(a) 𝑎(𝑥) > 0 for all 𝑥;
(b) 𝑎(Λ) = 1 (here Λ is the empty string);
(c) 𝑎(𝑥) > 𝑎(𝑥0) + 𝑎(𝑥1) for every string 𝑥;
(d) the function 𝑎 is lower semicomputable.

The notion of the lower semicomputable (enumerable from below) sequence of
reals was defined in Section 4.1 (p. 89). For the functions on strings the definition is
quite similar: we require that 𝑎(𝑥) = lim𝑖 𝑎(𝑥, 𝑖) where 𝑎 is a computable function,
𝑎(𝑥, 𝑖) is defined for all strings 𝑥 and for all non-negative integers 𝑖, has rational
values (special symbol −∞ is allowed) and non-decreases as 𝑖 increases.

Proof. The first three claims are obvious:
(a) Probability is always non-negative.
(b) 𝑎(Λ) = 1 since the empty string is a prefix of any output.
(c) 𝑎(𝑥) > 𝑎(𝑥0)+𝑎(𝑥1), since the events “the output starts with 𝑥0” and “the

output starts with 𝑥1” are disjoint subsets of the event “the output starts with 𝑥”.
Note that the inequality (c) can be strict; the difference 𝑎(𝑥) − 𝑎(𝑥0) − 𝑎(𝑥1)

is the probability of the event “the output is exactly the string 𝑥” (no bits appear
after it).

(d) To prove that 𝑎 is lower semicomputable, we need to construct approxima-
tions from below for 𝑎(𝑥) for any given string 𝑥. Let us simulate the behavior of 𝐴
for all possible values of random bits. During this simulation we discover values of
random bits that guarantee that output starts with 𝑥, i.e., we find some intervals 𝐼
in Ω such that 𝐴(𝜔) starts with 𝑥 for all 𝜔 ∈ 𝐼. The probability 𝑎(𝑥) is the measure
of the union of all these intervals, and the approximation 𝑎(𝑥, 𝑖) is the measure of
the union of all the intervals discovered up to the step 𝑖 of the simulation. �

The function 𝑎 that is defined on all binary strings, takes real values and satisfies
the conditions (a)–(d) of Theorem 75 is called an lower semicomputable semimea-
sure on the binary tree. It is important not to mix semimeasures on the binary
tree and discrete semimeasures defined in Chapter 4 that were functions on natural
numbers (or on binary strings that correspond to natural numbers) and correspond
to probabilistic algorithms that print some number (or string) and terminate. So
we use the name continuous semimeasures or semimeasures on the binary tree for
functions that satisfy conditions (a)–(c); the condition (d) selects among them the
lower semicomputable continuous semimeasures.

119 Show that continuous semimeasures (functions that satisfy conditions
(a)–(c)) are in a one-to-one correspondence with measures on the set Σ of all finite
and infinite binary sequences. Given a semimeasure 𝑎, find the measure of the set
that consists of all infinite sequences that have prefix 𝑥. [Answer: the measure of
this set is the limit of the (decreasing) sequence

𝛼𝑛 =
∑︁

{𝑎(𝑦)|𝑦 is a string of length 𝑛 that has prefix 𝑥}

Here 𝛼𝑛 is defined for 𝑛 > 𝑙(𝑥) and equals 𝑎(𝑥) if 𝑛 = 𝑙(𝑥).]

5.1. PROBABILISTIC MACHINES AND SEMIMEASURES ON THE TREE 131

120 Show that for a semicomputable tree semimeasure the sum
∑︀

𝑥 𝑎(𝑥) can
be infinite. [Hint: Consider the algorithm that copies random bits to output.]

The converse of Theorem 75 is also true:

Theorem 76. Every lower semicomputable continuous semimeasure is gener-
ated by some probabilistic algorithm.

Proof. The idea of the proof can be easily explained in terms of space alloca-
tion, as it was done for Theorem 46 (p. 92). The difference is that now the requests
are hierarchical. Two big organizations (called 0 and 1) need space in Ω (which we
identify with [0, 1]); the subsets allocated for 0 and 1 should be disjoint, and their
space requests increase over time (but never become greater than 1 in total).

Each of the organizations has two divisions (called 00, 01 inside 0 and 10, 11
inside 1) that request some space inside the regions allocated to their organization as
a whole. Their requests also increase over time, but never become greater (in total)
than the organization’s request (at the same time). Then we consider subdivisions
(say, 01 has subdivision 010 and 011) that have increasing requests that do not
exceed (together) the request of their parent division, and so on.

For each subdivision 𝑥 (at any level) we have increasing requests. All the
allocations are final, i.e., the space allocated to some 𝑥 remains allocated to 𝑥.

This scheme is used in the proof as follows: having a lower semicomputable
semimeasure 𝑎, we construct a family of requests such that the limit of the requests
for subdivision 𝑥 is equal to 𝑎(𝑥). Then we choose a way to satisfy all the requests
and then say that if a sequence of random bits gets into the region allocated to 𝑥,
then the output of randomized algorithms starts with 𝑥.

It is more or less obvious that the requests can indeed be fulfilled. The reader
may skip the rest of the proof, where we provide a more formal argument (and
explain the intuitive meaning of its steps).

Lemma 1. Let 𝑎 be a lower semicomputable semimeasure on the binary tree.
Then there exists a total computable monotone (in the second argument) function
⟨𝑥, 𝑖⟩ ↦→ 𝑎(𝑥, 𝑖) whose values are non-negative rational numbers with denominators
being powers of two, such that

(1) lim𝑖 𝑎(𝑥, 𝑖) = 𝑎(𝑥) for every string 𝑥;
(2) for each 𝑖 the function 𝑥 ↦→ 𝑎(𝑥, 𝑖) is a continuous semimeasure that has

only finitely many non-zero values.
In other terms, the memory manager can impose the following additional re-

strictions:

∙ all the requests are dyadic-rational numbers;
∙ at each step only finitely many subdivisions have nonzero requests;
∙ at each step requests are coherent (the request of any subdivision should

be greater than or equal to the sum of requests of its children).

Proof. Our goal is to change the function 𝑎 from the definition of lower semi-
computable semimeasure (not changing the semimeasure itself) so that it satisfies
the requirements of the Lemma. First, we make all values dyadic rationals. To
achieve this, we replace 𝑎(𝑥, 𝑖) by the maximal rational number with denominator
2𝑖 not exceeding 𝑎(𝑥, 𝑖) (negative numbers are replaced by zeros).

Then we fulfill the second requirement and let 𝑎(𝑥, 𝑖) be zeros for all strings 𝑥
whose length exceeds 𝑖.

132 5. MONOTONE COMPLEXITY

To fulfill the third requirement, we perform the replacement

𝑎(𝑥, 𝑖) := max (𝑎(𝑥, 𝑖), 𝑎(𝑥0, 𝑖) + 𝑎(𝑥1, 𝑖))

iteratively starting from long strings and then decreasing the length of 𝑥. Since
𝑎(𝑥) is by definition a semimeasure, these replacements do not violate the inequality
𝑎(𝑥, 𝑖) 6 𝑎(𝑥).

It is easy to check that our corrections do not change the limit values lim𝑖 𝑎(𝑥, 𝑖)
(for all 𝑥), so this limit is still equal to 𝑎(𝑥).

Lemma 1 is proven.
To formulate the next lemma we need several auxiliary definitions. A “simple

semimeasure” (on the binary tree) is a semimeasure that has only finitely many
nonzero values and all these values are dyadic rationals.

A “simple set” is the union of a finite number of intervals in Ω. (Recall that
an interval in Ω is a set of the form Ω𝑧 that consists of all infinite sequences having
prefix 𝑧. Therefore, a set is simple if we need to know only a finite prefix of 𝜔 to
decide whether 𝜔 belongs to this set.)

A “simple family” is a family of simple sets 𝐴𝑥 (for all binary strings 𝑥) such
that only finitely many sets among 𝐴𝑥 are non-empty and for each string 𝑥 the sets
𝐴𝑥0 and 𝐴𝑥1 are disjoint subsets of 𝐴𝑥. For such a family the function 𝑥 ↦→ 𝜇(𝐴𝑥),
where 𝜇 stands for the uniform measure on Ω is a simple semimeasure. We say that
the family 𝐴𝑥 “implements” this semimeasure.

Lemma 2. Each simple semimeasure can be implemented by a simple family.
Proof. We construct this family starting from the empty string 𝑥 and then

gradually increasing the length of the index string 𝑥. At each step our goal is to find
two disjoint simple sets 𝐴𝑥0 and 𝐴𝑥1 inside the set 𝐴𝑥 that is already constructed.
This is possible since the required measures do not exceed (in total) the measure
of 𝐴𝑥. Lemma 2 is proven.

Lemma 3. Let 𝑏(𝑥) be a simple semimeasure and let 𝐵𝑥 be a simple family
of intervals that implements 𝑏. Let 𝑐 be another simple semimeasure such that
𝑐(𝑥) > 𝑏(𝑥) for all 𝑥. Then we can construct a simple family 𝐶𝑥 implementing 𝑐
such that 𝐶𝑥 ⊃ 𝐵𝑥 for all 𝑥.

Proof. Let us repeat the argument used to prove Lemma 2. Now we have two
disjoint simple subsets of a simple set and need to increase their measures (keeping
them disjoint). It is easy to see that this is indeed possible if the space restrictions
are not violated. Lemma 3 is proved.

The proofs of Lemma 2 and Lemma 3 are effective in a natural sense: both
simple semimeasures and simple families are finite objects, and there is an algorithm
that constructs the simple family given the simple semimeasure(s).

Now we apply Lemma 3 iteratively to the simple semimeasures provided by
Lemma 1. In this way we get a two-parametric family of simple sets 𝑈(𝑥, 𝑖) such
that

∙ the description of 𝑈(𝑥, 𝑖) (i.e., the list of intervals) is a computable func-
tion of 𝑥 and 𝑖;

∙ the uniform measure of the set 𝑈(𝑥, 𝑖) is equal to 𝑎(𝑥, 𝑖) (and therefore
tends to 𝑎(𝑥) as 𝑖 → ∞);

∙ for each 𝑥 and 𝑖 the sets 𝑈(𝑥0, 𝑖) and 𝑈(𝑥1, 𝑖) are disjoint subsets of the
set 𝑈(𝑥, 𝑖);

∙ 𝑈(𝑥, 𝑖) ⊂ 𝑈(𝑥, 𝑖 + 1) for each 𝑥 and 𝑖.

5.1. PROBABILISTIC MACHINES AND SEMIMEASURES ON THE TREE 133

Now the probabilistic algorithm that generates the semimeasure 𝑎 can be con-
structed as follows: we construct the sets 𝑈(𝑥, 𝑖) for all 𝑥 and 𝑖 and in parallel
generate random bits obtaining a sequence 𝜔. If at some step we discover that
𝜔 ∈ 𝑈(𝑥, 𝑖) for some 𝑥 and 𝑖, we output those bits of the string 𝑥 that have not yet
been printed.

Note that if 𝜔 ∈ 𝑈(𝑥, 𝑖) then 𝜔 ∈ 𝑈(𝑦, 𝑖) for every prefix 𝑦 of 𝑥. Note also
that 𝜔 cannot be an element of both 𝑈(𝑥, 𝑖) and 𝑈(𝑥′, 𝑖) if strings 𝑥 and 𝑥′ are
incompatible (neither of them is the prefix of the other one). Therefore the bits
sent to the output never need to be “recalled”.

An output of this algorithm starts with some string 𝑥 if and only if the sequence
𝜔 of random bits belongs to the union of the increasing sequence of sets 𝑈(𝑥, 𝑖) (for
𝑖 = 0, 1, 2, . . .). The probability of this event is the limit of measures of the sets
𝑈(𝑥, 𝑖), and this limit is by construction equal to 𝑎(𝑥), so we have achieved our
goal. �

Theorems 75 and 76 show that lower semicomputable semimeasures can be
equivalently defined as probability distributions generated by randomized algo-
rithms (of the described class).

There is an important special case when a randomized algorithm almost surely
generates an infinite sequence (i.e., the probability to get a finite sequence is zero).
Such algorithms generate computable measures, as the following theorem shows.

Theorem 77. (a) Let 𝜇 be a computable measure on Ω. Then function 𝑝 defined
on the Cantor space as 𝑝(𝑥) = 𝜇(Ω𝑥) is a lower semicomputable semimeasure and
𝑝(𝑥) = 𝑝(𝑥0) + 𝑝(𝑥1) for all 𝑥.

(b) If a lower semicomputable semimeasure 𝑝 satisfies the equality 𝑝(𝑥) =
𝑝(𝑥0) + 𝑝(𝑥1) for all 𝑥, then it determines some computable measure on Ω.

Proof. (a) If a real number 𝛼 is computable and 𝑎𝑛 is a rational approximation
to 𝛼 with accuracy 1/𝑛, then 𝑏𝑛 = 𝑎𝑛−1/𝑛 is a lower bound for 𝛼 that is at most 2/𝑛
apart from 𝛼. The sequence 𝑏𝑛 constructed in this way can violate the monotonicity
requirement but we may replace it by the sequence 𝑐𝑛 = max(𝑏0, 𝑏1, . . . , 𝑏𝑛) and get
a non-decreasing sequence of rational numbers converging to 𝛼. Therefore, every
computable real number is lower semicomputable. Doing this in parallel for all 𝑥,
we obtain computable rational lower bounds for 𝑝(𝑥) tending to 𝑝(𝑥) and prove
that every computable measure is an lower semicomputable semimeasure. Since Ω𝑥

is the union of two disjoint subsets Ω𝑥0 and Ω𝑥1, we also have 𝑝(𝑥) = 𝑝(𝑥0)+𝑝(𝑥1).
(b) Assume that 𝑝 is a lower semicomputable semimeasure that satisfies our

condition, i.e., 𝑝(𝑥) = 𝑝(𝑥0) + 𝑝(𝑥1) for all 𝑥. We show inductively how 𝑝(𝑥) can
be found up with arbitrary precision for every 𝑥. For empty 𝑥 we have 𝑝(Λ) = 1 by
definition. Imagine that we already know how to find 𝑝(𝑥) with arbitrary precision
for some string 𝑥. How can we do the same for 𝑝(𝑥0) and 𝑝(𝑥1)? We have to wait
until the sum of (increasing) lower bounds for 𝑝(𝑥0) and 𝑝(𝑥1) becomes close enough
to the (decreasing) upper bound for 𝑝(𝑥). In other terms, an upper bound for 𝑝(𝑥1)
can be obtained if we take an upper bound for 𝑝(𝑥) (constructed recursively) and
subtract a lower bound for 𝑝(𝑥0), and vice versa. �

This theorem can be interpreted in the following way. Assume that we need
a generator of random reals (=sequences of zeros and ones) whose output has a
prescribed distribution 𝑝 (this means that the probability to get an output that
starts with 𝑥 is equal to 𝑝(𝑥)). Then Theorems 76 and 77 guarantee that if 𝑝 is a

134 5. MONOTONE COMPLEXITY

computable distribution, then such a generator can be implemented as a randomized
algorithm that uses the internal source of random bits that has uniform distribution.

The construction used in the proof of Theorem 76 can be applied to every
lower semicomputable continuous semimeasure; in the special case when we deal
with computable measures, there is a much simpler approach. Let us divide the
interval [0, 1] into two parts of lengths 𝑝(0) and 𝑝(1). The first part is then divided
again into parts of length 𝑝(00) and 𝑝(01), the second one is divided into parts of
length 𝑝(10) and 𝑝(11), and so on. In this way for each string 𝑧 we get an interval
𝜋𝑧 inside [0, 1], and the intervals 𝜋𝑧 for all strings 𝑧 of any given length cover [0, 1]
without overlaps.

Now construct the probabilistic algorithm as follows. This algorithm uses in-
dependent tosses of a fair coin to get a sequence 𝛼 of random bits that has uniform
distribution. This sequence is considered as a binary representation of some real in
[0, 1]; this real is also denoted by 𝛼. In parallel the probabilistic algorithms looks
for binary strings 𝑧 such that the real number 𝛼 lies strictly inside the interval
𝜋𝑧 (and this is guaranteed by the available information about 𝛼 and the current
approximations to the endpoints of 𝜋𝑧; these approximations are computed with
increasing precision).

The strings 𝑧 discovered in this way are are compatible (one being a prefix of
another). The more bits of 𝛼 we know, the longer 𝑧 can be. These strings are
prefixes of some bit sequence that is the output of our randomized algorithm.

The algorithm described can output a finite sequence. This happens if 𝛼 coin-
cides with an endpoint of some 𝜋𝑧. However, there are countably many endpoints,
so this event has probability 0. Note also that the output of the algorithm starts
with 𝑧 if and only if 𝛼 belongs to the (open) interval 𝜋𝑧, so the probabilities are
correct.

More formally, we have described a transformation 𝑇 of the input bit sequence
𝛼 into the output bit sequence 𝛽 = 𝑇 (𝛼) such that the image of uniform measure
under 𝑇 is the measure 𝑝.

(This trick is well known. For example, imagine that you have a fair coin and
you need to simulate the coin that has probabilities 2/3 and 1/3. Then you generate
a random real uniformly distributed in [0, 1] (by fair coin tossing) and compare this
real number with threshold 2/3. To simulate the second coin tossing, you divide
both intervals [0, 2/3] and [2/3, 1] in the same proportion 2 : 1. The algorithm
described earlier does exactly this.)

Theorem 76 shows that it is enough to have a physical generator of indepen-
dent symmetric random bits (a fair coin) to emulate arbitrary other computable
probability distribution and even arbitrary continuous semimeasure. In fact, a
“computably biased” coin could work as well, as the following problem shows.

121 Show that in Theorem 75 one can replace uniform distribution by an
arbitrary computable distribution and even an arbitrary semimeasure. [Hint: the
composition of two algorithmic transformations is an algorithmic transformation
itself.]

122 Show that in Theorem 76 one can replace uniform distribution by arbi-
trary computable distribution that does not have atoms, i.e., every singleton has
measure 0. [Hint: A computable measure 𝑃 can be transformed into the uniform

5.2. MAXIMAL SEMIMEASURE ON THE BINARY TREE 135

one as follows: as we get 𝑧 from 𝑃 -generator, we output a string 𝑥 such that the seg-
ment 𝜋𝑧 is entirely in the open interval 𝐼𝑥 (of numbers whose binary representation
start with 𝑥).]

It is important here that the measure does not have atoms: if 𝜔 has positive
measure, then the value 𝐴(𝜔) has positive probability and we cannot get a uniform
output distribution (that does not have atoms). But, as we have seen, this is the
only obstacle.

More difficult problem arises if we do not know exactly the distribution of our
(“low-quality”) source of random bits. Can we still generate some distribution that
is at least close to the uniform one? This question can be formalized in terms of the
randomness extractors — both in combinatorial terms and in terms of Kolmogorov
complexity. See the survey by A. Wigderson [217] and the references in this survey
for the combinatorial setting, and the survey of M. Zimand [222]; we do not go
into this direction in our book.

5.2. Maximal semimeasure on the binary tree

Theorem 78. The class of all lower semicomputable semimeasures on the bi-
nary tree has the greatest element (up to a constant factor): there exists a semimea-
sure 𝑎 in this class such that for every other 𝑎′ in the same class the inequality
𝑎′(𝑥) 6 𝑐𝑎(𝑥) holds for some constant 𝑐 and for all 𝑥.

Proof. We can use the same idea as for semimeasures on N (Theorem 47,
p. 93). Consider a probabilistic machine 𝐴 that first chooses at random some
probabilistic machine and then simulates it. If a semimeasure 𝑎′ corresponds to a
probabilistic machine 𝐴′, then 𝑎′(𝑥) 6 (1/𝜀)𝑎(𝑥) where 𝜀 is the probability that
machine 𝐴′ is chosen. �

Another proof deals with functions, not machines: first we construct a sequence
𝑎0, 𝑎1, . . . of semimeasures and then consider the function 𝑎 =

∑︀
𝑖 𝜆𝑖𝑎𝑖 where 𝜆𝑖 are

computable coefficients that have sum 1 (e.g., 𝜆𝑖 = 2−𝑖−1).
A delicate point: we need a sequence that includes all (tree) semimeasures that

are computable from below, and the sequence itself should be computable from
below. This means that we need a lower semicomputable function ⟨𝑖, 𝑥⟩ ↦→ 𝑢(𝑖, 𝑥)
such that (1) for any fixed 𝑖 the function 𝑢𝑖 : 𝑥 ↦→ 𝑢(𝑖, 𝑥) is a tree semimeasure;
(2) the sequence 𝑢𝑖 contains all lower semicomputable tree semimeasures.

This can be done either by enumerating all probabilistic machines (and that
corresponds to the first proof) or by enumerating all lower semicomputable func-
tions and then “trimming” them to make them semimeasures and leaving them
unchanged if they already are semimeasures. See the similar argument for semimea-
sures on N (Section 4.2, p. 93). In this process, if the condition 𝑝(𝑥) > 𝑝(𝑥0)+𝑝(𝑥1)
is violated, we should increase 𝑝(𝑥) and so on, unless in the end this makes 𝑝(Λ)
greater than 1.

123 Provide the missing details in this argument.

(Remark: The first proof of Theorem 78 gives a bit more than we have claimed.
Indeed, in this proof we obtain the lower bound not only for the probability of
the event “output starts with 𝑥”, which is 𝑝(𝑥), but also a lower bound for the
probability of the event “the output is exactly 𝑥”, which is 𝑝(𝑥)−𝑝(𝑥0)−𝑝(𝑥1). So
not only 𝑎(𝑥), but also 𝑎(𝑥) − 𝑎(𝑥0) − 𝑎(𝑥1) is maximal for the universal machine
we constructed.)

136 5. MONOTONE COMPLEXITY

124 Prove that all these arguments can be applied to the case of algorithms
that send natural numbers (not bits) to the output one at a time. These algorithms
correspond to lower semicomputable semimeasures on the set of all (finite and
infinite) sequences of natural numbers.

125 (Continued) Let 𝑚 be the maximal lower semicomputable semimeasure
on the set of all finite and infinite sequences of natural numbers. Show that its
restriction on the sequences of length 1 coincides (up to 𝑂(1) factor) with the
discrete a priori probability on natural numbers (Chapter 4), and its restriction
to binary sequences coincides (up to 𝑂(1) factor) with the maximal semimeasure
provided by Theorem 78.

126 Show that 𝑎(0𝑛1) and 𝑚(𝑛) differ at most by 𝑂(1) factor in both direc-
tions, where 𝑎 is the maximal continuous semimeasure from Theorem 78, and 𝑚(𝑛)
is the a priori probability of integer 𝑛 as defined in Chapter 4. (Instead of 0𝑛1 one
can use arbitrary prefix-free encoding of integers.) [Hint: See Theorem 79 below.]

Let us fix some maximal lower semicomputable semimeasure on the binary
tree and denote it by 𝑎(𝑥). It is known as the universal continuous semimeasure.
One can call 𝑎(𝑥) a continuous a priori probability of 𝑥, to distinguish it from the
discrete a priori probability defined in Chapter 4. However, the expression

KA (𝑥) = − log 𝑎(𝑥)

can be called a priori complexity of a string 𝑥 with no risk of confusion: the minus
logarithm of the discrete a priori probability (Chapter 4) coincides with the prefix
complexity and therefore does not require a special name. Since different maximal
semimeasures differ at most by 𝑂(1) factor, the a priori complexity is defined up
to an additive 𝑂(1) term.

There is no universally accepted notation for a priori complexity: sometimes it
is denoted by KM(𝑥). We use KA (𝑥) for a priori complexity reserving KM(𝑥) for
monotone complexity that we define later in this chapter. (When KM(𝑥) is used
for a priori complexity, the monotone complexity is denoted usually by Km(𝑥) or
𝐾𝑚(𝑥).)

In the next section we study the properties of a priori complexity. Let us
note that by definition the a priori complexity need not be an integer (or even
rational) number. But this does not matter much, since most of the statements
about complexity are true “up to 𝑂(1) term”, and we may replace − log 𝑎(𝑥) by a
minimal integer 𝑛 such that 2−𝑛 < 𝑎(𝑥). An important detail: we use the strict
inequality since we want the resulting function to be lower semicomputable. In
the sequel we indicate the rare cases where this rounding (or its absence) can be
important.

5.3. A priory complexity and its properties

Theorem 79. (a) A priori complexity is monotone: if 𝑥 is a prefix of 𝑦, then
KA (𝑥) 6 KA (𝑦).

(b) KA (𝑥) 6 𝑙(𝑥) + 𝑂(1) for each 𝑥.
(c) KA (𝑥) 6 𝐾(𝑥) + 𝑂(1) for each 𝑥.
(d) Let 𝑥0, 𝑥1, . . . be a computable sequence of incompatible binary strings (i.e.,

none of them is a prefix of another one). Then

KA (𝑥𝑖) = 𝐾(𝑥𝑖) + 𝑂(1) = 𝐾(𝑖) + 𝑂(1).

5.3. A PRIORY COMPLEXITY AND ITS PROPERTIES 137

(e) 𝐾(𝑥) 6 KA (𝑥) + 2 log 𝑙(𝑥) + 𝑂(1).
(f) Moreover, 𝐾(𝑥) 6 KA (𝑥) + 𝐾(𝑙(𝑥)) + 𝑂(1),
(g) and even more, 𝐾(𝑥|𝑙(𝑥)) 6 KA (𝑥) + 𝑂(1).
(h) A sequence of zeros and ones is computable if and only if a priori complexity

of its prefixes is bounded.
(i) If 𝑓 : Σ → N⊥ is a computable continuous mapping, then

𝐾(𝑓(𝑥)) 6 KA (𝑥) + 𝑂(1)

for each string 𝑥 such that 𝑓(𝑥) is defined (is not equal to ⊥).

Proof. (a) The measure of a subset of a set does not exceed the measure of
the set itself.

(b) The function 𝑝(𝑥) = 2−𝑙(𝑥) is a lower semicomputable semimeasure. There-
fore 𝑝(𝑥) 6 𝑐𝑎(𝑥) for some 𝑐 and all 𝑥.

(c) The machines that print a binary string (as a whole) and then halt, form a
subclass of the machines that generate output bits one by one. Therefore, 𝑚(𝑥) 6
𝑐𝑎(𝑥) where 𝑚 is the discrete a priori probability (as defined in Chapter 4).

It is instructive to rephrase this argument using semimeasures. Let 𝑚′(𝑥) be
the sum of 𝑚(𝑦) taken over all strings 𝑦 that have prefix 𝑥 (including 𝑥 itself). Here
𝑚 is the discrete a priori probability. Modify 𝑚′ and let 𝑚′(Λ) be equal to 1. Then
𝑚′ is a semimeasure on the binary tree and therefore 𝑚(𝑥) 6 𝑚′(𝑥) = 𝑂(𝑎(𝑥)).

(d) Let 𝑥𝑖 be a computable sequence of incompatible binary strings. The func-
tion 𝑖 ↦→ 𝑎(𝑥𝑖) (where 𝑎 is the continuous a priori probability) is a lower semicom-
putable semimeasure on N. Indeed, it is lower semicomputable; the events “output
starts with 𝑥𝑖” are disjoint, and therefore the sum of their probabilities does not
exceed 1. Therefore 𝐾(𝑖) 6 KA (𝑥𝑖) + 𝑂(1).

On the other hand, 𝐾(𝑥𝑖) = 𝐾(𝑖) +𝑂(1), since 𝑖 can be algorithmically trans-
formed into 𝑥𝑖 and vice versa; finally, KA (𝑥𝑖) 6 𝐾(𝑥𝑖) + 𝑂(1) according to (c).

(e) Let 𝑎 be the universal continuous semimeasure. Consider the function 𝑢
defined as 𝑢(𝑥) = 𝑎(𝑥)/𝑙(𝑥)2. It is lower semicomputable. Moreover, since the
sum of 𝑎(𝑥) over all strings 𝑥 of length 𝑛 does not exceed 1 (these strings are all
incompatible), we get∑︁

𝑥

𝑢(𝑥) =
∑︁
𝑛

∑︁
𝑙(𝑥)=𝑛

𝑎(𝑥)

𝑛2
6
∑︁
𝑛

1

𝑛2
= 𝑂(1),

so we get the desired inequality.
(f) can be proved in a similar way, this time we let 𝑢(𝑥) = 𝑎(𝑥)𝑚(𝑙(𝑥)) where

𝑚 is a priori probability on N (as defined in Chapter 4).
(g) Consider the function

𝑢(𝑥, 𝑛) =

{︃
𝑎(𝑥), if 𝑙(𝑥) = 𝑛,

0, if 𝑙(𝑥) ̸= 𝑛.

Then for each 𝑛 the function 𝑥 ↦→ 𝑢(𝑥, 𝑛) is a semimeasure in the sense of Chapter 4
(the sum of values does not exceed 1), and we get the desired inequality.

(h) For a give computable (infinite) sequence 𝜔 of zeros and ones consider a
“probabilistic” algorithm that ignores random bits and just computes and sends to
the output the sequence 𝜔 (bit by bit). The corresponding semimeasure equals 1
on any prefix of 𝜔, therefore the universal semimeasure (whose logarithm is a priori
complexity) of all prefixes of 𝜔 is greater that some positive constant.

138 5. MONOTONE COMPLEXITY

The converse implication is a bit more complicated. Assume that a priori
probabilities (the values of the universal semimeasure 𝑎 on the binary tree) of all
prefixes of 𝜔 are greater than some rational 𝜀 > 0. Consider the set 𝐵 of all binary
strings 𝑥 such that 𝑎(𝑥) > 𝜀. The set 𝐵 contains all prefixes of 𝜔 and is a subtree (if
some string is in 𝐵, then all its prefixes are in 𝐵). Moreover, any prefix-free subset
of 𝐵 (that does not contain a sequence and its prefix at the same time) has at most
1/𝜀 elements (since the corresponding events are disjoint, their total probability
does not exceed 1). Finally, the set 𝐵 is enumerable (having more and more precise
approximations to 𝑎(𝑥) from below, we eventually discover all elements in 𝐵).

These properties of 𝐵 are sufficient to conclude that the sequence 𝜔 is com-
putable. Indeed, consider the maximal (having the maximal cardinality) prefix-free
subset 𝑥1, . . . , 𝑥𝑁 of 𝐵. For each of 𝑥𝑖 consider all its continuations that belong to
𝐵. All of them (for a given 𝑖) are prefixes of one sequence, otherwise we can find
two inconsistent strings and replace 𝑥𝑖 by them (and this is not possible, since the
subset is maximal).

So for each 𝑖 we have a (finite or infinite) branch in 𝐵 going through 𝑥𝑖, and
it is computable since 𝐵 is enumerable. The sequence 𝜔 is one of these branches
(otherwise we could add a sufficiently long prefix of 𝜔 to the set that is maximal—a
contradiction).

(i) Consider the probabilistic machine that corresponds to the maximal semi-
computable semimeasure on the binary tree, and apply function 𝑓 to its output.
This composition is a probabilistic machine as defined in Chapter 4, and it remains
to compare it to the universal machine that generates the maximal lower semicom-
putable semimeasure on N (logarithm of this semimeasure is 𝐾 + 𝑂(1)). �

Note that the a priori complexity is quite different from the complexities already
known (plain and prefix complexities). Its definition uses a tree structure that exists
on the set of finite binary strings, and algorithmic transformations that ignore this
structure can increase a priori complexity more than by 𝑂(1).

127 Show that one can find a string 𝑥 that has 𝑂(1) a priori complexity

but 𝑥𝑅 (reversed 𝑥) has arbitratrily large complexity. (Formally: there exists 𝑐
such that for every 𝑛 there is a string 𝑥 satisfying the inequalities KA (𝑥) < 𝑐 and
KA (𝑥𝑅) > 𝑛.) [Hint: the string 𝑥 can be of the form 100 . . . 0.]

So (unlike for plain or prefix complexity) we cannot define a priori complexity
of arbitrary constructive objects (pairs, graphs, finite sets, etc.) since it depends
on the encoding.

The difference between a priori complexity of a string 𝑥 of length 𝑛 and other
complexities of 𝑥 (plain, prefix) is still 𝑂(log 𝑛). However, it is important that 𝑛
stands for the length of 𝑥, not for the complexity of 𝑥. (For example, if 𝑥 is a string
of 𝑛 zeros, its a priori complexity is bounded while plain and prefix complexities
are not.)

128 Prove that for every string 𝑥 at least one of the numbers KA (𝑥0) and
KA (𝑥1) is at least KA (𝑥) + 1. (In this problem it is important that KA (𝑥) is
defined as − log 𝑎(𝑥) without integer rounding.) Prove that for every string 𝑥 and
every integer 𝑛 there exists a string 𝑦 of length 𝑛 such that KA (𝑥𝑦) > KA (𝑥) + 𝑛.
Prove that there exists an infinite binary sequence 𝜔 such that KA (𝑥) > 𝑙(𝑥) for
every prefix of 𝜔.

5.3. A PRIORY COMPLEXITY AND ITS PROPERTIES 139

Compare the last problem with Theorem 71 (p. 125) and Problem 46 (p. 55);
note that with a priori complexity we can get rid of condition 𝑛 and even the
constant 𝑂(1) appearing there.

129 Prove that the differences 𝐶(𝑥)−KA (𝑥) and KA (𝑥)−𝐶(𝑥) could be of
order log 𝑛 for some strings of length 𝑛 (and for arbitrarily large 𝑛). [Hint: 𝐶(𝑥) can
be much greater than KA (𝑥) if 𝑥 consists of zeros only. On the other hand, 𝐶(𝑥)
is smaller than KA (𝑥) if 𝑥 is a prefix of a sequence from the preceding problem; in
this case KA (𝑥) = 𝑙(𝑥) + 𝑂(1), but 𝐶(𝑥) can be smaller than 𝑙(𝑥) by log 𝑙(𝑥), see
Problem 54.]

130 Prove that

KA (𝑥𝑦) 6 𝐾(𝑥) + KA (𝑦) + 𝑂(1),

where 𝑥𝑦 is the concatenation of strings 𝑥 and 𝑦. It is important that 𝑥 is on
the left of 𝑦: show that for KA (𝑦𝑥) the statement is false. [Hint: Let 𝑈 be a
probabilistic algorithm in the sense of Chapter 4 that generates the discrete a
priori probability on strings. Let 𝑉 be the probabilistic algorithm that generates
continuous a priori probability. Then combine 𝑈 and 𝑉 as follows: first, run 𝑈
until it outputs something and terminates. Then run 𝑉 using the fresh random
bits and add its output bits to the string generated by 𝑈 . To show that KA (𝑥𝑦)
cannot be replaced by KA (𝑦𝑥), let 𝑦 = 0𝑛 and 𝑥 = 1.]

(Cf. Theorem 71 on p. 125 and Problem 46 on p. 55; note that now we do not
have 𝑛 as condition and even do not have term 𝑂(1) in the inequality.)

Another property of the a priori complexity is an immediate consequence of its
definition. Let 𝜇 be a computable measure on Ω. Then for some 𝑐 and every 𝑥 we
have

KA (𝑥) 6 − log𝜇(Ω𝑥) + 𝑐

Indeed, the a priori probability on the binary tree is greater than 𝜇 (or any other
computable measure, or even lower semicomputable semimeasure) up to a 𝑂(1)
factor, and it remains to take logarithms.

This (very simple) property is important since it is the basis for a criterion of
Martin-Löf randomness in terms of a priori complexity: a sequence 𝜔 is ML-random
with respect to a computable measure 𝜇 if and only if this inequality turns into an
equality for prefixes of 𝜔, i.e., if the difference − log𝜇(Ω𝑥)−KA (𝑥) has a constant
upper bound for all 𝑥 that are prefixes of 𝜔 (it always has a constant lower bound
as we just mentioned).

This criterion follows from Schnorr–Levin theorem that provides randomness
criterion in terms of monotone complexity and we postpone its proof to Section 5.6
where Levin–Schnorr criterion is considered. But first we have to define mono-
tone complexity (Section 5.5) and this definition uses the notion of a computable
mapping of the space Σ into itself (Section 5.4).

One can characterize a priori complexity as the smallest upper semicomputable
(=enumerable from above) function that satisfies some condition, as it was done
for plain complexity in Theorem 8 (p. 33) and for prefix complexity in Theorem 62
(p. 113). Here is the corresponding statement:

140 5. MONOTONE COMPLEXITY

Theorem 80. The function KA is a minimal (up to an additive constant)
upper semicomputable function 𝑘 such that∑︁

𝑥∈𝑀

2−𝑘(𝑥) 6 1

for any prefix-free set 𝑀 of binary strings.

Proof. Since the strings 𝑥 ∈ 𝑀 are incompatible (none of them is a prefix of
another one), the corresponding sets Σ𝑥 (of all finite and infinite sequences with
prefix 𝑥) are disjoint and the sum of probabilities does not exceed 1.

On the other hand, let 𝑘 be an upper semicomputable function that satisfies
this condition. We have to construct a lower semicomputable semimeasure that is
greater that 2−𝑘. The latter function is lower semicomputable but is not necessarily
a semimeasure; its values on 𝑥, 𝑥0 and 𝑥1 can be unrelated. So we need first to
increase 𝑘 when it is unavoidable. Let 𝑢(𝑥) be the supremum of all sums of the
form ∑︁

𝑦∈𝑀

2−𝑘(𝑦)

over all prefix-free sets of extensions of 𝑥. It is easy to check that 𝑢(𝑥) is indeed a
lower semicomputable semimeasure and 2−𝑘(𝑥) does not exceed 𝑎(𝑥). �

131 Let us consider functions 𝑏 on binary strings with values in [0, 1] that have
the following property: there exists a measure 𝜇 on the tree such that 𝑏(𝑥) 6 𝜇(Ω𝑥).

(a) Show that every semimeasure on a tree has this property.
(b) Show that for every lower semicomputable function 𝑏 with this property

there exists a lower computable semimeasure on the tree that is an upper bound
for 𝑏.

5.4. Computable mappings of type Σ → Σ

In Chapter 4 we defined prefix complexity (in terms of shortest descriptions)
and a priori probability (in terms of probabilistic machines). It turned out that it
is essentially the same notion (one is the logarithm of the other).

In this chapter we have defined the other notion of a priori probability (contin-
uous one), and a natural question arises: does it correspond to some natural notion
of complexity defined in terms of descriptions? Indeed, such a notion exists; it is
called monotone complexity (though it differs slightly from the a priori complexity).
However, to give its definition (see Section 5.5 below), we first need to introduce
some auxiliary notions.

The algorithms (machines) used in the definition of the universal semimeasure
on the binary tree consist of two parts: the random bits generator and the algorithm
that transforms the sequence of random bits into the output. In this section we
look more closely at this second part and introduce the notion of a computable
mapping of the set Σ (of all finite and infinite sequences of zeros and ones) into
itself. Let us stress that we consider mappings that are defined everywhere on Σ;
however, some of their values can be equal to the empty string Λ (that represents
an “undefined value” in some sense).

5.4. COMPUTABLE MAPPINGS OF TYPE Σ → Σ 141

5.4.1. Continuous mappings of type Σ → Σ. Let 𝑓 : Σ → Σ be a mapping
defined on the entire Σ. We say that 𝑓 is continuous if it has the following two
properties:

(1) 𝑓 is monotone: if 𝑥 ∈ Σ is a prefix of some 𝑦 ∈ Σ, then 𝑓(𝑥) is a prefix of
𝑓(𝑦).

(2) The value 𝑓(𝜔) for an infinite sequence 𝜔 is the least upper bound of the
values 𝑓(𝑥) on all finite prefixes 𝑥 of the sequence 𝜔.

We use the notation 𝑥 4 𝑦 for the relation “𝑥 is a prefix of 𝑦”; here 𝑥, 𝑦 ∈ Σ
may be finite or infinite. We have 𝑥 4 𝑥 for any 𝑥; if 𝑥 4 𝑦 for an infinite sequence
𝑥, then 𝑥 = 𝑦. The requirement (1) says that 𝑓 is monotone with respect to the
partial order 4 on Σ. This requirement guarantees that the values 𝑓(𝑥) for all finite
prefixes 𝑥 of some sequence 𝜔 are compatible (extend each other); their “union”
(=least upper bound under 4-ordering) coincides with 𝑓(𝜔) due to (2).

132 Show that the notion of continuity defined above is the standard conti-
nuity notion with respect to the topology on Σ defined in Section 4.4.3 (p. 103).
[Hint: a very similar notion of continuous mappings Σ → N⊥ was studied in the
same section.]

Let 𝑓 : Σ → Σ be a continuous mapping. Consider the set Γ𝑓 that consists of
all pairs ⟨𝑥, 𝑦⟩ of binary strings 𝑥 and 𝑦 such that 𝑦 4 𝑓(𝑥). (The set Γ𝑓 may be
called the lower graph of the mapping 𝑓 .)

For any continuous 𝑓 : Σ → Σ the set Γ𝑓 has the following three properties:
(1) ⟨𝑥,Λ⟩ ∈ Γ𝑓 for every string 𝑥;
(2) If ⟨𝑥, 𝑦⟩ ∈ Γ𝑓 , then ⟨𝑥′, 𝑦′⟩ ∈ Γ𝑓 for every 𝑥′ < 𝑥 and 𝑦′ 4 𝑦.
(3) If ⟨𝑥, 𝑦1⟩ and ⟨𝑥, 𝑦2⟩ belong to Γ𝑓 , then the strings 𝑦1 and 𝑦2 are compatible

(one of them is a prefix of another one).
The first two properties are obvious. The third one is true since any two prefixes

of a (finite or infinite) sequence are compatible.
The following theorem shows that a continuous mapping is defined uniquely by

its lower graph.

Theorem 81. The mapping 𝑓 ↦→ Γ𝑓 is a one-to-one correspondence between
continuous functions of type Σ → Σ and sets of pairs of strings that satisfy condi-
tions (1)–(3).

Proof. Let 𝑓 be a set of pairs satisfying the conditions (1)–(3). These con-
ditions guarantee that for any string 𝑥 the set 𝐹𝑥 of all 𝑦 such that ⟨𝑥, 𝑦⟩ ∈ 𝐹
is non-empty and every 𝑦1, 𝑦2 ∈ 𝐹𝑥 are compatible. Let 𝑓(𝑥) be the least upper
bound of 𝐹𝑥. The property (2) guarantees that 𝑥 4 𝑥′ implies 𝑓(𝑥) 4 𝑓(𝑥′) (since
𝐹𝑥 increases as 𝑥 increases). Therefore we may define 𝑓(𝜔) as the union (least upper
bound) of 𝑓(𝑥) for all strings 𝑥 4 𝜔. Then the mapping 𝑓 is continuous. It is easy
to check that we get a mapping which is an inverse mapping to the correspondence
𝑓 ↦→ Γ𝑓 . �

A continuous mapping 𝑓 : Σ → Σ is called computable if the corresponding set
Γ𝑓 is enumerable. (By definition all computable mappings are continuous.)

This definition is self-contained and does not require any interpretation in terms
of machines. All we say below about the interpretation of this notion is terms of
machines of special type is not necessary (and is not used in the sequel). However,
to get a motivation for this definition it is instructive to understand which type

142 5. MONOTONE COMPLEXITY

of machines (programs) corresponds to computable continuous mappings of type
Σ → Σ.

5.4.2. Monotone machines with non-blocking read operation. Let us
consider programs that use a non-blocking read operation (we can get the next bit
from the input queue and also check whether this queue is nonempty). We have
discussed this type of input paradigm in Section 4.4.2, p. 101. However, now we
assume that the output is created bit by bit, using the procedure OutputBit(b)
with a Boolean argument.

The output sequence generated by a program of this type can be finite or infi-
nite. In general, it depends not only on the input sequence but also on the timing
(the moments when keys “0” and “1” were pressed). We say that a machine (pro-
gram) is robust if the timing does not matter, i.e., if the output sequence depends
only on the input sequence but not on the timing. (Of course, the output timing
may still depend on the input timing.) A robust program determines (computes)
some mapping of the set Σ into itself.

Theorem 82. Robust programs compute computable mappings (in the abstract
sense, as described above); on the other hand, every computable mapping is com-
puted by some robust program.

Proof. Assume that 𝑀 is a robust program. Let 𝑥 and 𝑥′ be two (finite or
infinite) sequences such that 𝑥 4 𝑥′. Let us show that 𝑀(𝑥) 4𝑀(𝑥′) where 𝑀(𝑧)
stands for the output of program 𝑀 on the input 𝑧 (since 𝑀 is robust, the output
depends only on 𝑧, not on the timing). If 𝑥 is infinite, this is trivial (𝑥 = 𝑥′).
Assume that 𝑥 is finite. There are two possibilities: 𝑀(𝑥) is either finite or infinite.

If 𝑀(𝑥) is finite, let us submit input 𝑥 and wait until 𝑀(𝑥) appears at the
output. This should happen at some point; after that we submit the remaining
bits of 𝑥′ (that are not in 𝑥) to the input. Then we get output 𝑀(𝑥′) which by
construction is the extension of 𝑀(𝑥).

If 𝑀(𝑥) is infinite, then every bit of 𝑀(𝑥) should appear at some time after we
submit 𝑥 to the input. Since the remaining bits of 𝑥′ can be sent after this moment,
this bit should appear also in 𝑀(𝑥′). Therefore, 𝑀(𝑥) = 𝑀(𝑥′) in this case.

It is also clear that for an infinite sequence 𝜔 the value 𝑀(𝜔) is the union of
𝑀(𝑥) for finite 𝑥 4 𝜔; indeed, at each moment only finite number of input bits
have been read.

The set of all pairs of strings 𝑥, 𝑦 such that 𝑦 4 𝑀(𝑥) is enumerable since we
can enumerate it by simulating the behavior of 𝑀 on all inputs. So each robust
machine computes a computable mapping.

On the other hand, let 𝑓 be an arbitrary computable mapping. We show how
to construct a robust machine 𝑀 that computes it. The machine 𝑀 enumerates
the lower graph Γ𝑓 of the mapping 𝑓 . At the same time 𝑀 reads input bits and
stores them. If it turns out that Γ𝑓 includes a pair ⟨𝑥, 𝑦⟩ such that 𝑥 is a prefix of
the input sequence, we output the remaining bits of 𝑦 (the requirements (2) and
(3) guarantee that all the strings 𝑦 found in this way are compatible so there is no
need to recall the bits already sent to the output). �

5.4.3. Computable mappings can be enumerated. The definition of com-
putability based on robust machines seems to be more natural than the abstract
one. However, it has the same drawback as in the case of prefix-stable programs:

5.5. MONOTONE COMPLEXITY 143

there is no (algorithmic) way to find out whether a given program is robust. So the
class of robust programs is not a syntactically defined class.

Nevertheless, there exists an algorithmic transformation of programs that con-
verts every program into a robust one (and does not change the mapping computed
by it if it was robust). This transformation goes back and forth between mappings
and corresponding enumerable sets: we transform a program into an enumerable
set of pairs (i.e., into an algorithm enumerating this set), then we “trim” this set
of pairs and transform it back into a program.

We do not describe this process in detail, since robust programs are more a mo-
tivation for the definition of a computable mapping than a technical tool. Instead,
we prove that the set of computable mappings is enumerable in the following sense:

Theorem 83. There exists an enumerable set 𝑈 of triples ⟨𝑛, 𝑥, 𝑦⟩ (here 𝑛 is
a natural number while 𝑥 and 𝑦 are binary strings) such that:

(a) for every 𝑛 the set 𝑈𝑛 = {⟨𝑥, 𝑦⟩ | ⟨𝑛, 𝑥, 𝑦⟩ ∈ 𝑈} is a lower graph of some
computable mapping 𝑢𝑛 : Σ → Σ (i.e., satisfies the requirements (1)–(3) of Theo-
rem 81).

(b) every computable mapping of the set Σ into itself is equal to 𝑢𝑛 for some 𝑛.

Proof. Consider the universal enumerable set 𝑊 of triples: every enumerable
set of pairs appears among 𝑊𝑛. Then we “trim” 𝑊 to enforce the requirements
(1)–(3) for all 𝑊𝑛 and leave unchanged the sets 𝑊𝑛 that already satisfy these
requirements. After that all 𝑊𝑛 are lower graphs for some computable mappings
𝑤𝑛 and any computable mapping appears among 𝑤𝑛.

The trimming is made in two steps: first we delete inconsistencies and then we
fill the gaps. The inconsistency appears when two pairs ⟨𝑥1, 𝑦1⟩ and ⟨𝑥2, 𝑦2⟩ are
found such that 𝑥1 is compatible with 𝑥2 but 𝑦1 is not compatible with 𝑦2. (It is
easy to see that two pairs with this property cannot appear both in the lower graph
of a continuous mapping.) To eliminate it, we delete the pair that appeared later
in the enumeration. Then we fill the gaps by adding all pairs ⟨𝑥,Λ⟩ and adding for
each pair ⟨𝑥, 𝑦⟩ all the pairs ⟨𝑥′, 𝑦′⟩ with 𝑥′ < 𝑥 and 𝑦′ 4 𝑦. It is easy to see that
the set remains enumerable and is the one we need. �

This theorem is used in the next section to prove that (optimal) monotone
complexity function exists.

5.5. Monotone complexity

To define monotone complexity we use computable mappings of type Σ → Σ
as decompressors (description modes). For a fixed decompressor 𝐷 : Σ → Σ the
monotone complexity of a string 𝑥 (with respect to 𝐷) is defined as the minimal
length of a string 𝑦 such that 𝑥 4 𝐷(𝑦). Monotone complexity is denoted by
KM𝐷(𝑥).

(This definition can be applied to infinite sequences 𝑥 without any changes but
we follow the tradition and consider KM𝐷(𝑥) only for finite 𝑥 unless the opposite
is said explicitly.)

133 Prove that the monotone complexity of an infinite sequence (defined in
a natural way) is the limit of the increasing sequence of monotone complexities of
its prefixes.

144 5. MONOTONE COMPLEXITY

Theorem 84. There exists an optimal decompressor, i.e., a computable map-
ping 𝐷 : Σ → Σ such that KM𝐷 is minimal up to additive constant: for any com-
putable 𝐷′ : Σ → Σ there exists a constant 𝑐 such that

KM𝐷(𝑥) 6 KM𝐷′(𝑥) + 𝑐

for every string 𝑥.

Proof. Let 𝑈 be the set of triples whose sections are the lower graphs of all
computable mappings (constructed in Theorem 83, p. 143). Let 𝐷𝑛 be a computable
mapping that has lower graph 𝑈𝑛. Then let us define a mapping 𝐷 as follows:

𝐷(�̂�𝑧) = 𝐷𝑛(𝑧),

where �̂� is the prefix-free encoding of the number 𝑛 (say, its binary representation
with doubled digits followed by 01) and 𝑧 is an arbitrary element of Σ. In terms
of the lower graph: consider the set of all pairs ⟨�̂�𝑢, 𝑣⟩ such that ⟨𝑛, 𝑢, 𝑣⟩ ∈ 𝑈 .
It is easy to check that we indeed get a computable mapping. If some (mono-
tone) decompressor 𝐷′ has number 𝑛 (i.e., its lower graph coincides with 𝑈𝑛), then
KM𝐷(𝑥) 6 KM𝐷′(𝑥) + 𝑙(�̂�) for every 𝑥. �

As usual, we fix some optimal monotone decompressor (description mode), i.e.,
some computable mapping 𝐷 that satisfies the statement of this theorem, and define
monotone complexity of a string 𝑥 as KM𝐷(𝑥). Notation: KM (𝑥) (the subscript
𝐷 is omitted).

(Warning: sometimes the notation KM(𝑥) is used for a priori complexity; usu-
ally in this case the monotone complexity is denoted by Km, as in [102], or 𝐾𝑚.)

Theorem 85. (a) Monotone complexity is a monotone function, i.e.,

KM (𝑥) 6 KM (𝑦) if 𝑥 4 𝑦;

(b) the function KM is upper semicomputable;
(c) KM (𝑥) 6 𝑙(𝑥) + 𝑂(1);
(d) KM (𝑥) 6 𝐾(𝑥) + 𝑂(1);
(e) KA (𝑥) 6 KM (𝑥) + 𝑂(1);
(f) an infinite sequence of zeros and ones is computable if and only if the

monotone complexity of its prefixes is bounded ;
(g) if 𝑓 : Σ → Σ is a computable mapping, then KM (𝑓(𝑥)) 6 𝐾𝑀(𝑥) + 𝑂(1)

(the constant hidden in 𝑂(1) may depend on 𝑓 but not on 𝑥);
(h) if 𝑓 : Σ → N⊥ is a computable mapping, then 𝐾(𝑓(𝑥)) 6 𝐾𝑀(𝑥) + 𝑂(1)

(the constant hidden in 𝑂(1) may depend on 𝑓 but not on 𝑥).

It is instructive to compare these statements with the properties of a priori com-
plexity given in Theorem 79 (p. 136). Since monotone complexity is not smaller
than a priori complexity (statement (e)), some properties of the a priori complexity
are automatically valid for monotone complexity. In particular, we conclude im-
mediately that 𝐾(𝑥 | 𝑙(𝑥)) 6 KM (𝑥) + 𝑂(1) and 𝐾(𝑥) 6 KM (𝑥) + 𝐾(𝑙(𝑥)) + 𝑂(1).
Note also that for computable sequences of incomparable strings (none is a pre-
fix of another one) the prefix and a priori complexities coincide up to an addi-
tive constant and monotone complexity is between them. Therefore it coincides
with them: if 𝑥0, 𝑥1, . . . is a computable sequence and 𝑥𝑖 ̸4 𝑥𝑗 for 𝑖 ̸= 𝑗, then
KM (𝑥𝑖) = KA (𝑥𝑖) + 𝑂(1) = 𝐾(𝑥𝑖) + 𝑂(1).

5.5. MONOTONE COMPLEXITY 145

Proof. The statement (a) is a direct consequence of the definition: if 𝐷(𝑢) < 𝑦
then 𝐷(𝑢) < 𝑥 for every 𝑥 that is a prefix of 𝑦. One could say that in the definition
of monotone complexity one needs to describe not the string exactly, but any of its
extensions, and the longer the string is, the more difficult this task becomes (the
set of extensions becomes smaller).

The statement (b) is true since the lower graph of a computable mapping is
enumerable, and the set of triples ⟨𝑥, 𝑦, 𝑟⟩ such that 𝑙(𝑦) < 𝑟 and ⟨𝑦, 𝑥⟩ belongs to
the lower graph, is enumerable, too. The upper graph of KM is a projection of this
set.

To prove (c) it is enough to note that the identity mapping Σ → Σ such that
𝐷(𝑥) = 𝑥 for all 𝑥 ∈ Σ is computable.

To compare KM and 𝐾 (statement (d)) it is enough to note that any com-
putable mapping Σ → N⊥ becomes a computable mapping of type Σ → Σ if N⊥
is embedded into Σ (and ⊥ becomes an empty string). More formally, let 𝐷 be
a prefix-stable decompressor used in the definition of 𝐾. In can be extended to
a computable mapping of type Σ → Σ (the strings where 𝐷 was undefined are
mapped into Λ and the values on infinite strings are determined by the continuity
requirement).

To compare KM and KA (statement (e)) we have to recall the remark we
started with: a probabilistic algorithm is a random bits generator whose output
is fed into a computable mapping of Σ into itself. Let 𝐷 be the optimal decom-
pressor used in the definition of the monotone complexity. Consider a probabilistic
algorithm that feeds a random sequence into 𝐷. What is a probability of getting
some string 𝑥 (or some its extension) as the output? Obviously, this probability is
at least 2−𝑙(𝑦) for any string 𝑦 such that 𝐷(𝑦) < 𝑥, since the random string starts
with 𝑦 with probability 2−𝑙(𝑦) and this guarantees that the output of 𝐷 starts with
𝑥. (We return to the comparison of KM and KA in Theorem 87.)

The statement (f): one implication is a straightforward corollary of the corre-
sponding statement of Theorem 79; the other implication is obvious, all the pre-
fixes of a computable sequence 𝜔 have bounded complexity since there exists a
computable mapping Σ → Σ that is equal to 𝜔 everywhere.

To prove (g), let us consider the monotone decompressor that is the compo-
sition of an optimal monotone decompressor and the mapping 𝑓 . Note that in
this statement the sequence 𝑓(𝑥) can be infinite; if we don’t want to deal with the
complexities of infinite sequences, the statement should be reformulated as follows:
for each 𝑓 there exists a constant 𝑐 such that for all 𝑥, 𝑦 such that 𝑦 4 𝑓(𝑥) the
inequality KM (𝑦) 6 KM (𝑥) + 𝑐 holds.

The similar argument works for (h), but this time the composition of the opti-
mal monotone decompressor and 𝑓 is a prefix-stable decompressor. (One can also
derive this statement from a similar statement about a priori complexity.) �

134 Prove that KM (𝑥𝑦) 6 𝐾(𝑥) + KM (𝑦) + 𝑂(1) (here 𝑥𝑦 stands for the
concatenation of strings 𝑥 and 𝑦). In particular, KM (𝑥𝑦) 6 𝐾(𝑥) + 𝑙(𝑦) + 𝑂(1).
[Hint: Consider the optimal prefix-free decompressor 𝐷𝑝 and the optimal monotone
decompressor 𝐷𝑚. Now let 𝐷′(𝑢𝑣) = 𝐷𝑝(𝑢)𝐷𝑚(𝑣) (when 𝐷𝑝 stops reading the
input, the remaining part of the input is read by 𝐷𝑚).]

146 5. MONOTONE COMPLEXITY

135 Show that in the preceding problem one can replace KM (𝑦) by the “condi-
tional” monotone complexity KM (𝑦 |𝑥) defined in a natural way (we do not require
monotonicity with respect to the condition 𝑥, see Chapter 6 for details).

136 Prove that the statement (g) remains true if we replace KM by KA
(in the both sides of the inequality). [Hint: the mapping 𝑓 can be applied to the
output of a probabilistic machine; the new probabilistic machine is not better than
the optimal one.]

We can give an equivalent definition of the monotone complexity that does
not use computable mappings of type Σ → Σ; in this way we get a simpler (but
somewhat less natural, in our opinion) definition.

Let Ξ be the set of all binary strings. Consider the binary relation “to be
compatible” on this set: 𝑥 is compatible with 𝑦 if 𝑥 4 𝑦 or 𝑦 4 𝑥 (equivalent
property: 𝑥 and 𝑦 are prefixes of the same string). An enumerable set (binary
relation) 𝐷 ⊂ Ξ × Ξ is called consistent if it has the following property:

⟨𝑥1, 𝑦1⟩,⟨𝑥2, 𝑦2⟩∈𝐷 and (𝑥1 is compatible with 𝑥2) ⇒ (𝑦1 is compatible with 𝑦2)

for all 𝑥1, 𝑥2, 𝑦1, 𝑦2. Then the monotone complexity of a string 𝑦 with respect to
𝐷 is defined as the minimal length of a string 𝑥 such that ⟨𝑥, 𝑦⟩ ∈ 𝐷. There is an
optimal consistent enumerable binary relation on Ξ.

137 Prove that this definition leads to a notion of monotone complexity that
differs from the previous one by at most 𝑂(1). [Hint: The lower graph of any
computable mapping Σ → Σ is a consistent binary relation. On the other hand,
if 𝐷 is a consistent binary relation, the “gap filling” described in the proof of
Theorem 83 makes it a lower graph of some computable mapping.]

It is instructive to compare this definition with the definition of plain complexity
(where we use graphs of computable functions, i.e., uniform enumerable sets, instead
of consistent relations 𝐷). In the definition of monotone complexity we do not
require 𝐷 to be a graph of some function: several pairs ⟨𝑥, 𝑦⟩ with the same 𝑥 and
different 𝑦 are allowed; we require only that all 𝑦’s in these pairs are compatible.
This makes KM smaller; for example, all prefixes of some computable sequence
(say, 0000 . . .) have bounded complexity (note that 𝐶(0𝑛) = 𝐶(𝑛) is about log 𝑛 for
most 𝑛).

On the other hand we put additional restrictions: if a string 𝑥 is a description of
some string 𝑦, then the strings that are compatible with 𝑥 can be descriptions only of
strings that are compatible with 𝑦. This makes complexity larger. This is especially
clear when we consider complexities of the elements of a computable sequence of
pairwise incompatible strings: monotone complexity in this case coincides with
prefix complexity and the difference can be about log 𝑛 for strings of length 𝑛.

Summing up (and recalling that both a priori complexity and plain complexity
differ from the prefix one at most by 𝑂(log 𝑛) for strings of length 𝑛), we come to
the following conclusion:

Theorem 86. The difference between 𝐶(𝑥) and KM (𝑥) is bounded by 𝑂(log 𝑛)
for strings of length 𝑛 and may be both positive and negative with absolute value
log 𝑛−𝑂(1) for 𝑛-bit strings for infinitely many 𝑛.

We return to the comparison of different versions of complexity in Chapter 6.
Now we provide only one statement of this type:

5.5. MONOTONE COMPLEXITY 147

Theorem 87. The difference KM (𝑥) − KA (𝑥) is not bounded from above;
moreover, for infinitely many 𝑛 there exists a 𝑛-bit string 𝑥 for which this difference
is at least log log 𝑛−𝑂(log log log 𝑛).

This theorem (proved by Day [48]) strengthens an old result by Gács [57] that
established a weaker lower bound for the difference KM (𝑥)−KA (𝑥). Both papers
use a reduction to a game, for which a strategy for one of the players is constructed.

Recall that in both definitions (of KM (𝑥) and KA (𝑥)) we use computable
continuous mapping 𝑓 : Σ → Σ and consider the preimage of the set Σ𝑥 of all
sequences starting with 𝑥. Defining KA , we are interested in the measure of this
preimage, while for KM we are looking for the largest interval of type Σ𝑦 which is
a subset of this preimage. This shows that KA 𝑓 6 KM 𝑓 , and the difference can be
large, if the preimage is “sparse” (consists of large number of small intervals). The
question is how large this difference could be for an optimal computable mapping.

We have seen a similar situation before. Recall out metaphor of space allo-
cation (we allocate subsets of [0, 1] for countably many clients) used in the proofs
of Theorem 46 (p. 92) and Theorem 58 (p. 107). The difference between prefix
complexity and the logarithm of the a priori probability on N has the same na-
ture (difference between the total measure and the maximal contiguous interval).
However, in that case we were able to perform some kind of “consolidation” by
modifying the description mode and the price was just a constant factor.

Now we have a more delicate task since our clients form a hierarchy. This makes
reorganization more difficult and consolidation leads to more than the constant
factor overhead.

5.5.1. The proof of Gács–Day theorem. This is probably the most diffi-
cult argument in the entire book (though we tried hard to simplify the arguments
from original papers of Gács and Day), and it is not used in the rest of the book,
so feel free to skip it if it looks too difficult.

We start by describing some game. Two players are called Client and Server.
The game has two parameters: a rooted tree and some rational 𝑑 > 1. At each
moment of the game the vertices of the tree are labeled by non-negative rational
numbers; the label of vertex 𝑥 is called the request of this vertex (at the given
moment). The request of each vertex is at least the sum of requests of its sons, and
the request of the tree root is at most 1/𝑑.

Requests are chosen by Client. Server tries to serve these requests by allocating
space in Ω. At each moment of the game Server allocates some subset of Ω for each
vertex. This subset should be a union of finitely many intervals (=sets Ω𝑥). A set
allocated for each vertex 𝑥 should contain the sets allocated to the sons of 𝑥, and
the sets allocated to brothers should be disjoint. This implies that sets allocated
to incomparable vertices (one is not a descendant of the other) are disjoint.

The players alternate. Initially the requests of all vertices are zeros and all
the allocated subsets are empty. At every move, Client may increase requests for
some (or all) vertices but should not violate the restrictions stated above (otherwise
she loses the game). In response, Server may increase the sets allocated to vertices
(also obeying the restrictions). Her goal is to satisfy all the requests in the following
sense: the set allocated to each vertex 𝑖 should contain an interval whose length is
at least the request of 𝑖. (The length of Ω𝑥 is 2−𝑛 for a 𝑛-bit string 𝑥. As we have
already explained, we care about the contiguous intervals in the allocated space
and not about its total size.)

148 5. MONOTONE COMPLEXITY

If at some moment Server is unable to satisfy the requests made by Client, she
loses. If the game is infinite (and both players follow the restrictions), we say that
Server wins.

One can imagine that Client is the CEO of a big hierarchical organization
which needs some space for its divisions, subdivisions, subsubdivisions etc. At
every moment it is known how much space each group requires, and the space
allocated to each subgroup should be inside the space for the parent group. The
space cannot be reused, it can only increase, and only the contiguous space counts
(the size of the maximal interval, not the sum of the sizes of intervals).

Increasing the height of the tree and adding branches, we make the task of
Server harder. The following statement says that it is enough to use trees of depth

𝑂(𝑑) and with (constant) branching factor 2𝑂(𝑑)𝑂(𝑑)

to let Client win:

Theorem 88 (Gács–Day). For each 𝑑 > 1 and for a tree 𝑇 of depth 𝑂(𝑑) and

branching factor 2𝑂(𝑑)𝑂(𝑑)

at every vertex, Client has a computable winning strategy
in the corresponding game. (Computability means that there is an algorithm that,
given 𝑑, implements this strategy.)

Gács has proven a similar result for trees of with infinite (or very large finite)
branching factor. Day improved his construction and made it work for much smaller
branching factors.

Before constructing the winning strategy, let us explain how its existence im-
plies Theorem 87. Note the branching factor can be decreased if we allow to increase
the depth: for example, the tree with a root and 2𝑛 sons of the root can be em-
bedded into a binary tree of height 𝑛 (the requests for the intermediate vertices
are reconstructed as the sums of the requests of the leaves above them). In a sim-
ilar way the tree from Theorem 88 can be embedded into a binary tree of height
𝑂(𝑑)𝑂(𝑑), so Client wins for this binary tree.

Let 𝑑 = 2𝑐 where 𝑐 is some natural number. Theorem 88 guarantees that
Client has a computable winning strategy on the binary tree of height 2𝑂(𝑐2𝑐).
Let us use this strategy against the Server who follows the optimal computable
mapping 𝑓 : Σ → Σ used to define the monotone complexity. This means that
Server enumerates all pairs ⟨𝑦, 𝑥⟩ such that 𝑥 4 𝑓(𝑦) (i.e., 𝑦 is a description of 𝑥).
When a pair ⟨𝑦, 𝑥⟩ appears, the interval Ω𝑦 is allocated to vertex 𝑥 (if 𝑥 is inside

our tree — if the length of 𝑥 exceeds 2𝑂(𝑐2𝑐), then 𝑥 is ignored). When (and if)
all the requests of the Client are satisfied, Server informs Client that she made her
move. After the next move of the Client, Server resumes the process and continues
until the new requests are satisfied (if it never happens, Server loses the game by
not making a move).1

Theorem 88 guarantees that at some moment Server loses (never satisfies the
Client’s request). This means that there exists a string 𝑥 of length at most 2𝑂(𝑐2𝑐)

such that the request for 𝑥 at some moment exceeds 2−KM (𝑥). On the other hand,
during the game Client (using her computable strategy against the computable
Server) enumerates from below some semimeasure 𝜇𝑐 on the tree: its value at
vertex 𝑥 equals to the limit (=supremum) of all requests for 𝑥. Since Client wins,
for some 𝑥 we have KM (𝑥) > − log𝜇𝑐(𝑥). The weighted sum of semimeasures 𝜇𝑐

1Readers from the former USSR and similar countries should be familiar with the planned
economies when the supply does not follow the demand: the factories just produce what is planned

until the customers become satisfied (if they are lucky enough to make modest requests).

5.5. MONOTONE COMPLEXITY 149

with weights 2𝑐/𝑐2 is a lower semicomputable semimeasure on the infinite binary
tree and is bounded by the continuous a priori probability (up to 𝑂(1)-factor). So
the a priori probability is at least 𝜀𝜇𝑐(𝑥)2𝑐/𝑐2 for some fixed 𝜀 > 0 and for all 𝑐, 𝑥.
We conclude that for every 𝑐 there exists a string 𝑥 of length at most 2𝑂(𝑐2𝑐) such
that

KM (𝑥) > KA (𝑥) + 𝑐− 2 log 𝑐−𝑂(1).

Let 𝑛 be the length of 𝑥; then 𝑐 is at least log log 𝑛−𝑂(log log log 𝑛) and therefore

KM (𝑥) > KA (𝑥) + log log 𝑛−𝑂(log log log 𝑛).

Note that our argument constructs a string 𝑥 of length 𝑛 with this property for
infinitely many 𝑛, but not for all (sufficiently large) 𝑛.

138 Prove that for infinitely many 𝑛 the following is true: for all strings of
length 𝑛 the difference KM (𝑥) −KA (𝑥) is bounded by log log log 𝑛. Here the iter-
ated logarithm can be replaced by arbitrary non-decreasing unbounded computable
function. [Hint: If some rare lengths are declared as very important, we can allocate
the space for strings of each rare length in a special area reserved for this length,
thus making the overhead rather small compared to length.]

Proof. Let us start the proof of Theorem 88 with an informal discussion.
What is the source of difficulties for Server? Imagine that Client request a very
small amount of space for some vertex. Server then has a choice: either to allocate
a part of the free zone (neighbor intervals are not allocated for any other vertex),
keeping in mind the possible increase of the request, or do not think about this
possible increase and allocate some (may be) non-extendable space.

The danger in the first case is that this reserved space will never be used,
as Client will not increase the request, or increase it so much that this reserved
space cannot be used (as it is too small anyway). In the second case, if Server
allocates neighbor intervals to other vertices, and then Client increases the request,
the originally allocated interval is lost, since only contiguous intervals matter.

The winning strategy for Client exploits this dilemma. To keep track of the
process, we look at 𝜀-neighborhoods of different vertices. Let 𝜀 6 1 be a negative
power of 2. By 𝜀-neighborhood of some set 𝑋 in the Cantor space we mean the
union of all intervals of length 𝜀 that have non-empty intersection with 𝑋. The
interim goals of Client are formulated as follows: the ratio

the size of 𝜀-neighborhood of the space allocated for 𝑥

request for 𝑥

is at least some 𝑘. For large 𝑘, if the requested space is more than 1/𝑘, Server loses.
Following this plan, we construct strategies for Client achieving that at some

moment

∙ the request for the root is at most 𝛼;
∙ the 𝜀-neighborhood of the space allocated for the root, is at least 𝛽.

Here 𝛼 and 𝛽 are some parameters. The 𝜀-neighborhood of the space allocated
for the root is called “gray space”: these 𝜀-intervals can never be allocated for any
other vertex. More precisely, we use the following parameters:

∙ the tree for which the game is played;
∙ 𝜀 used to measure 𝜀-neighborhoods;
∙ maximal allowed request 𝛼 for the root;

150 5. MONOTONE COMPLEXITY

∙ the required size 𝛽 for the gray area (i.e., the 𝜀-neighborhood of the space
allocated for the root).

We are interested in the values of these parameters such that there exists a winning
strategy for Client, i.e., she can achieve that 𝜀-neighborhood of the space that
Server allocates to the root has size at least 𝛽 while the root request is at most 𝛼.

Example 1. Let 𝜀 be an arbitrary negative power of 2, let 𝛽 = 𝜀, and let 𝛼 be
positive and much smaller than 𝛽. Then the (trivial) strategy “just request 𝛼 for the
root” works for every tree: whatever Server allocates for the root, this (nonempty)
set has a 𝜀-neighborhood of size at least 𝜀.

So it is easy to get arbitrary high “amplification” (high 𝛽/𝛼) for small 𝛽. The
difficult case is when 𝛽 ≫ 𝜀, and in this case we construct the strategy recursively by
combining strategies for different trees and using inside the strategy some recursive
calls of other strategies for the subtrees. In this inductive (recursive) construction it
is convenient to add amplification as a parameter, introducing one more parameter
𝑘 and requiring that the ratio (size of the gray area)/(request) is at least 𝑘. For 𝑘 =
𝛽/𝛼, this requirement is obviously true, but we will use strategies that guarantee
given amplification 𝑘, while the request size (and the gray area size) may vary in
some limited way.

Example 2. Let 𝑇 be the tree where the root has 𝑚 sons, and each of them
has two sons (=grandsons of the root). Let 𝜀 be some (negative) power of 2, let
𝛼 = 𝛽 = 𝑚𝜀 for some integer 𝑚, and let 𝑘 = 3/2. (We see that 𝑘 is important
here: we do not specify the exact size of the request and the exact size of the gray
area, but the second one should be 𝑘 times greater than the first one, and 𝑚𝜀 should
be in-between.)

Here is the winning strategy for these values. To make trouble for Server,
Client selects for each son of the root one of its sons, and requests 𝜀/2 for all
these grandsons of the root. (We specify here the requests for leaves only; for other
vertices the requests are computed as the sum of requests for the descendants.) Now
Server should decide which grandsons should be paired with their cousins (getting
𝜀/2 inside one interval) and who should be “a single occupant of a double room”
(the neighbor interval of size 𝜀/2 is kept free). Looking at Server’s decision, Client
increases the requests trying to make life harder for the Server: for grandsons who
do not have the reserve (have neighbors), Client requests 𝜀/2 for their brothers,
thus making the father’s request 𝜀. Then Server needs to allocate a fresh interval of
size 𝜀 for the father (since the old one cannot be used, part of it is already allocated
for his niece; the reserves in other places are also too small). Therefore, for each of
𝑚 sons of the root one of two things happen: either 𝜀 was grayed for 𝜀/2-request, or
(3/2)𝜀 was allocated for 𝜀-request. In both case the amplification is at least 3/2.2

Let us now try to combine two strategies with the same amplification factor 𝑘.
Our goal is to keep this amplification but increase the size of the request and of the

2In fact, it is easy to achieve amplification 3/2 by asking for each son of the root slightly more

than 𝜀/2: the interval sizes are powers of 2, and Server is forced to allocate an interval of size at

least 𝜀. But this “rounding” effect cannot be scaled recursively, so we will ignore it. Also we can
use the sons only (not the grandsons), first asking 𝜀/2 for each of them and then increasing the

requests for the vertices where Server provides no reserve. However, the version with grandsons

is more close to the strategy in the general case (see below), so we have chosen this version.

5.5. MONOTONE COMPLEXITY 151

gray area. Consider a tree where the root has two sons with subtrees 𝑇1 and 𝑇2.
Assume that Client has a winning strategy for 𝑇1, 𝛼1, 𝛽1, 𝜀, and a winning strategy
for 𝑇2, 𝛼2, 𝛽2, 𝜀. Let Client use these two strategies sequentially: first strategy is
used for 𝑇1, and when it wins (gray area is large enough), the second strategy is used
for 𝑇2. (One can assume without loss of generality that during 𝑇1-game nothing is
allocated for the vertices in 𝑇2, since these allocations can be postponed.) The total
size of requests is then bounded by 𝛼1 + 𝛼2. But we cannot claim the additivity
for gray areas: it is quite possible that the size of the 𝜀-neighborhood of the union
is smaller than the sum of the sizes of 𝜀-neighborhoods of the parts. For example,
in the second game Server can use some space left as reserve in the first game.

To avoid this problem, we use different values 𝜀1 and 𝜀2 for the strategies.
Assume that 𝜀1 ≪ 𝜀2 and the second strategy uses only requests of size at least
𝜀1. Then Server cannot use the gray area of the first game for the second one.
Informally, we accumulate reserves “on different levels”, first on a micro-level, then
on a macro-level. However, we cannot say that the gray areas are added: while the
space allocated for 𝑇2 does not intersect the 𝜀1-neighborhood for 𝑇1, the opposite
is possible: space allocated for 𝑇1 may well intersect the 𝜀2-neighborhood for 𝑇2.
To deal with this problem, we again consider a more general setting and agree that
some set 𝐴 ⊂ Ω is fixed before the game starts; we say that 𝐴 is unavailable to the
server, and count only the new gray intervals. Let us explain in details what all
this means.

The final version of the game has the following parameters:

∙ a tree 𝑇 ;
∙ a subset 𝐴 ⊂ Ω (“space unavailable to Server”);
∙ 𝛿 (shows how the neighborhood of the unavailable space is measured);
∙ 𝜀 (shows how the neighborhood of the allocated space is measured);
∙ the maximal allowed request 𝛼 for the root;
∙ the required size of gray area 𝛽;
∙ the required amplification factor 𝑘.

We assume that 𝜀 and 𝛿 are both (negative) powers of 2, and 𝜀 > 𝛿.
Here are the rules of the game. Client increases requests for vertices of 𝑇

(the request of a vertex should be at least the sum of requests for its sons). The
minimal request is 𝛿, and the root request should not exceed 𝛼. Server allocates
space for vertices of 𝑇 , fulfilling the requests, and should use only intervals that
do not intersect 𝐴. Client wins if the size of the new gray area (𝜀-neighborhood of
the allocated space minus 𝛿-neighborhood of 𝐴) is at least 𝛽 and is at least 𝑘 times
the request for the root. As before, adding vertices to the tree or increasing 𝜀, we
make the Client’s task easier. This happens also if we decrease 𝛿, 𝛽 or 𝑘. One may
assume without loss of generality that 𝐴 is made of intervals of size at least 𝛿 (since
only 𝛿-neighborhood of 𝐴 matters).

When this definition is given, the arguments above prove the following state-
ment.

Composition lemma. Assume that for some tree 𝑇1 and for every unavailable
set 𝐴 Client can win the game with parameters 𝜀1, 𝛿1, 𝛼1, 𝛽1, 𝑘1. Assume also that
for some tree 𝑇1 and for every unavailable set she can also win the game with
parameters 𝜀2, 𝛿2, 𝛼2, 𝛽2, 𝑘2. Finally, let us assume that 𝜀1 = 𝛿2 and 𝑘1 = 𝑘2 (we
denote this value by 𝑘). Then for the tree 𝑇 that consists of the root with two sons

152 5. MONOTONE COMPLEXITY

having subtrees 𝑇1 and 𝑇2, and for every unavailable set Client can win the game
with parameters 𝜀2, 𝛿1, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2, 𝑘.

The composition game starts with some set 𝐴, the space unavailable to Server
during the game. This set is used without changes in the first of two composed
games; for the second game we add to this set the area grayed during the first game.
It is easy to see then that the newly grayed areas in both games do not intersect.

In fact, in the sequel we do not use exactly the statement of the lemma, but
use the same idea in a slightly different situation: the subtrees where games are
played are not fixed in advance, but are chosen during the game (the next subtree
depends on the game on the previous one). Also we combine many strategies, not
just two. Because of this, we get a huge gap between the values of 𝜀 and 𝛿 in the
combined game: 𝛿 for each game is equal to 𝜀 in the preceding one and significantly
smaller than 𝜀 in the current game.

This is not enough to finish the proof: the amplification factor for the combined
game is the same as for each game in the combination, so we need some other trick
to increase amplification. Before giving an example of amplification increase, let
us make a simple technical remark about the game definition. We may assume
without loss of generality that the root request is at least 𝛽/𝑘 at the end of the
game. Indeed, if it turns out to be less (due to some unexpected luck), we just
formally increase it at the end on the game, and the winning condition is still
satisfied. We call this trick “final adjustment” in the sequel.

Example 3. Let us show how Client can achieve amplification factor 2. The
idea is to follow the same scheme as in Example 2, but use (instead of direct 𝜀/2-
requests for grandsons) the recursive calls of the strategy that gives amplification
3/2 (from the same Example 2).

Let us recall what was achieved there. For a given 𝛼 and for arbitrarily small
𝜀 (such that 𝑚 = 𝛼/𝜀 is an integer) Client has a strategy on a tree of height 2
that allows her (for 𝛿 = 𝜀/2 and for arbitrary unavailable3 set 𝐴) to get at least 𝛼
newly grayed space with root request at most 𝛼, and amplification factor at least
3/2. The tree has 𝑚 sons of the root, and each has two sons. Note that 𝑚 should
be integer, but this is not a problem, as we will use the strategy of Example 2 only
when 𝛼 is a multiple of 𝜀.

To compose strategies of this type, each next strategy should have 𝜀-parameter
twice bigger than the preceding one. It is important that we can use the same value
of 𝛼 in all the games; the construction of Example 2 makes the choices of 𝛼 and
𝜀 independent. Knowing in advance how many strategies we want to compose, we
decide what should be the initial value of 𝜀 and 𝛿 (for the first strategy in a row).
In the sequel we assume that the parameters of the composed games are chosen in
this way, and return to our task: achieve 𝑘 > 2, if 𝜀-neighborhood is measured at
the end of the composed game (for some 𝜀) and we are free to choose 𝛿 used to
measure 𝛿-neighborhood of the unavailable space in the composed game.

3In Example 2 we did not consider the unavailable space. But the same strategy works in

this case: we say that a grandson of the root has a reserve if the 𝜀/2-interval allocated to this
grandson can be extended to 𝜀-interval in place (the other half of the 𝜀-interval is not allocated

to other grandson and does not intersect the unavailable space). We use here that 𝛿 = 𝜀/2: the

newly grayed area is disjoint with unavailable space because of this.

5.5. MONOTONE COMPLEXITY 153

We show how Client can achieve some 𝑘 > 2 for arbitrary 𝜀, for every 𝛼 = 𝑚𝜀
and for small enough 𝛿, with root request at most 𝛼 and for newly grayed area at
least 𝛼 (so 𝛽 = 𝛼), if a tree is chosen in a suitable way.

Our construction is similar to Example 2. The root has (as before) 𝑚 sons, but
now has more grandsons. Let us agree that each son of the root has 12 sons (it will
be enough). Instead of making direct requests for the grandsons (as it was done
in Example 2), we recursively call the strategies described above, so each grandson
has a subtree of height 2 (its width should be big enough for all values of 𝜀 used in
the subgames, see below), and the total height of the tree is 4.

At each moment we look at the sons of the root and consider those of them
who currently do not have a reserved interval ; by a reserved interval for vertex 𝑥
we mean an interval of size 𝜀 that contains some space allocated to 𝑥 and does
not contain any space allocated to vertices that are not descendants of 𝑥, as well
as any points of the unavailable set (specified at the beginning of the game). In
other terms, an interval is reserved when (1) its part is already allocated for 𝑥, and
(2) this interval may still be used for 𝑥 if the request for 𝑥 increases and becomes
𝜀. (Note that reserved interval may disappear later if some its part is allocated to
another vertex.) So we consider some son 𝑥 that does not have a reserved interval,
take some son 𝑦 of 𝑥 (not used before for the same purpose), and run a strategy
with amplification factor 1.5 and 𝛼 = 𝜀/8 on 𝑦. The request for 𝑦 made by this
strategy is at most 𝛼 = 𝜀/8 and (because of final adjustment, see above) at least
𝛼/1.5 = 𝜀/12. After that (when the strategy wins its game) look at 𝑥 again: may
be, now 𝑥 has a reserved interval, and may be not. In the latter case, we can apply
the same trick to some other son of 𝑥 — or, if we wish, we can select some other
root’s son that does not have a reserved interval, both options are OK. In any
case, we repeat this procedure until all sons of the root have their reserves. One
additional precaution is needed: if the request for some root’s son exceeds (7/8)𝜀,
we just increase its request up to 𝜀 (which creates a reserved interval automatically),
to avoid the possibility that the request increases by 𝜀/8 and becomes greater that
𝜀. Each call of the 1.5-strategy increases the request of the corresponding son of
the root by at least 𝜀/12, so we never need more than 12 sons for each son of the
root. For the same reason, the total number of these calls is bounded by 12𝑚.

What do we achieve by all these tricks? For each son of the root look at the
last moment when we considered this son and finally got a reserved interval for it.
This reserved interval has size 𝜀 and it was not a reserved interval before the last
step. Since it became a reserved interval (and continued to be a reserved interval),
it contains no points of the unavailable set and no space allocated to other vertices
(except for the descendants of 𝑥). Since it was not a reserved interval before, it had
no space allocated for 𝑥, and therefore it was completely empty. The conclusion:
the space that was grayed during previous calls of the 1.5-strategies is not the
part of the reserved intervals. This space already gives us 1.5-amplification, and
adding (rather big and almost empty) reserved intervals we get 𝑘-amplification for
𝑘 = 20/9 > 2, as one can check.

Let us make the detailed accounting. Let 𝛾 be the sum of the requests made
during all not-the-last calls for all sons of the root. These calls provide grayed area
of size at least (3/2)𝛾 that does not intersect with the reserved intervals. In total,
we get grayed area of size at least (3/2)𝛾 + 𝑚𝜀, and all our requests in total are
bounded by 𝛾 + 𝑚(𝜀/8). So there are two parts: for one part amplification is at

154 5. MONOTONE COMPLEXITY

least 3/2, for the other part the amplification is 8, and the second part is not too
small compared to the first, so in total we get a significant increase. Technically,
𝛾 6 𝑚𝜀 implies [︁3

2
𝛾 + 𝑚𝜀

]︁
>

20

9

[︁
𝛾 + 𝑚

𝜀

8

]︁
(a simple computation). So we get a desired strategy for 𝛼 = 𝛽 = 𝑚𝜀 and 𝑘 = 20/9
(so 𝑘 > 2).

Now the big picture should be more or less clear. Having the strategy for 𝑘 =
20/9, we can call it recursively for the grandsons of the root (therefore considering
the tree of height 6 with large branching factor; one can get an explicit upper bound
for this factor). With some tuning of the parameters, such a step can increase the
amplification factor 𝑘 almost by 1. Indeed, if we take a very small fraction of 𝜀
instead of 𝜀/8 (used in our last example), the overhead that happens during the last
step (when the final reserved intervals appear) is negligible, and we get reserve 𝑚𝜀
in addition to 𝑘-times increase achieved during recursive calls. If the total request
𝛾 is close to its maximal value 𝑚𝜀, we increase amplification almost by 1, and if 𝛾
turns out to be smaller, the amplification is even better. To get the upper bound for
the width of the tree, we recall that we may assume without loss of generality that
each recursive call increases our request by some guaranteed value. This shows that
for the tree of height 𝑂(𝑘) and large enough branching factor Client can guarantee
𝑘-amplification, and this is enough for Gács (but not for Day).4

Let us now go through the details of this argument. We consider values of 𝑘 > 1
that are multiples of 1/2. By induction we prove that for every 𝜀 6 𝛼 6 1 that
is a power of 2 there exists some 𝛿 6 𝜀 (also a power of 2) such that Client has a
winning strategy in the game with parameters 𝜀, 𝛿, 𝛼, 𝛼, 𝑘 and arbitrary unavailable
set 𝐴 on the tree that has height 4(𝑘 − 1) and infinite (or large enough) branching
factor.

The induction base (𝑘 = 1) is obvious. For the induction step, we assume that
the statement is true for some 𝑘, and prove it for 𝑘+1/2. We use the strategy from
Example 3 on the tree of height 4(𝑘 + 1/2 − 1), now applying the 𝑘-amplification
strategy (induction assumption) for the grandsons of the root (the subtree height is
exactly 4(𝑘− 1) there). The value of 𝛼 for these games is chosen as a power of 2 in
the interval (𝜀/(6𝑘), 𝜀/(3𝑘)]. (Since the upper bound in this interval is twice bigger
than the lower bound, it contains some power of 2.) Each recursive call increases
the root request at least by 𝜀/(6𝑘2), so the number of recursive calls is bounded
by 6𝑚𝑘2. So we are able to choose in advance the parameters 𝜀 and 𝛿 for all the
recursive calls. Also we can bound the number of grandsons of the root used in this
process: it is enough to have 6𝑘2 sons for each son of the root.

When all the sons of the root have their reserved intervals, we achieve our goal.
Indeed, let 𝛾 be the sum of requests made during non-last recursive calls. This
gives us grayed area of size 𝑘𝛾 outside the reserved intervals, so in total we get at

4In fact we need some additional step to finish the proof of Gács’ result. We have a strategy

for arbitrarily large amplification 𝑘, but what we need is a strategy with arbitrarily large ratio

𝛽/𝛼: we need grayed area to be more than 1 and request at most 1/𝑑. Such a strategy can be
easily constructed as a composition. For example, let us apply the strategies with amplification

𝑘 = 2𝑑 and 𝛼 = 1/(4𝑑) for the sons of the root until the total request becomes greater than

1/𝑑− 1/(4𝑑), we get a strategy with parameters 𝛼 = 1/𝑑 and 𝛽 = 2𝑑(1/𝑑− 1/(4𝑑)) = 3/2 for the
tree of size 𝑂(𝑑) which is enough.

5.5. MONOTONE COMPLEXITY 155

least 𝑘𝛾 +𝑚𝜀 for the grayed area while making requests for at most 𝛾 +𝑚(𝜀/(3𝑘)).
Since 𝛾 6 𝑚𝜀, we get 𝑘 + 1/2 amplification factor:

𝑘𝛾 + 𝑚𝜀 > (𝑘 + 1/2)(𝛾 + 𝑚𝜀/3𝑘),
(a simple computation).

This strategy works for the infinite branching and for large enough finite branch-
ing (depending on 𝜀, 𝛼, 𝑘) — but the required branching factor is much larger than
needed for Theorem 88. Let us explain why this happens. The tree for given 𝜀, 𝛼, 𝑘
has branching factor 𝛼/𝜀 at the root. In the sons of the root the branching factor
is small enough not to be a problem, but we should look at the grandsons. To
estimate the branching factor there, we need to bound the ratio 𝛼′/𝜀′ for the pa-
rameters of the recursive calls made for the grandsons. The parameter 𝛼′ is about
𝜀/(3𝑘) and is the same for all the calls, but the parameter 𝜀′ is different for different
calls. The minimal 𝜀′ corresponds to the chain of (𝛼/𝜀)6𝑘2 application of the 𝜀 ↦→ 𝛿
transformation from the induction assumption, and it is much smaller than the
original 𝜀. It means that the branching factor for the grandson that is processed
first should be very large (in fact, we do not know which of the grandsons will be
processed first, so we need this large branching for the “oldest” son of every son).5

So the problem with our strategy is that it makes too many recursive calls. It
turns out that 𝑂(𝑘2) recursive calls (instead of 𝑂(𝑘2𝛼/𝜀)) are enough if we use a
more clever strategy. It is important that for this strategy the number of calls does
not depend on 𝛼/𝜀.

The modification of the induction step: now (𝑘 + 1/2)-strategy processes all
the sons of the root that do not have reserved intervals yet, in parallel (and not
sequentially, as we did before). More precisely, at each iteration we consider all
the sons that do not have reserved intervals, choose one unprocessed son for each
of them, and process these sons (who are grandsons of the root) together, making
a recursive call. This means that the format of the game is now changed: it is
played not for one tree, but for a family of identical disjoint trees. (Server should
provide disjoint intervals for vertices that are in different trees.) This modification
alone is still not enough: it may happen that for each iteration only one son of the
root does not have a reserved interval. In this case there is no real parallelism. To
avoid this problem, we should not wait until all the sons (of all the roots — now we
have several trees) have reserved intervals; it is enough for us if sons with reserved
intervals form a large enough fraction. The threshold for “large enough” should be
greater than 1/2 (if we want 1/2-increase in 𝑘); let us use, say, 3/4 as the threshold.
This implies some loss: the value of 𝛽 is now only (3/4)𝛼; in its turn, this makes
the lower bound for sum of requests for all the roots smaller, only 3/4 of the old

5To get a bound for the branching factor for grandsons, we need to bound the ratio 𝜀/𝛿 in
the strategy by some function 𝑓𝑘(𝛼/𝜀). The value 𝑓𝑘+1/2(𝛼/𝜀) is a product of (𝛼/𝜀)6𝑘2 values of

the form 𝑓𝑘(𝛼
′/𝜀′). Here 𝛼′/𝜀′ are different: the first 𝜀′ can be 𝛼′, but the following ones should

be much smaller: the second 𝜀′ should be 𝑓𝑘(1) times smaller than the first one, the third should

be 𝑓𝑘(𝑓𝑘(1)) times smaller than the second, etc. The last term in the product is obtained by
(𝛼/𝜀)6𝑘2 iterations of 𝑓𝑘 starting with 1. Therefore,

𝑓𝑘+1/2(𝛼/𝜀) ≈ 3𝑘 · 𝑓𝑘(1) · 𝑓𝑘(𝑓𝑘(1)) · 𝑓𝑘(𝑓𝑘(𝑓𝑘(1))) · . . . ;
the product has (𝛼/𝜀)6𝑘2 factors; the equation is only approximate since the first 𝜀′ is only close

to 𝜀/(3𝑘). And we can start, say, with 𝑓3/2(𝛼/𝜀) ≡ 2 (see Example 2). Then 𝑓2(𝛼/𝜀) grows

exponentially as 𝛼/𝜀 increases: 𝑓2(𝛼/𝜀) > 2𝛼/𝜀. And 𝑓2,5(𝛼/𝜀) is a tower of exponents with base

2 and height 𝛼/𝜀. (One could use the strategy from Example 3 and increase 𝑘 by (almost) 1

during the induction step, but this would only slightly postpone the problem.)

156 5. MONOTONE COMPLEXITY

one, and we need slightly more iterations to get the reserved intervals. The final
adjustment is now done as follows: if the average request for the tree roots is less
than (3/4)𝛼/𝑘, we increase some of the requests that are less than 𝛼, to get the
average (3/4)𝛼/𝑘.

As before, if the request of some son 𝑢 of the root is so close to 𝜀 that we may
cross threshold 𝜀 while processing one more of its sons, we just increase the request
of 𝑢 up to 𝜀. It should be done in the same way, before the next recursive call.

In this way the grayed area will be of size 𝑘𝛾 + (3/4)𝑚𝜀 instead of 𝑘𝛾 + 𝑚𝜀,
as it was earlier (here 𝛾 is a grayed area that is due to grandsons who are not the
last processed among their siblings, and 𝑚 is the total number of sons of the roots
of all trees), and the sum of requests is the same as before, 𝛾 +𝑚𝜀/3𝑘. Recall that
𝜀/(3𝑘) has appeared here as the 𝛼 parameter for recursive calls. To get the ratio
(grayed)/(requested) at least 𝑘 + 1/2, we need to decrease slightly this parameter,
and 𝜀/(6𝑘) will be enough. This makes the number of iterations twice bigger, but
this is not a problem. More details: at each step the sum of the requests of all sons
will increase by a quantity that is proportional to 𝑚𝜀/𝑘2. The sum of the requests
of all sons cannot exceed 𝑚𝜀, therefore the number of recursive calls is bounded by
𝑂(𝑘2).

Now let us provide the details. First we should explain what changes are needed
in the definition of the game and the construction of a winning strategy. Now the
game, in addition to 𝑘, 𝜀, 𝛿, 𝛼, 𝛽, the tree 𝑇 and the unavailable set 𝐴, has an
integer parameter 𝑙, the number of trees. The meaning of 𝜀, 𝛿, 𝐴 remains the same
as before; 𝛼 is the upper bound for the request of each root, and 𝛽 is the lower
bound for the average newly grayed area (per tree): the total size of grayed area
should be at least 𝑙𝛽. Finally, the parameter 𝑘 is the lower bound for the ratio
(total grayed area)/(sum of the root requests for all trees).

As before, we may compose the strategies; however, now the composed strate-
gies should have the same values of 𝑘, 𝑇, 𝛼. We can apply first the strategy with pa-
rameters 𝜀1, 𝛿1, 𝛼, 𝛽1, 𝑘 and some unavailable set 𝐴 to some family of the trees (each
tree is isomorphic to 𝑇). Then we apply the strategy again with new parameters
𝜀2, 𝛿2, 𝛼, 𝛽2, 𝑘 and a new unavailable set (the union of 𝐴 and the 𝜀1-neighborhood of
the allocated area) for the second (disjoint) family of trees isomorphic to 𝑇 . We as-
sume that 𝜀1 = 𝛿2. In this way we win the game with parameters 𝜀2, 𝛿1, 𝛼, 𝛽1+𝛽2, 𝑘
and unavailable set 𝐴.

As before, we assume that 𝑘 > 1 is a multiple of 1/2 and use induction over
𝑘 to construct a winning strategy for Client for every 𝜀 6 𝛼 6 1, 𝛽 = (3/4)𝛼 and
for some 𝛿 6 𝜀 and some finite tree of height 4(𝑘 − 1); its branching factor will be
specified later. The numbers 𝜀, 𝛼, 𝛿 are all negative powers of 2. The strategy wins
the game for every 𝑙 and 𝐴.

The induction base (𝑘 = 1) is obvious. Let us consider the induction step from
𝑘 to 𝑘 + 1/2. The tree, as before, has 𝛼/𝜀 sons of the root and each of them has
𝑂(𝑘2) sons (the exact value will be specified later); recall that now we have a family
of isomorphic trees. The strategy at each iteration does the following. First or all,
we increase up to 𝜀 the requests for those sons of the roots whose request already
exceeds 𝜀 − 𝜀/6𝑘. After Server’s move we check how many sons of the roots do
not have a reserved interval yet. If more that 25% of them do not have a reserved
interval, for each son that does not have a reserved interval we select an unprocessed
son (who is a grandson of one of the roots). For this family of grandsons we perform

5.5. MONOTONE COMPLEXITY 157

a recursive call of the strategy with parameter 𝑘, and 𝛼 is chosen as a power of 2 in
the interval (𝜀/(12𝑘), 𝜀/(6𝑘)]. We repeat this procedure until the fraction of sons
that do not have a reserved interval becomes less than 25%.

For every recursive call the sum of all requests increases by (3/4)𝑚(𝜀/(12𝑘2))
or more, where 𝑚 is a total number of sons of all roots. And the sum of the
requests for all roots cannot exceed 𝑚𝜀: we guarantee that every son of every root
has request at most 𝜀 (after that the reserved interval is guaranteed). So the total
number of recursive calls is at most 𝑂(𝑘2). Moreover, each root has request at most
𝛼, since each root has 𝛼/𝜀 sons. The total size of newly grayed area is at least the
total length of all the reserved intervals, and it is at least (3/4)𝑚𝜀, as required. It
remains to estimate the ratio (newly grayed area)/(total sum of requests).

Let 𝛾 bet the sum of increases for root requests, if we do not count the last
increases that created reserved intervals. This increase creates a 𝑘𝛾 increase in the
grayed area, if we do not count the reserved intervals. In total we obtain grayed
area of size 𝑘𝛾 + (3/4)𝑚𝜀 by making requests at most for 𝛾 + 𝑚(𝜀/6𝑘). Since
𝛾 6 𝑚𝜀, the first number is at least 𝑘 + 1/2 times greater than the second one:

𝑘𝛾 + (3/4)𝑚𝜀 > (𝑘 + 1/2)(𝛾 + 𝑚𝜀/6𝑘),

(a simple computation).
It remains to bound the branching factor of the tree 𝑇 needed for this construc-

tion by a function of 𝑘 and the ratio 𝛼/𝜀 (it is easy to see that only the ratio of these
numbers is important). As we have discussed (after constructing of a strategy for
infinite trees), we should first compare 𝛿 and 𝜀 and prove that one can use 𝛿 = 𝜀/𝑐𝑘
for some sequence 𝑐𝑘 that grows not too fast.

For 𝑘 = 1 we had 𝛿 = 𝜀, so 𝑐1 = 1. The strategy for 𝑘 + 1/2 makes at most
𝑂(𝑘2) recursive calls of 𝑘-strategy, and its 𝜀/𝛿-ratio is the product of the same
ratios for recursive calls, multiplied by the ratio 𝜀/𝜀′, where 𝜀 is the parameter of
the game and 𝜀′ is the similar parameter for the last recursive call. The latter ratio
does not exceed 12𝑘, because the last call is made with parameter 𝛼′ that is at least
𝜀/(12𝑘) and we can use the same value of 𝜀′. So we get a recurrent formula

𝑐𝑘+1/2 = 𝑂(𝑘𝑐
𝑂(𝑘2)
𝑘),

which gives 𝑐𝑘 = 2𝑂(𝑘)4(𝑘−1)

.
Now it is easy to bound the branching factor for the tree 𝑇 by a function of

𝑘 and 𝛼/𝜀. Recall that in the construction of (𝑘 + 1/2)-strategy we used a tree
with branching factor 𝛼/𝜀 in the root and 𝑂(𝑘2) in the sons of the root. So at all
odd levels (the root level is 0) the branching factor is 𝑂(𝑘2); it remains to bound
the branching on levels 2, 4, At the level 2 the branching factor is again equal
to the ratio 𝛼′/𝜀′ of the parameters of the strategies used. It is easy to see that
this ratio does not depend on the original 𝛼 and 𝜀. Indeed, calling the strategy
recursively for the grandsons, we use the value of 𝛼′ that does not exceed 𝜀/(6𝑘),
and the value of 𝜀′ that is at least 𝜀/𝑐𝑘+1/2. Therefore, the branching factors for
the grandsons is bounded by 6𝑘𝑐𝑘+1/2. The same is true for all other even levels
(with a smaller value of 𝑘).

Therefore, the 𝑘-strategy wins on the tree with branching factor

max{𝛼/𝜀,𝑂(𝑘2), 6(𝑘 − 1/2)𝑐𝑘} = max{𝛼/𝜀,𝑂(𝑘2), 2𝑂(𝑘)4(𝑘−1)

};

158 5. MONOTONE COMPLEXITY

here the second term (for large 𝑘) is dominated by the third one and we can ignore
it.

Now we can finish the proof of Gács–Day result. Let 𝑑 be a power of 2. We need
to construct a strategy with parameters 𝛼 = 1/𝑑 and some 𝛽 > 1 that wins on some
tree 𝑇 with bounded depth and branching factor. For that, we call the strategy
constructed above (sequentially for each of the sons of the root) with parameters
𝑘 = 2𝑑 and 𝛼 = 1/(4𝑑) until the request for the root reaches the dangerous level
1/𝑑 − 1/(4𝑑). In this way we request at most 1/𝑑, and the grayed area is at
least 2𝑑(1/𝑑 − 1/(4𝑑)) > 1. After each call the root request increases at least by
(3/4)(1/4𝑑)(1/𝑘), so the number of requests is bounded by 𝑂(𝑑3), and 𝑂(𝑑3) sons
of the root are enough. The subtree rooted there should be suitable for 2𝑑-strategy

with parameters 𝛼 = 1/(4𝑑) and 𝜀 = (1/(4𝑑))/𝑐
𝑂(𝑑3)
2𝑑 . This requires trees of height

𝑂(𝑑) and branching factor

max{𝑐𝑂(𝑑3)
2𝑑 , 2𝑂(𝑘)4(𝑘−1)

} = 2𝑂(𝑑)𝑂(𝑑)

.

This finishes the proof of Gács–Day result. �

139 Proof that the height of the tree in Gács–Day theorem cannot be less
that 𝑑/4: if it is smaller, Server has a winning strategy (instead of Client).

Returning to the gap between KM and KA , we observe that the upper and
lower bound are still significantly different: the only upper bound known says that
the gap is at most 𝑂(log 𝑛) for 𝑛-bit strings (and this is true even for 𝐾 instead
of KM). One small improvement: we can replace 𝑛 by KA (𝑥), as the following
problem shows.

140 Prove that KM (𝑥) 6 KA (𝑥) + 𝑂(logKA (𝑥)).
[Hint: in fact KM (𝑥 | KA (𝑥)) 6 KA (𝑥) + 𝑂(1). Indeed, if KA (𝑥) = 𝑘, then 𝑥

at some point appears in the growing subtree of strings whose a priori complexity
is less than 𝑘 + 1; this tree at all times has width (the cardinality of maximal
antichain) at most 2𝑘+1, so looking at the maximal elements of this tree, we cover
it by 2𝑘+1 growing branches. For the details see Theorem 127, p. 206.]

5.6. Levin–Schnorr theorem

The definition of the a priori complexity guarantees that for any lower semi-
computable semimeasure 𝑝 the inequality KA (𝑥) 6 − log 𝑝(𝑥) + 𝑐 holds for some 𝑐
and for every 𝑥. It turns out that if 𝑝 is a (computable) measure, then this inequal-
ity is true not only for a priori complexity KA but also for a (larger) monotone
complexity KM .

Theorem 89. Let 𝜇 be a computable probability distribution on Ω, and let 𝑝
be the corresponding function on binary strings: 𝑝(𝑥) = 𝜇(Ω𝑥). Then there exists a
constant 𝑐 such that

KM (𝑥) 6 − log 𝑝(𝑥) + 𝑐

for every string 𝑥.

Proof. The idea of the proof can be explained as follows. The difference
between KM and KA appears because we are unable to allocate contiguous space
to hierarchical users’ requests, since we do not know which of the current requests
will increase in the future. However, if we have a measure (and not a semimeasure),

5.6. LEVIN–SCHNORR THEOREM 159

0 1

𝑝(0) 𝑝(1)

𝑝(00) 𝑝(01) 𝑝(10) 𝑝(11)

Figure 1. The construction of 𝜋𝑥.

we can solve this problem and allocate contiguous intervals. (Feel free to ignore
this metaphor if it is confusing: we provide a formal proof in the next paragraphs.)

For each string 𝑥 we define an interval 𝜋𝑥 inside [0, 1]. The interval 𝜋𝑥 is defined
in such a way that:

∙ the length of 𝜋𝑥 equals 𝑝(𝑥);
∙ 𝜋Λ = [0, 1] (here Λ is the empty string);
∙ for each string 𝑥 the interval 𝜋𝑥 is split by some its point into intervals
𝜋𝑥0 (left part) and 𝜋𝑥1 (right part).

(See Figure 1.)
We consider also another family of intervals that corresponds to the uniform

measure. Let 𝐼𝑥 be the interval of reals whose binary representation starts with 𝑥.
We call the intervals 𝐼𝑥 binary intervals.

Now consider the set 𝐺 of all pairs ⟨𝑥, 𝑦⟩ of strings such that (binary) interval
𝐼𝑥 is located inside the interior of 𝜋𝑦. The set 𝐺 is enumerable. Indeed, since the
function 𝑝 is computable, we can find the endpoints of intervals 𝜋𝑦 with arbitrary
precision, and if they are strictly greater (or less) than some rational number, this
fact will be eventually discovered.

Note also that the property ⟨𝑥, 𝑦⟩ ∈ 𝐺 remains true if we replace 𝑥 by some
its extension (since 𝐼𝑥 becomes smaller) or replace 𝑦 by any its prefix (since 𝜋𝑦

becomes larger). If ⟨𝑥, 𝑦1⟩ ∈ 𝐺 and ⟨𝑥, 𝑦2⟩ ∈ 𝐺, the segments 𝜋𝑦1 and 𝜋𝑦2 have
a common interior point (they both contain 𝐼𝑥), therefore the strings 𝑦1 and 𝑦2
are compatible. So Theorem 81 (p. 141) guarantees that there exists a computable
mapping of Σ into itself whose lower graph is 𝐺. We use this mapping as the
decompressor in the definition of monotone complexity. Then KM𝐷(𝑦) equals to
the minus binary logarithm of the biggest binary interval that is located strictly
inside 𝜋𝑦. It remains to note that any open interval of length ℎ contains a closed
binary interval of length ℎ/4, and compare 𝐷 with the optimal decompressor. �

141 Prove the claim about binary intervals (see above). [Hint: let 𝑢 be a
power of 2 such that ℎ/4 6 𝑢 < ℎ/2. Then any interval of length ℎ intersects at
least three consecutive binary intervals of length 𝑢 and contains the middle one.]

Theorem 89 provides a theoretical justification for the following approach used
by A.N. Kolmogorov and his students to get upper bounds for the complexity of
Russian texts. While reading the text (one letter at a time), the reader tries to
guess the next letter. The guess is formulated as a probability distribution over the
alphabet. Then the next letter is read and we add − log 𝑝 to the complexity, where
𝑝 is the declared probability of that letter (i.e., its probability with respect to the
guessed distribution).

If we believe that the behavior of the reader is computable, the result is an
upper bound for the complexity. Indeed, the reader provides (some part) of a

160 5. MONOTONE COMPLEXITY

computable probability distribution on the set of strings telling the conditional
probabilities along some path, and the complexity of text does not exceed the sum
of negative logarithms of these probabilities (Theorem 89).

Of course, it is not practical to require that the reader provides at each step
the list of probabilities for all the letters; one can suggest some standard types
of answers like “the next letter is A with probability 0.5, all other vowels are
equiprobable and have total probability 0.3, all other letters are equiprobable”.
Note also that we get an upper bound for the conditional complexity of the text
where the condition is the background of the reader. (For example, if reader knows
the text by heart, or just is familiar with the author’s writings, the bound can be
very small.)

The same trick used in the compression algorithms is called “arithmetic coding”
and even was patented (many years after Kolmogorov’s experiments, in 1970s).

Now we are ready to formulate the criterion of Martin-Löf randomness that
uses monotone complexity: a sequence is ML-random if and only if the inequality
of Theorem 89 becomes an equality for its prefixes.

Let us formulate this statement precisely. Let 𝜇 be a computable probability
distribution on the set Ω of all infinite bit sequences and let 𝑝(𝑥) be the measure
of the interval Ω𝑥: 𝑝(𝑥) = 𝜇(Ω𝑥).

Theorem 90 (Levin–Schnorr). A sequence 𝜔 ∈ Ω is Martin-Löf random with
respect to a computable probability distribution 𝜇 if and only if

− log 𝑝(𝑥) −KM (𝑥) 6 𝑐

for some 𝑐 and for every prefix 𝑥 of 𝜔.

Proof. We have to prove this theorem in both directions. Let us show first
that if (for a given sequence 𝜔) the difference − log 𝑝(𝑥) − KM (𝑥) is unbounded,
then this sequence is not ML-random (i.e., the set {𝜔} is an effectively null set).

Fix some constant 𝑐 and consider all strings 𝑥 such that − log 𝑝(𝑥)−KM (𝑥) > 𝑐.
(This difference is sometimes called randomness deficiency, but this term has dif-
ferent meanings, we have already used it in the previous chapter, and in Chapter 14
it is used in a different way.) This set is denoted by 𝐷𝑐.

The set 𝐷𝑐 is enumerable (since 𝑝 is computable and KM is upper semicom-
putable, the difference is lower semicomputable).

Lemma 1. The set of all infinite sequences that have a prefix in 𝐷𝑐 has 𝜇-
measure at most 2−𝑐.

Informally speaking, this is true because on this set the measure 𝜇 is 2𝑐 times
smaller than the a priori probability (and the latter does not exceed 1). More
formally this argument can be explained as follows.

We are interested in the measure of the union of intervals Ω𝑥 for all 𝑥 ∈ 𝐷𝑐.
Without changing this union, we may keep only minimal 𝑥 ∈ 𝐷𝑐 (i.e., strings 𝑥 ∈ 𝐷𝑐

such that no prefix of 𝑥 belongs to 𝐷𝑐). Let 𝑥0, 𝑥1, . . . be these minimal elements
of 𝐷𝑐. (We do not claim the the set of minimal elements is enumerable, so this
sequence may be non-computable.)

For each 𝑥𝑖 consider the minimal description 𝑝𝑖 (according to the definition of
the monotone complexity: 𝑥𝑖 4 𝐷(𝑝𝑖) where 𝐷 : Σ → Σ is the optimal monotone
decompressor). Then 𝑙(𝑝𝑖) = KM (𝑥𝑖) < − log 𝑝(𝑥𝑖) − 𝑐. Moreover, none of 𝑝𝑖
is a prefix of another one (otherwise the corresponding 𝑥𝑖 would be compatible).

5.6. LEVIN–SCHNORR THEOREM 161

Therefore
∑︀

𝑖 2−𝑙(𝑝𝑖) 6 1 (being the sum of uniform measures of disjoint sets Ω𝑝𝑖
).

The corresponding 𝑝(𝑥𝑖) are 2𝑐 times smaller, so we get the statement of Lemma 1.
Our assumption guarantees that the sequence 𝜔 has prefixes from 𝐷𝑐 for every 𝑐.

To prove that {𝜔} is an effectively null set, we need to cover 𝜔 by an enumerable
family of intervals with total measure not exceeding 2−𝑐, and we can use intervals
from 𝐷𝑐.

However, there is a small technical problem here (that we already encountered
while speaking about randomness tests). We know that for intervals from 𝐷𝑐 the
total measure (i.e., the measure of their union) does not exceed 2−𝑐 (as the Lemma
says), but the definition needs that the sum of measures of all intervals does not
exceed 2−𝑐. We cannot solve this problem by considering only minimal points
(maximal intervals), since the set of minimal points is not always enumerable.
Instead we can use the following statement:

Lemma 2. Every enumerable set of strings 𝑥0, 𝑥1, . . . can be transformed into
an enumerable set of incompatible strings with the same union ∪𝑖Ω𝑥𝑖

. This trans-
formation is effective (an algorithm that enumerates the first set can be transformed
into an algorithm that enumerates the second one).

Indeed, if during the enumeration we get a string that is an extension of the
previously enumerated one, this string can be omitted (since the corresponding
interval is already covered). If we get a string 𝑦 that is a (proper) prefix of a string
𝑥 enumerated earlier, we have to split the difference Ω𝑦 ∖ Ω𝑥 into finite number of
disjoint intervals and replace 𝑦 by strings that define those intervals. Lemma 2 is
proven.

Applying Lemma 2, we get an enumerable set of incompatible strings; these
strings may be not in 𝐷𝑐 but this is not important. It is enough to know that they
correspond to disjoint intervals that cover 𝜔 and the union of these intervals has
𝜇-measure at most 2−𝑐 according to Lemma 1.

Proving the converse implication, we need to show that if a sequence 𝜔 belongs
to an effectively null set, then the differences between the negative logarithms of
the measure and the monotone complexity of 𝜔-prefixes are unbounded. The idea
of this construction may be explained as follows: given a set of small measure, we
construct a monotone decompressor that treats favorably the elements of this set
(i.e., provides short descriptions for their prefixes).

Let us provide details now. Assume that 𝜔 belongs to a set 𝑈 which is an
effectively null set (with respect to measure 𝜇). For each 𝑐 we can effectively find
a family of intervals Ω𝑥0 ,Ω𝑥1 , . . . that cover 𝑈 (and therefore 𝜔) and have total
measure less than 2−𝑐. If we multiply the measures of all these intervals by 2𝑐,
the sum is still less than 1. Consider the computable sequence 𝑝𝑖 = 2𝑐𝜇(Ω𝑥𝑖

).
Applying Theorem 59 (p. 110), we get a prefix-free decompressor for which the
prefix complexity of 𝑖 does not exceed − log𝜇(Ω𝑥𝑖

) − 𝑐 + 2. A composition of this
decompressor and the computable mapping 𝑖 ↦→ 𝑥𝑖 is a prefix-free decompressor 𝐷𝑐

such that
𝐾 ′

𝐷𝑐
(𝑥𝑖) 6 − log𝜇(Ω𝑥𝑖

) − 𝑐 + 2.

(The subscript 𝑐 in 𝐷𝑐 is used to stress that the construction depends on 𝑐; we
use prefix-free decompressors since it will be useful later.) Monotone complexity
does not exceed the prefix one, so if the difference between the negative logarithm
of the measure and the prefix complexity is large, the same is true for monotone

162 5. MONOTONE COMPLEXITY

complexity. It remains to combine the decompressors 𝐷𝑐 into one decompressor
(not depending on 𝑐).

We use the same trick that was was used in the construction of an optimal
decompressor. We want the string 𝑐𝑢 to be the description of the string 𝑣 if 𝑢 is a
description of 𝑣 with respect to 𝐷𝑐. Here 𝑐 is a self-delimited encoding of length
𝑂(log 𝑐) for a natural number 𝑐. If the decompressor 𝐷 is constructed in this way,
the following inequality holds (for all 𝑐):

𝐾 ′
𝐷(𝑥𝑖) 6 − log𝜇(Ω𝑥𝑖

) − 𝑐 + 𝑂(log 𝑐)

Since the monotone complexity does not exceed the prefix one, we replace 𝐾 ′
𝐷(𝑥𝑖)

by KM (𝑥𝑖) and conclude that all the strings 𝑥𝑖 (for a given 𝑐) have the difference
between − log 𝑝(𝑥𝑖) and KM (𝑥𝑖) at least 𝑐−𝑂(log 𝑐). If an infinite sequence belongs
to 𝑈 , it has a prefix of this type for any 𝑐, therefore the difference is unbounded for
its prefixes.

Levin–Schnorr theorem is proven. �

142 Show that in the first part of the proof (if difference is unbounded, the
sequence belongs to an effectively null set) it is enough to have 𝑃 upper semicom-
putable, while in the second part it is enough to have 𝑃 lower semicomputable.

In fact the proof give us a bit more than we claimed. Here are several modifi-
cations of Levin–Schnorr theorem that can be extracted from it:

Theorem 91. We may replace the monotone complexity KM (𝑥) by the a priori
complexity KA (𝑥) in the statement of the previous theorem.

Proof. The a priori complexity does not exceed the monotone one, so the
difference may only increase. So we need to change only the first part of the proof.
It is easy: in the proof of Lemma 1 we should note that

∑︀
𝑖 2−KA (𝑥𝑖) 6 1, since

this sum is the sum of the a priori measures of disjoint intervals Ω𝑥𝑖
. �

Theorem 92. We can also replace the monotone complexity KM (𝑥) by the
prefix complexity 𝐾(𝑥).

Proof. Here we go in the other direction and increase complexity, so only the
second part of the proof needs to be redone. And this is trivial — recall that in
fact we got just an upper bound for prefix complexity. �

Theorem 92 is nowadays the most popular version of Levin–Schnorr randomness
criterion (see, e.g., [102]; see [18] about the history of these results).

The use of monotone or a priori complexity seems (at least to the authors) more
natural (though the prefix version has its own advantages, see below the formula
for the randomness deficiency in terms of prefix complexity). Note that if we use
prefix complexity, the difference in Levin–Schnorr theorem can become negative.
For example, in the case of the uniform measure − log𝜇(Ω𝑥) is just the length of
string 𝑥, and prefix complexity may be greater than the length (the difference can
be of order log 𝑛, see Theorem 63, p. 114).

Moreover, the use of the monotone complexity allows us to strengthen the
Levin–Schnorr theorem as follows:

Theorem 93. If a sequence 𝜔 is not random with respect to measure 𝜇, then
the difference − log 𝑝(𝑥) − KM (𝑥) for prefixes 𝑥 (of 𝜔) is not only unbounded, but
also tends to infinity.

5.6. LEVIN–SCHNORR THEOREM 163

Proof. In the proof of theorem 90 we constructed a prefix-free decompressor
that provides short descriptions 𝑝𝑖 for strings 𝑥𝑖 and guarantees that the prefix
complexity of 𝑥𝑖 (with respect to this decompressor) does not exceed − log𝜇(Ω𝑥𝑖)−
𝑐. To get the required bound for the monotone complexity, we may use (for each 𝑖)
the extensions of 𝑝𝑖 as descriptions of the extensions of 𝑥𝑖 in such a way that the
length of the descriptions corresponds to the measure of described strings, as it was
done in the proof of Theorem 89 (p. 158).

More formally, we can use the inequality KM (𝑥𝑦) 6 𝐾(𝑥) + KM (𝑦 |𝑥) (Prob-
lem 135) and the relativized version of Theorem 89: KM (𝑦 |𝑥) 6 − log𝜇𝑥(Ω𝑦) for
any computable family of measures that (computably) depends on parameter 𝑥.
Here 𝜇𝑥 is the measure that is concentrated on the set Ω𝑥 and is defined as follows:
𝜇𝑥(Ω𝑦) = 𝜇(Ω𝑥𝑦)/𝜇(Ω𝑥).

For the case of the uniform measure (where − log𝜇(Ω𝑥) = 𝑙(𝑥)) we can use a
simpler argument and say that 𝑝𝑖𝑧 is a description of 𝑥𝑖𝑧 for any string 𝑧. �

This result can be reformulated as follows: if the difference log 𝑝(𝑥) − KM (𝑥)
is uniformly bounded for infinitely many prefixes 𝑥 of some sequence 𝜔, then 𝜔 is
random. For the prefix version our argument does not work, but we still can prove
a weaker statement for computable sequences of lengths.

143 Let 𝐴 be a decidable infinite set of natural numbers (lengths), and let 𝜔
be some sequence. If 𝐾(𝑥) > − log𝜇(Ω𝑥) − 𝑐 for some 𝑐 and for every prefix 𝑥 of
𝜔 with length in 𝐴, then 𝜔 is random. [Hint: In the proofs of theorems 90 and 92
we can split the intervals into parts to get the desired length.]

We provided some arguments in favor of using monotone complexity in the
randomness criterion. However, a version that uses prefix complexity has its own
advantages. Note that the notion of a ML-random sequence is invariant under com-
putable permutations of indices (if the measure is invariant or is changed according
to the permutation), but the notion of a prefix (and therefore the criterion of ran-
domness in terms of prefixes) is not. As it was noted by A. Rumyantsev, using 𝐾
one can get an invariant criterion of ML-randomness.

Let 𝐹 be a finite set of indices (natural numbers) and let 𝜔 be a binary sequence.
By 𝜔(𝐹) we denote the restriction of 𝜔 onto 𝐹 , i.e., the binary string formed by
bits 𝜔𝑖 such that 𝑖 ∈ 𝐹 (in the same order as in 𝜔).

Let 𝜇 be a computable measure on Ω. For every finite set 𝐹 ⊂ N and string
𝑍 whose length equals the cardinality of 𝐹 , we consider the event 𝜔(𝐹) = 𝑍. Its
𝜇-probability is denoted by 𝜇𝐹,𝑍 .

144 Let 𝜔 be a ML-random sequence with respect to 𝜇. Prove that

𝐾(𝐹, 𝜔(𝐹)) > − log𝜇𝐹,𝜔(𝐹) − 𝑐

for some 𝑐 and for all finite 𝐹 .
[Hint: the measure of the set of all sequences for which this inequality does

not hold for some fixed 𝑐, does not exceed 2−𝑐 multiplied by the sum of a priori
probabilities of all pairs 𝐹,𝑍, and therefore does not exceed 2−𝑐.]

(Note that if 𝐹 is an initial segment of N, then 𝐹 is determined by 𝜔(𝐹) and
can be eliminated, so we return to the previous statement.)

In fact, the condition given by the last problem is also sufficient. Moreover, it
is enough to require this inequality for any increasing computable sequence of finite
sets whose union is N.

164 5. MONOTONE COMPLEXITY

145 Let 𝐹0 ⊂ 𝐹1 ⊂ 𝐹2 ⊂ . . . be a computable sequence of finite sets and⋃︀
𝑖 𝐹𝑖 = N. Assume that for some sequence 𝜔 we have

𝐾(𝐹𝑖, 𝜔(𝐹𝑖)) > − log𝜇𝐹𝑖,𝜔(𝐹𝑖) − 𝑐

for some 𝑐 and for all 𝑖. Then 𝜔 is ML-random with respect to 𝜇.
[Hint: Using permutation of indices, we may assume that 𝐹𝑖 are initial seg-

ments of N. Then we refer to Problem 143: it is enough to repeat the proof
of Levin–Schnorr theorem using only strings of appropriate lengths and splitting
other intervals into unions of appropriate intervals.]

This statement implies, for example, that a two-dimensional bit sequence (i.e.,
a mapping Z2 → {0, 1}) is ML-random with respect to the uniform measure (all
bits are independent; 0 and 1 are equiprobable) if and only if 𝑁×𝑁 square centered
at the origin has prefix complexity at least 𝑁2 −𝑂(1) (for all odd 𝑁).

Let us note one more reason that makes the appearance of prefix complexity
in the randomness criterion natural. It turns out that one can prove a quantative
version of Levin–Schnorr theorem and get a formula for the expectation-bounded
randomness deficiency (see Section 3.5):

146 Let 𝑝(𝑥) = 𝜇(Ω𝑥) correspond to a computable measure 𝜇 on the Cantor
space. Prove that the function

𝑡(𝜔) =
∑︁
𝑥4𝜔

𝑚(𝑥)

𝑝(𝑥)
,

where the sum is taken over all finite prefixes 𝑥 of 𝜔 and 𝑚(𝑥) is the discrete a
priori probability of 𝑥, is a universal expectation-bounded randomness test.

[Hint: A lower semicomputable function on the Cantor space is a sum of char-
acteristic functions of intervals with non-negative coefficients. When a new term
is added to this sum (for interval Ω𝑥 with coefficient 𝑟), we may imagine that the
“weight” of the vertex 𝑥 of the binary tree increases by 𝑟. The weights of all vertices
form a lower semicomputable function 𝑢 on strings, and the expectation condition
for a test corresponds to the inequality

∑︀
𝑥 𝑝(𝑥)𝑢(𝑥) 6 1. Maximal function with

this property is 𝑚(𝑥)/𝑝(𝑥) up to Θ(1)-factor. One should also agree that 𝑚(𝑥)/𝑝(𝑥)
is infinite if 𝑝(𝑥) = 0 for some string 𝑥.]

147 Prove that the sum in the preceding problem can be replaced by supre-
mum, and thus we obtain a quantitative version of Levin–Schnorr theorem with
prefix complexity. For example, for the case of the uniform measure, the expecta-
tion-bounded randomness deficiency is equal to sup𝑛[𝑛−𝐾(𝜔0 . . . 𝜔𝑛−1)].

[Hint: A lower semicomputable function that is equal to 𝑎 inside some effectively
open set and is equal to zero outside it, can be represented by means of weights that
are equal to 𝑎 and are placed in incompatible vertices. Every lower semicomputable
function can be represented up to Θ(1)-factor as the sum 𝑡(𝜔) =

∑︀
𝑡𝑘(𝜔), where

𝑡𝑘(𝜔) = 2𝑘 if 𝑡(𝜔) > 2𝑘 and 𝑡𝑘(𝜔) = 0 otherwise. If all 𝑡𝑘 are represented as
explained above, all the summands in the formula for the deficiency are powers of
two. Then the sum equals the supremum up to Θ(1)-factor. See [13] for details.]

The statement of the last problem was proved in an old paper by Gács [56]. The
proof gives as a byproduct the statement of Problem 146 rediscovered independently
in a more recent paper by J. Miller and L. Yu [122] under the name of “ample excess
lemma”.

5.6. LEVIN–SCHNORR THEOREM 165

148 (a) Let 𝜔 be a ML-random sequence with respect to a computable mea-
sure 𝜇 and let 𝑝(𝑥) = 𝜇(Ω𝑥). Prove that the difference − log 𝑝(𝑥) − 𝐾(𝑥) is not
only bounded from above for prefixes of 𝜔 but also tends to −∞ as the length of
the prefix increases. In other terms, if 𝐾(𝑥) 6 − log 𝑝(𝑥) + 𝑐 for some 𝑐 and for
infinitely many prefixes 𝑥 of 𝜔, the 𝜔 is not ML-random.

(b) Prove that if 𝐾(𝑥) 6 − log 𝑝(𝑥) + log 𝑙(𝑥) + 𝑐 for some 𝑐 and for all prefixes
𝑥 of 𝜔, then 𝜔 is not ML-random.

[Hint: In both cases uses the ample excess lemma, Problem 146.]

The case of the uniform measure is rather important; let us write down all what
we have proven for this case:

Theorem 94. (a) Upper bound:

KA (𝑥) 6 KM (𝑥) + 𝑂(1) 6 𝑙(𝑥) + 𝑂(1);

for any string 𝑥.
(b) Randomness criterion: the sequence 𝜔 is ML-random with respect to the

uniform measure if and only if these inequalities become equalities for prefixes of 𝜔:

KA ((𝜔)𝑛) = KM ((𝜔)𝑛) + 𝑂(1) = 𝑛 + 𝑂(1).

(c) If 𝜔 is not ML-random with respect to the uniform measure, then the dif-
ference 𝑛−KM ((𝜔)𝑛) (and therefore 𝑛−KA ((𝜔)𝑛) tends to infinity as 𝑛 → ∞.

(d) The sequence 𝜔 is ML-random with respect to the uniform measure if and
only if 𝐾((𝜔)𝑛) > 𝑛− 𝑐 for some 𝑐 and for all 𝑛.

(e) The sequence 𝜔 is ML-random with respect to the uniform measure if and
only if 𝐾(𝐹, 𝜔(𝐹)) > |𝐹 | − 𝑐 for some 𝑐 and for all finite sets 𝐹 .

Another version of the statement (d): a sequence 𝜔 is ML-random if and only
if the sum

∑︀
𝑛 2𝑛−𝐾((𝜔)𝑛) is finite (Problem 146).

For the case of the uniform measure there exists one more criterion of Martin-
Löf randomness. It is interesting since it uses only plain complexity (and not the
prefix or monotone versions). It is a bit strange that this criterion was discovered
only recently (see [122]) since similar suggestions were considered in the end of
1960ies (see [223, 116]), and the proof of this criterion uses only ideas and methods
well known at that time.

Theorem 95. Assume that 𝑓 : N → N is a computable total function and the
series

∑︀
2−𝑓(𝑛) converges. Let 𝜔 be a ML-random sequence with respect to the

uniform measure. Then

𝐶((𝜔)𝑛 |𝑛) > 𝑛− 𝑓(𝑛) −𝑂(1)

(i.e., there exists 𝑐 such that for every 𝑛 the inequality 𝐶((𝜔)𝑛 |𝑛) > 𝑛 − 𝑓(𝑛) − 𝑐
holds).

Proof. Assume that the claim is false. This means that for every 𝑐 there
exists 𝑛 such that

𝐶((𝜔)𝑛 |𝑛) < 𝑛− 𝑓(𝑛) − 𝑐.

In other words, for every 𝑐 the sequence 𝜔 is covered by some interval Ω𝑥 such that

𝐶(𝑥 |𝑛) < 𝑛− 𝑓(𝑛) − 𝑐,

166 5. MONOTONE COMPLEXITY

where 𝑛 is the length of 𝑥. For each 𝑛 there are at most 2𝑛−𝑓(𝑛)−𝑐 intervals with
this property and their total measure is at most 2−𝑓(𝑛)2−𝑐 (for a given 𝑛). The
total measure of all such intervals (for all 𝑛) is

2−𝑐

(︃∑︁
𝑛

2−𝑓(𝑛)

)︃
and the sequence 𝜔 forms an effectively null set: choosing an appropriate 𝑐 we get
a cover for 𝜔 that has small measure. Therefore, 𝜔 is not ML-random. (Note that
the sum of the series

∑︀
2−𝑓(𝑛) may be a non-computable real number; this does

not matter since we may use any upper bound for it.) �

Remark. In the proof we used only that 𝑓 is upper semicomputable, so the
statement remains true for 𝑓(𝑛) = 𝐾(𝑛): for every ML-random sequence 𝜔 (with
respect to the uniform measure) we have

𝐶((𝜔)𝑛 |𝑛) > 𝑛−𝐾(𝑛) −𝑂(1).

As we will see in Theorem 98, this is a necessary and sufficient condition.

Theorem 95 implies, for example, that for any ML-random sequence (with
respect to the uniform measure) the plain complexity of its prefix of length 𝑛 is at
least 𝑛−2 log 𝑛−𝑂(1) and even 𝑛−log 𝑛−2 log log 𝑛−𝑂(1), since the corresponding
series converge.

Making function 𝑓 smaller, we get the claim of the theorem stronger. It turns
out that for some 𝑓 we get a randomness criterion in this way:

Theorem 96. There exists a total computable function 𝑓 : N → N such that∑︀
𝑛 2−𝑓(𝑛) < ∞ and having the following property: if for some sequence 𝜔 and for

some 𝑐 the inequality
𝐶((𝜔)𝑛 |𝑛) > 𝑛− 𝑓(𝑛) − 𝑐,

holds for all 𝑛, then 𝜔 is ML-random with respect to the uniform measure.

Proof. We need to prove that every non-random sequence (i.e., every sequence
that belongs to the largest effectively null set) has “simple” prefixes. Note that we
also need to choose the function 𝑓 .

To explain how to do this, let us assume that we are given a family of intervals
with total measure at most 𝜀. Let 𝐹 be the set of strings that define these intervals
(i.e., the family consists of intervals Ω𝑥 for all 𝑥 ∈ 𝐹). Let us sort strings in
𝐹 according to their length and for each length 𝑛 consider the total measure of
intervals that correspond to 𝑛-bit strings in 𝐹 . Let it be approximately equal to
2−𝑓(𝑛) (we assume that 𝑓 has integer values, so this cannot be done exactly, but
can be done up to factor 2 in both directions; for simplicity we ignore this bounded
factor in the sequel). Then we have

∑︀
𝑛 2−𝑓(𝑛) 6 𝜀. On the other hand, the set

𝐹 contains 2𝑛−𝑓(𝑛) strings of length 𝑛, and each of these strings can be described
(when 𝑛 and other parameters of the construction are given) by 𝑛−𝑓(𝑛) bits. This
gives an upper bound for the complexity of all the strings in 𝐹 . Note also that
every infinite sequence that is covered by our intervals, has a prefix in 𝐹 .

Now we return to the proof. Consider the largest effectively null set. For each
𝜀 > 0 there exists its cover by intervals of total length at most 𝜀, and we can use the
construction above to get the corresponding function 𝑓 with

∑︀
𝑛 2−𝑓(𝑛) 6 𝜀. We

need to combine those functions for different 𝜀 into one function 𝑓 as the theorem
requires. This is done as follows.

5.6. LEVIN–SCHNORR THEOREM 167

For each 𝑐 = 0, 1, 2, . . . consider the covering by a family of intervals with total
measure not exceeding 2−3𝑐, the corresponding set 𝐹𝑐 of strings and the corre-
sponding function 𝑓 . Then we decrease 𝑓 by 2𝑐 and obtain a function 𝑓𝑐 such
that ∑︁

𝑛

2−𝑓𝑐(𝑛) < 2−𝑐

(we get 2−𝑐 instead of 2−3𝑐 since we have decreased 𝑓 by 2𝑐). The set 𝐹𝑐 contains
2𝑛−𝑓𝑐(𝑛)−2𝑐 strings of length 𝑛, and every non-random sequence has a prefix in 𝐹𝑐.

Then 𝑓(𝑛) is defined by the equation

2−𝑓(𝑛) =
∑︁
𝑐

2−𝑓𝑐(𝑛).

This guarantees that∑︁
𝑛

2−𝑓(𝑛) =
∑︁
𝑛

∑︁
𝑐

2−𝑓𝑐(𝑛) =
∑︁
𝑐

∑︁
𝑛

2−𝑓𝑐(𝑛) 6
∑︁
𝑐

2−𝑐 6 1.

On the other hand, the set 𝐹𝑐 is enumerable given 𝑐 (according to the definition
of an effectively null set), so any its element 𝑥 of length 𝑛 is determined (when 𝑛
and 𝑐 are known) by its ordinal number (in the enumeration of strings of length 𝑛
in 𝐹𝑐), i.e., by 𝑛− 𝑓𝑐(𝑛) − 2𝑐 bits:

𝐶(𝑥 |𝑛, 𝑐) 6 𝑛− 𝑓𝑐(𝑛) − 2𝑐 + 𝑂(1),

which implies

𝐶(𝑥 |𝑛) 6 𝑛− 𝑓𝑐(𝑛) − 2𝑐 + 𝑂(log 𝑐) < 𝑛− 𝑓(𝑛) − 𝑐

for any 𝑥 ∈ 𝐹𝑐 of length 𝑛 (for large enough 𝑐).
Now let 𝜔 be any non-random sequence. As we have seen, for each 𝑐 the

sequence 𝜔 has a prefix in 𝐹𝑐. Let 𝑛 be the length of this prefix. Then

𝐶((𝜔)𝑛 |𝑛) < 𝑛− 𝑓(𝑛) − 𝑐

(assuming that 𝑐 is large enough), which contradicts our assumption.
However, this does not complete the proof, since we need a computable function

𝑓 , and the set 𝐹𝑐 is only enumerable, so we do not know when all strings of length 𝑛
have been appeared, and therefore cannot compute 𝑓 . To overcome this difficulty,
recall that we started with a family of intervals (that cover the largest effectively null
set). In this covering we may split a large interval Ω𝑧 into many small intervals Ω𝑧𝑡

(for all strings 𝑡 of some length). This allows us to make 𝑓𝑐 computable if we require
(without loss of generality) that the length of the intervals in the enumeration of
𝐹𝑐 can only increase. The same argument can be applied to all 𝑓𝑐 in parallel and
makes 𝑓 computable.

Finally, there is a (trivial) technical problem: the statement requires 𝑓 to be
integer-valued, so some rounding is needed. �

The two last theorems together provide a randomness criterion that uses plain
complexity (and not monotone or prefix complexity). This criterion is “robust”:
one can replace the conditional complexity 𝐶((𝜔)𝑛 |𝑛) by the unconditional one,
𝐶((𝜔)𝑛), or by a conditional prefix complexity, 𝐾((𝜔)𝑛 |𝑛).

Indeed, each of these replacements only increases complexity, therefore only
Theorem 96 needs to be verified. For the prefix complexity version: we use that for
each finite set 𝐴 and for each its element 𝑥 the inequality 𝐾(𝑥 |𝐴) 6 log |𝐴|+𝑂(1)
holds (we consider a prefix-free encoding by strings of length log |𝐴|).

168 5. MONOTONE COMPLEXITY

The case of the unconditional plain complexity is a bit more difficult. As we
do not know 𝑛, we need to describe a string 𝑥 ∈ 𝐹𝑐,𝑛 (here 𝐹𝑐,𝑛 is the set of all
strings 𝑥 ∈ 𝐹𝑐 that have length 𝑛) by its ordinal number in the entire set 𝐹𝑐 (and
not by its ordinal number in 𝐹𝑐,𝑛 as before). Enumerating 𝐹𝑐 in increasing length
order, we need

log(|𝐹𝑐,0| + |𝐹𝑐,1| + . . . + |𝐹𝑐,𝑛|)
bits for that, and everything is OK if the last term |𝐹𝑐,𝑛| is greater than the sum of
all preceding terms (in this case the increase is at most twofold). We can achieve
this using the same trick as before: we replace a string by all its extensions of
some bigger length. Note that this is done separately for each 𝑐, so the condition 𝑐
remains, but this does not matter since it gives only 𝑂(log 𝑐) additional bits.

So we get the following result:

Theorem 97. A sequence 𝜔 is ML-random if and only if for any computable
total function 𝑓 : N → N such that

∑︀
2−𝑓(𝑛) < ∞ the inequality

𝐶((𝜔)𝑛) > 𝑛− 𝑓(𝑛) −𝑂(1)

holds.

This criterion uses only plain unconditional complexity and is the most popular
version of Miller–Yu theorem.

This criterion has a drawback: there is a quantifier over 𝑓 . It can be placed
differently (there exists some 𝑓 that rejects all the non-random sequences, as The-
orem 96 says), but still it would be nice to get rid of 𝑓 completely. It is indeed
possible, the price is that we have to reinsert prefix complexity into the statement:

Theorem 98. A sequence 𝜔 is ML-random with respect to the uniform measure
if and only if

𝐶((𝜔)𝑛) > 𝑛−𝐾(𝑛) −𝑂(1).

Proof. If
∑︀

𝑛 2−𝑓(𝑛) converges for a computable 𝑓 , then 𝐾(𝑛) 6 𝑓(𝑛)+𝑂(1).
Therefore the condition with prefix complexity is stronger than that in Theorem 97.

Therefore, we need to prove only the converse implication: if for every 𝑐 there
exists 𝑛 such that

𝐶((𝜔)𝑛) < 𝑛−𝐾(𝑛) − 𝑐,

then 𝜔 is not ML-random. This can be done in the same way as in Theorem 95.
We need only to note that the set of all strings 𝑥 such that

𝐶(𝑥) < 𝑙(𝑥) −𝐾(𝑙(𝑥)) − 𝑐

(here 𝑙(𝑥) stands for the length of 𝑥) is enumerable, see the remark after the proof
of this theorem. �

In this theorem we can also replace 𝐶((𝜔)𝑛) by 𝐶((𝜔)𝑛 |𝑛).

149 Verify that this is indeed possible.

This result was proven in P. Gács paper [56] (p. 391).

150 Show that we cannot let 𝑓(𝑛) = 2 log 𝑛 in Theorem 96.
[Hint: Theorem 95 says that for a Martin-Löf random 𝜔 we have a stronger

inequality 𝐶((𝜔)𝑛) > 𝑛 − log 𝑛 − 2 log log 𝑛 − 𝑂(1). Therefore, if we computably
interleave random sequence with the zero sequence (and zeros are sparse enough),
we get a non-random sequence such that 𝐶((𝜔)𝑛) > 𝑛 − 2 log 𝑛 − 𝑂(1). Similar

5.6. LEVIN–SCHNORR THEOREM 169

argument shows that we cannot get a computably convergent series 2−𝑓(𝑛) for a
function 𝑓 that makes Theorem 96 true.]

All the results above still do not answer a very natural question: may be one can
eliminate 𝑓 completely and require that 𝐶((𝜔)𝑛) > 𝑛−𝑂(1) (similar to monotone
complexity criterion)?

Of course, this would be the most natural version of the randomness criterion,
so it was tried in the very beginning. Martin-Löf noticed that this approach does
not work: any binary string is a substring of a random sequence, so any random
sequence contains arbitrarily large groups of zeros. And if a string of length 𝑛 ends
with 𝑘 zeros, then its complexity is at most 𝑛− 𝑘 + 2 log 𝑘 + 𝑂(1) (2 log 𝑘 bits are
needed for a prefix-free encoding of 𝑘 and 𝑛−𝑘 bits for the rest), and the difference
between length and (plain) complexity is at least 𝑘 − 2 log 𝑘 −𝑂(1).

The following theorem (see [223, 116]) gives a more precise bound for the
unavoidable difference between length and complexity (we mentioned this result
earlier in Problem 54):

Theorem 99. There exists some 𝑐 such that for any 𝜔 ∈ Ω the inequality

𝐶((𝜔)𝑛) 6 𝑛− log 𝑛 + 𝑐

holds for infinitely many 𝑛.

Proof. For each 𝑛 let us select (1/𝑛)-th fraction of all strings of length 𝑛, i.e.,
⌊2𝑛/𝑛⌋ strings of length 𝑛. We want to do this in such a way that each infinite
sequence has infinitely many selected prefixes (and the set of selected strings is
decidable).

Why is this possible? The series
∑︀

1/𝑛 diverges so we can split its terms into
infinitely many groups, and each group has sum greater than 1. Using one group,
we get one layer of Ω-covering (this means that each sequence 𝜔 ∈ Ω has a prefix
among the strings that correspond to that layer). To do this, we consider the
strings in the order of increasing lengths and select strings whose prefixes are not
yet selected. (There is the rounding problem since 2𝑛/𝑛 is not an integer, but it
can be easily fixed.)

Every selected string of length 𝑛 can be described (if 𝑛 is known) by its ordinal
number, and this requires 𝑛 − log 𝑛 bits. Therefore, the conditional complexity
of this string (with condition 𝑛) is at most 𝑛 − log 𝑛 + 𝑂(1). Moreover, if we
make a combined list of all selected strings (in the order of increasing length), the
ordinal number increases by 𝑂(1) factor. Indeed, the number of selected strings of
given length grows almost as a geometric sequence, and adding all selected strings of
smaller lengths increases cardinality only by 𝑂(1) factor. This implies the statement
of Theorem 99. �

151 Give another proof of this result using the following simple observation:
the 𝑘-bit prefix of a given sequence can be considered as a binary notation of some
integer 𝑁 (we add 1 at the beginning of the prefix not to lose leading zeros), and
𝑁 bits following this prefix are enough to reconstruct all 𝑘 + 𝑁 bits.

152 Prove that the statement of Theorem 99 is true not only for some 𝑐 but
for every 𝑐 (including the negative ones).

[Hint: If the series
∑︀

2−𝑓(𝑛) diverges, we can increase a bit the function 𝑓
keeping this property: there exists a function 𝑔 such that 𝑔(𝑛) − 𝑓(𝑛) → ∞ and∑︀

2−𝑔(𝑛) = ∞.]

170 5. MONOTONE COMPLEXITY

153 Show that the statement of Theorem 99 (the conditional complexity
version) remains true if we replace logarithm by arbitrary computable function 𝑓
such that the series

∑︀
2−𝑓(𝑛) diverges.

Martin-Löf claims in [116] that the same generalization is possible for uncon-
ditional complexity (and refers to an unpublished paper for the proof). The same
statement (attributed to Martin-Löf) can be found also in [223]. (We do not know
how to prove it.)

Let us mention also that the statement of Theorem 95 has a slightly different
form in [116]:

154 Prove that if a sequence 𝜔 is ML-random with respect to the uniform

measure, and 𝑓 : N → N is a computable total function such that the series
∑︀

2−𝑓(𝑛)

computably converges, then 𝐶((𝜔)𝑛 |𝑛) > 𝑛−𝑓(𝑛) for all sufficiently large 𝑛. [Hint:
If a series computably converges, and the inequality is false infinitely many times,
the tails of the series can be used to get covers that have small measure.]

Another natural question: what happens if we require high complexity not
for all (sufficiently long) prefixes but for infinitely many of them? In the same
Martin-Löf paper [116] the following results are stated:

155 Prove that for almost all (with respect to the uniform measure) se-
quences 𝜔 ∈ Ω there exists 𝑐 such that 𝐶((𝜔)𝑛 |𝑛) > 𝑛− 𝑐 for infinitely many 𝑛.

[Hint: If it is not the case, then for every 𝑐 there exists 𝑁 such that 𝑛-bit prefix
of 𝜔 has complexity less than 𝑛− 𝑐 for every 𝑛 > 𝑁 . For given 𝑐 and 𝑁 the set of
all 𝜔 with this property has measure at most 2−𝑐. As 𝑁 increases, this set increases
and the union over all 𝑁 has measure at most 2−𝑐 by continuity.]

156 If for a given sequence 𝜔 there exists 𝑐 such that 𝐶((𝜔)𝑛 |𝑛) > 𝑛 − 𝑐
for infinitely many 𝑛, then 𝜔 is ML-random with respect to the uniform measure.
[Hint: If 𝜔 is covered by some interval in a family of total measure less than 2−𝑐,
then every sufficiently long prefix of 𝜔 can be described (when length is given) by
its ordinal number in the set of all strings of this length covered by some interval,
and this requires 2 log 𝑐 + 𝑛− 𝑐 bits.]

157 Prove that the statement of the previous problem remains true if we
replace conditional complexity 𝐶((𝜔)𝑛 |𝑛) by unconditional complexity 𝐶((𝜔)𝑛).

[Hint: Use Problem 6 or, better, Problem 55.]

The last two problems refer to a set of measure 1 that is a subset of the set
of all ML-random sequences. Its complement is a null set; if it were an effectively
null set, we would get another criterion for ML-randomness. However, it is not the
case. Recently in [120, 147] it was shown that this set has a natural description:
it is the set of ML-random sequences relativized to oracle 0′; these sequences are
sometimes called “2-random” (while ML-random sequences are called “1-random”).
See [16] for a simple proof. A similar criterion with prefix complexity: a sequence
𝜔 is 2-random if and only if 𝐾((𝜔)𝑛) 6 𝑛 + 𝐾(𝑛) − 𝑐 for some 𝑐 and for infinitely
many 𝑛 [123] (see also [5] for a simple proof).

5.7. The random number Ω

The following theorem provides an interesting application of the randomness
criterion given in the previous section. Let 𝑚 be a maximal lower semicomputable
semimeasure on the set of natural numbers (e.g, let 𝑚(𝑥) be equal to 2−𝐾(𝑥); we

5.7. THE RANDOM NUMBER Ω 171

can use also the distribution on the outputs of the universal probabilistic machine,
see Chapter 4). G. Chaitin suggested to consider the number

Ω =
∑︁
𝑛

𝑚(𝑛)

(the halting probability for the universal probabilistic machine; the sum of the max-
imal lower semicomputable series) and made the following interesting observation:

Theorem 100. The binary representation of Ω is Martin-Löf random with
respect to the uniform distribution.

Note that the value of Ω depends of the choice of a maximal lower semicom-
putable semimeasure, but the statement remains true for every choice.

Proof. Assume that the first 𝑛 binary digits of Ω are given. They form the
binary representation of a number Ω𝑛 which is a lower bound for Ω with approx-
imation error at most 2−𝑛. Generate lowers bounds for 𝑚(0),𝑚(1),𝑚(2), . . . in
parallel until the sum of these lower bounds becomes greater than Ω𝑛 − 2−𝑛. This
does happen at some point since the sum of the series is Ω and hence is greater than
our threshold. Then make a list of all 𝑖 that appear in this sum (with a non-zero
lower bound for 𝑚(𝑖)).

Note that this list includes all 𝑖 such that 𝑚(𝑖) > 2 · 2−𝑛 (if some 𝑖 with this
property were omitted, the approximation error would exceed 2−𝑛). Therefore, all 𝑖
such that 𝐾(𝑖) < 𝑛−𝑐 (for some 𝑐 that depends on the choice of the function 𝑚 but
not on 𝑛) appear in this list. Thus, the minimal integer that is not in the list has
complexity at least 𝑛 − 𝑐. This implies that both the list itself (which determines
this minimal integer) and the 𝑛-bit prefix of Ω (which allows us to construct the
list; note that 𝑛 is determined by this prefix) have complexity at least 𝑛 − 𝑐′ for
some other 𝑐′ and for all 𝑛. It remains to use the randomness criterion in its prefix
complexity version (Theorems 92 and 94). �

One can define the notion of a (Martin-Löf) random real number directly. A
set 𝑋 of reals is an effectively null set if there is an algorithm that for any rational
𝜀 > 0 enumerates a cover of 𝑋 by intervals with rational endpoints and total
measure (length) at most 𝜀. A real number is Martin-Löf random (with respect to
the standard measure on R) if it does not belong to any effectively null set (=does
not belong to the largest effectively null set).

158 Prove that a real number is random (according to this definition) if and
only if its binary representation is a random sequence (with respect to the uniform
measure on Ω).

159 Prove that a square (sine, exponent) of a random real is a random real.
[Hint: A preimage of a null set is a null set, and this argument can be effectivized.]

160 Can the sum of two random real numbers be a non-random real? [Hint:
the numbers may be “dependent”.]

The random number Ω (or, better to say, any Ω-number, since different max-
imal lower semicomputable semimeasures lead to different numbers) is not just an
interesting example; the class of these numbers has several interesting characteri-
zations [26, 86]. Our presentation follows [19], a survey that can be considered as
an extended version of a footnote in [101].

172 5. MONOTONE COMPLEXITY

5.7.1. Solovay reductions and completeness. Recall that a real number
𝛼 is lower semicomputable if 𝛼 is the limit of some computable non-decreasing
sequence of rational numbers. (Equivalent definition: . . . if the set of rational num-
bers less than 𝛼 is enumerable.) We want to classify computable non-decreasing
sequences according to their convergence speed and formalize the intuitive idea
“one sequence converges better (i.e., not worse) than the other one”.

Let 𝑎𝑖 → 𝛼 and 𝑏𝑗 → 𝛽 be two computable strictly increasing sequences con-
verging to lower semicomputable reals 𝛼 and 𝛽 (approximations of 𝛼 and 𝛽 from
below). We say that 𝑎𝑛 → 𝛼 converges “better” (not worse) than 𝑏𝑛 → 𝛽 if there
exists a total computable function ℎ such that

𝛼− 𝑎ℎ(𝑖) 6 𝛽 − 𝑏𝑖

for every 𝑖.
In other terms, we require that for each term of the second sequence one may

algorithmically find a term of the first one that approaches the limit as close as the
given term of the second sequence. Note that this relation is reflexive and transitive
(take the composition of two reducing functions).

In fact, the choice of specific sequences that approximate 𝛼 and 𝛽 is irrelevant:
any two increasing computable sequences of rational numbers that have the same
limit, are equivalent with respect to this quasi-ordering. Indeed, we can just wait
to get a term of a second sequence that exceeds a given term of the first one.

We can thus set the following definition. Let 𝛼 and 𝛽 be two lower semicom-
putable reals, and let (𝑎𝑛), (𝑏𝑛) be approximations of 𝛼 and 𝛽 respectively. If (𝑎𝑛)
converges better than (𝑏𝑛), we write 𝛼 41 𝛽 (by the above paragraph, this does not
depend on the particular approximations we chose).

This definition can be reformulated in different ways. First, we can eliminate
sequences from the defintion and say that 𝛼 41 𝛽 if there exists a partial computable
function 𝜙 defined on all rational numbers 𝑟 < 𝛽 such that

𝜙(𝑟) < 𝛼 and 𝛼− 𝜙(𝑟) 6 𝛽 − 𝑟

for all of them. Below, we refer to 𝜙 as the reduction function.

161 Prove that a lower semicomputable number 𝛼 is computable if and only
if 𝛼 41 𝛽 for every lower semicomputable 𝛽.

Here is one more useful reformulation:

Theorem 101. 𝛼 41 𝛽 if and only if 𝛽 − 𝛼 is lower semicomputable (or said
otherwise, if and only if 𝛽 = 𝛼 + 𝜌 for some lower semicomputable real 𝜌).

Proof. To show the equivalence, note first that for every two lower semicom-
putable reals 𝛼 and 𝜌 we have 𝛼 41 𝛼 + 𝜌. Indeed, consider approximations (𝑎𝑛)
to 𝛼, (𝑟𝑛) to 𝜌. Now, given a rational 𝑠 < 𝛼 + 𝜌, we wait for a stage 𝑛 such that
𝑎𝑛 + 𝑟𝑛 > 𝑠. Setting 𝜙(𝑠) = 𝑎𝑛, it is easy to check that 𝜙 is a suitable reduction
function witnessing 𝛼 41 𝛼 + 𝜌.

It remains to prove the reverse implication: if 𝛼 41 𝛽 then 𝜌 = 𝛽 − 𝛼 is lower
semicomputable. Indeed, let (𝑏𝑛) be a computable approximation (from below) for
𝛽 and let 𝜙 be the reduction function that witnesses 𝛼 41 𝛽. Then all terms
𝑏𝑛 − 𝜙(𝑏𝑛) are less than or equal to 𝛽 − 𝛼 and converge to 𝛽 − 𝛼. (The sequence
𝑏𝑛 − 𝜙(𝑏𝑛) may not be increasing, but still its limit is lower semicomputable, since
all its terms do not exceed the limit, and we may replace the 𝑛th term by the
maximum of the first 𝑛 terms.) �

5.7. THE RANDOM NUMBER Ω 173

A special case: let
∑︀

𝑢𝑖 and
∑︀

𝑣𝑖 be computable series with non-negative
rational terms (for 𝑖 > 0; terms 𝑢0 and 𝑣0 are starting points and may be negative)
that converge to (lower semicomputable) 𝛼 and 𝛽. If 𝑢𝑖 6 𝑣𝑖 for all 𝑖 > 0, then
𝛼 41 𝛽, since 𝛽 − 𝛼 =

∑︀
𝑖(𝑣𝑖 − 𝑢𝑖) is lower semicomputable.

The reverse statement is also true: if 𝛼 41 𝛽, one can find computable series∑︀
𝑢𝑖 = 𝛼 and

∑︀
𝑣𝑖 = 𝛽 with these properties (0 6 𝑢𝑖 6 𝑣𝑖 for 𝑖 > 0). Indeed,

𝛽 = 𝛼 + 𝜌 for lower semicomputable 𝜌; take 𝛼 =
∑︀

𝑢𝑖 and 𝜌 =
∑︀

𝑟𝑖 and let
𝑣𝑖 = 𝑢𝑖 + 𝑟𝑖.

162 Show that a stronger statement is also true: not only the series 𝑢𝑖 can
be chosen arbitrarily (see the argument above) but the same is true for 𝑣𝑖. Namely,
if 𝛼 41 𝛽 =

∑︀
𝑣𝑖, where 𝑣𝑖 > 0, then there exists a representation 𝛼 =

∑︀
𝑢𝑖 such

that 0 6 𝑢𝑖 6 𝑣𝑖 for every 𝑖 > 0. (All series are computable.)
[Hint: construct 𝑢𝑖 sequentially maintaining the following invariant relation:

the current approximation 𝐴 =
∑︀

𝑗<𝑖 𝑢𝑗 to 𝛼 is below 𝛼 and at least as close (to 𝛼)

as the current approximation 𝐵 =
∑︀

𝑗<𝑖 𝑣𝑗 (to 𝛽). Initially we choose 𝑢0 applying

reduction function to 𝑣0. When the current approximation becomes 𝐵′ = 𝐵 + 𝑣𝑖,
we apply reduction function to get 𝐴′ which is at least as close to 𝛼 as 𝐵′ is to 𝛽.
Then there are several cases:

(1) if 𝐴′ < 𝐴, we let 𝑢𝑖 = 0, and the next approximation is 𝐴 (it is close enough
by assumption);

(2) if 𝐴 6 𝐴′ 6 𝐴 + 𝑣𝑖, we let 𝑢𝑖 = 𝐴′ − 𝐴; the condition guarantees that
𝑢𝑖 6 𝑣𝑖;

(3) finally, if 𝐴′ > 𝐴 + 𝑣𝑖, we let 𝑢𝑖 = 𝑣𝑖 (the invariant remains valid since the
distances to 𝛼 and 𝛽 are decreased by the same amount).]

Let 𝛼 be a lower semicomputable but not computable real. By the results of
the previous section, one has

𝛼 41 2𝛼 41 3𝛼 41 . . .

because for all 𝑘 the difference (𝑘 + 1)𝛼 − 𝑘𝛼 = 𝛼 is lower semicomputable. The
reverse relations are not true, because 𝑘𝛼 − (𝑘 + 1)𝛼 = −𝛼 is not lower semicom-
putable (if it were, then 𝛼 would be computable).

One may argue that this relation is therefore a bit too sharp. For example, 𝛼
and 2𝛼 have essentially the same binary expansion (just shifted by one position),
so one may want 𝛼 and 2𝛼 to be equivalent. In other words, one may look for a
less fine-grained relation. A natural candidate for this is called Solovay reducibility
(see [186]).

We say that 𝛼 is Solovay reducible to 𝛽 (𝛼 4 𝛽) if 𝛼 41 𝑐𝛽 for some positive
integer 𝑐 > 0. (A convenient notation: we say, for some positive rational 𝑐, that
𝛼 4𝑐 𝛽 if 𝛼 41 𝑐𝛽. Then 𝛼 4 𝛽 if 𝛼 4𝑐 𝛽 for some 𝑐.) This relation is also reflexive
and transitive (obviously).

Theorem 102. There exist a biggest lower semicomputable real with respect to
Solovay reducibility.

Proof. We can enumerate all lower semicomputable reals 𝛼𝑖 in [0, 1] and then
take their sum 𝛼 =

∑︀
𝑤𝑖𝛼𝑖 with computable positive weights 𝑤𝑖 such that

∑︀
𝑤𝑖

converges. This 𝛼 can be represented as 𝑤𝑖𝛼𝑖 plus some lower semicomputable real,
so 𝛼𝑖 41 (1/𝑤𝑖)𝛼. �

174 5. MONOTONE COMPLEXITY

The biggest elements for the 4-preorder are also called Solovay complete lower
semicomputable reals. One can even define some qualitative notion of “complete-
ness deficiency”: for a lower semicomputable real 𝛽 the completeness deficiency is
defined as minimal 𝑐 such that 𝛼 41 𝑐𝛽. Here 𝛼 is some fixed Solovay complete
real; the deficiency function depends on the choice of 𝛼, but still is defined up to
Θ(1)-factor. The deficiency of 𝛽 is finite if and only if 𝛽 is Solovay complete.

It turns out that Solovay complete reals can be equivalently described as Ω-
numbers defined above [186, 26].

Theorem 103. Complete semicomputable reals in (0, 1) are sums of universal
(maximal) semimeasures on N and vice versa.

Proof. Any lower semicomputable real 𝛼 is a sum of a computable series
of rationals; this series (up to a constant factor that does not matter due to the
definition of the Solovay reducibility) is bounded by a universal semimeasure. The
difference between the upper bound and the series itself is a lower semicomputable,
and therefore 𝛼 is reducible to the sum of the universal semimeasure.

On the other hand, let 𝛼 be a Solovay complete real in (0, 1). We need to show
that 𝛼 is a sum of some universal semimeasure. Let us start with arbitrary universal
semimeasure 𝑚𝑖. The sum

∑︀
𝑚𝑖 is lower semicomputable and therefore

∑︀
𝑚𝑖 41

𝑐𝛼, so 𝛼 =
∑︀

𝑚𝑖/𝑐 + 𝜏 for some integer 𝑐 > 0 and some lower semicomputable
𝜏 . Dividing 𝑚 by 𝑐 and then adding 𝜏 to one of the values, we get a universal
semimeasure with sum 𝛼. �

It turns out that these reals (Solovay complete lower semicomputable reals,
or Ω-numbers) have one more description: they are exactly lower semicomputable
ML-random real numbers in (0, 1). The equivalence proof consists of several parts;
let us consider them one by one.

5.7.2. Solovay complete reals are random. We already have shown that
Solovay complete reals are random: each of them is an Ω-number, i.e., a sum of the
values of universal semimeasure, and this sum is random (Theorem 100). Formally
speaking, this argument applies only to numbers between 0 and 1, but the general
case can be reduced to this special one by adding a rational number. Still there is an
interesting direct argument that does not involves complexity and Levin–Schnorr
criterion of randomness (it is in the footnote in Levin’s paper [101]; this footnote
compresses the most important facts about lower semicomputable random reals
into few lines).

First, recall that one can prove the existence of a lower semicomputable random
real without references to Ω (Problem 86). So it is enough to prove that randomness
is upward-closed : if 𝛼 4 𝛽 and 𝛼 is random, then 𝛽 is random.

We may assume without loss of generality that 𝛼 41 𝛽 (randomness does not
change if we multiply a real by a rational factor). Let 𝑏𝑖 → 𝛽 be a computable in-
creasing sequence of rational numbers that converges to 𝛽. Assume that somebody
gives us (in parallel with 𝑏𝑖) a sequence of rational intervals and guarantees that
one of them covers 𝛽. How to transform it into a sequence of intervals that covers
𝛼 (i.e., one of the intervals covers 𝛼) and has the same (or smaller) total length? If
an interval appears that is entirely on the left of the current approximation 𝑏𝑖, it
can be ignored (since it cannot cover 𝛽 anyway). If the interval is entirely on the
right of 𝑏𝑖, it can be postponed until the current approximation 𝑏𝑗 enters it (this
may happen or not, in the latter case the interval does not cover 𝛽). If the interval

5.7. THE RANDOM NUMBER Ω 175

contains 𝑏𝑖, we can convert it into the interval of the same length that starts at 𝑎𝑗 ,
where 𝑎𝑗 is a rational approximation to 𝛼 that has the same or better precision as
𝑏𝑖 (as an approximation to 𝛽): if 𝛽 is in the original interval, 𝛼 is in the converted
interval.

So randomness is upward-closed and therefore complete lower semicomputable
reals are random.

Remark. The second part can be reformulated: if 𝛼 and 𝛽 are lower semicom-
putable reals and at least one of them is random, then the sum 𝛼 + 𝛽 is random,
too. The reverse is also true: if both 𝛼 and 𝛽 are non-random, then 𝛼 + 𝛽 is not
random. (We will see later different proofs of this statement.)

5.7.3. Randomness and prediction game. Before proving the reverse im-
plication (random lower semicomputable reals are Solovay complete), let us make
a digression and look more closely at the last argument. Consider the following
game: an observer watches an increasing sequence of rationals (given one by one)
and from time to time makes predictions of the following type: “the sequence will
never increase by more than 𝛿” (compared to its current value). Here 𝛿 is some
non-negative rational. The observer wins this game if

(1) one of the predictions remains true forever;
(2) the sum of all numbers 𝛿 used in the predictions is small (less that some

rational 𝜀 > 0 which is given to the observer in advance).
It is not required that at any moment a valid prediction exists, though one

could guarantee this by making predictions with zero or very small (and decreasing
fast) 𝛿 at each step. Note also that every prediction can be safely postponed, so
we may assume that the next prediction is made only if the previous one becomes
invalid. Then at any moment there is only one valid prediction.

One can give a criterion of randomness in terms of this game.

Theorem 104. Let 𝑎𝑖 be a computable increasing sequence of rational num-
bers that converges to some (lower semicomputable) real 𝛼. The observer has a
computable winning strategy in the game if and only if 𝛼 is not random.

Proof. A computable winning strategy gives us a computable sequence of
prediction intervals of small total measure and guarantees that one of these (closed)
intervals contains 𝛼. We can convert them to slightly bigger open intervals.

On the other hand, having a sequence of intervals that cover 𝛼 and have small
total measure, we may use it for predictions. To make the prediction, we wait until
the current approximation 𝑎𝑖 gets into some of the covering intervals, and then
predict that it will never go out of this interval. When and if this turns out to
be false, we wait until the current approximation is covered again, etc. If there
are several intervals covering the current approximation, we choose the first one in
the enumeration order. Starting from some moment, we always have the interval
the covers 𝛼 as one of the options, so this rule guarantees that the predictions will
stabilize. �

A reformulation of the same observation that does not use game terminology:

Theorem 105. Let 𝑎𝑖 be a computable increasing sequence of rational numbers
that converges to 𝛼. The number 𝛼 is non-random if and only if for every rational
𝜀 > 0 one can effectively find a computable sequence ℎ0, ℎ1, . . . of non-negative
rational numbers such that

∑︀
𝑖 ℎ𝑖 < 𝜀 and 𝛼 6 𝑎𝑖 + ℎ𝑖 for some 𝑖.

176 5. MONOTONE COMPLEXITY

Proof. This corresponds to the game where predictions ℎ𝑖 are made on every
step. As we have said, this does not matter since we may use zeros. �

Recall also the Solovay criterion of ML-randomness (a constructive version of
Borel–Cantelli lemma, Theorem 31 on p. 78): a real number 𝛼 is non-random if
and only if there exists a computable sequence of intervals that have finite total
measure and cover 𝛼 infinitely many times. The same modification can be applied
to the previous theorem, and we get the following result.

Theorem 106. Let 𝑎𝑖 be a computable increasing sequence of rational numbers
that converges to 𝛼. The number 𝛼 is non-random if and only if there exists a
computable sequence ℎ0, ℎ1, . . . of non-negative rational numbers such that

∑︀
𝑖 ℎ𝑖 <

∞ and 𝛼 6 𝑎𝑖 + ℎ𝑖 for infinitely many 𝑖.

Proof. If 𝛼 is non-random, we apply the preceding result for 𝜀 = 1, 1/2, 1/4, . . .
and then add the resulting sequences (with shifts 0, 1, 2, . . . to the right). Each of
them provides one value of 𝑖 such that 𝛼 6 𝑎𝑖+ℎ𝑖, and these values are still suitable
after shifts and cannot be bounded due to shifts. On the other hand, if 𝛼 6 𝑎𝑖 +ℎ𝑖

for infinitely many 𝑖, we get a sequence of intervals with finite sum of measures
that covers 𝛼 infinitely many times (technically, we should replace closed intervals
by slightly bigger open intervals). It remains to use Solovay’s criterion (or recall its
proof: the effectively open set of points that are covered with multiplicity 𝑚 has
measure at most 𝑂(1/𝑚)). �

The randomness criterion given in this section implies the following observation
(which may look strange at first). Consider a sum of a computable series of positive
rational numbers. The randomness of the sum cannot change if all summands are
changed by some Θ(1)-factor. Indeed, all ℎ𝑖 can be multiplied by a constant.

Now let us prove the result mentioned above:

Theorem 107. If 𝛼 and 𝛽 are non-random lower semicomputable reals, their
sum 𝛼 + 𝛽 is non-random, too.

Proof. It now seems very easy at first: make predictions in the games for 𝛼
and 𝛽, and then take their sum as prediction for 𝛼+𝛽. (If for 𝛼 we expect increase
ℎ and for 𝛽 we expect increase 𝑘, then for 𝛼 + 𝛽 we predict increase ℎ + 𝑘.) But
this simple argument does not work. The problem is that the same prediction for 𝛼
can be combined with many predictions for 𝛽 and therefore will be counted many
times in the sum.

The solution is to make predictions for 𝛼 and 𝛽 of the same size. Let 𝑎𝑖 and
𝑏𝑖 be computable increasing sequences that converge to 𝛼 and 𝛽. Since 𝛼 and 𝛽
are non-random, they are covered by sequences of intervals that have small total
measure. To make a prediction for the sequence 𝑎𝑖+𝑏𝑖 (after the previous prediction
became invalid) we wait until the current approximations 𝑎𝑖 and 𝑏𝑖 become covered
by the intervals of those sequences. We take then the maximal ℎ and 𝑘 such that
(𝑎𝑖, 𝑎𝑖 +ℎ) and (𝑏𝑖, 𝑏𝑖 +𝑘) are entirely covered (by the unions of currently appeared
intervals). The prediction interval is declared to be (𝑎𝑖 + 𝑏𝑖, 𝑎𝑖 + 𝑏𝑖 + 2𝛿) where
𝛿 = min(ℎ, 𝑘).

Let us show that one of the predictions will remain valid forever. Indeed, the
limit values 𝛼 and 𝛽 are covered by some intervals. These intervals appear in
the sequences at some point and cover 𝛼 and 𝛽 with some neighborhoods, say, 𝜎-
neighborhoods. If the prediction is made after 𝑎𝑖 and 𝑏𝑖 enter these neighborhoods,

5.7. THE RANDOM NUMBER Ω 177

𝛿 is greater than 𝜎 and the prediction is final: 𝑎𝑖 + 𝑏𝑖 never increases more than
by 2𝛿.

It remains to bound the sum of all 𝛿 used during the prediction. It can be done
using the following observation: when a prediction interval (𝑎𝑖 + 𝑏𝑖, 𝑎𝑖 + 𝑏𝑖 + 2𝛿)
becomes invalid, this means that either 𝑎𝑖 or 𝑏𝑖 has increased by 𝛿 or more, so the
total measure of the covers on the right of 𝑎𝑖 and 𝑏𝑖 has decreased at least by 𝛿.
Here we use that (𝑎𝑖, 𝑎𝑖 + 𝛿) and (𝑏𝑖, 𝑏𝑖 + 𝛿) are covered completely because 𝛿 does
not exceed both ℎ and 𝑘: it is important here that we take the minimum. �

Let us return to the criterion for randomness provided by Theorem 105. The
condition for non-randomness given there can be weakened in two aspects: first, we
can replace computable sequence by a lower semicomputable sequence; second, we
can replace ℎ𝑖 by the entire tail ℎ𝑖 + ℎ𝑖+1 + . . . of the corresponding series:

Theorem 108. Let 𝑎𝑖 be an increasing computable sequence of rational numbers
that converges to 𝛼. Assume that for every rational 𝜀 > 0 one can effectively find
a lower semicomputable sequence ℎ𝑖 of non-negative reals such that

∑︀
𝑖 ℎ𝑖 < 𝜀 and

𝛼 6 𝑎𝑖 + ℎ𝑖 + ℎ𝑖+1 + . . . for some 𝑖. Then 𝛼 is not random.

Proof. Assume that for every 𝑖 there is a painter who get ℎ𝑖 units of paint
and the instruction to paint the line starting at 𝑎𝑖, going to the right and skipping
the parts already painted by other painters (but making no other gaps). (Since ℎ𝑖

is only semicomputable, the paint is provided incrementally and used as soon as it
becomes available.) The painted zone is a union of an enumerable family of intervals
of total measure

∑︀
𝑖 ℎ𝑖 (the total amount of paints). If 𝛼 < 𝑎𝑖+ℎ𝑖+ℎ𝑖+1+ . . ., then

𝛼 is painted since we cannot use ℎ𝑖 + ℎ𝑖+1 + . . . units of paint, starting between
𝑎𝑖 and 𝛼 (recall that all 𝑎𝑘 are less than 𝛼) and not crossing 𝛼: by construction,
we never cover the same point by several layers of paint. (In the condition of the
theorem we have 6 instead of <, but this does not matter since we can increase all
ℎ𝑖 to, say, twice their original value. For the same reason it is not important that
we covered 𝛼 by closed intervals instead of open ones.) �

This result implies one more criterion of randomness for lower semicomputable
reals:

Theorem 109. Let 𝛼 =
∑︀

𝑟𝑖 be a computable series of non-negative rational
numbers. The (lower semicomputable) real 𝛼 is non-random if and only if for every
𝜀 > 0 one can effectively produce an enumerable set 𝑊 ⊂ N of indices such that
(1)

∑︀
𝑖∈𝑊 𝑟𝑖 < 𝜀 and (2) 𝑊 is co-finite, i.e., contains all sufficiently large integers.

Proof. If 𝛼 is not random, it can be covered by intervals with arbitrarily small
total measure. It remains to consider the set 𝑊 of all 𝑖 such that

[𝑟0 + . . . + 𝑟𝑖−1, 𝑟0 + . . . + 𝑟𝑖−1 + 𝑟𝑖]

is entirely covered by one of those intervals. In the other direction the statement is
a direct consequence of Theorem 108, just let 𝑎𝑖 = 𝑟0 + . . . + 𝑟𝑖−1 and ℎ𝑖 = 𝑟𝑖 for
𝑖 ∈ 𝑊 (and ℎ𝑖 = 0 for 𝑖 /∈ 𝑊). �

This result shows again that the sum of two non-random lower semicomputable
reals is not random (take the intersection of two sets 𝑊1 and 𝑊2 provided by this
criterion for each of the reals), so we get a new proof of Theorem 107.

178 5. MONOTONE COMPLEXITY

The trick used to prove Theorem 108 can be reused for the following problem
(this argument was communicated to us by L. Bienvenu; the original proof in [86]
is much more complicated).

163 Let 𝑈 be an effectively open subset of [0, 1] that has measure less than 1.
Assume that 𝑈 contains all non-ML-random reals. (For example, 𝑈 can be one of
the open sets that form a universal Martin-Löf test.) Prove that the measure of 𝑈
is a lower semicomputable random real. [Hint: Let 𝛼 be the measure of 𝑈 . If the
cover of 𝛼 with intervals of small measure is given, we can construct the cover of the
minimal real outside 𝛼 that has the same measure. How can we do that? As soon
as the current approximation to 𝛼 gets into some interval, we imagine that it will
not get out of this interval, i.e., only a small set will be added to the current part of
𝑈 , and paint an equally small part of the current complement of 𝑈 going from left
to the right. If our assumption is in fact true (and this will happen at some point),
then we indeed will paint the minimal element outside 𝑈 . (The painted part is a
union of closed intervals, not the open ones, but this does not matter.)]

5.7.4. Random lower semicomputable reals are complete. Now it is
easy to prove the reverse implication [86]: every lower semicomputable random
real is Solovay complete.

Let us start with the following remark. Consider two lower semicomputable
reals 𝛼 and 𝛽 presented as limits of increasing computable sequences 𝑎𝑖 → 𝛼 and
𝑏𝑖 → 𝛽. Let ℎ𝑖 = 𝑎𝑖+1 − 𝑎𝑖 be the increases in the first sequence. We may use ℎ𝑖

to construct a strategy for the prediction game against the second sequence in the
following way. We shift the interval [𝑎1, 𝑎2] to get the (closed) interval of the same
length that starts at 𝑏1. Then we wait until 𝑏𝑖 at the right of this interval appears;
let 𝑏𝑖1 be the first term outside it. Then we shift the interval [𝑎2, 𝑎3] to get the
interval of the same length that starts at 𝑏𝑖1 ; let 𝑏𝑖2 be the first 𝑏𝑖 on the right of
it, etc.

a0 a1 a2 a3 a4

b0 bi1 bi2 bi3

Figure 2. Increases of 𝑎𝑖 are used in the prediction game for 𝛽.

There are two possibilities: either
(1) the observer wins in the prediction game, i.e., some of the shifted intervals

covers the rest of 𝑏𝑖 and the next 𝑏𝑖𝑘 is undefined, or
(2) this process continues indefinitely.
In the second case 𝛼 41 𝛽 since the difference 𝛽 − 𝛼 is represented as a sum of

a computable series (“holes” between neighbor intervals; note that the endpoints
of the shifted intervals also converge to 𝛽).

After this remark it is easy to show that every incomplete 𝛽 is not random.
Indeed, assume that 𝛽 is not Solovay complete; we need to prove that 𝛽 is not
random. Since 𝛽 is not complete, there exists some 𝛼 such that 𝛼 ̸4 𝛽. In particular,
𝛼 ̸41 𝛽. Therefore, for these 𝛼 and 𝛽 the second alternative is impossible, and the
observer wins. In other terms, we get a computable sequence of (closed) intervals

5.7. THE RANDOM NUMBER Ω 179

of total size at most
∑︀

ℎ𝑖 that covers 𝛽. Repeating the same argument for 𝛼/2,
𝛼/4,. . . (we know that 𝛼/𝑐 ̸41 𝛽 for every 𝑐, since 𝛼 ̸4 𝛽) we effectively get a cover
of 𝛽 with arbitrary small measure (since the sum of all ℎ𝑖 is bounded by a integer
constant even being non-computable), therefore 𝛽 is not random.

This finishes the proof of the result we mentioned:

Theorem 110. A lower semicomputable real is Solovay complete if and only if
it is ML-random.

5.7.5. Slow convergence: Solovay functions. We have seen several results
of the following type: the limit of an increasing computable sequence of rationals
is random if and only if the convergence is slow. In this section we provide some
other results of this type [12, 67].

Consider a computable converging series
∑︀

𝑟𝑖 of non-negative rational numbers.
Note that 𝑟𝑖 is bounded by 𝑂(𝑚(𝑖)) where 𝑚(𝑖) is the (discrete) a priori proba-
bility of integer 𝑖, and therefore prefix complexity 𝐾(𝑖) = − log𝑚(𝑖) is bounded
by − log 𝑟𝑖 + 𝑂(1). We say that the series

∑︀
𝑟𝑖 converges slowly in the Solovay

sense (has the Solovay property) if this bound is 𝑂(1)-tight infinitely often, i.e., if
𝑟𝑖 > 𝜀𝑚(𝑖) for some 𝜀 > 0 and for infinitely many 𝑖. In other terms, the series does
not converge slowly if 𝑟𝑖/𝑚𝑖 → 0.

Historically the name Solovay function was used for a computable bound 𝑆(𝑖)
for prefix complexity 𝐾(𝑖) that is tight infinitely often, i.e., 𝐾(𝑖) 6 𝑆(𝑖) +𝑂(1) for
every 𝑖 and 𝐾(𝑖) > 𝑆(𝑖) − 𝑐 for some 𝑐 and for infinitely many values of 𝑖. Thus, a
computable series

∑︀
𝑟𝑖 of non-negative rational numbers has the Solovay property

if and only if 𝑖 ↦→ − log2 𝑟𝑖 is a Solovay function. (Usually integer-valued Solovay
functions are considered, so some rounding is needed.) We provide several results
that relate randomness to slow convergence, mainly following [12, 67].

Theorem 111. Let 𝛼 =
∑︀

𝑖 𝑟𝑖 be a computable converging series of non-nega-
tive rational numbers. The number 𝛼 is random if and only if this series converges
slowly in the Solovay sense.

In other terms, the sum is non-random if and only if the ratio 𝑟𝑖/𝑚𝑖 tends to 0.

Proof. Assume that 𝑟𝑖/𝑚(𝑖) → 0. Then for every 𝜀 we can let ℎ𝑖 = 𝜀𝑚(𝑖) and
get a lower semicomputable sequence that satisfies the conditions of Theorem 108.
Therefore 𝛼 is not random.

We can also prove that 𝛼 is not complete (thus providing an alternative proof
of its non-randomness). Recall the argument used in the proof of Theorem 103:
if 𝑟𝑖 6 𝑚(𝑖), then

∑︀
𝑟𝑖 41

∑︀
𝑚(𝑖). And if 𝑟𝑖 6 𝑐𝑚(𝑖), then

∑︀
𝑟𝑖 4𝑐

∑︀
𝑚(𝑖).

This remains true if the inequality 𝑟𝑖 6 𝑐𝑚(𝑖) is true for all sufficiently large 𝑖. So
for a fast (non-Solovay) converging series and its sum 𝛼 we have 𝛼 4𝑐

∑︀
𝑚(𝑖) for

arbitrarily small 𝑐. If 𝛼 were complete, we would have also
∑︀

𝑚(𝑖) 4𝑑 𝛼 for some
𝑑 and therefore 𝛼 4𝑐𝑑 𝛼 for some 𝑑 and all 𝑐 > 0. For small enough 𝑐 we have
𝑐𝑑 < 1/2 and therefore 𝛼 41/2 𝛼, i.e., 2𝛼 41 𝛼, so the difference 𝛼 − 2𝛼 = −𝛼
is lower semicomputable and 𝛼 is computable. (One could note also that for each
approximation to 𝛼 from below we can find a twice better one, and we can iterate
this procedure.)

It remains to show the reverse implication. Assuming that 𝛼 =
∑︀

𝑟𝑖 is not
random, we need to prove that 𝑟𝑖/𝑚(𝑖) → 0. Consider the interval [0, 𝛼] split into
intervals of length 𝑟0, 𝑟1, . . . (from left to right). Given an open cover of 𝛼 with

180 5. MONOTONE COMPLEXITY

small measure, we consider those intervals (of length 𝑟0, 𝑟1, . . ., see above) that are
completely covered (endpoints included). They form an enumerable set and the
sum of their lengths does not exceed the measure of the cover. If the cover has
measure 2−2𝑛 for some 𝑛, we may multiply the corresponding 𝑟𝑖 by 2𝑛 and their
sum remains at most 2−𝑛. Note also that for large enough 𝑖 the 𝑖th interval is
covered (since it is close to 𝛼 and 𝛼 is covered). So for each 𝑛 we get a semimeasure
𝑀𝑛 such that 𝑀𝑛(𝑖)/𝑟𝑖 > 2𝑛 for all sufficiently large 𝑖 and

∑︀
𝑖 𝑀

𝑛(𝑖) 6 2−𝑛.
Taking the sum of all 𝑀𝑛, we get a lower semicomputable semimeasure 𝑀 such
that 𝑟𝑖/𝑀(𝑖) → 0. Then 𝑟𝑖/𝑚(𝑖) → 0 also for the universal semimeasure 𝑚. �

This result provides (third) proof that a sum of two non-random lower semi-
computable reals is non-random (since the sum of two sequences that converge to 0
also converges to 0).

It shows also that Solovay functions exist (which is not immediately obvious
from the definition). Moreover, it shows that there exist computable non-decreasing
Solovay functions: take a computable series of rational numbers with random sum
and make this series non-increasing not changing the sum (by splitting too big
terms into small pieces).

164 Let 𝑈 be an optimal prefix-free decompressor. Consider the function
𝑓(𝑝, 𝑥, 𝑛) that is equal to 𝑙(𝑝) if 𝑈 produces output 𝑥 on input 𝑝 making exactly 𝑛
steps, and (say) 2𝑙(𝑝) + 2𝑙(𝑥) + 2 log 𝑛 otherwise. Prove that 𝑓(𝑝, 𝑥, 𝑛) is an upper
bound for 𝐾(𝑝, 𝑥, 𝑛) and this bound is tight when 𝑝 is the shortest description of
𝑥 that needs 𝑛 steps to process, and give an alternative proof of the existence of
Solovay functions.

It also implies that slow convergence (in the Solovay sense) is not a property of
a series itself, but only of its sum. It looks strange: some property of a computable
series (of non-negative rational numbers), saying that infinitely many terms come
close to the upper bound provided by a priori probability, depends only on the sum
of this series. At first, it seems that by splitting the terms into small parts we can
destroy the property not changing the sum, but it is not so. In the next section
we try to understand this phenomenon providing a direct proof for it (and as a
byproduct we improve the results of this section).

5.7.6. The Solovay property as a property of the sum. First, let us note
that the Solovay property is invariant under computable permutations. Indeed,
computable permutation 𝜋 changes the a priori probability only by a constant
factor: 𝑚(𝜋(𝑖)) = Θ(𝑚(𝑖)). Then let us consider grouping. Since we want to allow
infinite groups, let us consider a computable series

∑︀
𝑖,𝑗 𝑎𝑖𝑗 of non-negative rational

numbers. Then

𝛼 =
∑︁
𝑖,𝑗

𝑎𝑖𝑗 = (𝑎00 + 𝑎01 + . . .) + (𝑎10 + 𝑎11 + . . .) + . . . =
∑︁
𝑖

𝐴𝑖,

where 𝐴𝑖 =
∑︀

𝑗 𝑎𝑖𝑗 .

We want to show that 𝐴𝑖 and 𝑎𝑖𝑗 are slowly converging series (in the Solovay
sense) at the same time. Note that slow convergence is permutation-invariant, so
it is well defined for two-dimensional series.

However, some clarifications and restrictions are needed. First,
∑︀

𝐴𝑖 is not
in general a computable series, it is only a lower semicomputable one. We extend
the definition of the Solovay property to lower semicomputable series: for such

5.7. THE RANDOM NUMBER Ω 181

a series we still have 𝐴𝑖 = 𝑂(𝑚(𝑖)), and we require this bound to be 𝑂(1)-tight
infinitely often. Second, such a general statement is not true: imagine that all
non-negative terms are in the first group 𝐴0 and all 𝐴1, 𝐴2, . . . are zeros. Then∑︀

𝐴𝑖 does not have the Solovay property while
∑︀

𝑎𝑖𝑗 could have it. The following
result (essentially from [67]) provides the needed restrictions:

Theorem 112. Assume that each group 𝐴𝑖 contains only finitely many non-
zero terms. Then the properties 𝐴𝑖/𝑚(𝑖) → 0 and 𝑎𝑖𝑗/𝑚(𝑖, 𝑗) → 0 are equivalent.

Here 𝑚(𝑖, 𝑗) is the a priori probability of pair ⟨𝑖, 𝑗⟩ (its number in some com-
putable numbering; the probability does not depend on the coding up to 𝑂(1)-
factor). The convergence means that for every 𝜀 > 0 the inequality 𝑎𝑖𝑗/𝑚(𝑖, 𝑗) > 𝜀
is true only for finitely many pairs ⟨𝑖, 𝑗⟩.

Proof. Let us recall first that 𝑚(𝑖) =
∑︀

𝑗 𝑚(𝑖, 𝑗) up to a 𝑂(1)-factor. (Indeed,

the sum in the right hand side is lower semicomputable, so it is 𝑂(𝑚(𝑖)) due to
the maximality. On the other hand, already the first term 𝑚(𝑖, 0) is Ω(𝑚(𝑖)).) So
if 𝑎𝑖𝑗/𝑚(𝑖, 𝑗) tends to zero, the ratio 𝐴𝑖/

∑︀
𝑗 𝑚(𝑖, 𝑗) does the same (only finitely

many pairs have 𝑎𝑖𝑗 > 𝜀𝑚(𝑖, 𝑗) and they appear only in finitely many groups).
It is more difficult to show that 𝐴𝑖/𝑚𝑖 → 0 implies 𝑎𝑖𝑗/𝑚(𝑖, 𝑗) → 0. (Here we

need to use that only finitely many terms in each group are non-zero.) For this it is
enough to construct some lower semicomputable �̃�(𝑖, 𝑗) such that 𝑎𝑖𝑗/�̃�(𝑖, 𝑗) → 0,
somehow using the fact that 𝐴𝑖/𝑚(𝑖) → 0. The natural idea would be to split 𝑚(𝑖)
between �̃�(𝑖, 𝑗) in the same proportion as 𝐴𝑖 is split between 𝑎𝑖𝑗 . However, for this
we need to compute 𝐴𝑖 (and not only to lower semicompute it). It would be easy if
we knew how many terms among 𝑎𝑖0, 𝑎𝑖1, . . . are non-zero, but in general this is a
non-computable information. (For the special case of finite grouping this argument
indeed works.)

So we use another approach. For some constant 𝑐 we may let �̃�(𝑖, 𝑗) to be 𝑐𝑎𝑖𝑗
while this does not violate the property

∑︀
𝑗 �̃�(𝑖, 𝑗) 6 𝑚(𝑖). (As 𝑚(𝑖) increases, we

let �̃�(𝑖, 𝑗) increase when possible.) If indeed 𝐴𝑖/𝑚(𝑖) → 0, for every constant 𝑐 we
have 𝑐𝐴𝑖 6 𝑚(𝑖) for all sufficiently large 𝑖, so 𝑎𝑖𝑗/�̃�(𝑖, 𝑗) 6 1/𝑐 for all sufficiently
large 𝑖 (and only finitely many pairs ⟨𝑖, 𝑗⟩ violate this requirement, because each
𝐴𝑖 has only finitely many non-zero terms). So for each 𝑐 we have constructed some
semimeasure 𝑚𝑐 such that 𝑎𝑖𝑗/�̃�𝑐(𝑖, 𝑗) 6 1/𝑐 for almost all pairs ⟨𝑖, 𝑗⟩, and the sum∑︀

𝑖𝑗 �̃�𝑐(𝑖, 𝑗) is at most
∑︀

𝑚(𝑖) 6 1. It remains to perform this construction for all

𝑐 = 22𝑛 and combine the resulting �̃�22𝑛 with coefficients 2−𝑛. �

As a corollary of Theorem 112 we see (in an alternative way) that the Solovay
property depends only on the sum of the series. Indeed, if

∑︀
𝑖 𝑎𝑖 =

∑︀
𝑗 𝑏𝑗 , these

two series could be obtained by a different grouping of terms in some third series∑︀
𝑘 𝑐𝑘. To construct 𝑐𝑘, we draw intervals of lengths 𝑎1, 𝑎2, . . . starting from zero

point, as well as the intervals of lengths 𝑏1, 𝑏2 . . .; combined endpoints split the line
into intervals of lengths 𝑐1, 𝑐2, . . . (Figure 3).

In this way we get not only the alternative invariance proof, but also can
strengthen Theorem 111. It dealt with computable series of rational numbers. Now
we still consider series of rational numbers but the summands are presented as lower
semicomputable numbers and each has only finitely many different approximations.
(So 𝑟𝑖 = lim𝑛 𝑟(𝑖, 𝑛) where 𝑟 is a computable function of 𝑖 and 𝑛 with rational values
which is non-decreasing as a function of 𝑛 and for every 𝑖 there are only finitely

182 5. MONOTONE COMPLEXITY

0

Figure 3. Two series with the same sum can be obtained by dif-
ferent grouping from the same third series.

many different values 𝑟(𝑖, 𝑛).) Then the number
∑︀

𝑖 𝑟𝑖 is not ML-random if and only
if 𝑟𝑖/𝑚(𝑖) → 0. Indeed, each 𝑟𝑖 is a sum of a computable series of non-negative
rational numbers with only finitely many non-zero terms. So we can split

∑︀
𝑟𝑖 into

a double series not changing the sum (evidently) and the Solovay property (due to
Theorem 112).

Recall that an upper semicomputable function 𝑛 ↦→ 𝑓(𝑛) with integer values is
an upper bound for 𝐾(𝑛) (up to 𝑂(1) additive term) if and only if

∑︀
𝑛 2−𝑓(𝑛) is

finite (Theorem 62, p. 113). Now we can extend this statement:

Theorem 113. This bound is tight for infinitely many 𝑛 (i.e., 𝐾(𝑛) > 𝑓(𝑛)−𝑐
for some 𝑐 and for infinitely many 𝑛) if and only if the sum

∑︀
𝑛 2−𝑓(𝑛) is random.

Proof. Indeed, decreasing integer upper bounds for 𝑓(𝑛) provide increasing
lower bounds for 2−𝑓(𝑛) (with finitely many changes), so we use the preceding
result. �

We end this section with an alternative proof that all complete reals have the
Solovay property. First we observe that the Solovay property is upward closed with
respect to Solovay reducibility. Indeed, if

∑︀
𝑎𝑖 and

∑︀
𝑏𝑖 are computable series of

non-negative rational numbers, and 𝑎𝑖 converges slowly, then
∑︀

(𝑎𝑖 + 𝑏𝑖) converges
slowly, too (its terms are bigger). So it remains to prove directly that at least one
slowly converging series (or, in other terms, computable Solovay function) exists.
It can be done as shown in Problem 164. Another way to explain this construction:
we watch how the values of a priori probability increase (it is convenient again to
consider a priori probability of pairs):

𝑚(0, 0) 𝑚(0, 1) 𝑚(0, 2) 𝑚(0, 3) . . .
𝑚(1, 0) 𝑚(1, 1) 𝑚(1, 2) 𝑚(1, 3) . . .
𝑚(2, 0) 𝑚(2, 1) 𝑚(2, 2) 𝑚(2, 3) . . .
.

and fill a similar table with rational numbers 𝑎𝑖𝑗 in such a way that 𝑎𝑖𝑗/𝑚(𝑖, 𝑗) ̸→ 0.
How do we fill this table? For each row we compute the sum of current values 𝑚(𝑖, ·);
if it crosses one of the thresholds 1/2, 1/4, 1/8 . . ., we put the crossed threshold value
into the 𝑎-table (filling it with zeros from left to right while waiting for the next
threshold crossed). In this way we guarantee that 𝑎𝑖𝑗 is a computable function of
𝑖 and 𝑗; the sum of 𝑎-values in every row differs from the sum of 𝑚-values in the
same row at most by factor 2 (in both directions); this implies that there new series
is convergent and that in every row there exists some 𝑎-value that is at least half of
the corresponding 𝑚-value. Logarithms of 𝑎-values form a Solovay function (and
𝑎𝑖𝑗 itself form a slowly convergent series).

Note that this construction does not give a nondecreasing Solovay function di-
rectly (it seems that we still need to use the arguments from the preceding section).

5.7. THE RANDOM NUMBER Ω 183

5.7.7. Busy beavers and convergence moduli. We had several definitions
that formalize the intuitive idea of a “slowly converging series”. However, the
following one (probably the most straightforward) was not considered yet. If 𝑎𝑛 →
𝛼, for every 𝜀 > 0 there exists some 𝑁 such that |𝛼 − 𝑎𝑛| < 𝜀 for all 𝑛 > 𝑁 . The
minimal 𝑁 with this property (considered as a function of 𝜀, denoted by 𝜀 ↦→ 𝑁(𝜀))
is called modulus of convergence. A sequence (or a series) should be considered
“slowly converging” if this function grows fast (as 𝜀 → 0). Let us show how the the
Solovay property could be equivalently characterized in these terms.

In Section 1.2 (p. 35) we defined 𝐵(𝑛) as a maximal integer whose complexity
does not exceed 𝑛. We used plain complexity there (since at that time no other
version were defined), but a similar definition can be given for prefix complexity.
Let BP (𝑛) be the maximal integer whose prefix complexity does not exceed 𝑛.

165 Fix an optimal prefix-free universal machine 𝑀 . Let 𝑇 (𝑚) be the maxi-
mal time needed for termination of all terminating computations on inputs of length
at most 𝑚. Then

BP (𝑚− 𝑐) 6 𝑇 (𝑚) 6 BP (𝑚 + 𝑐)

for some 𝑐 and all 𝑚.
[Hint: One can use the same argument as for plain complexity (see Section 1.2).]

Now we can prove the equivalence of different notions of “slow convergence”:

Theorem 114. The computable series of non-negative rational numbers
∑︀

𝑟𝑖
has the Solovay property (⇔ has a random sum) if and only its modulus of conver-
gence grows fast: 𝑁(2−𝑚) > BP (𝑚− 𝑐) for some 𝑐 and for all 𝑚.

Proof. Let 𝛼 =
∑︀

𝑟𝑖 = lim 𝑎𝑖, where 𝑎𝑖 = 𝑟0 + . . . + 𝑟𝑖−1. Assume that 𝛼 is
random. We have to show that |𝛼−𝑎𝑖| < 2−𝑚 implies 𝐾(𝑖) > 𝑚−𝑂(1); this shows
that 𝑁(2−𝑚) > BP (𝑚 − 𝑂(1)). Since 𝐾(𝑖) = 𝐾(𝑎𝑖) + 𝑂(1), it is enough to show
that every rational 2−𝑚-approximation to 𝛼 has complexity at least 𝑚−𝑂(1). This
is a bit stronger condition than the condition 𝐾(𝛼0 . . . 𝛼𝑚−1) > 𝑚−𝑂(1) (used in
prefix complexity version of the Levin–Schnorr theorem) since now we consider all
approximations, not only the prefix of the binary expansion. However, it can be
proven in a similar way.

Let 𝑐 be some integer. Consider an effectively open set 𝑈𝑐 constructed as
follows. For every rational 𝑟 we consider the neighborhood around 𝑟 of radius
2−𝐾(𝑟)−𝑐; the set 𝑈𝑐 is the union of these neighborhoods. (Since 𝐾(𝑟) is upper
semicomputable, it is indeed an effectively open set.) The total length of all intervals
is 2 · 2−𝑐

∑︀
𝑟 2−𝐾(𝑟) 6 2−(𝑐−1). Therefore, 𝑈𝑐 form a Martin-Löf test, and random

𝛼 does not belong to 𝑈𝑐 for some 𝑐. This means that complexity of 2−𝑚-approxi-
mations of 𝛼 is at least 𝑚−𝑂(1).

In the other direction we can use the Levin–Schnorr theorem without any
changes: if 𝑁(2−𝑚) > BP (𝑚− 𝑐), then 𝐾(𝑖) > 𝑚− 𝑂(1) for every 𝑖 such that 𝑎𝑖
is a 2−𝑚-approximation to 𝛼. Therefore, the 𝑚-bit prefix of 𝛼 has complexity at
least 𝑚−𝑂(1), since knowing this prefix we can effectively find an 𝑎𝑖 that exceeds
it (and the corresponding 𝑖). �

Remark. Note that this theorem shows equivalence between two formaliza-
tions of an intuitive idea of “slowly converging series” (or three, if we consider the
Solovay reducibility as a way to compare the rate of convergence). However, the
proof goes through Martin-Löf randomness of the sum (where the series itself dis-
appears). It would be nice to find a more direct proof and (may be) to connect the

184 5. MONOTONE COMPLEXITY

Solovay reducibility (not only completeness) to the properties of the convergence
moduli.

Reformulating the definition of BP (𝑚) in terms of a priori probability, we may
define BP (𝑚) as the minimal 𝑁 such that all 𝑛 > 𝑁 have a priori probability less
than 2−𝑚. However, in terms of a priori probability the other definition looks more
natural: let BP ′(𝑚) be the minimal 𝑁 such that the total a priori probability of all
𝑛 > 𝑁 is less than 2−𝑚. Generally speaking, BP ′(𝑚) can be greater that BP (𝑚),
but it turns out that it still can be used to characterize randomness in the same
way:

Theorem 115. Let 𝑎𝑖 be a computable increasing sequence of rational numbers
that converges to a random number 𝛼. Then 𝑁(2−𝑚) > BP ′(𝑚 − 𝑐) for some 𝑐
and for all 𝑚.

Proof. Since all 𝑖 > 𝑁(2−𝑚) have the same a priori probability as the cor-
responding 𝑎𝑖 (up to 𝑂(1)-factor), it is enough to show that for every 𝑚 the sum
of a priori probabilities of all rational numbers in the 2−𝑚-neighborhood of a ran-
dom 𝛼 is 𝑂(2−𝑚) (recall that for all 𝑖 > 𝑁(2−𝑚) the corresponding 𝑎𝑖 belong to
this neighborhood).

As usual, we go in the other direction and cover all “bad” 𝛼 that do not have
this property by a set of small measure. Not having this property means that
for every 𝑐 there exists 𝑚 such that the sum of a priori probabilities of rational
numbers in the 2−𝑚-neighborhood of 𝛼 exceeds 𝑐2−𝑚. For a given 𝑐, we consider
all intervals with rational endpoints that have the following property: the sum of a
priori probabilities of all rational numbers in this interval is more than 𝑐/2 times
bigger than the interval’s length. Every bad 𝛼 is covered by an interval with this
property (the endpoints of the interval (𝛼− 2−𝑚, 𝛼+ 2−𝑚) can be changed slightly
to make them rational), and the set of intervals having this property is enumerable.
It is enough to show that the union of all such intervals has measure 𝑂(1/𝑐), in
fact, at most 4/𝑐.

It is also enough to consider a finite union of intervals with this property.
Moreover, we may assume that this union does not contain redundant intervals
(that can be deleted without changing the union). Let us order all the intervals
according to their left endpoints:

(𝑙0, 𝑟0), (𝑙1, 𝑟1), (𝑙2, 𝑟2), . . .

where 𝑙0 6 𝑙1 6 𝑙2 6 . . . It is easy to see that right endpoints go in the same
order (otherwise one of the intervals would be redundant). So 𝑟0 6 𝑟1 6 𝑟2 6 . . .
Now note that 𝑟𝑖 6 𝑙𝑖+2, otherwise the interval (𝑙𝑖+1, 𝑟𝑖+1) would be redundant.
Therefore, intervals with even numbers (𝑙0, 𝑟0), (𝑙2, 𝑟2), (𝑙4, 𝑟4) . . . are disjoint, and
for each of them the length is 𝑐/2 times less than the sum of a priori probabilities
of rational numbers inside it. Therefore, the total length of these intervals does not
exceed 2/𝑐, since the sum of all priori probabilities is at most 1. The same is true
for intervals with odd numbers, so in total we get the bound 4/𝑐. �

This statement raises some natural questions. How much could BP (𝑚) and
BP ′(𝑚) differ? This question was answered in [4] (maximal difference corresponds
to a logarithmic change in the argument), but there are many others for which we do
not know the answers. Can we use prefix-stable machines (instead of the prefix-free
ones) in the definition of BP (𝑛) as the computation time? Can we derive the last

5.8. EFFECTIVE HAUSDORFF DIMENSION 185

theorem from the version of the Levin–Schnorr theorem with a priori complexity?
Can we use the methods of this section to prove that the real number

∑︀
𝑥∈𝑋 2−𝑙(𝑥)

is random for every prefix-free set 𝑋 that contains the domain of an optimal prefix-
free decompressor?

Returning to the “philosophical meaning” of the number Ω, let us note that it
can be considered as an “infinite version” of special objects of complexity 𝑛 that are
considered in Theorem 15 (p. 39). Moreover, there is a direct connection between
these notions.

Theorem 116. Let Ω𝑛 be the binary string formed by first 𝑛 bits of the binary
representation of Ω. Then Ω𝑛 has the properties described in Theorem 15 with
𝑂(log 𝑛)-precision: each of the objects listed there (say, 𝐵(𝑛)) can be algorithmically
obtained from Ω𝑛+𝑂(log𝑛) and vice versa (Ω𝑛 can be obtained from 𝐵(𝑛+𝑂(log 𝑛)).

Proof. We already have seen that given Ω𝑛 one can construct an integer
𝑡 > BP (𝑛) (the number of steps needed to exceed Ω𝑛). The difference between
plain and prefix complexity (that could make 𝐵(𝑛) greater than BP (𝑛)) can be
compensated by 𝑂(log 𝑛)-change in 𝑛.

Reverse direction: assume that B (𝑛) and 𝑛 are known; how to find Ω𝑛−𝑂(log𝑛)?
We claim that in the current approximation for Ω found after B (𝑛) steps the first
𝑛 − 𝑂(log 𝑛) bits are final (i.e., they coincide with the corresponding bits in Ω).
If this is not the case, there exists a threshold 𝛽 that is a finite binary fraction
of length 𝑛 − 𝑂(log 𝑛) bits that separates the current approximation and Ω. The
complexity of 𝛽 is at most 𝑛 − 𝑂(log 𝑛). Knowing 𝛽, we can construct a number
greater than B (𝑛): just count the steps needed to get an approximation greater
than 𝛽. For a large enough constant in 𝑂(log 𝑛) we get a contradiction. �

Therefore we see that knowing 𝑛 + 𝑂(log 𝑛) bits in Ω allows us to answer
any question about the termination of a program of size at most 𝑛. Since the
question about the membership in any enumerable set (e.g., questions whether a
given statement of size 𝑛 is provable in some fixed formal theory) have this form, we
can follow Chaitin and call Ω “the number of wisdom” that contains information
about many important things. (Sounds rather romantic, indeed.)

Returning to more meaningful statements: we have proven that Ω is Turing-
equivalent to 0′ (we can compute Ω having an oracle for halting problem, and vice
versa).

5.8. Effective Hausdorff dimension

The notion of Hausdorff dimension is well known in measure theory (and be-
came popular in connection with fractals). Here is the definition. Let 𝛼 > 0 be
some real number. We say that a set 𝐴 is an 𝛼-null set if for any 𝜀 > 0 there exists
a sequence of intervals 𝐼𝑘 that cover 𝐴 such that∑︁

𝑘

𝜇(𝐼𝑘)𝛼 < 𝜀.

This definition assumes that 𝐴 is a subset of a space where a class of subsets called
“intervals” is chosen and measure of intervals is defined. We restrict ourselves to
the case of the set Ω. Here intervals are the sets Ω𝑥 (where Ω𝑥 is the set of all
infinite extensions of a binary string 𝑥). The measure of the interval Ω𝑥 equals
2−𝑙(𝑥).

186 5. MONOTONE COMPLEXITY

Let us start with a few simple remarks:
(1) Any subset of an 𝛼-null set is an 𝛼-null set.
(2) For 𝛼 = 1 we get the standard definition of a null set (set of measure zero).
(3) For 𝛼 > 1 any subset 𝐴 ⊂ Ω is an 𝛼-null set. Indeed, one can cover 𝐴 by 2𝑛

intervals that correspond to 2𝑛 strings of length 𝑛, and the sum of their 𝛼-measures
tends to 0 as 𝑛 → ∞.

(4) Assume that 0 < 𝛼 < 𝛼′. Any 𝛼-null set is then an 𝛼′-null set (note that

measure 𝜇(𝐼) of each interval 𝐼 does not exceed 1 and therefore 𝜇(𝐼)𝛼
′
6 𝜇(𝐼)𝛼).

166 Give a natural definition for an 𝛼-null set of reals and show that a set
𝐴 ⊂ [0, 1] is an 𝛼-null set if and only if the set of binary representations of all
numbers in 𝐴 is an 𝛼-null set according to the definition above.

[Hint: We need to verify that the more liberal notion of an interval in R where
we do not require any alignment, does not change the class of null sets.]

Our remarks imply that for any set 𝐴 ⊂ Ω there exists some threshold 𝑑 ∈ [0, 1]
with the following property: if 𝛼 > 𝑑, the set 𝐴 is an 𝛼-null set; if 𝛼 < 𝑑, it is
not. (For 𝛼 = 𝑑 the set may be an 𝛼-null set or not.) This threshold is called the
Hausdorff dimension of the set 𝐴.

167 The Cantor set is the subset of [0, 1] that remains if we take out the
middle third (1/3, 2/3), then take out the middle thirds of two remaining segments
(i.e., (1/9, 2/9) out of [0, 1/3] and (7/9, 8/9) out of [2/3, 1], etc.). Prove that the
Cantor set is a compact set homeomorphic to Ω and has Hausdorff dimension log3 2.

[Hint: To get an upper bound for Hausdorff dimension one may consider the
“standard” intervals, i.e., the intervals that remain after several steps of the Cantor
set construction. To get a lower bound, note that (1) we may consider only finite
covers due to compactness; (2) if a cover for the Cantor set is given, we can look
at its parts that cover the left third and the right third; each of these parts can be
scaled to the cover of the entire set due to the self-similarity of the Cantor set. If
𝛼 is smaller than the threshold, one of these covers is better than the original one,
so we may increase the sizes of intervals, and finally get a contradiction.]

168 Give a natural definition of Hausdorff dimension for the subsets of R3.
Explain why the dimension equals 3 for solids, 2 for surfaces, 1 for curves and 0
for isolated points. Show that for any 𝑑 ∈ [0, 3] there is a subset of R3 that has
dimension 𝑑.

The effective version of Hausdorff dimension is defined in a natural way [188,
151]. A set 𝐴 ⊂ Ω is an effective 𝛼-null set (for a given 𝛼 > 0) if there exists an
algorithm that for any given 𝜀 > 0 enumerates a set 𝐼0, 𝐼1, 𝐼2, . . . of intervals that
cover 𝐴 such that

∑︀
(𝜇(𝐼𝑘))𝛼 < 𝜀. (Here 𝜇 is the uniform measure on Ω).

As in the classical case, the property is monotone (remains true if 𝛼 increases
or 𝐴 decreases). The main difference between the classical and effective case is
shown by the following theorem:

Theorem 117. For every rational 𝛼 > 0 there exists the largest (with respect
to inclusion) effectively 𝛼-null set.

Proof. The proof goes in the same way as for effectively null (=1-null) sets
(Chapter 3). The countable union of 𝛼-null sets (in the classical sense) is an 𝛼-null
set. In the same way the union of an enumerable family of effectively 𝛼-null sets is
an 𝛼-null set. On the other hand, if 𝛼 is a rational number (or even a computable

5.8. EFFECTIVE HAUSDORFF DIMENSION 187

real), we can enumerate all effectively 𝛼-null sets (or, better, the algorithms that
serve these sets) by enumerating all algorithms and changing them when too large
intervals are generated. �

169 Prove that the largest effectively 𝛼-null set consists of all the sequences
𝜔 such that the difference 𝛼𝑛 − 𝐾(𝑛) has no upper bounds. [Hint: the proof is
similar to the proof of prefix complexity version of Levin–Schnorr theorem.]

The following result (A. Khodyrev) is not used in the sequel (for the definition
of Hausdorff dimension rational 𝛼 are sufficient) but is interesting in its own right.
Let 𝛼 be an arbitrary real number.

Theorem 118. The largest effectively 𝛼-null set exists if and only if 𝛼 is lower
semicomputable.

Proof. Assume that 𝛼 is lower semicomputable. This means that we can
generate better and better approximations from below to 𝛼 but do not know their
precision. If we use these approximations (instead of true 𝛼) in the requirements for
the cover (in the definition of an effectively 𝛼-null set), we get stronger requirements.
Consider the algorithm from the previous theorem that generates cover of the largest
effectively 𝛼-null set and let it use rational lower approximations of 𝛼 instead of 𝛼
itself, with the following modification: do not reject permanently the intervals
that violate these requirements, but postpone them and check again when a new
approximation to 𝛼 arrives. If a cover satisfies the requirement for the true 𝛼, all
its intervals will be eventually let through.

On the other hand, let us assume that for some 𝛼 there exists the largest
effectively 𝛼-null set. Consider the algorithm that generates covers for it. This
algorithm can be used to obtain lower bounds for 𝛼. Indeed, if for some rational 𝜀
the algorithm produces a finite family of intervals (at some step) and 𝛽-powers of
the measures of these intervals exceed 𝜀, this means that 𝛽 < 𝛼.

It remains to prove that these bounds can be arbitrarily close to 𝛼. Assume
that it is not the case and all of them are less than some 𝛼′ < 𝛼. In this case every
effectively 𝛼-null set would be at the same time 𝛼′-null set, which is not true (there
exist sets of any effective Hausdorff dimension, see below Problem 170, p. 189). �

The effective Hausdorff dimension of a set 𝐴 ⊂ Ω is now defined as the infimum
of 𝛼 such that 𝐴 is an effective 𝛼-null set. This number belongs to [0, 1] and is
obviously greater than or equal to the (classical) Hausdorff dimension. (Initially
the definition of effective Hausdorff dimension was given in a different way, using
computable martingales; see [110, 117], where the properties of effective dimension
were established. See also Section 9.10 about computable martingales.)

We have mentioned a paradox: the property of being an effectively null set
depends only on the type of its elements (whether they are random or not); it is
not important “how many” elements are in the set. A similar observation can be
made for Hausdorff dimension:

Theorem 119. The effective Hausdorff dimension of the set is equal to the
supremum of the effective Hausdorff dimensions of its elements.

(By effective Hausdorff dimension of a point 𝜔 ∈ Ω we mean the effective
Hausdorff dimension of the singleton {𝜔}.)

188 5. MONOTONE COMPLEXITY

Proof. Obviously the (effectively Hausdorff) dimension of a set cannot be
less than the dimension of its element. It remains to prove the converse: if the
dimensions of all singletons formed by elements of a set 𝐴 are less than some
rational number 𝑟, and 𝑟′ > 𝑟 is another rational number, then the dimension of
𝐴 does not exceed 𝑟′. This is a direct corollary of Theorem 117: all singletons are
subsets of the largest effectively null 𝑟′-set, so 𝐴 is a subset of the same set and has
dimension at most 𝑟′. �

Therefore we need to understand only what is the (effective Hausdorff) di-
mension of a singleton. It turns out that it has a simple description in terms of
Kolmogorov complexity.

Theorem 120. The effective Hausdorff dimension of a singleton {𝜔}, where
𝜔 = 𝜔0𝜔1𝜔2 . . ., is equal to

lim inf
𝑛→∞

𝐶(𝜔0𝜔1 . . . 𝜔𝑛−1)

𝑛
.

(The statement uses plain Kolmogorov complexity of the prefixes of 𝜔. How-
ever, one can use other versions of complexity: since the difference between different
complexity versions is of order 𝑂(log 𝑛) for strings of length 𝑛, and we divide the
complexity by 𝑛, we get a term 𝑂(log 𝑛)/𝑛 that does not change the limit.)

Proof. This result can be derived from the statement of Problem 169, but we
provide the direct proof. We have to prove two inequalities: one for each direction.

Assume that the lim inf is less than a rational number 𝑟. We have to verify
that the set {𝜔} is an effectively 𝑟′-null set for each rational 𝑟′ > 𝑟.

For each 𝑛 we consider all 𝑛-bit strings that have complexity less than 𝑟𝑛. There
are at most 𝑂(2𝑟𝑛) such strings. The condition about lim inf guarantees that for
infinitely many 𝑛 the 𝑛-bit prefix of 𝜔 is in the corresponding list. Consider all
intervals Ω𝑧 for all 𝑧 in the list (for some fixed 𝑛), and compute the sum required
in the definition of an effectively 𝑟′-null set: there are 𝑂(2𝑟𝑛) terms and each is

(2−𝑛)𝑟
′

= 2−𝑟′𝑛, so the sum is 𝑂(2(𝑟−𝑟′)𝑛), and we get a converging geometric series∑︁
𝑛

2(𝑟−𝑟′)𝑛.

Deleting an initial part of this series (considering only strings of length 𝑁 or more)
we make the sum arbitrarily small (when 𝑁 is large enough). At the same time our
assumption (about lim inf) guarantees that remaining intervals still form a cover
for 𝜔. So one inequality is proved.

Going in the other direction, assume that {𝜔} has effective dimension less than 𝑟
for some rational 𝑟. Let us show that the lim inf does not exceed 𝑟.

By definition, for each rational 𝜀 > 0 we can generate a sequence of intervals.
We know that one of them contains 𝜔 and the sum of 𝑟-th powers of the measures
does not exceed 𝜀. Let us do this for 𝜀 = 1, 1/2, 1/4, In this way we get
a sequence of intervals that have finite sum of 𝑟-th powers of their measures, and
infinitely many of them cover 𝜔. In other terms, there exists a computable sequence
of intervals 𝑥0, 𝑥1, 𝑥2, . . . such that:

∙
∑︀

2−𝑟𝑙(𝑥𝑖) < ∞;
∙ 𝑥𝑖 is a prefix of 𝜔 for infinitely many 𝑖.
The first statement implies that 𝑚(𝑖) > 𝑐2−𝑟𝑙(𝑥𝑖) for some 𝑐 and for all 𝑖 (where

𝑚 is the discrete a priori probability of natural numbers considered in Chapter 4).

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 189

Taking the logarithms, we get the bound for prefix complexity:

𝐾(𝑥𝑖) 6 𝐾(𝑖) + 𝑂(1) 6 𝑟𝑙(𝑥𝑖) + 𝑂(1)

for all 𝑖. Note also that the lengths of 𝑥𝑖 tend to infinity (since the series is conver-
gent), that 𝑥𝑖 is a prefix of 𝜔 for infinitely many 𝑖 and that the plain complexity does
not exceed the prefix one. (The definition of lim inf guarantees that if a sequence
has infinitely many terms that do not exceed 𝑟, its lim inf does not exceed 𝑟.) �

170 Prove the following corollary: for any real 𝛼 ∈ [0, 1] there exists a set (and
even a singleton) that has effective Hausdorff dimension 𝛼. [Hint: The complexity
of an initial segment can be increased by adding random bits and decreased by
adding zeros.]

171 Prove that for an effectively close subset of the Cantor space (this means
that the complement of this set is the union of an enumerable family of intervals)
the effective Hausdorff dimension coincides with the classical Hausdorff dimension.
[Hint: Due to compactness, one may consider finite covers, and search for them
effectively.]

172 Find the (classical) Hausdorff dimension of the Cantor set (see Prob-
lem 167) using the previous problem and the characterization of effective dimension
in terms of singletons and Kolmogorov complexity.

173 Prove that for every real 𝛼 ∈ [0, 1] there exists a set that has (classical)
Hausdorff dimension 𝛼. [Hint: Consider the set of all sequences that have zeros at
specified places.]

174 Prove that the definition of effective Hausdorff dimension of a set 𝐴
remains the same if we require the existence of a computable sequence of intervals
that has finite sum of 𝑟-th powers of the measures and that covers each element of
𝐴 infinitely many times. [Hint: If such a cover exists for some 𝛼, for a greater 𝛼′

the same intervals have smaller measure, and the decrease is more significant for
smaller intervals. Note that we can delete all short strings from the cover, due to
our assumption (each element is covered infinitely many times).]

We return to the notion of effective Hausdorff dimension in Section 9.5 where
its relation to effective martingales is explained; we show there how to translate the
proof of Theorem 120 into the martingale language.

5.9. Randomness with respect to different measures

5.9.1. Changing the measure. The notion of randomness evidently depends
on the underlying measure. For example, the strong law of large numbers guarantees
that sequences that are ML-random with respect to the Bernoulli measure 𝐵𝑝 have
limit frequency 𝑝, so for different 𝑝 we get disjoint sets of random sequences. Still
from the viewpoint of computability theory the properties of ML-random sequences
(with respect to a computable measure 𝑃) do not depend on 𝑃—except for some
trivial cases.

The trivial case we have in mind is the following one: if a computable measure
𝜇 has an atom, i.e., if some sequence (a singleton) has positive 𝜇-measure, then
this sequence is random (it cannot be an element of a 𝜇-null set). Such a sequence
is always computable. This is a corollary of Theorem 79 (h), but has also the
following simple proof. Assume that {𝜔} has a positive probability 𝜀 with respect
to a computable distribution 𝜇. Let us consider 𝜇-measures of the sets Ω𝑥 where

190 5. MONOTONE COMPLEXITY

𝑥 is a prefix of 𝜔. These measures decrease as 𝑥 becomes longer, and their limit
is 𝜀. Wait until some of them becomes less than 1.1𝜀. If 𝑥 is such a prefix, only
one of the strings 𝑥0 and 𝑥1 has 𝜇-measure greater than 0.9𝜀, and this prefix can
be effectively found since 𝜇 is computable. So the sequence can be computably
extended starting from this point.

To avoid this special case, we consider only atomless measures where each
individual sequence has measure 0. If 𝜇1 and 𝜇2 are two computable atomless
measures, then the sets of ML-random sequnces with respect to 𝜇1 and 𝜇2 are
essentially the same from the computability viewpoint:

Theorem 121. Let 𝜇1 and 𝜇2 be two atomless measures. Then there exists a
bijection between the sets of ML-random sequences with respect to 𝜇1 and 𝜇2 that
in both directions is a restriction of a computable mapping of type Σ → Σ.

In other words, there exist oracle machines 𝑀12,𝑀21 with the following proper-
ties: if an oracle is a ML-random with respect to 𝜇1 sequence, then 𝑀𝜔

12 is an infinite
sequence that is random with respect to 𝜇2, and vice versa; these two mappings
are mutually inverse (on random sequences).

Proof. Following [223], consider first a special case when one of the measures
(say, 𝜇2) is the uniform measure on [0, 1]. We want to construct a one-to-one cor-
respondence between sequences that are 𝜇1-random, and uniformly random points
in [0, 1]. As usual, we split [0, 1] into two intervals: the left interval 𝜋0 of length
𝜇1(Ω0), and the right interval 𝜋1 of length 𝜇1(Ω1). Each of the intervals 𝜋0 and 𝜋1

is then split in a similar way, etc. Then for each sequence 𝜔 consider a real number
that is a common point of all 𝜋𝑥 for all prefixes 𝑥 of 𝜔. Since 𝜇1 has no atoms,
such a common point is unique.

We have constructed a mapping of Ω to [0, 1] that is an isomorhism in the
sense of measure theory. It is not a one-to-one mapping since the endpoints of the
intervals have two preimages, but the endpoints form a (countable) set of measure 0.
The computability of the measure guarantees that effectively null sets with respect
to 𝜇1 correspond to the effectively null sets with respect to the uniform measure,
therefore we get a bijection between the sets of ML-random sequences with respect
to corresponding measures. (Note that the endpoints of the segments, as well as
corresponding sequences 𝑥000 . . . and 𝑥111 . . ., are not random. Note also the 𝜇1-
measure of some Ω𝑥 can be zero, and then its image is one point, but this does not
matter; all the sequences starting with 𝑥 are then non-random.)

It remains to do the same for 𝜇2 and then take the composition of these two
bijections (using [0, 1] as an intermediate step). The computabity of the corre-
sponding mappings is easy to prove since both measures 𝜇1 and 𝜇2 are assumed to
be computable. �

Using the language of computability theory, we can state a corollary of this
result. Recall that two sequences (or two sets: we identify a set and its characteristic
sequence) are Turing equivalent (belong to the same Turing degree) if each of them is
computable by a machine that uses the other sequence as an oracle. The equivalence
classes are called Turing degrees. Our theorem shows that the class of Turing degress
of ML-random sequences does not depend on the choice of an atomless computable
measure.

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 191

175 Prove that every sequence that is random with respect to some com-
putable measure 𝜇 (not necessarily atomless) is either computable or Turing-equiv-
alent to a uniformly ML-random sequence. [Hint: Consider the intervals 𝜋𝑥 for
𝑥 that are prefixes of 𝜔, and their common point. If it is not unique, then 𝜔 is
computable. If the common point 𝑧 is unique, then 𝑧 is uniformly random, and can
be computed given an oracle for 𝜔. On the other hand, 𝜔 is computable if we have
approximations to 𝑧 as an oracle: we use that 𝑧 is random and therefore different
from all the endpoints of the intervals.]

5.9.2. “Absolutely non-random sequences”. Consider some sequence 𝜔.
We want to find a computable measure 𝜇 such that 𝜔 is ML-random with respect
to 𝜇. Is it always possible? The answer turns out to be negative.

Theorem 122. There exists an infinite sequence of zeros and ones that is not
ML-random with respect to any computable measure on Ω.

Sequences that are random with respect to some computable measure were
called “proper” in [223] (English translation). Theorem states that not all se-
quences are proper. There are different ways to construct a non-proper sequence.
We start with the most intuitive one that uses “a priori randomness deficiency”.
Recall that the ML-randomness criterion (for a computable measure 𝑃) can be
reformulated in the following way. For each string 𝑥 consider the difference

𝑑𝑃 (𝑥) = − log2 𝑃 (Ω𝑥) −KA (𝑥).

The sequence 𝜔 is ML-random with respect to 𝑃 if this difference is bounded (by
a constant) for the prefixes of 𝜔. So we may call this difference the randomness
deficiency of a string 𝑥 (with respect to computable measure 𝑃): a sequence is
random if the deficiencies of its prefixes are bounded (by a constant).

The name “randomness deficiency” is quite general and may be understood in
different ways in different contexts. We already considered the expectation-bounded
and probability-bounded deficiencies for infinite sequences, and in Chapter 14 we
consider the randomness deficiency of an element of a finite set. However, in this
section by randomness deficiency we mean the function 𝑑𝑃 defined on finite strings
as explained above.

The definition above assumes that 𝑃 (Ω𝑥) > 0; if 𝑃 (Ω𝑥) = 0 for some 𝑥, we let
𝑑𝑃 (𝑥) = +∞.

The randomness deficiency is always non-negative (up to a constant), see The-
orem 89).

176 Prove that for every string 𝑥 the deficiency of at least one of the strings
𝑥0 and 𝑥1 does not exceed the deficiency of 𝑥. (We assume that a computable
measure 𝑃 used in the definition of the deficiency is fixed.)

This problem shows that we can start with an arbitrary string with finite defi-
ciency (non-zero measure) and extend it bit by bit not increasing its deficiency. The
randomness criterion guarantees that in this way we get a ML-random sequence
with respect to the measure used in the definition of deficiency.

After the notion of deficiency is introduced, we return to the proof of Theo-
rem 122.

Proof. To get a “non-proper” sequence 𝜔, we need to ensure that for every
computable measure 𝑃 there is a prefix of 𝜔 that has large randomness deficiency

192 5. MONOTONE COMPLEXITY

with respect to 𝑃 . So we get a countable family of requirements: for each measure
𝑃 and for each 𝑐 the corresponding requirement says that some prefix has deficiency
at least 𝑐 with respect to 𝑃 .

Using a diagonal construction, we fulfill these requirements one by one. At
each step we add to current prefix some additional bits to ensure that the next
requirement is fulfilled. So we need to check that for each string 𝑥 and for each
computable measure 𝑃 and constant 𝑐 there exists an extension 𝑦 of 𝑥 that has
deficiency at least 𝑐 with respect to 𝑃 . Indeed, we may extend 𝑥 by adding a bit in
such a way that the 𝑃 -measure decreases at least by factor 1.5, then do this again,
etc. This can be done effectively, so the complexity of the prefixes increases slowly,
while the measure decreases fast, so we get an arbitrary large deficiency. �

Essentially the same argument can be explained using “generic” sequences.
Recall that a subset 𝐴 of Ω is everywhere dense if it has non-empty intersection with
every interval. A famous Baire theorem says that the intersections of a countable
family of open sets 𝐴𝑖 (an open set is a union of intervals) that are everywhere
dense is nonempty and, moreover, everywhere dense.

177 Prove the Baire theorem starting with any string and adding suffixes to
get inside dense open sets (one by one).

Now we consider effectively open sets (unions of enumerable families of in-
tervals) that are everywhere dense. We get a countable family of open sets that
are dense everywhere. Their intersection is an everywhere dense sets whose ele-
ments are called generic sequences. (The full technical name is weakly 1-generic
sequences, see [146, Definition 1.8.47].) Informally speaking, generic sequence vi-
olates every law that prohibits an enumerable dense set of prefixes. (Every string
has an extension that violates the law, and violations can be effectively discovered.)

178 Prove that every generic sequence violates the Strong Law of Large Num-
bers. [Hint: The set of binary strings of length greater that 𝑁 that have more than
99% of ones forms a dense effectively open set; the same is true for the set of strings
with more than 99% zeros.]

179 Prove that no generic sequence is computable. [Hint: the set of all
sequences that differ from a given computable sequence is open and everywhere
dense.]

Note that the definition of a generic sequence (unlike randomness) does not
refer to any measure.

180 Prove that a generic sequence is not ML-random with respect to any
computable measure. [Hint: It is enough to construct an effectively open dense set
that has small measure. This can be done by iteratively chosing a smaller half of
an interval, or almost smaller if the halves have almost equal size.]

Zvonkin and Levin ([223], remark after Definition 4.4) mentioned another way
to construct a sequence that is not random with respect to any computable measure.
They claim that it is easy to show that the characteristic sequence of the universal
enumerable set is not ML-random with respect to any computable measure. They
don’t say what kind of universality is needed, but indeed one can find an enumerable
set with this property:

181 Show that there exists an enumerable set whose characteristic sequence
is not random with respect to any computable measure. [Hint: The complexity of

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 193

the prefixes of every characteristic sequence of an enumerable set is logarithmic; it
remains to guarantee that any computable measure of the prefixes decreases fast.
It can be done as follows. We split N into countably many arithmetic sequences
and devote 𝑖th of them to 𝑖th computable measure; our goal is that the sequence
of bits appearing at these places is not random with respect to the projection
of 𝑖th measure on the corresponding coordinates. It can be done by choosing a
direction where measure decreases fast. (Then we use Theorem 123.) Since we
don’t know whether 𝑖th algorithm indeed computes a computable measure, we get
an enumerable set, not a decidable one.]

It is interesting that not every enumerable set has this property:

182 Construct an enumerable undecidable set whose characteristic function
is ML-random with respect to some computable measure.

[Hint (L. Bienvenu): Let 𝑎𝑖 be a computable sequence of rational numbers that
is dense in [0, 1]. Consider a computable mapping of Ω to inself: a sequence 𝛼 is
interpreted as a binary fraction in [0, 1] and mapped to a sequence 𝜔 where 𝜔𝑖 = 1
if 𝑎𝑖 < 𝛼 and 𝜔𝑖 = 0 if 𝑎𝑖 > 𝛼. (If 𝛼 is one of the 𝑎𝑖, then 𝜔𝑖 is undefined.)
This mapping is almost everywhere defined (with respect to the uniform measure);
the image of the uniform measure is therefore a computable measure on Ω, and the
image of a lower semicomputable ML-random real is a sequence that is ML-random
with respect to the image measure and at the same time is a characteristic sequence
of an enumerable undecidable set. (To prove undecidability we use that 𝑎𝑖 are dense
in [0, 1].) See Sections 5.7 and 5.9.3.]

We have constructed several examples of sequences that are not random with
respect to any computable measure. But one may ask a different question: is there
a sequence that is not Turing equivalent to any ML-random sequence? Here we do
not need to specify a computable measure, since all the measures have the same
degrees of random sequences (see above). This is possible, too:

183 Prove that there exists a non-computable oracle 𝐴 such that no 𝐴-
computable sequence is random with respect to a computable measure (unless the
sequence is computable and the measure has an atom).

[Hint: First, we may consider only the uniform measure. Then we use a diagonal
construction to get the required set 𝐴. First, for every 𝑖 we can add a prefix of 𝐴
that guarantees that 𝐴 is not computed by 𝑖th machine. On the other hand, for
every 𝑖 we can add a prefix that guarantees that either (1) 𝑖th machine with oracle
𝐴 computes a non-total sequence, or (2) 𝑖-th machine computes a sequence that
has a prefix with large deficiency. Indeed, if there is some extension of the current
oracle prefix that allows 𝑖th machine to compute a long sequence, choose the first
such extension, and the corresponding long sequence will have small complexity;
if there is no such extension, the function computed by 𝑖th machine is guaranteed
not to be total.]

The statement of the last problem is also a corollary of several more diffi-
cult results that are not included in our book. First, V. Vyugin has shown [213]
that there exists a probabilistic machine that with positive probability generates
sequences with this property (sequences that are not Turing-equivalent to any ran-
dom sequence). This sounds like a paradox: the property implies that for a se-
qunce 𝛼 there is no computable measure that “explains” 𝛼 (makes 𝛼 random with
respect to this measure). On the other hand, there is a machine that generates such

194 5. MONOTONE COMPLEXITY

“unexplainable” sequences with positive probability—so why not take the output
distribution of this machine as an explanation? The solution of this paradox: the
output distribution is a semimeasure, not a measure (the machine generates finite
sequences with positive probability).

There is another, completely different, argument: we can derive the statement
of the problem from recent (but already classical) results about low sets (see the
books of A. Nies[146], R. Downey and D. Hirschfeldt [49]; a simplified exposition
can be found in [20]). These results say that there is an enumerable undecidable
set 𝐴 that is low for Martin-Löf randomness: adding 𝐴 as an oracle does not
change the set of Martin-Löf random sequences (and also does not change prefix
complexity, but this is not needed now). For this 𝐴 no 𝐴-computable sequence can
be random (since it is not 𝐴-random). In this way we get a set 𝐴 with an additional
property (𝐴 is enumerable).

So for many different reasons there exists a sequence such that no ML-random
sequence is reducible to it. In the other direction the situation is different: every
sequence is Turing-reducible to some ML-random (with respect to the uniform
distribution) sequence, see below Theorem 126, p. 202. The proof of this theorem
implies also that every Turing degree above 0′ (every Turing degree that computes
the halting problem) contains a random sequence, see Problem 190 (p. 204).

184 Prove that there exist a sequence 𝜔 that is Turing-equvalent to a uni-
formly ML-random sequence, but 𝜔 itself is not random with respect to any com-
putable measure. [Hint: We interleave two sequences: at positions 0, 2, 4, . . . we
put a generic sequence 𝛾, and at positions 1, 3, 5, . . . we put a ML-random sequence
𝜔 that computes 𝛾. The resulting sequence is Turing-equivalent to 𝜔. Note also
that if a sequence is ML-random with respect to some measure 𝑃 , that its sub-
sequence with even indices is ML-random with respect to the projection of 𝑃 on
these coordinates, see Theorem 123.]

The sequences that are not random with respect to any computable measure,
are similar (in a sense) to non-stochastic objects in the sense of Kolmogorov (see
Section 14.2). Moreover, one can show that if a sequence 𝛼 is random with respect
to a computable measure, then its prefixes are stochastic objects (Problem 349,
p. 438).

5.9.3. Image randomness. We started this chapter by considering a proba-
bilistic machine that consists of a (fair) random bit generator and an algorithm that
transforms this sequence of random bits into a finite or infinite output sequence. Let
us return to this scheme and assume that with probability 1 the output sequence
is infinite. In this case we get a computable output distribution 𝜇.

A (slightly philosophical) question arises: which infinite sequences are plausible
as outcomes of such a machine? There are two possible answers.

First, we have a definition of Martin-Löf randomness that can be applied to the
computable distribution 𝜇. We can say that plausible sequences are the sequences
that are Martin-Löf random with respect to this distribution. On the other hand, we
can look inside the machine and ask: which sequences are plausible as the outputs of
random bit generator? The natural answer: ML-random sequences with respect to
the uniform distribution. According to this answer, plausible output sequences are
images of ML-random sequences (with respect to the uniform distribution) under
the computable transformation performed by the machine.

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 195

Which of these two answers is more philosophically convincing? Fortunately,
we do not need to make a choice here, since these two classes coincide. Here are
the exact statements and proofs.

Let 𝜇 be a computable probability distribution on Ω and let 𝑓 : Σ → Σ be a
continuous computable mapping. Consider the image of the measure 𝜇 with respect
to 𝑓 , i.e., a measure 𝜈 on the set Σ such that

𝜈(𝑈) = 𝜇(𝑓−1(𝑈))

for any 𝑈 ⊂ Σ. In other terms, 𝜈 is the probability distribution of the random
variable 𝑓(𝜔) where 𝜔 is a random variable that has distribution 𝜇. In general case
the distribution 𝜈 is not concentrated on Ω and may assign positive probabilities to
finite sequences; in our terminology 𝜈 may be a semimeasure (and this semimeasure
is lower semicomputable), not a measure. Let us assume, however, that it is not
the case and that 𝜈 is a measure on Ω. (It is easy to see that in this case 𝜈 is a
computable measure.)

Theorem 123. (a) For any sequence 𝜔 ∈ Ω that is ML-random with respect to
measure 𝜇, its image 𝑓(𝜔) is an infinite sequence that is ML-random with respect
to measure 𝜈.

(b) Any sequence 𝜏 that is ML-random with respect to 𝜈 can be obtained in this
way, i.e., there exists a sequence 𝜔 that is ML-random with respect to 𝜇 such that
𝑓(𝜔) = 𝜏 .

Recently M. Hoyrup found that this statement remains true for the so-called
layerwise computable mappings. This class contains all computable almost every-
where defined mappings and looks like the right generalization making the proof
balanced and natural. Still we restrict ourselves to the classical case of computable
mappings in this book and refer the interested reader to the exposition in [15] for
the general case.

Proof. First, let us prove that the 𝑓 -image of a 𝜇-random sequence 𝜔 is
infinite. If it is not the case and 𝑓(𝜔) is a finite string 𝑧, consider all infinite
sequences 𝜔 such that 𝑓(𝜔) = 𝑧, i.e., the 𝑓 -preimage of the set Σ𝑧 ∖ (Σ𝑧0 ∪ Σ𝑧1).

The preimage of Ω𝑧 is an effectively open set (the union of an enumerable set of
intervals), the preimage of Σ𝑧0 ∪Σ𝑧1 is another effectively open set that is a subset
of the first one. To get the contradiction, we have to prove that the preimage of the
difference (=the difference of the preimages) does not contain random sequences.
This is a special case of the following general statement.

Lemma 1. Let 𝜇 be a computable measure on Ω, and let 𝑈 ⊂ 𝑉 be two
effectively open sets such that 𝜇(𝑉 ∖ 𝑈) = 0. Then 𝑉 ∖ 𝑈 is an effectively null set
(=does not contain random sequences).

Proof. It is enough to consider one interval 𝐼 in the set 𝑉 (and replace 𝑈 by its
intersection with 𝐼). Enumerating the intervals that form the set 𝑈 we cover more
and more points in 𝐼. By continuity the measure of the covered part converges to
the measure of the interval 𝐼 (since 𝑉 ∖ 𝑈 has zero measure). Therefore, we can
wait until the remaining part of 𝐼 has measure less than 𝜀 for any given 𝜀 and find
a cover of 𝐼 ∖ 𝑈 by a (finite) family of intervals with small total measure.

Lemma 1 is proven (and we did not use that 𝑉 is effectively open; the same is
true for every open set 𝑉).

To finish the proof of (a) we have to show that the image 𝑓(𝜔) of a 𝜇-random
sequence 𝜔 cannot be an infinite but not 𝜈-random sequence. Indeed, assume that

196 5. MONOTONE COMPLEXITY

that 𝑓(𝜔) is infinite but does not form an effectively 𝜈-null set. The preimages
of the intervals that cover 𝑓(𝜔) cover 𝜔, and we get an effectively open set that
contains 𝜔 and has small measure (recall that 𝜇-measure of the preimage of an
effectively open set is equal to 𝜈-measure of the set itself). The statement (a) is
proven.

185 Prove a quantitative version of this statement: the expectation-bounded
deficiency of the sequence 𝑓(𝜔) with respect to measure 𝜈 is bounded by the
expectation-bounded deficiency of 𝜔 with respect to 𝜇 plus a constant that de-
pends on the measures and the mapping but not on 𝜔. (In this problem we use the
randomness deficiency for infinite sequences as defined in Section 3.5.)

Let us now prove the statement (b) using the notion of the deficiency (for
finite sequences, as defined on p. 191 using a priori complexity). Assume that
the sequence 𝜏 is ML-random with respect to the measure 𝑄. This means that the
deficiencies of its prefixes are bounded (by a constant). Then we apply the following
lemma that can be considered as the “finitary version” of the statement (b):

Lemma 2. Let 𝑢 be a string such that 𝜈(Ω𝑢) > 0. Then there exists a string 𝑤
such that 𝑢 4 𝑓(𝑤) (𝑢 is a prefix of 𝑓(𝑤)) and 𝑑𝜇(𝑤) 6 𝑑𝜈(𝑢) + 𝑂(1).

(The constant hidden in 𝑂(1) may depend on 𝑓 , 𝜇 and 𝜈 but not on 𝑢; 𝑑𝜇 and
𝑑𝜈 denote the corresponding deficiencies.)

Proof. Consider the preimage 𝐹𝑢 = 𝑓−1(Σ𝑢) of Σ𝑢. This is an effectively open
subset of Σ. By definition, the 𝜇-measure of the set 𝐹𝑢 (recall that the measure 𝜇
is concentrated on infinite sequences) equals 𝜈(Σ𝑢). If the deficiency 𝑑𝜈(𝑢) is small,
𝜈(Σ𝑢) cannot be significantly less than the continuous a priori probability of Σ𝑢.

Now consider the continuous a priori probability of the set 𝐹𝑢, i.e., the proba-
bility of the event “the output of an universal probabilistic machine 𝑀 belongs to
𝐹𝑢”. This event can be rephrased as follows: the output of the machine 𝑓 ∘𝑀 (that
applies 𝑓 to the output of 𝑀) starts with 𝑢. Comparing the machine 𝑓 ∘ 𝑀 and
the universal one, we conclude that the (continuous) a priori probability of the set
𝐹𝑢 can be only constant times bigger than the (contionuous) a priori probability
of Σ𝑢. The latter is 2𝑑𝜈(𝑢) times bigger than 𝜈(Σ𝑢) that is equal to the 𝜇-measure
of the set 𝐹𝑢. Therefore we get an inequality between two measures of 𝐹𝑢 (the a
priori probability 𝑎 and 𝜇):

𝑎(𝐹𝑢)

𝜇(𝐹𝑢)
6 𝑂(2𝑑𝜈(𝑢))

Since the set 𝐹𝑢 can be represented as the union of a (possibly non-enumerable)
family of disjoint intervals, we conclude that the similar inequality is true for some
interval Σ𝑤 in this family:

𝑎(Σ𝑤)

𝜇(Σ𝑤)
6 2𝑑𝜈(𝑢) ·𝑂(1)

Since Σ𝑤 ⊂ 𝐹𝑢, we conclude that 𝑓(𝑤) < 𝑢, and the preceding inequality implies
that 𝑑𝜇(𝑤) 6 𝑑𝜈(𝑢) + 𝑂(1). Lemma 2 is proven.

Now we continue the proof of statement (b). Let 𝑡𝑛 = (𝜏)𝑛 be the prefix of a
𝜈-random sequence 𝜏 that has length 𝑛. The randomness criterion guarantees that
𝜈-deficiencies of 𝑡𝑖 are bounded. Then Lemma says that there exists a sequence of
strings 𝑤0, 𝑤1, . . . that have bounded 𝜇-deficiencies such that 𝑓(𝑤𝑖) is an extension
of 𝑡𝑖. If we knew that all 𝑤𝑖 are compatible, this would give us a desired result (a
random preimage of 𝜏). However, there is no reason to expect this.

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 197

Nevertheless, a standard compactness argument shows that the sequence 𝑤𝑖 has
a subsequence that either consists of identical strings or converges to some infinite
sequence 𝜔. The latter means that any (finite) prefix of 𝜔 is a prefix of all but
finitely many strings in the sequence.

In the first case the sequence 𝜏 is the image of the finite string 𝑤 that appears
infinitely often in the sequence 𝑤𝑖. This can happen for a 𝜈-random sequence 𝜏 if
this sequence (the corresponding singleton) has a positive measure; 𝜏 is computable
in this case. Then we let 𝜔 be any 𝜇-random continuation of the string 𝑤 (we know
that it exists, since the 𝜇-deficiency of 𝑤 is finite and 𝜇(Ω𝑤) > 0).

In the second case an infinite subsequence of the sequence 𝑤𝑖 converges to 𝜔.
To prepare ourselves for this case, let us make a digression and prove that the
randomness deficiency is almost monotone.

Recall the randomness criterion (Theorems 91 and 93). It guarantees that for
ML-random sequences the deficiency of their prefixes is bounded while for non-
random sequences the deficiencies tend to infinity. This implies that the interme-
diate situation is not possible: there in no sequence such that deficiencies of its
prefixes are not bounded but do not tend to infinity. This looks rather strange, and
one may ask why this happens. The following theorem provides some explanation.

Theorem 124. Let 𝑃 be a computable measure on Ω. There exists a constant
𝑐 such that for every string 𝑥 and for every string 𝑦 that has 𝑥 as a prefix the
inequality

𝑑𝑃 (𝑦) > 𝑑𝑃 (𝑥) − 2 log 𝑑𝑃 (𝑥) − 𝑐

holds.

Informally speaking, every continuation of a string with high deficiency has
(almost as) high deficiency. Or: a prefix of a string that has small deficiency, has
(almost as) small deficiency. So the deficiency function is almost monotonic.

Proof. For each 𝑘 consider the enumerable set of all finite sequences that have
deficiency greater than 𝑘. All the infinite continuations of these sequences form an
open set 𝑆𝑘, and 𝑃 -measure of this set does not exceed 2−𝑘. Now consider the
measure 𝑃𝑘 on Ω that is zero outside 𝑆𝑘 and is equal to 2𝑘𝑃 inside 𝑆𝑘. That means
that for every set 𝑈 the value 𝑃𝑘(𝑈) is defined as 2𝑘𝑃 (𝑈 ∩ 𝑆𝑘). Actually, 𝑃𝑘 is
not a measure according to our definition, since 𝑃𝑘(Ω) is not equal to 1. However,
𝑃𝑘 can be considered as a lower semicomputable semimeasure, if we change it a bit
and let 𝑃𝑘(Ω) = 1 (this means that the difference between 1 and the former value
of 𝑃𝑘(Ω) is assigned to the empty string).

Now consider the sum

𝑆 =
∑︁
𝑘

1

2𝑘2
𝑃𝑘.

It is a lower semicomputable semimeasure (the factor 2 in the denominator is used
to make the sum

∑︀
1/(2𝑘2) less than 1); again, we need to increase 𝑆 so that

𝑆(Ω) = 1. Then we have

− log𝑆(𝑥) 6 − log𝑃 (𝑥) − 𝑘 + 2 log 𝑘 + 𝑂(1)

for every string 𝑥 that has a prefix with deficiency greater than 𝑘. Since 𝑆 does not
exceed the continuous a priori probability (up to 𝑂(1)-factor), we get the desired
inequality.

198 5. MONOTONE COMPLEXITY

Here we assume that deficiency of 𝑥 is finite, i.e., 𝑃 (Ω𝑥) ̸= 0; if 𝑃 (Ω𝑥) = 0, then
𝑃 (Ω𝑦) = 0 for any 𝑦 that has prefix 𝑥, and the deficiency of 𝑦 is also infinite. �

Let us return now to the proof of Theorem 123. We have a sequence of strings
(a subsequence of {𝑤𝑖}) that converges to some 𝜔 ∈ Ω. All 𝑤𝑖 have small 𝜇-
deficiencies. In this case:

(1) Any prefix of 𝜔 is a prefix of some 𝑤𝑖, and all 𝑤𝑖 have bounded 𝜇-deficiencies.
Therefore, Theorem 124 guarantees that 𝜇-deficiencies of all prefixes of 𝜔 are
bounded. So the sequence 𝜔 is ML-random with respect to 𝜇.

(2) As we have proved in part (a), the sequence 𝑓(𝜔) is infinite.
(3) The sequence 𝑓(𝜔) cannot have a prefix that is not a prefix of 𝜏 . Indeed,

in this case 𝜔 would have a prefix 𝑢 whose image is incompatible with 𝜏 ; then the
string 𝑢 is a prefix of almost all strings in the subsequence that converges to 𝜔, but
images of 𝑤𝑖 have increasing common prefixes with 𝜏 .

This contradiction finishes the proof of part (b). �

This proof of Theorem 123 illustrates the use of the randomness deficiency
notion. One can also give a more direct proof (suggested by An. Muchnik long ago,
in 1980s):

186 Give a direct proof of (b) using the definition of an effectively null set.
[Hint: For a given 𝜀 consider the family of intervals 𝑍𝜀 that covers the largest

effectively 𝜇-null set and has total 𝜇-measure less than 𝜀; let 𝐹 be the (closed) set
of non-covered sequences. All sequences in 𝐹 are random, so 𝑓 is defined (=has
infinite sequences as images) and continuous on 𝐹 . The image of a compact set
𝐹 is a compact set and therefore is closed. It has measure at least 1 − 𝜀, since its
preimage contains 𝐹 . Its complement is an open set that has measure at most 𝜀
and covers all the points that do not have preimages in 𝐹 . The only problem is
that one should prove an effective version of the theorem that says that the image
of a compact set under a continuous mapping is compact, and conclude that the
complement to 𝑓 -image of 𝐹 is not only an open set, but a uniformly effectively
open set.]

A similar argument allows us to prove a quantitative version of the statement
(b) saying that the bound provided by Problem 185 is tight: the expectation-
bounded 𝜈-deficiency of 𝜔 equals (up to 𝑂(1) additive term) the infimum of expec-
tation-bounded 𝜇-deficiencies of all 𝑓 -preimages of 𝜔. See [15] for more details.

187 Prove a statement that can be considered as a finitary version of the
statement (a) of Theorem 123: if 𝑢 and 𝑤 are binary strings such that 𝑢 4 𝑓(𝑤),
then

𝑑𝜈(𝑢) 6 𝑑𝜇(𝑤) + 2 log 𝑑𝜇(𝑤) + 𝑂(1).

[Hint: the set of sequences having large 𝜈-deficiencies can be covered by a set of
small 𝜈-measure, therefore their preimages can be covered by a set of small 𝜇-
measure and have large 𝜇-deficiency. Note that this statement is a generalization
of Theorem 124.]

Theorem 123 has some (rather surprising) applications. Here is an example:

188 Let 𝜔 be a ML-random sequence with respect to the Bernoulli distribu-
tion (independent coin tosses) where 1 has probability 1/3. Prove that there exists
a sequence 𝜔′ that is random with respect to the uniform distribution (1 has prob-
ability 1/2) and can be obtained from 𝜔 by replacing some zeros by ones. [Hint:

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 199

Consider a ML-random sequence of independent random reals uniformly distributed
in [0, 1], or, better to say, the random sequence of bits placed in a two-dimensional
table where (infinite) rows are considered as infinite binary fractions. Then convert
this sequence into bit sequence using threshold 2/3. Theorem 123 guarantees that
we get a ML-random sequence with respect to the 1/3-Bernoulli distribution and
that any ML-random sequence with respect to this distribution can be obtained in
this way. Then we can change the threshold to 1/2.]

Another corollary of Theorem 123 and its generalizations are discussed in the
next section.

5.9.4. Michiel van Lambalgen’s theorem. Consider a probabilistic ma-
chine that tosses a fair coin to get a sequence 𝜔0𝜔1𝜔2 . . . and then outputs every
other bit, i.e., the sequence 𝜔0𝜔2𝜔4 . . .; the output distribution of this machine is
uniform. Theorem 123 for this machine therefore implies that:

(a) if 𝜔0𝜔1𝜔2 . . . is ML-random with respect to the uniform Bernoulli measure,
then 𝜔0𝜔2𝜔4 . . . is ML-random with respect to the same measure;

(b) for every sequence 𝜔0𝜔2𝜔4 . . . that is ML-random with respect to the uni-
form Bernoulli measure, there exists a sequence 𝜔1𝜔3𝜔5 . . . such that their mixture
𝜔0𝜔1𝜔2 . . . is ML-random with respect to the same measure.

The first statement is more or less obvious, but the second is more difficult. It
can be rephrased in terms of pairs of sequences: if 𝛼 is ML-random with respect
to the uniform measure, there exists a sequence 𝛽 such that the pair ⟨𝛼, 𝛽⟩ is ML-
random (in a natural sense, with respect to the product of uniform measures on
each coordinate).

We can go further and ask: we know that such a 𝛽 exists, but what properties
of 𝛽 are needed to make the pair ⟨𝛼, 𝛽⟩ random? It is clear that 𝛽 should be
random (see above), but this is not sufficient. For example, if we let 𝛽 = 𝛼, we get
a non-random pair ⟨𝛼, 𝛼⟩: it corresponds to the sequence 𝜔0𝜔1 . . . where each bit
is doubled.

The answer to this question is provided by van Lambalgen’s theorem [89]: the
sequence 𝛽 should be ML-random and remain ML-random even if we allow to use
𝛼 as an oracle in the definition of ML-randomness.

Let 𝑃 and 𝑄 be two computable distributions on Ω. Consider the product
𝑃 ×𝑄 which is a computable distribution on Ω × Ω (this space is isomorphic to Ω
and the definitions of randomness can be easily extended onto it).

Theorem 125. A pair of sequences ⟨𝜉, 𝜂⟩ is ML-random with respect to the
distribution 𝑃 ×𝑄 if and only if the following conditions are both true:

(1) 𝜉 is ML-random with respect to 𝑃 ;
(2) 𝜂 is ML-random relative to 𝜉 (with oracle 𝜉) with respect to 𝑄.

Speaking about relativized randomness, we mean that the algorithm that (for a
given 𝜀 > 0) enumerates the intervals in the cover, now has access to 𝜉 as an oracle
(so we get more enumerable sets, more non-random sequences and less random
sequences).

Note also that the conditions (1) and (2) are not symmetric with respect to
𝜉 and 𝜂. Theorem implies that the condition (1) can be replaced by a stronger
requirement: 𝜉 is random relative to 𝜂. However, the non-symmetric version looks
more natural. It can be read as: “to produce a random pair, first choose a random
𝜉 and then choose a random 𝜂 knowing 𝜉 (=random relative to 𝜉)”.

200 5. MONOTONE COMPLEXITY

Proof. Let us prove first that conditions (1) and (2) are true for a random
pair ⟨𝜉, 𝜂⟩.

(1) If the sequence 𝜉 is not random and can be covered by intervals of small
measure, then the same intervals multiplied by Ω (along the second coordinate)
become rectangles (products of intervals along both coordinates) that cover ⟨𝜉, 𝜂⟩
and have small measure. (We can also refer to Theorem 123.)

(2) Assume that 𝜂 is not random with oracle 𝜉. Then for each 𝜀 we can (using
𝜉 as an oracle) enumerate intervals that cover 𝜂 and have small 𝑄-measure. This
enumeration process can be run with any oracle and it will generates some intervals
using finite amount of information about the oracle.

Therefore, we get (for a given 𝜀 > 0) a family of rectangles that is enumerable
(without oracle) and has the following property: if the first coordinate is fixed to
be 𝜉, the rectangles become a family of intervals with total 𝑄-measure at most 𝜀.
This family can be easily converted into a family of rectangles for which all vertical
sections (not only 𝜉-section) have the same property and all the sections where this
inequality was true before the conversion remain untouched. This contradicts to
the randomness of ⟨𝜉, 𝜂⟩, since we can get a family of rectangles that cover ⟨𝜉, 𝜂⟩ and
have total measure at most 𝜀 (since every vertical section has measure at most 𝜀).

Now let us prove that if the pair ⟨𝜉, 𝜂⟩ is not random, then one of the conditions
(1) and (2) is false. Assume ⟨𝜉, 𝜂⟩ is not random. Let 𝑈 be the union of an
enumerable family of rectangles in Ω × Ω of measure at most 𝜀 that covers ⟨𝜉, 𝜂⟩.
For each fixed value of the first coordinate 𝑥 let 𝑈𝑥 denote the 𝑥-section of 𝑈 , i.e.,
the set {𝑦|⟨𝑥, 𝑦⟩ ∈ 𝑈}. Consider the values of 𝑥 such that that 𝑄-measure of 𝑈𝑥

is greater than
√
𝜀. We get a set of 𝑃 -measure at most

√
𝜀 that is an union of an

enumerable family of intervals.
There are two possibilities: either 𝜉 is covered by an enumerable family of

intervals having total 𝑃 -measure at most
√
𝜀 that we have constructed, or ⟨𝜉, 𝜂⟩

is covered by a family 𝑉 of rectangles such that the 𝑄-measure of 𝑉𝜉 does not
exceed

√
𝜀. (Other sections may have bigger measure, this does not matter.) In the

second case 𝜂 is covered by a 𝜉-enumerable family of intervals of total measure at
most

√
𝜀.

We would like to apply this argument for every 𝜀 and conclude that either 𝜉 is
not random or 𝜂 is not random with oracle 𝜉. The first conclusion can be drawn
if for every 𝜀 the first possibility happens; the second one if the second possibility
happens for every 𝜀. But what should we do if both cases happen for different
values of 𝜀?

The following simple trick helps. For every 𝑘 = 1, 2, 3, . . . we perform this
construction for 𝜀 = 2−2𝑘. Then for each 𝑘 we get a family 𝑉 (𝑘) of intervals (along

the first coordinate) that have total 𝑃 -measure at most 2−𝑘 =
√

2−2𝑘. Now the
two possibilities are:

(a) the family 𝑉 (𝑘) covers 𝜉 for infinitely many 𝑘;
(b) for sufficiently large 𝑘 the family 𝑉 (𝑘) does not cover 𝜉.
If (a) happens, for each 𝐾 the union of 𝑉 (𝑘) for all 𝑘 > 𝐾 gives us an enumer-

able cover of 𝜉 that has total measure 2 · 2−𝐾 , so 𝜉 is not random.
If (b) happens, then for each 𝑘 greater than some 𝐾 one can 𝜉-enumerate a

family of intervals that covers 𝜂 and has total 𝑄-measure at most 2−𝑘, so 𝜂 is not
𝜉-random. (We do not know the value of 𝐾, but this does not matter.) �

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 201

This theorem also has a quantitative version (see [207], or [7] for a detailed
exposition): one can prove that the expectation-bounded deficiency 𝑑 of the pair
⟨𝜉, 𝜂⟩ with respect to 𝑃 × 𝑄 is equal to the sum of the expectation-bounded defi-
ciency 𝑑1 of 𝜉 with respect to 𝑃 and the expectation-bounded deficiency 𝑑2 of 𝜂
with respect to 𝑄 using the oracle for 𝜉 and a condition ⌊𝑑1⌋ (the integer-rounded
value of the first deficiency). To make this statement precise, one should give the
definition of expectation-bounded deficiency with oracle and condition (as a func-
tion of a sequence, oracle and condition), and this can be done. In this way we
get a formula that resembles the formula for the prefix complexity of a pair (and
the statement of Problem 56, p. 58). (It would be nice to prove the statement
about deficiencies using the statement about complexities and the expression for
the deficiency in terms of complexities, but it is not clear how to achieve this.)

It would be also nice to generalize Lambalgen’s theorem to the case of depen-
dent random variables and prove that the pair ⟨𝜉, 𝜂⟩ is random with respect to a
computable distribution on Ω × Ω if and only if 𝜉 is random with respect to the
projection of this distribution on the first coordinate (called marginal distribution)
and 𝜂 is random with respect to the conditional distribution (for the first coordinate
fixed to 𝜉). However, there are several problems here. First, one needs to define
the conditional distribution (which can be done, as Hayato Takahashi has shown);
second, the conditional distribution is not necessarily computable, so it is not clear
what the randomness means here. Some results in this direction are proven in his
papers [189, 190]; the detailed exposition of these results and a counterexample
constructed by Bauwens can be found in [7].

5.9.5. Kucera–Gács theorem. Let us return to the question that we have
already discussed: A probabilistic machine is given; which sequences seem to be the
plausible outputs of this machine (or, better to say, for which sequences we agree
to believe that they are generated by this machine)? This question is meaningful
for arbitrary machine, even for the machine that generates finite sequences with
positive probability.

More formally, consider a computable probability distribution 𝜇 on the set Ω
and computable continuous mapping 𝑓 : Σ → Σ. Together they generate some
output distribution 𝜈 that is the image of 𝜇 under 𝑓 . Now we do not assume
that 𝜈 is concentrated on infinite sequences, so we get an lower semicomputable
semimeasure 𝜈 that is not necessarily a measure.

On the other hand, we consider the images (under 𝑓) of sequences that are ML-
random with respect to 𝜇. The question is: can we characterize this set in terms
of 𝜈? It would be nice if, say, the Levin–Schnorr type characterization in terms of
continuous a priori probability 𝑎(·) were possible (it would say that a sequence 𝜔 is
in the image of 𝑃 under 𝑓 if and only if the ratio 𝑎(𝑥)/𝑄(𝑥) is bounded for prefixes
𝑥 4 𝜔).

Unfortunately, the arguments we used for the case when 𝑓 is almost every
defined (and 𝜈 is a computable measure) do not work anymore (there are prob-
lems in both directions). Moreover, as it was shown in [14], the image cannot be
characterized in terms of 𝜈:

189 Show that there are two computable mappings 𝑓1, 𝑓2 : Σ → Σ that gener-
ate the same output semimeasure (as the image of the uniform measure on Ω) but
the images 𝑓1(𝑅) and 𝑓2(𝑅) of the set 𝑅 of ML-random sequences (with respect to
the uniform measure) are different.

202 5. MONOTONE COMPLEXITY

[Hint: Both machines for 𝑓1 and 𝑓2 generate only zero bits (finitely or infinitely
many) at their outputs. Such a mapping (restricted on Ω) is determined by a
decreasing sequence of an effectively open sets 𝐴1 ⊃ 𝐴2 ⊃ . . . where 𝐴𝑖 is the set
of inputs where 𝑖 or more output zeros are generated. The image semimeasure
is determined by the (uniform) measures of 𝐴𝑖. So it remains to construct two
sequences of sets with the same measures such that the intersection of one sequence
contains a random element and the intersection of the other one does not. To
construct the first one, consider a random number 𝜔 that is a limit of a computable
increasing sequence 𝑟𝑖 of rational numbers, and consider the intervals (𝑟𝑖, 𝜔 + 1/𝑖).
For the second one consider the sequence of intervals of the same length with empty
intersection, say, with left endpoint 0. Or take centered intervals whose intersection
contains only non-random number 1/2.]

However, some statement that would be a corollary of this “criterion” if it were
true (which is not the case)6, is still true [85, 58]):

Theorem 126. Let 𝛼 be an arbitrary sequence of zeros and ones. Then there
exists a sequence 𝜔 that is ML-random with respect to the uniform measure, and a
computable mapping 𝑓 : Σ → Σ such that 𝑓(𝜔) = 𝛼.

Using the terminology of recursion theory, this statement guarantees that every
sequence of zeros and ones is Turing-reducible to some ML-random sequence with
respect to the uniform measure. (We have already mentioned this result on p. 194.)

Proof. We prove a bit stronger statement and construct a computable con-
tinuous mapping 𝑓 (the same for all 𝛼) such that the image 𝑓(𝑅) (where 𝑅 is the
set of all ML-random sequences with respect to the uniform measure) equals Ω.

Moreover, for any effectively open set 𝑈 (i.e., the union of an enumerable family
of intervals) of sufficiently small measure we will construct a computable mapping
𝑓 such that 𝑓(Ω ∖ 𝑈) covers entire Ω. Applying this construction to an effectively
open set of small measure that covers the complement of 𝑅, we get the result.

Here is the idea of the construction. First, we split the sequences into blocks
of length 𝑘0, 𝑘1, . . ., and in this way represent the Cantor space as the space of
paths in a tree with branching factors 2𝑘0 , 2𝑘1 , . . . (instead of the binary tree). The
numbers 𝑘𝑖 grow fast enough as 𝑖 increases (see below). We choose some binary
subtree in this tree, and declare that 𝑓 maps it onto a full binary tree in a natural
way. In other words, we select two strings 𝑠0 and 𝑠1 of length 𝑘0 that are mapped
by 𝑓 to 0 and 1 respectively, then select extensions 𝑠00, 𝑠01 (of 𝑠0) and 𝑠10, 𝑠11 (of
𝑠1), mapping them to 00, 01, 10, 11 respectively, etc.

At the same time, we enumerate the intervals of the effectively open set 𝑈 . If
none of them covers any path in the chosen binary subtree, we have nothing to
worry about: 𝑓(Ω ∖𝑈) will cover Ω. If an interval covers some vertex in the chosen
binary subtree, we replace this vertex by another one (that is not yet covered),
and extend 𝑓 to this vertex (and the entire subtree rooted at this new vertex). To
prevent this, the adversary needs to make unusable all 2𝑘0 sons of the root except
one; to make each of them unusable one need to make unusable all its sons except

6To derive this statement from the “criterion”, one can take a mapping 𝑓 whose output
distribution is the continuous a priori probability.

5.9. RANDOMNESS WITH RESPECT TO DIFFERENT MEASURES 203

one, etc.: we conclude that the set 𝑈 must be of size at least(︂
2𝑘0 − 1

2𝑘0

)︂
·
(︂

2𝑘1 − 1

2𝑘1

)︂
·
(︂

2𝑘2 − 1

2𝑘2

)︂
· . . . , (*)

and we can choose 𝑘0, 𝑘1, . . . growing fast enough to make this product strictly
positive (or even close to 1).

Now let us explain the details. For a given (computable) sequence 𝑘0, 𝑘1, 𝑘2, . . .
we consider strings of length 𝑘0 (as 2𝑘0 sons of the root), then strings of length
𝑘0 + 𝑘1, 𝑘0 + 𝑘1 + 𝑘2, etc., as vertices of the tree 𝑇 (with branching factors 2𝑘0 ,
2𝑘1 ,. . .); we call them 𝑇 -vertices (to distinguish from the vertices of the binary
tree).

First, we choose (in some computable way) a binary subtree in 𝑇 and map its
vertices to the vertices of the binary tree in a natural way. Then we enumerate
the intervals that form the effectively open set 𝑈 . Without loss of generality we
may assume that all these intervals are formed by 𝑇 -vertices. When a new interval
appears, we do the following:

∙ Declare the corresponding 𝑇 -vertex as bad.
∙ Propagate bad 𝑇 -vertices to the root: a 𝑇 -vertex that has only one good

son in 𝑇 becomes bad, too. In this way we get a chain of bad 𝑇 -vertices.
∙ If some 𝑇 -vertices of the binary subtree of 𝑇 become bad (the subtree

intersects the chain of bad 𝑇 -vertices), take the first bad 𝑇 -vertex in the
subtree (closest to the root) and replace its by its good brother. (This is
possible since its father is good and therefore has at least two good sons.)
Then grow a replacement binary subtree starting from the new 𝑇 -vertex
and using only good 𝑇 -vertices. (Again this is possible since every good
vertex has at least two good sons.)

∙ Extend the mapping 𝑓 to the new part of the binary subtree of 𝑇 .

There is only one case when this construction is impossible: if the root becomes
a bad vertex. If this happens, then all its 𝑇 -sons (except may be one) are bad, all
the 𝑇 -sons of these bad 𝑇 -sons (except may be one) are bad, etc. In this way we
get a subtree of bad 𝑇 -vertices, and its leaves (the 𝑇 -vertices that became bad not
because of their sons) are intervals of 𝑈 . Then the backward induction shows that
the size of 𝑈 is at least (*), and we get a positive lower bound assuming that the
series

∑︀
2−𝑘𝑖 converges. (The infinite product

∏︀
(1 − 𝜀𝑖) is positive if and only if∑︀

𝜀𝑖 is finite.) So one may take, for example, 𝑘𝑖 = ⌈2 log 𝑖⌉ (for 𝑖 > 2), and then
for small enough sets 𝑈 the root will never become bad.

To justify this construction, we need to note that

∙ the set of bad 𝑇 -vertices can only increase;
∙ the current binary subtree of 𝑇 avoids bad 𝑇 -vertices;
∙ the 𝑇 -vertices excluded from the binary subtree will never be added to it

again (so the extension of 𝑓 will not contradict the old values).

All these properties are direct consequences of the construction. (The last one:
if a 𝑇 -vertex was excluded, some its ancestor was bad at the moment, it remains
bad and the binary subtree can never use it again.)

It remains to prove that (for 𝑓 constructed in this way) every sequence 𝛼 ∈ Ω
has an 𝑓 -preimage outside 𝑈 . By definition, at any stage 𝑡 of the construction
there exists 𝑓 -preimage 𝜔𝑡 that is not covered by the already discovered part of 𝑈 .
Moreover, as 𝑡 increases, the points 𝜔𝑡 converge to some limit sequence 𝜔 (we prove

204 5. MONOTONE COMPLEXITY

the stabilization property at level 𝑖 by induction over 𝑖; note that the number of
possible changes on level 𝑖 is bounded by 2𝑘𝑖). It remains to verify that 𝜔 does not
belong to 𝑈 and that 𝑓(𝜔) = 𝛼.

By way of contradiction, assume that 𝜔 is in 𝑈 . Then 𝜔 belongs to some
interval that is discovered on some step. After that the sequences 𝜔𝑡 do not belong
to this interval, a contradiction with the convergence.

Finally, let us verify that 𝑓(𝜔) = 𝛼. Let 𝑧 be an arbitrary finite prefix of 𝛼; we
have to show that 𝑓(𝜔) starts with 𝑧. Let 𝑘 be the length of 𝑧. At every stage 𝑡
there exists a 𝑘-block string (a level 𝑘 vertex of 𝑇) that is mapped to 𝑧. When 𝑡
increases, this string ultimately reaches its final value and therefore 𝜔 has a prefix
that guarantees that 𝑓(𝜔) starts with 𝑧. �

190 Prove that the random sequence constructed in the proof is computable
give both the oracles for 𝛼 and for 0′ (the halting problem). [Hint: the limit position
of the embedded binary tree is computable given 0′.]

191 Using this argument, prove that for any sequence 𝛼 there exists a ML-
random sequence 𝜔 such that 𝛼 is Turing-reducible to 𝜔 and this reduction needs
only 𝑛 + 𝑜(𝑛)-bit prefix of 𝜔 to generate 𝑛-bit prefix of 𝛼.

[Hint: Instead of the binary tree one may use in the proof the tree of branching
factor 2𝑚𝑖 ; then we need the convergence of the product (1 − 2𝑚𝑖/2𝑘𝑖), i.e., of the
series 2𝑚𝑖−𝑘𝑖 . We may let 𝑚𝑖 = 𝑖 and 𝑘𝑖 = 𝑖 + 2 log 𝑖.]

One may speculate about the “philosophical meaning” of this theorem as fol-
lows: For any sequence 𝛼 we can a posteriori explain how it could appear during
an experiment. Indeed, for a random 𝜔 this is the philosophical assumption, and
the transformation 𝑓 is computable and therefore can be implemented.

The Kučera–Gács theorem could look strange if we compare it with another
result: if some sequence 𝛼 has a positive probability to be computable with random
oracle (the set of sequences that compute 𝛼 has a positive measure), then 𝛼 is
computable. To see why this result is true, note that the set of all oracles that
compute 𝛼 is a union of sets of oracles that compute 𝛼 via some oracle machine 𝑀
(the union is taken over all 𝑀). So one of these sets has positive measure, the a
priori probability of 𝛼 is positive and 𝛼 is computable. So for a non-computable 𝛼
the set of all oracles that compute 𝛼 is a null set. On the other hand, Kučera–Gács
theorem says that there exists a random sequence that computes 𝛼. There is no
contradiction here, it just means that the null set in question is not an effectively
null set.

CHAPTER 6

General scheme for complexities

6.1. Decision complexity

We started with plain Kolmogorov complexity 𝐶 and then considered also prefix
complexity 𝐾 and monotone complexity KM . All three complexities were defined
in terms of shortest descriptions, but the notion of description was different in
each case. For plain complexity the description modes (decompressors) were just
computable functions, for prefix complexity the description modes were computable
continuous mappings of type Σ → N⊥, for monotone complexity the description
modes were computable continuous mappings of type Σ → Σ.

To be uniform, we may use computable continuous mappings of type N⊥ → N⊥
for plain complexity. Recall that topology on the set N⊥ (and the set itself) was
introduced in Section 4.4.3 (p. 103). It is easy to see that there are two possibilities
for a continuous mapping 𝑓 : N⊥ → N⊥: either 𝑓(⊥) is some natural number (and
not ⊥), and the mapping is a constant one, or 𝑓(⊥) = ⊥ and the values 𝑓(𝑛)
for natural 𝑛 can be arbitrary. The mapping of the second type are in a natural
one-to-one correspondence with partial functions of type N → N if we use ⊥ as
a replacement for an undefined value. As before, computability is defined in the
following natural way: the mapping 𝑓 : N⊥ → N⊥ is computable if the set of pairs
⟨𝑥, 𝑦⟩ such that 𝑦 4 𝑓(𝑥) is enumerable. All the constant mappings are computable,
and for non-constant ones computability means that corresponding partial function
is computable. (Recall that a partial function of type N → N is computable if and
only if its graph is enumerable.)

So using this “new” definition of a description mode (decompressor) as a com-
putable continuous mapping of type N⊥ → N⊥ we get the same plain complexity.
Indeed, we add constant functions that map everything, including the element ⊥,
to some constant 𝑐, but they do not change complexity more than by 𝑂(1). (A
meticulous reader will stress that the function that maps everything to 𝑐 should
not be identified with the function that corresponds to a total function N → N that
maps everything to 𝑐, since the latter one still maps ⊥ to ⊥.)

All this formalism, however, is used only as a motivation for the following
scheme that explains the origin of the complexities considered (see Figure 1): Each
of the three complexities is obtained when we consider computable continuous map-
pings of the description space into the object space as description modes (decom-
pressors).

This table has an empty cell; for this cell the description modes are computable
continuous mappings of type N⊥ → Σ. Let us consider the corresponding definition
in more details; we call this complexity decision complexity and denote it by KR

205

206 6. GENERAL SCHEME FOR COMPLEXITIES

N⊥ Σ

N⊥

Σ

𝐶

𝐾 KM

?

objects

d
es

cr
ip

ti
o
n

s

Figure 1. 𝐶, 𝐾 and 𝐾 revisited.

(the notation KD were used too, but now KD is often used for the so-called “dis-
tinguishing complexity” so we use KR for decision complexity to avoid confusion).
This notion of complexity was first considered by D. Loveland [107].

Let us give a definition of the decision complexity using some class of machines.
Consider a machine that gets a binary string as an input (and some end-marker is
written on the tape, so the machine knows where the input ends) and prints bits
on the output tape (one by one). The machine is not obliged to stop, so for any
input string 𝑥 we obtain a finite or infinite bit sequence as machine’s output. (If
the output sequence is infinite, it obviously is computable.)

Any machine of the described type defines a mapping of the set of all binary
strings (that can be identified with the natural numbers in N⊥) into a set Σ of
all finite and infinite sequences. If 𝑀 is a machine of this type, the complexity
KR𝑀 (𝑥) of a string 𝑥 (with respect to decompressor 𝑀) is defined as the minimal
length of a string 𝑦 such that 𝑀(𝑦) (the output sequence for input 𝑦) starts with 𝑥.

192 Check that there exists an optimal decompressor 𝑀 in the described
class of decompressors (i.e., the decompressor 𝑀 that leads to smallest KR𝑀 up
to 𝑂(1) additive term).

193 Give the definition of computable continuous mappings N⊥ → Σ. What is
the difference between this definition and the class of the machines described above
and why it is not important for the definition of complexity? [Hint: a continuous
mapping can map ⊥ into some non-empty string.]

Therefore we can fill the empty cell in our table (Figure 2):

N⊥ Σ

N⊥

Σ

𝐶

𝐾 KM

KR

objects

d
es

cr
ip

ti
on

s

Figure 2. Four complexities.

The following theorem lists the main properties of the decision complexity:

Theorem 127. (a) If a string 𝑥 is a prefix of a string 𝑦, then KR (𝑥) 6 KR (𝑦).
(b) The complexities of prefixes of a sequence 𝜔 ∈ Ω form a non-decreasing

sequence that is bounded if and only if the sequence 𝜔 is computable. (The limit of

6.1. DECISION COMPLEXITY 207

the complexity of prefixes may be called the decision complexity of the sequence 𝜔.
This complexity is finite for computable sequences and infinite for non-computable
ones.)

(c) KR (𝑥) 6 𝐶(𝑥) + 𝑂(1) for every string 𝑥.
(d) KR (𝑥) 6 KM (𝑥) + 𝑂(1) for every string 𝑥.
(e) KM (𝑥) 6 KR (𝑥) + 𝑂(logKR (𝑥)) for every string 𝑥.
(f) 𝐶(𝑥|𝑙(𝑥)) 6 KR (𝑥) + 𝑂(1) for every string 𝑥.
(g) If 𝑓 : Σ → Σ is a computable continuous mapping, then

KR (𝑓(𝑥)) 6 KR (𝑥) + 𝑂(1) (the constant in 𝑂(1) may depend on 𝑓 but not on 𝑥).
(h) If 𝑓 : Σ → N⊥ is a computable continuous mapping, then

𝐶(𝑓(𝑥)) 6 KR (𝑥)) + 𝑂(1) (the constant in 𝑂(1) may depend on 𝑓 but not on 𝑥).
(i) If 𝑓 : N⊥ → Σ is a computable continuous mapping, then

KR (𝑓(𝑥)) 6 𝐶(𝑥) + 𝑂(1) (the constant in 𝑂(1) may depend on 𝑓 but not on 𝑥).
(j) A prefix-free set of strings (none is a prefix of another one) that have deci-

sion complexity less than 𝑛, has cardinality less than 2𝑛.
(k) The function KR is upper semicomputable (enumerable from above).
(l) The function KR is the smallest (up to a constant) function satisfying the

last two conditions: if some function 𝑘 is upper semicomputable and for every 𝑛 the
cardinality of every prefix-free set of strings 𝑥 such that 𝑘(𝑥) < 𝑛 for all elements
of this set, is 𝑂(2𝑛), then KR (𝑥) 6 𝑘(𝑥) + 𝑂(1).

(m) KR (𝑥) 6 KA (𝑥) + 𝑂(1) for all strings 𝑥.

Proof. (a) An immediate corollary of the definition (description of a string is
at the same time description of any its prefix).

(b) Assume that sequence 𝜔 is computable. Consider the machine that ignores
its input and prints 𝜔 bit by bit, as a decompressor (description mode). All prefixes
of 𝜔 have zero complexity with respect to this decompressor (since the empty strings
is their description), and therefore they have 𝑂(1) complexity (with respect to
optimal decompressor), On the other hand, if the complexities of all prefixes of 𝜔 are
bounded, some string has to be a description of infinitely many prefixes, therefore
𝜔 is computable.

(c) Any partial computable function whose arguments and values are binary
strings can be considered as KR -decompressor (don’t output anything before the
computation is finished, then print the result bit by bit).

(d) Any continuous computable mapping Σ → Σ can be considered as KR -de-
compressor (after restriction to finite strings; we may say that we type the input
string on the keyboard of a robust machine immediately after the computation
starts and do not touch the keyboard anymore).

(e) Let 𝑅 : N → Σ be an optimal decompressor used in the definition of

decision complexity. Consider a computable mapping �̂� : Σ → Σ defined as follows:
�̂�(�̂�𝑢) = 𝑅(𝑥), where �̂� is a self-delimiting encoding of 𝑥 (say, the 𝑥 itself prepended
by the binary encoding of 𝑙(𝑥) with duplicated bits and the separator 01) and 𝑢 is
arbitrary string (needed to ensure the monotonicity).

(f) Let again 𝑅 : N → Σ be an optimal KR -decompressor. Define the condi-
tional decompressor 𝑆 by letting 𝑆(𝑦, 𝑛) be the first 𝑛 bits of the sequence 𝑅(𝑦) (if
𝑛 exceeds the length of 𝑅(𝑦), then 𝑆(𝑦, 𝑛) is undefined).

(g) Consider a new KR -decompressor that is a composition of the optimal
KR -decompressor and the mapping 𝑓 and compare this new decompressor with
the optimal one.

208 6. GENERAL SCHEME FOR COMPLEXITIES

(h) Consider the composition of an optimal KR -decompressor and 𝑓 as a 𝐶-
decompressor.

(i) Consider the composition of an optimal 𝐶-decompressor and 𝑓 as a KR -de-
compressor.

(j) Two incompatible strings cannot share a description (since in this case they
would be prefixes of some sequence, and the shorter string would be a prefix of
the longer one). If all elements of a prefix-free set of strings have complexity less
than 𝑛, then their descriptions are different strings of length less than 𝑛, and there
exist less than 2𝑛 such strings.

(k) Applying in parallel the optimal description mode to all strings, we get
upper bounds for KR (that may decrease when new descriptions are found); they
converge to KR .

(l) This is a first interesting claim in this theorem (up to now we had only
simple variations on known themes).

Let 𝑘 be a function that satisfies (i) and (iii). Aiding a constant to 𝑘, we may
assume without loss of generality that there are at most 2𝑛 pairwise inconsistent
strings 𝑥 such that 𝑘(𝑥) < 𝑛.

We construct a description mode that gives every string 𝑥 such that 𝑘(𝑥) < 𝑛
a description of length exactly 𝑛. This is done independently (and in parallel)
for each 𝑛. Namely, we watch the decreasing upper bounds for 𝑘 and write down
the (increasing) list of strings 𝑥 such that 𝑘(𝑥) < 𝑛. Consider a subtree of a full
binary tree that is formed by the strings in the list and all their prefixes. This is a
growing subtree that has (all the time) at most 2𝑛 leaves. (Indeed, the leaves are
inconsistent strings 𝑥 such that 𝑘(𝑥) < 𝑛.) Let us attach a label to each leaf; this
label is a string of length 𝑛. When the subtree grows by adding some new string,
this string either extends one of the leaves (so it is not a leaf anymore) or creates a
new branch (being attached to some internal node). In the first case the new string
is a leaf, and this leaf keeps the label of the superseded one. In the second case we
provide a new label for the new leaf (which is possible since we have less than 2𝑛

leaves).
Let us fix a label and look what happens with leaves carrying this label. Initially

the label is unused. It is possible that the label remains unused forever (we do not
need that many labels), but if it is not the case, the label is attached to some leaf
and then moves up the tree (next position is a son of the previous one). So this
label marks some branch of the tree (finite or infinite sequence of zeros and ones).
In this way we get a function that maps strings of length 𝑛 (i.e., labels) to Σ (the
strings that are not labels are mapped to Λ, the empty sequence).

Combining these mappings for all 𝑛, we get a KR -description mode that guar-
antees complexity at most 𝑛 for all strings 𝑥 such that 𝑘(𝑥) < 𝑛, just as we claimed.

(m) If 𝑥𝑖 are pairwise inconsistent binary strings, then
∑︀

2−KA (𝑥𝑖) 6 1 (since
2−KA (𝑥𝑖) equals a priori probability of the set Σ𝑥𝑖 and these sets are disjoint).
Therefore we have at most 2𝑛 strings such that KA (𝑥𝑖) < 𝑛 and may refer to the
previous statement. �

194 Prove that KR (𝑥) can be defined as follows: for any computable function
𝑆 of two arguments (the first is a binary string, the second is a natural number;
values of 𝑓 are zeros and ones) let KR 𝑆(𝑥) for a string 𝑥 = 𝑥0 . . . 𝑥𝑛−1 be the
minimal length of the string 𝑦 such that 𝑆(𝑦, 𝑖) = 𝑥𝑖 for all 𝑖 = 0, 1, . . . , 𝑛 − 1.

6.2. COMPARING COMPLEXITIES 209

Then we choose an optimal function among all function of this class, and it defines
decision complexity.

195 Show that the decision complexity of a string 𝑥 equals (up to 𝑂(1)) the
minimal value of 𝐶(𝑝) for all programs 𝑝 (in a given programming language, say,
Pascal) that ignore their input and output the string 𝑥 or some its extension.

196 Show that if we replace 𝐶 by 𝐾 in the preceding problem, we get in
the similar way an upper bound for monotone complexity. Show that this bound
is not 𝑂(1)-tight. [Hint: The monotone complexity of all 𝑛-bit strings is bounded
by 𝑛 + 𝑂(1). The programs for these strings (or their extensions) should be all
different, and there is not enough strings having prefix complexity 𝑛 + 𝑂(1).]

6.2. Comparing complexities

There are four complexities in our table (two options for the space of objects are
combined with two options for the space of descriptions). The following diagram
(Figure 3) shows the inequalities between them (up to 𝑂(1) additive term):

KR

𝐾

𝐶 KM

Figure 3. Inequalities between complexities.

Some people would like to avoid references to topological notions like continuous
mappings, though these notions are quite relevant here as the theory of abstract
data types (Dana Scott lattices and related notion of 𝑓0-spaces in the sense of
Ershov) shows, see [175]. Those readers will appreciate the following simplified
construction [193] that is still enough to define the four complexities in the table.

Consider the set Ξ = B* of all binary strings and two binary relations: 𝑥 = 𝑦
means that strings 𝑥 and 𝑦 are equal; 𝑥 ≍ 𝑦 means that 𝑥 and 𝑦 are compatible
(one is a prefix of the other one). Let 𝛼 and 𝛽 be one of these two relations (so
there are four combinations for the pair 𝛼, 𝛽).

A set 𝑆 ⊂ Ξ × Ξ is called 𝛼-𝛽-regular if the following condition is true for any
strings 𝑥1, 𝑥2, 𝑦1, 𝑦2:

(𝑥1, 𝑦1) ∈ 𝑆, (𝑥2 𝑦2) ∈ 𝑆, 𝑥1𝛼𝑥2 ⇒ 𝑦1𝛽𝑦2

For example, =-=-regular binary relations are just graphs of functions.

197 (a) Show that every ≍-=-regular relation determines a continuous map-
ping of type Σ → N⊥.

(b) Show that every ≍-≍-regular relation determines a continuous mapping of
type Σ → Σ.

(c) Show that every =-≍-regular relation determines a continuous mapping of
type N⊥ → Σ.

210 6. GENERAL SCHEME FOR COMPLEXITIES

Now by 𝛼-𝛽-description mode we mean an enumerable 𝛼-𝛽-regular binary re-
lation on Ξ × Ξ. For each description mode 𝑆 we define the complexity function
𝐾𝑆 : let 𝐾𝑆(𝑥) be the minimal length of a description of 𝑥. i.e., the minimal value
of 𝑙(𝑦) for all 𝑦 such that ⟨𝑦, 𝑥⟩ ∈ 𝑆.

Theorem 128. For each of the four combinations 𝛼, 𝛽 ∈ {=,≍} there exists
an optimal 𝛼-𝛽-description mode (that provides minimal complexity function up
to 𝑂(1)) and the corresponding complexity is one of the four known complexities
𝐶,𝐾,KM ,KR .

Proof. In all four cases enumerable 𝛼-𝛽-regular relations correspond to com-
putable continuous mappings of the corresponding sets (see Problem 197) that gives
the same complexity function, and vice versa. �

So we can provide new labels for rows and columns of our table (Figure 4):

= ≍

=

≍

𝐶

𝐾 KM

KR

objects

d
es

cr
ip

ti
on

s

Figure 4. 𝛼-𝛽-complexities

198 Show how one can define for pairs of strings:
(a) monotone complexity (using computable continuous mappings Σ → Σ × Σ

as decompressors; such mappings are in one-to-one correspondence with pairs of
computable mappings Σ → Σ);

(b) a priori probability (using probabilistic machines that have two output
tapes where bits are printed sequentially);

(c) decision complexity (using computable continuous mappings N⊥ → Σ×Σ).

199 Prove that the decision complexity of a pair ⟨𝑥, 𝑦⟩ (see the previous
problem) does not exceed 𝑙(𝑥) + 𝑙(𝑦) + 𝑂(1). [Hint: The string 𝑧 can describe the
pair ⟨𝑧, 𝑧𝑅⟩, where 𝑧𝑅 is 𝑧 from right to left.]

A surprising result: this property remains true for triples [71] and even for
𝑘-tuples for each fixed 𝑙 (it is a corollary of the results of [145]). For monotone
complexity a similar property is not true as shown by Pavel Karpovich [71]: the
value of KM (𝑥, 𝑦) may exceed 𝑙(𝑥)+𝑙(𝑦) by a quantity of order log 𝑛 for 𝑛-bit strings.
(Therefore the monotone complexity of pairs may exceed a priori complexity by the
same margin, since a priori complexity of a pair is obviously bounded by the sum
of lengths.)

Another classification scheme for complexities (that goes back to [94]) defines
each version of complexity as the smallest upper semicomputable function in some
class (of functions that satisfy some restrictions). We have already considered these
restrictions, so we just collect the results obtained and give the conditions for each
complexity version:

6.2. COMPARING COMPLEXITIES 211

∙ the number of strings 𝑥 such that 𝑘(𝑥) < 𝑛 is 𝑂(2𝑛) (plain complexity 𝐶,
Theorem 8, p. 33);

∙ the series
∑︀

𝑥 2−𝑘(𝑥) converges (prefix complexity 𝐾, Theorem 62, p. 113);
∙ every prefix-free set of strings 𝑥 such that 𝑘(𝑥) < 𝑛 has 𝑂(2𝑛) elements

(decision complexity KR , Theorem 127, p. 206);
∙
∑︀

𝑥∈𝑋 2−𝑘(𝑥) 6 1 for every prefix-free set 𝑋 of binary strings (a priori
complexity KA , Theorem 80, p. 139).

These scheme gives the same four complexities with one important exception:
we get a priori complexity instead of monotone complexity. (There is no problem
with prefix complexity, since it coincides with the negative logarithm of the discrete
a priori probability, largest lower semicomputable semimeasure on N.)

Combining these two quadrilaterals, we get a pentagon: (Figure 5):

KR

𝐾

𝐶
KM

KA

Figure 5. Five complexities

Let us recall basic results that relate complexities in this pentagon. First,
all five complexities differ at most by 𝑂(log 𝑛) for strings of length 𝑛. Indeed,
Theorem 65, p. 116 says that 𝐾(𝑥) 6 𝐶(𝑥) + 𝑂(log𝐶(𝑥)). On the other hand,

𝐶(𝑥) 6 𝐶(𝑥|𝑙(𝑥)) + 𝐶(𝑙(𝑥)) 6 KR (𝑥) + 𝑂(log 𝑛).

So the two most distant complexities in the pentagon (the upper one and the lower
one) differ at most by 𝑂(log 𝑛) for strings of length 𝑛.

A more complicated picture arises if we want to bound the difference between
two complexities in terms of the complexities itself, not the length (note that com-
plexity can be much less than length). This is indeed possible for two lines that go
in the north-east directions:

𝐾(𝑥) 6 𝐶(𝑥) + 𝑂(log𝐶(𝑥))

(see Theorem 65) and

KM (𝑥) 6 KR (𝑥) + 𝑂(logKR (𝑥))

(Theorem 127). (The similar inequality with KA instead of KM follows, as we have
already mentioned in Problem 140, p. 158.) For “north-west” lines the situation
is different: KM and KR are bounded for prefixes of a computable sequence (e.g.,
for strings that contain only zeros) while 𝐶 and 𝐾 are not (the string of 𝑛 zeros
has the same complexity as the integer 𝑛, and this complexity is of order log 𝑛 for
some 𝑛). We have already discussed this question in Theorem 86 and noted that
the difference between 𝐾 and KM can be of order log 𝑛 in both directions (for
infinitely many 𝑛 and for some 𝑥 of length 𝑛). Theorem 87 says that the difference

212 6. GENERAL SCHEME FOR COMPLEXITIES

between KM and KA for 𝑛-bit strings can be about log log 𝑛 (so here we have a
gap between known lower and upper bounds).

None of the mentioned results guarantees that the difference between 𝐾(𝑥) and
𝐶(𝑥) tends to infinity as 𝑥 goes to infinity (we consider here 𝑥 as a natural number).
But this follows from Theorem 73 (p. 126). Some other bounds between different
versions of complexity are mentioned in [193].

6.3. Conditional complexities

We have already considered several versions of conditional complexity (of a
string relative to the other one). In Section 2.2 we have defined the conditional
complexity 𝐶(𝑥 |𝑦) as the minimal length of a string 𝑝 that describes 𝑥 when 𝑦 is
given, i.e., a string 𝑝 such that 𝑆(𝑝, 𝑦) = 𝑥. Here 𝑆 is the conditional decompressor
that is optimal in the class of all partial computable binary functions.

In Section 4.7 we defined the conditional prefix complexity 𝐾(𝑥 |𝑦). In this
definition we required 𝑆 to be prefix-stable with respect to 𝑝 for every fixed 𝑦: this
means that if 𝑆(𝑝, 𝑦) = 𝑥 for some 𝑝, then 𝑆(𝑝′, 𝑦) = 𝑥 for all strings 𝑝′ that have
prefix 𝑝.

Finally, in the proof of Theorem 93 we mentioned the conditional monotone
complexity KM (𝑥 |𝑦). For its definition a description mode (decompressor) is a
computable family of computable continuous mappings 𝐷𝑦 : Σ → Σ (indexed by
string 𝑦). The computability of this family means that the set of triples ⟨𝑦, 𝑢, 𝑣⟩
such that 𝑣 4 𝐷𝑦(𝑢) is enumerable.

The conditional decision complexity can be defined in a similar way.
In these four definitions we consider conditions as terminated bit strings, and

the behavior of the decompressor is unrelated for different conditions: if we know
that 𝑝 is a description of 𝑥 relative to 𝑦, this gives us no information about the
values of decompressor for other values of 𝑦.

In other terms, a decompressor (say, for the conditional prefix complexity) can
be considered as a computable mapping

𝐷 : Σ × N → N⊥;

in the pair ⟨𝑝, 𝑦⟩ ∈ Σ × N the string 𝑝 is considered as a description (and 𝐷 is
monotone with respect to 𝑝) and 𝑦 is a condition, and no monotonicity is required.

If we change this and consider conditions also as vertices of binary tree requiring
monotonicity over conditions, we get four other versions of conditional complexity.
These version are not widely used ([40] is a rare exception).

In this way we get 8 versions of conditional complexities (for each of three com-
ponents, i.e., conditions, descriptions and objects, we have two possibilities). The
most non-technical definition of these complexities goes as follows. Let 𝛼, 𝛽, 𝛾 ∈
{=,≍} (see Section 6.2). An (𝛼, 𝛽) |𝛾-decompressor (description mode) is an enu-
merable set 𝑆 of triples ⟨𝑝, 𝑥, 𝑦⟩, such that

⟨𝑝1, 𝑥1, 𝑦1⟩ ∈ 𝑆, ⟨𝑝2, 𝑥2, 𝑦2⟩ ∈ 𝑆, 𝑝1𝛼𝑝2, 𝑦1𝛾𝑦2 ⇒ 𝑥1𝛽𝑥2

The we define 𝐾𝑆(𝑥 |𝑦) as the minimal length of a string 𝑝 such that ⟨𝑝, 𝑥, 𝑦⟩ ∈ 𝑆.

Theorem 129. In all eight cases there exists an optimal decompressor 𝑆 that
gives the smallest complexity 𝐾𝑆 (up to 𝑂(1)) among all the decompressors of that
class.

6.3. CONDITIONAL COMPLEXITIES 213

200 Give the detailed proof of this theorem (it follows the same scheme as in
the case of plain or prefix conditional complexity).

In each of eight classes let us fix some optimal (𝛼, 𝛽) |𝛾-decompressor and denote
the corresponding complexity by 𝐾(𝛼,𝛽) |𝛾 . In this notation 𝐾(𝑥 |𝑦) (as defined
earlier) is 𝐾(≍,=) |= and 𝐶(𝑥 |𝑦) is 𝐾(=,=) |=.

201 Show that by replacing = by ≍ in the place of 𝛾 we may only increase the
complexity. [Hint: This replacements adds more restrictions for a decompressor,
so we get less decompressors. For the same reasons the plain complexity does not
exceed the prefix one.]

It would be interesting to study how large this increase could be (and establish
other properties of these conditional complexities).

Let us give an example of a statement that involves conditional complexities
as they are defined above:

202 Prove that

𝐶(𝑥) 6 𝐾(=,=) |≍(𝑥 |𝑦) + KR (𝑦) + 𝑂(logKR (𝑦)).

Let us now describe one more approach to the definition of the conditional
complexity that goes back to Kolmogorov’s interpretation of logical connectives as
operations on problems [75]. The conditional complexity of 𝑥 when 𝑦 is known can
be described as the complexity of the problem: “transform 𝑦 into 𝑥”; moreover,
this problem can be considered as a set of all functions that map 𝑦 into 𝑥 (each
function that maps 𝑦 to 𝑥 is a “solution” of this problem).

More formally, let us consider the space F whose elements are all partial func-
tions whose arguments and values are natural numbers. Let us introduce the fol-
lowing partial order on this set: 𝑓1 4 𝑓2 if 𝑓2 is an extension of 𝑓1 (i.e., 𝑓1(𝑦) = 𝑥
implies 𝑓2(𝑦) = 𝑥). By finite elements of 𝐹 we mean functions with finite domain.
For each finite element 𝑓 ∈ 𝐹 consider its cone, i.e., the set of all its extensions
{𝑦 | 𝑓 4 𝑦} (both finite and infinite). We call a continuous mapping 𝑇 : N⊥ → F
computable if the set of pairs ⟨𝑎, 𝑓⟩ such that 𝑎 ∈ N⊥, 𝑓 is a finite element of F
and 𝑓 4 𝑇 (𝑎), is enumerable. Continuous computable mappings N⊥ → 𝐹 are used
as decompressors for functions. For each function 𝑓 ∈ 𝐹 we define the complexity
of 𝑓 (with respect to decompressor 𝑇) as the minimal length of the string (or the
logarithm of the number — recall that we identify strings with natural numbers) 𝑎
such that 𝑓 4 𝑇 (𝑎).

203 Prove that there exists an optimal decompressor (in this sense) and that
the complexity of the function 𝑦 ↦→ 𝑥 (whose domain is a singleton {𝑦} and whose
value is 𝑥) is 𝐶(𝑥 |𝑦) + 𝑂(1).

We can give a similar interpretation of all eight conditional complexities de-
fined above: for every two spaces 𝑌,𝑋 ∈ {N⊥,Σ} we define the space of functions
(𝑌 → 𝑋) and then consider computable mappings of the space of descriptions
𝑃 ∈ {N⊥,Σ} into the function space (𝑌 → 𝑋). The definition of the function
space is given in the spirit of Scott domain theory (or the theory of 𝑓0-spaces in
the sense of Ershov, see [175] for details).

A slightly different interpretation of (plain) conditional complexity as the com-
plexity of the problem “transform 𝑦 to 𝑥” is considered in Chapter 13; it does not
use computability notions for function spaces.

214 6. GENERAL SCHEME FOR COMPLEXITIES

The related notion of complexity for functions was considered by Schnorr[167,
169]. Recall that a numbering (an important notion in the recursion theory) is a
mapping 𝜈 that maps each natural number 𝑛 into some (partial) function 𝜈𝑛 whose
arguments and values are natural numbers. A numbering 𝜈 is computable, if the
(partial) function of two arguments

⟨𝑛, 𝑥⟩ ↦→ 𝜈𝑛(𝑥)

is computable. A numbering 𝜈 is called a Gödel numbering if for any other com-
putable numbering 𝜇 there exists a computable function that reduces 𝜇 to 𝜈 in
the following sense: 𝜇𝑛 = 𝜈ℎ(𝑛) for every 𝑛. (In particular, the range of a Gödel
numbering is the set of all computable functions.)

Following Schnorr, we make this condition stronger and require additionally
that ℎ(𝑛) = 𝑂(𝑛) (in other terms, the length of the string ℎ(𝑛) exceeds the length of
string 𝑛 at most by a constant, if we identify natural numbers with binary strings).
If such a function ℎ exists for every computable numbering 𝜇, the numbering 𝜈 is
called optimal.

Theorem 130. There exist optimal numberings.

Proof. Consider any reasonable programming language for functions of two
arguments and let �̂�𝑣 be a 𝜈-number of the function obtained by fixing first argu-
ment equal to 𝑣 in the function that has program 𝑢. (Here 𝑢 is some self-delimiting
encoding of 𝑢, i.e., 𝑢 with doubled bits and 01 appended.) �

Schnorr [167, 169] defined the complexity of a computable function as the
logarithm of its minimal number on an optimal numbering. (As before, the minimal
complexity of a function that maps 𝑥 to 𝑦 turns out to be equal to 𝐶(𝑦 |𝑥).) Schnorr
has shown that any two optimal numberings 𝜈1 and 𝜈2 can be translated into each
other by a computable permutation 𝜋 that changes the size at most by 𝑂(1) (in both
directions): this means that 𝜈1(𝑛) = 𝜈2(𝜋(𝑛)) for every 𝑛 and that 𝜋(𝑛) = 𝑂(𝑛)
and 𝜋−1(𝑛) = 𝑂(𝑛). The detailed proofs of these results can be found also in [11].

6.4. Complexities and oracles

6.4.1. Relativized complexity. Relativization is a well known method in
computability theory. We take some definition or statement that involves the class
of computable functions, and replace computable functions by functions that are
computable with some oracle (computable relative to this oracle). The oracle usu-
ally is a total function 𝛼 whose arguments and values are natural numbers and/or
binary strings, for example, a characteristic function of some set 𝐴. An algorithm
is allowed to call an “external procedure” that computes the value 𝛼(𝑛) for a given
value of the parameter 𝑛. If 𝛼 is a characteristic function of a set 𝐴, this means
that we may ask whether some 𝑛 belongs to 𝐴 or not. If the function 𝛼 is not
computable, this permission to ask 𝛼-oracle increases our capabilities and we get
a class of 𝛼-computable functions that contains all computable functions but also
some non-computable ones (including 𝛼).

Then we can develop the general theory of algorithms as usual and define,
say, 𝛼-enumerable sets, or 𝛼-computable real numbers, or (closer to our subject)
𝛼-lower-semicomputable semimeasures etc. And practically all the theorems of
general theory of algorithms (and their proofs) remain valid, we need just to add
“𝛼-” for all the notions. This procedure is called “relativization”.

6.4. COMPLEXITIES AND ORACLES 215

In particular, for a given set 𝐴 we may define the notion of 𝐴-relativized Kol-
mogorov complexity allowing decompressors to use oracle 𝐴. This can be done for
plain, prefix and all other versions of complexity that we have considered (uncondi-
tional or conditional). The use of oracle is shown by a superscript, so, e.g., 𝐾𝐴(𝑥)
denotes prefix complexity relativized by oracle 𝐴.

In fact we can do a bit more: instead of defining complexity for a given oracle 𝐴
up to 𝑂(1) additive term (by proving the existence of an optimal 𝐴-decompressor)
we may define (with the same precision) the function of two arguments:

⟨𝐴, 𝑥⟩ ↦→ 𝑘𝐴(𝑥)

(here 𝑘 is one of the complexity versions, say, 𝐾 or KM).

204 Show that this indeed can be done and that the resulting complexities
coincide with the limits of conditional complexities defined in Section 6.3:

𝐾𝐴(𝑥) = 𝐾≍,=(𝑥) = lim
𝑛→∞

𝐾(≍,= |≍)(𝑥 |𝐴𝑛),

where 𝐴𝑛 is the prefix of length 𝑛 of the characteristic sequence of the set 𝐴.
(Similar statements are true for other complexity versions.)

Note that relativized complexity does not exceed the non-relativized one (up
to 𝑂(1)), since the algorithm with an oracle is not obliged to use it, so all decom-
pressors are 𝐴-decompressors.

For some oracles 𝐴 and some strings 𝑥 the 𝐴-complexity of 𝑥 can be much
smaller than oracle-free complexity. For example, let 𝐴 be the universal enumerable
set. This set is usually denoted by 0′. In other words, 0′-oracle is an oracle for the
halting problem. We may send any program (with its input) to this oracle and the
oracle will tell us whether this program terminates for this input.

Using this oracle, we can find for every string 𝑥 its shortest description (in
the standard sense, without oracle) since the oracle tell us which computations
terminate. Therefore, the function 𝐶 is 0′-computable (the same is true for 𝐾,
conditional complexities etc.), and the list of all strings of complexity less than 𝑛
(that has 𝑛 + 𝑂(1) complexity without the oracle), as well as the numbers 𝐵(𝑛)
and 𝐵𝐵(𝑛) (see Section 1.2) now have 0′-complexity only 𝑂(log 𝑛).

On the other hand, most strings of length 𝑛 have 0′-complexity 𝑛−𝑂(1), and
therefore their 0′-complexity is close to their non-relativized complexity (and to
their length).

205 Assume that for some set 𝐴 its use (as an oracle) does not change the

plain complexity function, i.e., 𝐶(𝑥) = 𝐶𝐴(𝑥) + 𝑂(1). Show that 𝐴 is decidable.
Show that the same is true also for KM , KR , KA instead of 𝐶. [Hint: One can
characterized the computability of a binary sequence in terms of complexities of its
prefixes, see Problem 49, p. 56.]

As we have said, it is not the case for prefix complexity: there exist 𝐾-low
sets that do not change prefix complexity being used as oracles. This is a very
important recent result (see [146, 49], or the popular exposition in [20]).

This result implies that there is no formula that can express the value of
plain (monotone, decision, a priori) complexities in terms of prefix complexity with
𝑂(1)-precision. Note that the same is true for conditional prefix complexity: it
cannot be expressed in terms of the unconditional one, since it determines the
class of computable functions. Indeed, a sequence 𝛼 is computable if and only if

216 6. GENERAL SCHEME FOR COMPLEXITIES

𝐾(𝛼0 . . . 𝛼𝑛−1 |𝑛) = 𝑂(1). Note that Theorem 72 characterizes plain complexity in
terms of conditional prefix complexity.

6.4.2. Complexity with large numbers as conditions. Let us define a
new type of conditional complexity, i.e., the complexity of a string 𝑥 relative to the
set 𝐴. Informally speaking, we want to measure the complexity of the following task:
“obtain 𝑥 given an arbitrary element of 𝐴” This complexity has several equivalent
(up to 𝑂(1)) definitions.

Here is one of them. Fix some reasonable programming language. (Formally
speaking, “reasonable” means that the numbering corresponding to this language
is a Gödel numbering, i.e., there exists a translation algorithm from any other
programming language, see [182] for the details.) Now let us define the conditional
complexity of an object 𝑥 with condition 𝐴 as the minimal (plain) Kolmogorov
complexity of a program that maps every element of 𝐴 into 𝑥. (A generalization
of this definition is considered in Chapter 13.)

The existence of a translation algorithm guarantees that this notion is well-
defined, i.e., that the complexity defined in this way does not depend on the choice
of a programming language (Gödel numbering).

One should not mix this complexity with a completely different notion: a con-
ditional complexity of 𝑥 with condition 𝐴, where the finite set 𝐴 is given as a finite
object (say, as the list of its elements). In our case we get not the list of all elements
of 𝐴, but only one of them, and should be prepared to deal with arbitrary element
of 𝐴. To stress this distinction, we use the notation 𝐶(𝑥‖𝐴) for the new complexity
(while 𝐶(𝑥 |𝐴) denotes the condition complexity of 𝑥 if a finite set 𝐴 is given as a
list of its elements).

A different (but equivalent) definition of 𝐶(𝑥‖𝐴) can be given as follows. Let
𝐷 (decompressor) be a computable partial function of two arguments. Let 𝑥 be
a binary string and let 𝐴 be a set of binary strings. We define 𝐶𝐷(𝑥‖𝐴) as the
minimal length of a string 𝑝 such that 𝐷(𝑝, 𝑦) = 𝑥 for every 𝑦 ∈ 𝐴.

206 Prove that there exists a optimal decompressor in this class (that gives
the minimal function 𝐶𝐷(·‖ ·) up to 𝑂(1) additive term). Prove that 𝐶𝐷 for optimal
𝐷 coincides (up to 𝑂(1)-term) with the complexity defined above.

For a singleton 𝐴 = {𝑎} both the complexities 𝐶(𝑥 |𝐴) and 𝐶(𝑥‖𝐴) coincide
with the standard conditional complexity 𝐶(𝑥 |𝑎) up to 𝑂(1)-term (see Problem 28).

Now let 𝐴 be the set of all integers greater than some (presumably) large
number 𝑛. (As usually, we identify natural numbers with binary strings.) The
complexity of a string 𝑥 with respect to this set we denote by 𝐶(𝑥‖ > 𝑛). Obviously,
this complexity does not exceed 𝐶(𝑥) and is a non-increasing function of 𝑛 (and,
more generally, 𝐶(𝑥‖𝐴) can only decrease if 𝐴 becomes smaller; it becomes 𝑂(1)
for the empty set 𝐴). So there exists some limit as 𝑛 → ∞.

Theorem 131.
lim
𝑛→∞

𝐶(𝑥‖ > 𝑛) = 𝐶0′
(𝑥) + 𝑂(1).

Proof. Assume that the limit equals 𝑘. Then there exists a program 𝑝 of
complexity 𝑘 that maps all sufficiently large numbers to 𝑥. If an oracle 0′ is avail-
able, this program can be considered as a 0′-description of 𝑥. Indeed, given this
program, we search for 𝑁 and 𝑦 such that 𝑝 does not map any 𝑛 > 𝑁 into an object
that differs from 𝑦. The emphasized property can be checked using 0′-oracle since

6.4. COMPLEXITIES AND ORACLES 217

it has an enumerable negation. And our assumption guarantees that 𝑦 equals 𝑥.
Therefore,

𝐶0′
(𝑥) 6 lim

𝑛→∞
𝐶(𝑥‖ > 𝑛) + 𝑂(1).

On the other hand, let 𝑦 be a description of 𝑥 with respect to a 0′-optimal
decompressor and let 𝑘 be the length of 𝑦. Consider a following program that
has additional input 𝑁 : make 𝑁 steps of the enumeration of the universal set 0′

and then use the set of enumerated elements as an oracle for decompression of 𝑦.
This program can be constructed effectively given 𝑦, therefore its complexity does
not exceed 𝐶(𝑦) + 𝑂(1) 6 𝑙(𝑦) + 𝑂(1) = 𝑘 + 𝑂(1). On the other hand, if 𝑁 is
large enough, this program generates 𝑥 (since only finite number of oracle calls are
performed during the decompression of 𝑦, for all sufficiently large 𝑁 these questions
get correct answers even if the oracle is replaced by its 𝑁 -approximation). �

It turns out that a similar result is true where we replace 𝐶(𝑥‖ > 𝑛) by
sup𝑚>𝑛 𝐶(𝑥 |𝑚). Note that

sup
𝑚>𝑛

𝐶(𝑥 |𝑚) 6 𝐶(𝑥‖ > 𝑛),

since the optimal program in the right-hand side can be used for any 𝑚 in the
left-hand side. This is easy; the surprising result is that both sides have the same
limit as 𝑛 → ∞ (up to 𝑂(1) term):

Theorem 132.
lim sup
𝑛→∞

𝐶(𝑥 |𝑛) = 𝐶0′
(𝑥) + 𝑂(1).

Proof. We have to prove that if (for some string 𝑥 and integer 𝑘)

𝐶(𝑥 |𝑛) < 𝑘 for any sufficiently large 𝑛,

then 0′-complexity of 𝑥 does not exceed 𝑘+𝑂(1). The difficulty here is that (unlike
in the previous theorem) the program of length less than 𝑘 that maps 𝑛 to 𝑥 may
depend on 𝑛, and none of these programs is guaranteed to work for all sufficiently
large 𝑛.

Note that there is less than 2𝑘 strings 𝑥 with this property (for a given 𝑘).
Indeed, if we have more of them, then for sufficiently large 𝑛 we run out of programs
of length less than 𝑘.

It would be enough to prove that the set of strings 𝑥 that have this property is
a 0′-enumerable set whose enumeration effectively depends on 𝑘 (in other terms, it
would be enough to prove that the function 𝑥 ↦→ lim sup𝐶(𝑥 |𝑛) is 0′-enumerable
from above). However, the natural description of this set,

∃𝑁 (∀𝑛 > 𝑁) [𝐶(𝑥 |𝑛) < 𝑘],

shows only that it is a Σ3-set (the condition in brackets is enumerable and two
quantifiers precede it), so we choose an another approach.

Note that we do not really need this set to be 0′-enumerable. It is enough to
show that it is a subset of an 0′-enumerable set that contains less than 2𝑘 elements
for a given 𝑘. This can be done as follows.

Consider two-dimensional enumerable set of pairs ⟨𝑛, 𝑥⟩ such that 𝐶(𝑥 |𝑛) < 𝑘.
This set (for each 𝑘) is “thin” in the following sense: all vertical sections of this set
(for fixed 𝑛) contain less than 2𝑘 elements.

218 6. GENERAL SCHEME FOR COMPLEXITIES

Consider some point ⟨𝑛, 𝑥⟩. Let us try to add a horizontal ray that goes on the
right from this point, to our set (i.e., add all pairs ⟨𝑚,𝑥⟩ for all 𝑚 > 𝑛). The set
may remain thin or not, and this two cases can be distinguished by an 0′-oracle.
Indeed, the negation of being thin is an enumerable property (there exists a section
that has at least 2𝑘 different elements including the added one).

Let us perform this attempts (to add the horizontal ray starting from some pair
⟨𝑛, 𝑥⟩) sequentially for all pairs in some order. (If some ray is added successfully,
then its elements are taken into account for all subsequent attempts.) This process
is 0′-computable and therefore the ordinates of all added rays form a 0′-enumerable
set.

This set has less than 2𝑘 elements (since we add rays only if the resulting set
is still thin) and contains every 𝑥 such that lim sup𝐶(𝑥 |𝑛) < 𝑘. Indeed, for such
an 𝑥 there is some ray that lies entirely is the initial set, and this ray can be added
at any time. �

(This proof is a simplified version of the proof given in [194]. See also similar
arguments in [16].)

We can also obtain the results for prefix complexity that are similar to Theo-
rem 131 and 132. However, the definition of a conditional prefix complexity with
respect to a set is quite subtle, so we postpone its discussion and start with the
second theorem.

Theorem 133.
lim sup
𝑛→∞

𝐾(𝑥 |𝑛) = 𝐾0′
(𝑥) + 𝑂(1).

Proof. Using a priori probabilities (conditional and unconditional), we rewrite
the statement as follows:

lim inf
𝑛→∞

𝑚(𝑥 |𝑛) = 𝑚0′
(𝑥)

(the equality is understood up to a bounded factor in both directions).
Let us show first that the left-hand side is greater than the right-hand side (up

to 𝑂(1)-factor). Indeed, consider an 0′-oracle probabilistic machine whose output

has distribution 𝑚0′
. Then for any integer 𝑛 we may run this machine with a

changed oracle: instead of the entire oracle we use its approximation obtained after
𝑛 steps. This, of course, changes the output distribution, however, the lim inf of
the probabilities to get some 𝑥 using 𝑛-approximation to the oracle (as 𝑛 → ∞) is
greater than or equal to the probability to get 𝑥 with the entire oracle. Indeed, the
latter probability is the measure of an open set of all bit sequences that are mapped
to 𝑥 using 0′-oracle. This open set is a union of intervals, and for each interval the
computation depends only on some finite part of the oracle and therefore the same
random bits will give the same output 𝑥 if the approximation to the oracle is
good enough (i.e., 𝑛 is sufficiently large). (Note that lim inf can be bigger than
the probability to get 𝑥 with the final oracle, since approximate oracles can force
output 𝑥 for combinations of random bits that do not generate 𝑥 with the final
oracle.)

Now let us prove the reverse inequality. This proof resembles the proof of
Theorem 132. We have a lower semicomputable family of semimeasures: for each 𝑛
the function 𝑥 ↦→ 𝑚(𝑥 |𝑛) is a semimeasure (i.e.,

∑︀
𝑥 𝑚(𝑥 |𝑛) 6 1 for each 𝑛). It

6.4. COMPLEXITIES AND ORACLES 219

follows that the function
𝑚′(𝑥) = lim inf

𝑛→∞
𝑚(𝑥 |𝑛)

is also a semimeasure, i.e., the sum
∑︀

𝑥 𝑚
′(𝑥) does not exceed 1. If this function

were 0′-lower-semicomputable, this would finish the proof; however, we have the
equivalence

𝑟 < lim inf
𝑛→∞

𝑚(𝑥 |𝑛) ⇔ (∃𝑞 > 𝑟)∃𝑁 (∀𝑛 > 𝑁) [𝑞 < 𝑚(𝑥 |𝑛)]

where the right-hand side has too many quantifiers (note that the property in the
brackets is enumerable, not decidable). But again we may replace the function
𝑚′ by any larger function, so it remains to construct an 0′-lower-semicomputable
upper bound for 𝑚′.

To achieve this goal let us consider triples ⟨𝑁, 𝑥, 𝜀⟩ (where 𝜀 is a positive rational
number). For a given triple we try to increase the values 𝑚(· | ·) up to 𝜀 on a ray
that consists of pairs ⟨𝑛, 𝑥⟩ for fixed 𝑥 and for all 𝑛 > 𝑁 . This change is performed
only if we get semimeasures (i.e., for every 𝑛 the sum over all 𝑥 does not exceed 1).

As before, we can check whether such an increase is possible using 0′-oracle.
(Indeed, the violation is an enumerable event.) Let us consider sequentially all
triples and perform the increase when possible (the increased values are taken into
account on the subsequent steps). Then for each possible increase we keep the
values of 𝑥 and 𝜀. In other words, we consider a function that on every 𝑥 is equal
to the upper bound of all 𝜀 that are used for increase together with that 𝑥. In this
way we get a 0′-enumerable family of semimeasures that is an upper bound for 𝑚′.
Indeed, if 𝑚′ is greater than 𝜀 for some 𝑥, the function 𝑚 is greater than 𝜀 on some
ray, increase does not really change anything and therefore is permitted. �

To formulate a similar statement for 𝐾(𝑥‖ > 𝑛) we should first of all define
this prefix complexity relative to a set. Here we have several possibilities, and it is
unclear which of them is “the right thing”.

We may try to define 𝐾(𝑥‖𝐴) and the minimal prefix complexity of a pro-
gram that outputs 𝑥 when applied to every element of 𝐴. However, Problem 109
(p. 118) shows that this definition does not match 𝐾(𝑥|𝑎) for singleton conditions,
so probably this definition is not a good one.

Another definition is similar to the approach used in Problem 206. Consider
an arbitrary computable function ⟨𝑝, 𝑥⟩ ↦→ 𝐷(𝑝, 𝑥) that is prefix-stable with respect
to its first argument (if the second one is fixed). For any 𝑥 and for any set 𝐴 we
then define 𝐾𝐷(𝑘‖𝐴) as the minimal length of a string 𝑝 such that 𝑓(𝑝, 𝑛) = 𝑘
for all 𝑛 ∈ 𝐴. The difference (compared to plain complexity) is that we require
the conditional decompressor to be prefix-stable with respect to the first argument.
There exists an optimal decompressor in this class that gives the least function 𝐾𝐷

(up to 𝑂(1) additive term). This function can be called prefix complexity 𝐾(𝑥‖𝐴).

207 Show that the same complexity (up to 𝑂(1)) is obtained if decompressors
are computable continuous mappings Σ → F (here Σ is the space of finite and
infinite sequences of zeros and ones, and F is the space of partial functions from
N to N) and complexity is the length of a shortest string that is mapped to some
partial function that is equal to 𝑥 on all elements of 𝐴.

We can also define the prefix complexity with set condition using prefix-free
functions instead of prefix-stable ones. Again, in the class of computable prefix-free
functions there exists an optimal one (that gives the smallest complexity function

220 6. GENERAL SCHEME FOR COMPLEXITIES

𝐾𝑓 (𝑥‖𝐴)). In this way we get the definition of some function 𝐾 ′(𝑥‖𝐴) that re-
sembles the conditional complexity 𝐾 ′(𝑘|𝑛) and coincides with it (up to 𝑂(1)) if
𝐴 = {𝑛}.

Finally one can define a priori probability 𝑚(𝑥‖𝐴). For that we consider some
probabilistic machine that has input 𝑦 and the measure of the set of all sequences
𝜔 ∈ Ω that (being used as random bits) makes the machine transform every input
𝑦 ∈ 𝐴 into 𝑥. Again, there exists an optimal machine that maximizes this proba-
bility (up to 𝑂(1) constant factor) and for singletons this definition coincides with
our definition of the conditional a priori probability.

The inequalities

− log𝑚(𝑘‖𝐴) 6 𝐾(𝑘‖𝐴) + 𝑂(1) 6 𝐾 ′(𝑘‖𝐴) + 𝑂(1),

can be proved in the same way as for conditional prefix complexity, but the argu-
ment that showed that all three expression coincide does not work as before. As
Elena Kalinina [70] has shown, the second inequality is not an equality; we do now
know what happens with the first inequality. But it is easy to see that all three
expressions are not less than

− log inf
𝑥∈𝐴

𝑚(𝑘|𝑥) = sup
𝑥∈𝐴

𝐾(𝑥|𝑎),

so each of them can be used in the theorem similar to Theorem 131. In particular,
for 𝐾(𝑥‖𝐴) (which seems to be most natural among all three) we get the following
result:

Theorem 134.

lim
𝑛→∞

𝐾(𝑥‖ > 𝑛) = 𝐾0′
(𝑥) + 𝑂(1).

208 Prove that all three quantities 𝐾(𝑘‖𝐴), 𝐾 ′(𝑘‖𝐴), and 𝐶(𝑘‖𝐴) differ at
most by 𝑂(the logarithm of the smallest one), i.e., by 𝑂(log𝐶(𝑘‖𝐴)).

We do not know whether 𝐶(𝑥‖𝐴) can be bounded by a linear (or even com-
putable) function of − log𝑚(𝑘‖𝐴) (at least for finite 𝐴, or even for 𝐴 that contain
only two elements).

Let us mention here that there is another type of problems where the natural
notions of complexity and a priori probability differ significantly: the enumeration
problems considered by R. Solovay [187]. Let us consider non-terminating algo-
rithms whose input is a binary string; such an algorithm enumerates some (finite
or infinite) set by printing its elements one by one. (If algorithm starts to print
some output element, it is obliged to print it completely, and then it may resume
the computation.) If 𝐴 is an algorithm of this type and 𝑆 is some enumerable set,
we define the complexity of 𝑆 with respect to 𝐴 as the minimal length of the input
for which 𝐴 enumerates 𝑆:

KE𝐴(𝑆) = min{𝑙(𝑝) | 𝑀(𝑝) enumerates 𝑆}.
As usual, it is easy to see that there exists an optimal algorithm 𝐴 that makes
KE𝐴 minimal up to 𝑂(1). We fix an optimal 𝐴 and call KE𝐴(𝑆) an enumeration
complexity of 𝑆. It is denoted by KE (𝑆) and is finite if and only if 𝑆 is enumerable.

On the other hand, we may consider probabilistic enumeration algorithms, i.e.,
the non-terminating algorithms without input equipped with a fair random bits
generator and producing output elements as explained above. The output set of

6.4. COMPLEXITIES AND ORACLES 221

a probabilistic enumeration algorithm 𝐴 is a random variable, and for a given set
𝑆 we consider the probability of the event “𝐴 enumerates 𝑆”. This probability is
denoted by 𝑚𝐴(𝑆). Again it is easy to see that there exists an optimal 𝐴 that makes
𝑚𝐴 maximal up to 𝑂(1)-factor; we fix some 𝐴 and omit the subscript 𝐴, calling
𝑚(𝑆) the enumeration a priori probability of 𝑆. It was shown by de Leeuw, Moore,
Shannon and Shapiro [90] that 𝑚(𝑆) is positive if and only if 𝑆 is enumerable.

209 Prove this statement. [Hint: if a subset of Ω has positive probability,
there is an interval where the fraction of this subset exceeds 1/2.]

It is easy to see that KE (𝑆) 6 log𝑚(𝑆) + 𝑂(1). The reverse inequality, even
with logarithmic precision, i.e., the inequalilty − log𝑚(𝑆) 6 KE (𝑆)+𝑂(logKE (𝑆)),
is unknown. Some partial results: it is true with factor 3:

− log𝑚(𝑆) 6 3 ·KE (𝑆) + 𝑂(logKE (𝑆)),

as shown in [187], and for finite sets the constant 3 can be replaced by 2 (see [195]).

6.4.3. Limit frequencies and 0′-a-priori-probability. We conclude this
section by a result from [132]; it relates the frequencies in computable sequences
to the 0′-relativized prefix complexity. (See also the simplified exposition in [16].)

Let 𝑓(0), 𝑓(1), . . . be a computable sequence of natural numbers. For a given
𝑛 and 𝑘 let us count the appearances of 𝑘 among 𝑓(0), . . . , 𝑓(𝑛− 1) and divide the
result by 𝑛. The ratio can be called the frequency of 𝑘 among the first 𝑛 terms of
the sequence.

Now for a fixed 𝑘 consider the lim inf of this frequency as 𝑛 → ∞; we call it
lower frequency of element 𝑘 in the sequence 𝑓 .

Let 𝑝𝑘 be a lower frequency of 𝑘 in a given sequence. It is easy to check that∑︀
𝑘 𝑝𝑘 6 1. Indeed, if some partial sum of this series exceeds 1, then a finite sum

of lim inf’s exceeds 1, and for sufficiently large 𝑛 the sum of the frequencies among
the first 𝑛 terms of the sequence exceeds 1, which is impossible.

The following statement is true for any computable sequence 𝑓 :

Theorem 135. The function 𝑘 ↦→ 𝑝𝑘 is 0′-lower-semicomputable.

(Here 𝑝𝑘 is lower frequency of 𝑘; the definition of the lower semicomputable
function is given in Section 4.1; now we consider 0′-relativized version of this defi-
nition.)

Proof. Indeed, the statement 𝑟 < 𝑝𝑘 (where 𝑟 is some rational number) is
equivalent to the following one:

there exist a rational number 𝑝 > 𝑟 and integer 𝑁 such that
the frequency of 𝑘 among the first 𝑛 terms of 𝑓 exceeds 𝑝 for all
𝑛 > 𝑁 .

The property printed in italics is co-enumerable (has an enumerable negation):
if it is not true, we can establish it by showing the number 𝑛 that violates it.
Therefore this property is 0′-decidable (we apply the oracle to the algorithm that
searches for that 𝑛). So the property 𝑟 < 𝑝𝑘 is 0′-enumerable. �

In fact we use the following general observation:

210 Let 𝑟𝑛 be a computable sequence of rational numbers. Show that lim inf 𝑟𝑛
is a 0′-lower-semicomputable real number and the corresponding 0′-algorithm can
be effective found given an algorithm for 𝑟𝑛.

222 6. GENERAL SCHEME FOR COMPLEXITIES

By the way, the reverse statement is also true:

211 Any 0′-lower-semicomputable real number is a lim inf of a computable
sequence of rational numbers.

[Hint: This number is a supremum of a 0′-computable sequence of rational
numbers 𝑟𝑛. Each 𝑟𝑛 is an ultimate value of a stabilizing sequence 𝑟𝑛,𝑘. Let
𝑠𝑘 be the maximum of 𝑟0,𝑘, . . . , 𝑟𝑡−1,𝑘 where 𝑡 is the minimal number such that
𝑟𝑡,𝑘 ̸= 𝑟𝑡,𝑘−1.]

It turns out that for an appropriate computable sequence 𝑓 the function 𝑘 ↦→ 𝑝𝑘
is a maximal 0′-lower-semicomputable semimeasure. This is a corollary of the
following result:

Theorem 136. For any 0′-lower-semicomputable sequence 𝑞0, 𝑞1, . . . of non-
negative reals such that

∑︀
𝑖 𝑞𝑖 6 1 there exists a computable sequence 𝑓(0), 𝑓(1), . . .

such that for all 𝑘 the lower frequency of 𝑘 in the sequence 𝑓 is at least 𝑞𝑘.

This allows us to give an equivalent definition of 0′-relativized prefix complexity
of 𝑘: it is the negative logarithm of the lower frequency of 𝑘 in the optimal sequence
𝑓 (that gives maximal lower frequencies up to 𝑂(1)-factor).

Proof. Since 𝑞𝑘 is lower semicomputable, the set of pairs ⟨𝑟, 𝑘⟩ where 𝑟 is a
rational number smaller than 𝑞𝑘 is 0′-enumerable. As we know from the general
computability theory (see, e.g., [182]), 0′-enumerable sets are Σ2-sets, i.e., there
exists a decidable property 𝑅 such that

𝑟 < 𝑞𝑘 ⇔ ∃𝑢∀𝑣 𝑅(𝑟, 𝑘, 𝑢, 𝑣)

We use a slightly different representation of Σ2-predicates: there exists a com-
putable total function ⟨𝑟, 𝑘, 𝑛⟩ ↦→ 𝑆(𝑟, 𝑘, 𝑛) with 0/1-values such that 𝑟 < 𝑞𝑘 if and
only if the sequence 𝑆(𝑟, 𝑘, 0), 𝑆(𝑟, 𝑘, 1) . . . has finitely many zeros. The sequence
𝑆(𝑟, 𝑘, 0), 𝑆(𝑟, 𝑘, 1) . . . can be constructed as follows: we consider (sequentially) the
values 𝑢 = 0, 1, 2, . . . and for each 𝑢 we search for 𝑣 such that 𝑅(𝑟, 𝑘, 𝑢, 𝑣) is false.
While searching, we extend the sequence adding zeros; when 𝑣 is found, we add
1 to the sequence and switch to the next value of 𝑢. The number of zeros in the
constructed sequence is finite if and only if the search was unsuccessful for some 𝑢,
i.e., if 𝑟 < 𝑞𝑘.

It is convenient to visualize this process as follows: from time to time the request
“please make 𝑞𝑘 greater than 𝑟” appears for some 𝑘 and 𝑟 (and the previous request
with the same 𝑘 and 𝑟 is canceled). Then we consider the requests that appear and
are never canceled later; they correspond to pairs ⟨𝑟, 𝑘⟩ such that 𝑟 < 𝑞𝑘. (The
moments when requests appear correspond to zeros in the sequence 𝑆.) This process
is computable. We may also assume without loss of generality that at each given
moment there is only finitely many requests. (This does not matter since only the
limit behavior of the sequence is important.)

Recall that we need a computable sequence 𝑓(0), 𝑓(1), . . . for which the lower
frequency of 𝑘 is at least 𝑞𝑘. To achieve this goal, it is enough to represent the given
0′-lower-semicomputable semimeasure as the lim inf of a computable sequence of
measures with rational values, i.e., to construct a two-dimensional table of rational

6.4. COMPLEXITIES AND ORACLES 223

numbers
𝑝00 𝑝01 𝑝02 . . .
𝑝10 𝑝11 𝑝12 . . .
𝑝20 𝑝21 𝑝22 . . .
.

such that each row has only finite number of non-zero elements, these elements
have sum 1, and the lim inf in the 𝑘th column is at least 𝑞𝑘. Indeed, let us assume
that such a table is constructed. Without loss of generality we may suppose that in
the 𝑖th row all the numbers are multiples of 1/𝑖 (we may take approximation with
precision 1/𝑖 not changing the limit). Then the sequence 𝑓 can be constructed as
follows: first we use the first row as the table of frequencies, then switch to the
second row and use it for a much longer time (to make the influence of the first row
negligible), then use the third row even longer (to make the influence of the first
and second rows negligible) etc.

So it remains to construct a table 𝑝𝑖𝑗 with the following property: if some request
“please make 𝑞𝑘 greater than 𝑟” appears at some moment and is not canceled later,
then the 𝑘th column has lim inf at least 𝑞𝑘. This is done as follows: constructing
𝑛th row (at time 𝑛), we try to satisfy all current requests (that have appeared and
are not canceled) according to their age (the oldest request is treated first). For
each request we increase the corresponding 𝑝𝑘 up to a given 𝑟 if this is possible
(does not make the sum greater than 1). We may assume that there are many
requests and at some point the sum becomes greater than 1; at that moment we
cut the last request (so the sum is 1) and this finishes the construction of 𝑛th row.

Why this helps? Imagine that 𝑟 < 𝑞𝑘 is true. Then the request “please make 𝑞𝑘
greater than 𝑟” at some moment appears and is never canceled later. (It need not
to be the first appearance of this request.) Let us look at all requests that appear
before this one. Some of them are canceled later (while others are “final”). Let
us wait until all these cancellations happen. After that only “true” requests (that
are never canceled later) are older than our request, and for these true requests we
have 𝑟′ < 𝑞𝑘′ . Their sum therefore does not exceed 1 together with our request, so
the requests with high priority at that time will not interfere with our request. �

212 Prove that there exists a computable sequence where the lower frequen-
cies coincide with 𝑞𝑘.

[Hint: combine the proof of this theorem with the solution of Problem 211.]

One more result from the same paper [132]:

213 Prove that theorem 136 remains true if we consider partial computable
functions 𝑓 from N to N instead of sequences: for any partial computable func-
tion 𝑓 from N to N there exists a (total) computable sequence 𝑔(0), 𝑔(1), . . . that
has the same (or bigger) lower frequencies: for any 𝑘 the lower frequency of 𝑘 in 𝑔
is at least its lower frequency in 𝑓(0), 𝑓(1), . . . (which is defined as the limit infe-
rior of the number of appearances of 𝑘 among 𝑓(0), . . . , 𝑓(𝑁 − 1) divided by 𝑁).
[Hint [16]: for every 𝑁 the frequencies in the initial segment of length 𝑁 form
a lower semicomputable semimeasure (it was a measure for total sequences); the
construction used in the proof of Theorem 133 allows us to find an upper bound
for the limit frequencies that is a 0′-lower-semicomputable semimeasure. Then we
apply Theorem 136.]

CHAPTER 7

Shannon entropy and Kolmogorov complexity

7.1. Shannon entropy

Consider an alphabet 𝐴 that contains 𝑘 letters 𝑎1, . . . , 𝑎𝑘. We want to encode
each letter 𝑎𝑖 by a binary string 𝑐𝑖. Of course, we want all 𝑐𝑖 to be different to avoid
confusion. But this is not enough if we write codewords without any separator.
Example: imagine that letters A, B and C are encoded by strings 0, 1 and 01.
All three codes are different, but two strings ABAB and ABC have identical codes
0101. So additional precautions are needed to guarantee unique decoding.

We want the code to allow unique decoding. At the same time we want it to
be space-efficient. It is good to have the strings 𝑐𝑖 as short as possible (without
violating the unique decoding property). And if we cannot make all codewords
short, the priority should be given to the frequent letters. (Similar considerations
were taken into account when Morse code was designed.)

7.1.1. Codes. Let us give formal definitions. A code for a 𝑘-letter alphabet
𝐴 = {𝑎1, . . . , 𝑎𝑘} consists of 𝑘 binary strings 𝑐1, . . . , 𝑐𝑘. These strings are called
codewords (for the code considered); letter 𝑎𝑖 has encoding 𝑐𝑖. Any 𝐴-string (finite
sequence of letters taken from 𝐴) has an encoding ; to get it we encode each letter
and concatenate their codes (without separators).

A code is injective if different letters have different codes. A codes is uniquely
decodable if every two different 𝐴-strings have different codes. A prefix code is a
code where no codeword is a prefix of another codeword. (This is a traditional
terminology; however, the more logical name “prefix-free code” is also used.)

Theorem 137. Every prefix code is uniquely decodable.

Proof. The first codeword (the encoding of the first letter) is determined
uniquely (due to the prefix property), so we can separate it from the rest. Then
the second codeword is determined, etc. �

214 Show that there exist uniquely decodable codes which are not prefix
codes. [Hint: Consider a “suffix” code.]

215 Construct an explicit bijection between the set of all infinite sequences of
digits 0, 1, 2 and the set of all infinite sequences of digits 0, 1. [Hint. Use the prefix
code 0 ↦→ 00, 1 ↦→ 01, 2 ↦→ 1.]

216 Consider prefix codes 𝑐1, . . . , 𝑐𝑘 (for a 𝑘-letter alphabet) and 𝑑1, . . . , 𝑑𝑙
(for a 𝑙-letter alphabet). Show that strings 𝑐𝑖𝑑𝑗 (concatenations of codewords from
these two codes) form a prefix code for a 𝑘𝑙-letter alphabet.

Before asking which of two codes is more space-efficient, we should fix frequen-
cies of the letters. Let 𝑝1, . . . , 𝑝𝑘 be non-negative reals such that 𝑝1 + . . . + 𝑝𝑛 = 1.

225

226 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

The number 𝑝𝑖 will be called frequency or probability of letter 𝑎𝑖. For each code
𝑐1, . . . , 𝑐𝑘 (for alphabet 𝑎1, . . . , 𝑎𝑘) its average length is defined as∑︁

𝑖

𝑝𝑖𝑙(𝑐𝑖)

Now we can formulate our goal: for given 𝑝1, . . . , 𝑝𝑘 we want to find a code of
minimal average length inside some class of codes, e.g., an uniquely decodable code
of minimal average length.

217 Which injective code has minimal average length (among injective codes)
for given 𝑝1, . . . , 𝑝𝑛? [Hint: Put all letters in the decreasing frequency order, and
all binary strings in the increasing length order.]

7.1.2. The definition of Shannon entropy. Shannon entropy provides a
lower bound for the average length of a uniquely decodable code. It is defined (for
given non-negative 𝑝𝑖 such that

∑︀
𝑖 𝑝𝑖 = 1) as

𝐻 = 𝑝1(− log 𝑝1) + 𝑝2(− log 𝑝2) + . . . + 𝑝𝑘(− log 𝑝𝑘)

(We assume that 𝑝 log 𝑝 = 0 for 𝑝 = 0 making function 𝑝 log 𝑝 continuous at the
point 𝑝 = 0.)

Some motivation for this definition: letter 𝑎𝑖 appears with frequency 𝑝𝑖, and
each occurrence of 𝑎𝑖 carries − log 𝑝𝑖 “bits of information”, so the average number
of bits per letter is 𝐻. But then we should explain also why we believe that each
occurrence of the letter that has frequency 𝑝𝑖 carries − log 𝑝𝑖 bits of information.
Imagine that somebody has in mind one of 2𝑛 possible numbers and you want to
guess this number by asking yes or no questions. Then you need 𝑛 questions, and
each answer gives you one bit of information; so when event having probability
1/2𝑛 happens it brings us 𝑛 bits of information.

Of course, the previous paragraph is just a mnemonic rule for the definition
of entropy. The formal reason to introduce this notion is given by the following
theorem:

Theorem 138. Let 𝑝1, . . . , 𝑝𝑛 be non-negative reals such that 𝑝1+. . .+𝑝𝑛 = 1.
(a) The average length of every prefix code 𝑐1, . . . , 𝑐𝑘 is at least 𝐻 (the entropy):∑︁

𝑖

𝑝𝑖𝑙(𝑐𝑖) > 𝐻.

(b) There exists a prefix code such that∑︁
𝑖

𝑝𝑖𝑙(𝑐𝑖) < 𝐻 + 1.

Proof. Note that this theorem deals only with the lengths of codewords (but
not the codewords itself). So it is important to know when given integers 𝑛1, . . . , 𝑛𝑘

could be lengths of codewords in a prefix code. Here is the criterion:
Lemma (Kraft inequality). Assume that non-negative integers 𝑛1, . . . , 𝑛𝑘 are

fixed and we want to find binary strings 𝑐1, . . . , 𝑐𝑘 of these lengths (𝑙(𝑐𝑖) = 𝑛𝑖) that
form a prefix code (i.e., 𝑐𝑖 is not a prefix of 𝑐𝑗 for 𝑖 ̸= 𝑗). This is possible if and
only if ∑︁

𝑖

2−𝑛𝑖 6 1.

We have already seen this statement, see the lemmas used to prove Theorems
56 (p. 106) and 58 (p. 107). In one direction: if 𝑐𝑖 is never a prefix of other string

7.1. SHANNON ENTROPY 227

𝑐𝑗 , then the corresponding intervals of lengths 2−𝑛𝑖 are disjoint, and the sum of
their lengths does not exceed 1. (Using the probabilistic language: a random string
of 0s and 1s has prefix 𝑐𝑖 with probability 2−𝑛𝑖 ; these 𝑘 events are disjoint, so the
sum of probabilities does not exceed 1.)

Going in the opposite direction, we can use a simpler argument that was used
before (in the proof of Theorem 58). The simplification is possible since we have
only a finite number (𝑘) of integers and they are given in advance. We can simply
place the corresponding intervals of lengths 2−𝑛𝑖 inside [0, 1] from left to right going
in decreasing length order. Then each interval is properly aligned and corresponds
to a binary string of length 𝑛𝑖. Lemma is proven.

Let us prove the theorem now. Without loss of generality we may assume that
all 𝑝𝑖 are strictly positive (since null values do not change Shannon entropy and
average code length). The part (a) of our theorem says that if 𝑛𝑖 are non-negative
integers and

∑︀
𝑖 2−𝑛𝑖 6 1, then

∑︀
𝑝𝑖𝑛𝑖 > 1. It is true for any non-negative reals 𝑛𝑖

(even if they are not integers). Indeed, let 𝑞𝑖 be equal to 2−𝑛𝑖 . In these coordinates
the statement reads as follows: if 𝑞𝑖 > 0 and

∑︀
𝑞𝑖 6 1, then∑︁

𝑝𝑖(− log 𝑞𝑖) >
∑︁

𝑝𝑖(− log 𝑝𝑖).

This inequality is sometimes called Gibbs inequality. To prove it, we rewrite the
difference between right-hand side and left-hand side as∑︁

𝑖

𝑝𝑖 log
𝑞𝑖
𝑝𝑖

(*)

Then we use the convexity argument: the weighted sum of logarithms does not
exceed the logarithm of the weighted sum,

∑︀
𝑝𝑖 log 𝑢𝑖 6 log(

∑︀
𝑖 𝑝𝑖𝑢𝑖) (if 𝑢𝑖 are

positive). In our case we see that (*) does not exceed

log

(︃∑︁
𝑖

𝑝𝑖
𝑞𝑖
𝑝𝑖

)︃
= log

(︁∑︁
𝑞𝑖

)︁
6 log 1 = 0.

The item (a) is proven.
Let us mention also that the non-negative number∑︁

𝑖

𝑝𝑖 log
𝑝𝑖
𝑞𝑖

is called Kullback – Leibler distance between two probability distributions 𝑝𝑖 and
𝑞𝑖 (so we assume that

∑︀
𝑞𝑖 = 1), or Kullback – Leibler divergence; the latter name

is better since this ‘distance” is not symmetric. The convexity of logarithm (its
second derivative is negative everywhere) guarantees that this distance is always
non-negative and equals zero only if 𝑝𝑖 = 𝑞𝑖 for all 𝑖.

To prove item (b), consider the integers 𝑛𝑖 = ⌈− log2 𝑝𝑖⌉ (where ⌈𝑢⌉ is a minimal
integer greater than or equal to 𝑢). Then

𝑝𝑖
2

< 2−𝑛𝑖 6 𝑝𝑖

The inequality 2−𝑛𝑖 6 𝑝𝑖 allows to use the lemma, so there exist codewords of
corresponding lengths. The inequality 𝑝𝑖/2 < 2−𝑛𝑖 implies that 𝑛𝑖 exceeds (− log 𝑝𝑖)
less than by 1, and this remains true after averaging: the average code length
(
∑︀

𝑝𝑖𝑛𝑖) exceeds 𝐻 =
∑︀

𝑝𝑖(− log 𝑝𝑖) less than by 1. �

228 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

This proof is a kind of a “relaxation argument”: if we forget that code-lengths
should be integers and allow any 𝑛𝑖 such that

∑︀
𝑖 2−𝑛𝑖 6 1, the optimal choice is

𝑛𝑖 = − log 𝑝𝑖 (convexity of the logarithm function); making 𝑛𝑖 integers, we lose less
than 1.

Theorem 139. The entropy of the distribution 𝑝1, . . . , 𝑝𝑛 (with 𝑛 possible val-
ues) does not exceed log 𝑛. It equals log 𝑛 only if all 𝑝𝑖 are equal.

Proof. If 𝑛 is a power of 2, the inequality 𝐻 6 log 𝑛 follows from Theorem 138
(consider a prefix code where 𝑛 codewords all have length log 𝑛. In general case we
use Gibbs inequality for 𝑞𝑖 = 1/𝑛 (for all 𝑖) and recall the this inequality becomes
an equality only if 𝑝𝑖 = 𝑞𝑖. �

7.1.3. Huffman code. We have shown that the average length of an optimal
prefix code (for given 𝑝1, . . . , 𝑝𝑘) is somewhere between 𝐻 and 𝐻 + 1. But how can
we find this optimal code?

Let 𝑛1, . . . , 𝑛𝑘 be the lengths of codewords for an optimal code (for given fre-
quencies 𝑝1, . . . , 𝑝𝑘). Rearranging the letters, we may assume that

𝑝1 6 𝑝2 6 . . . 6 𝑝𝑘.

It this case we may assume that

𝑛1 > 𝑛2 > . . . > 𝑛𝑘.

Indeed, if a letter has longer code than another letter that is less frequent, the
exchange of codewords (between these two letters) decreases the average length of
the code.

One can note also that 𝑛1 = 𝑛2 for an optimal code (the two less frequent letter
have the same code-length). Indeed, if 𝑛1 > 𝑛2, then 𝑛1 is greater than all 𝑛𝑖. So
the first term in the sum

∑︀
𝑖 2−𝑛𝑖 is smaller than all other terms, and the inequality∑︀

𝑖 2−𝑛𝑖 6 1 cannot be an equality (all terms except the first one are multiples of
the second term) and the difference between its two sides is at least 2−𝑛1 . Therefore,
we can decrease 𝑛1 by 1 and still do not violate the inequality

∑︀
𝑖 2−𝑛𝑖 6 1. This

means that the code is not optimal (in contrary to our assumption).
So we can look for an optimal code among codes that have 𝑛1 = 𝑛2; this optimal

code minimizes the sum

𝑝1𝑛1 + 𝑝2𝑛2 + 𝑝3𝑛3 + . . . + 𝑝𝑘𝑛𝑘 = (𝑝1 + 𝑝2)𝑛 + 𝑝3𝑛3 + . . . + 𝑝𝑘𝑛𝑘

(here 𝑛 is the common value of 𝑛1 and 𝑛2). In the last expression the minimum
should be taken over all sequences 𝑛, 𝑛3, . . . , 𝑛𝑘 such that

2−𝑛 + 2−𝑛 + 2−𝑛3 + . . . + 2−𝑛𝑘 6 1.

This inequality can be rewritten as

2−(𝑛−1) + 2−𝑛3 + . . . + 2−𝑛𝑘 6 1,

and the expression that is minimized can be rewritten as

(𝑝1 + 𝑝2) + (𝑝1 + 𝑝2)(𝑛− 1) + 𝑝3𝑛3 + . . . + 𝑝𝑘𝑛𝑘.

The term (𝑝1 + 𝑝2) is a constant that does not influence the minimal point, so
the problem reduces to finding an optimal prefix code for 𝑘 − 1 letters that have
probabilities 𝑝1 + 𝑝2, 𝑝3, . . . , 𝑝𝑘.

So we obtain the recursive algorithm that finds the optimal prefix code as
follows:

7.2. PAIRS AND CONDITIONAL ENTROPY 229

∙ combine the two most rare letters into one (adding their probabilities);
∙ find the optimal prefix code for the resulting probabilities (a recursive call);
∙ replace the codeword 𝑥 for a “virtual” combined letter by two codewords

𝑥0 and 𝑥1 which are one bit longer (note that this replacement keeps the prefix
property).

The optimal code constructed by this algorithm is called Huffman code for a
given distribution 𝑝1, . . . , 𝑝𝑛.

7.1.4. Kraft–McMillan inequality. So far we have studied prefix codes. It
turns out that they are as efficient as general uniquely decodable codes, as the
following theorem shows.

Theorem 140 (McMillan inequality). Assume that 𝑐1, . . . , 𝑐𝑘 are code words
of an uniquely decodable code and 𝑛𝑖 = 𝑙(𝑐𝑖) be their lengths. Then∑︁

𝑖

2−𝑛𝑖 6 1.

Therefore (recall the lemma above) for any uniquely decodable code there is a
prefix code with the same lengths of codewords.

Proof. Let us use letters 𝑢 and 𝑣 instead of digits 0 and 1 when constructing
codewords. (E.g., the code 0, 01 and 11 is now written as 𝑢, 𝑢𝑣, 𝑣𝑣.) Now take a
formal sum (𝑐1 + . . .+ 𝑐𝑘) of all codewords and consider its 𝑁th power (for some 𝑁
that we choose later). Then we open the parentheses without changing the order
of factors 𝑢 and 𝑣 (as if 𝑢 and 𝑣 were two non-commuting variables). For example,
the code above gives (for 𝑁 = 2) the expression

(𝑢 + 𝑢𝑣 + 𝑣𝑣)(𝑢 + 𝑢𝑣 + 𝑣𝑣) =

= 𝑢𝑢 + 𝑢𝑢𝑣 + 𝑢𝑣𝑣 + 𝑢𝑣𝑢 + 𝑢𝑣𝑢𝑣 + 𝑢𝑣𝑣𝑣 + 𝑣𝑣𝑢 + 𝑣𝑣𝑢𝑣 + 𝑣𝑣𝑣𝑣.

Each term in the right-hand side is a concatenation of some codewords. The unique
decoding property guarantees that all the terms are different. Now we let 𝑢 = 𝑣 =
1/2. The left-hand side (𝑐1 + . . . + 𝑐𝑘)𝑁 becomes (2−𝑛1 + . . . + 2−𝑛𝑘)𝑁 . For the
right-hand side we have an upper bound: if it consisted of all strings of length 𝑡,
it would contain 2𝑡 terms equal to 2−𝑡 (each), so the sum would be equal to 1 (for
each length 𝑡). Therefore, the right-hand side does not exceed the maximal length
of strings in the right-hand side, which equals 𝑁 max(𝑛𝑖).

If
∑︀

2−𝑛𝑖 > 1, we immediately get a contradiction, since for large enough 𝑁
the left-hand side grows exponentially in 𝑁 while the right-hand side is linear in
𝑁 . �

This proof looks as an extremely artificial trick (though a nice one). A more
natural proof (or, better to say, a more natural version of the same proof) is given
below, see p. 234.

7.2. Pairs and conditional entropy

7.2.1. Pairs of random variables. Dealing with Shannon entropies, we use
the terminology which is standard for probability theory. Let 𝜉 be a random variable
which takes finitely many values 𝜉1, . . . , 𝜉𝑘 with probabilities 𝑝1, . . . , 𝑝𝑘. Then the
Shannon entropy of a random variable 𝜉 is defined as

𝐻(𝜉) = 𝑝1(− log 𝑝1) + . . . + 𝑝𝑘(− log 𝑝𝑘).

230 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

This definition allows us to consider the entropy of a pair of random variables 𝜉
and 𝜂 (that have a common distribution, i.e., are defined on the same probability
space). Indeed, this pair is also a random variable with a finite range. The following
theorem says that the entropy of a pair does not exceed the sum of entropies of its
components:

Theorem 141.
𝐻(⟨𝜉, 𝜂⟩) 6 𝐻(𝜉) + 𝐻(𝜂)

We consider random variables with finite ranges, so this is just some inequality
involving logarithms. Let is write this inequality. Assume that 𝜉 has 𝑘 values
𝜉1, . . . , 𝜉𝑘 and 𝜂 has 𝑙 values 𝜂1, . . . , 𝜂𝑙. Then the maximal possible number of
values for the pair ⟨𝜉, 𝜂⟩ is 𝑘𝑙 and these values are ⟨𝜉𝑖, 𝜂𝑗⟩ (some of them may never
appear or have probability 0). The distribution for ⟨𝜉, 𝜂⟩ is therefore a table that
has 𝑘 rows and 𝑙 columns. The number 𝑝𝑖𝑗 (𝑖th row, 𝑗th column) is the probability
of the event “(𝜉 = 𝜉𝑖) and (𝜂 = 𝜂𝑗)” (here 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑙). All 𝑝𝑖𝑗 are
non-negative and their sum equals 1. (Some of 𝑝𝑖𝑗 can be equal to 0.)

Adding the numbers in each row, we get the probability distribution for 𝜉: the
probability of the event 𝜉 = 𝜉𝑖 equals

∑︀
𝑗 𝑝𝑖𝑗 . We denote this sum by 𝑝𝑖*. Similarly,

𝜂 takes value 𝜂𝑗 with probability 𝑝*𝑗 which equals the sum of all numbers in 𝑗th
column.

Therefore, the theorem in question is an inequality that is applicable to any
matrix with non-negative elements and sum 1:∑︁

𝑖,𝑗

𝑝𝑖𝑗(− log 𝑝𝑖𝑗) 6
∑︁
𝑖

𝑝𝑖*(− log 𝑝𝑖*) +
∑︁
𝑗

𝑝*𝑗(− log 𝑝*𝑗)

(here 𝑝𝑖* and 𝑝*𝑗 are rows’ and columns’ sums).
This inequality again is a consequence of the convexity of logarithm, but it is

useful to understand its intuitive meaning. Let us forget for a while that entropy is
not exactly equal to the length of the shortest prefix code (and ignore the difference
that does not exceed 1). Then this inequality can be proven as follows. Assume
that space-efficient prefix codes for 𝜉 and 𝜂 are given, and they have codewords
𝑐1, . . . , 𝑐𝑘 and 𝑑1, . . . , 𝑑𝑙 respectively. Then consider a code for ⟨𝜉, 𝜂⟩ that assigns to
the value ⟨𝜉𝑖, 𝜂𝑗⟩ the string 𝑐𝑖𝑑𝑗 (concatenation of 𝑐𝑖 and 𝑑𝑗 without separator). We
get a prefix code (indeed, to separate codeword that starts an infinite sequence, we
first find prefix 𝑐𝑖 and then prefix 𝑑𝑗 in the remaining part; both operation can be
performed uniquely). The average length of this code equals the sum of the average
lengths of its components. This code may be non-optimal (which is natural, since
the inequality could be strict), but provides an upper bound for the length of the
optimal code.

Proof. Let us transform this informal argument into a proof. Recall the
proof of Theorem 138 (p. 226). We have seen that the entropy is a minimal value
of
∑︀

𝑖 𝑝𝑖(− log2 𝑞𝑖) taken over all tuples of non-negative reals 𝑞𝑖 that have sum 1.
In particular, the entropy of the pair (left-hand side) is the minimal value of∑︁

𝑖,𝑗

𝑝𝑖𝑗(− log 𝑞𝑖𝑗)

7.2. PAIRS AND CONDITIONAL ENTROPY 231

taken over all tuples 𝑞𝑖𝑗 of non-negative reals that sum up to 1. Let us restrict our
attention to “rank 1” tuples that have the form

𝑞𝑖𝑗 = 𝑞𝑖* · 𝑞*𝑗
for some tuples of non-negative reals 𝑞𝑖* and 𝑞*𝑗 (both tuples have sum 1). Then
(− log 𝑞𝑖𝑗) can be decomposed into (− log 𝑞𝑖*) + (− log 𝑞*𝑗), and the entire sum is
decomposed into two parts, which after partial summation over one coordinate
become equal to ∑︁

𝑖

𝑝𝑖*(− log 𝑞𝑖*)

and ∑︁
𝑗

𝑝*𝑗(− log 𝑞*𝑗)

respectively. The minimal values of the two parts are 𝐻(𝜉) and 𝐻(𝜂).
Therefore, the left-hand side of our inequality is the minimum over all tuples

and the right-hand side is the minimum over rank 1 tuples, and the inequality is
proven. �

7.2.2. Conditional entropy. Recall the definition of conditional probability.
Let 𝐴 and 𝐵 be two events. The conditional probability of 𝐵 with condition 𝐴
(denoted as Pr[𝐵|𝐴]) is defined as the ratio Pr[𝐴 and 𝐵]/Pr[𝐴]. This definition
assumes that Pr[𝐴] > 0. The motivation is clear: we are interested in the fraction of
outcomes when 𝐵 happened but restrict our attention to the case when 𝐴 happened.

Let 𝐴 be an event (that has non-zero probability) and let 𝜉 be a random variable
with finite range 𝜉1, . . . , 𝜉𝑘. Then we may consider the conditional distribution of
𝜉 when 𝐴 happens. We get a new random variable: now 𝜉𝑖 has probability Pr[(𝜉 =
𝜉𝑖)|𝐴] instead of Pr[𝜉 = 𝜉𝑖]. The entropy of this distribution is called conditional
entropy of 𝜉 with condition 𝐴 and is denoted by 𝐻(𝜉|𝐴). (The distribution itself
could be denoted by (𝜉|𝐴).)

218 Show that 𝐻(𝜉|𝐴) can be greater than 𝐻(𝜉) and can be less then 𝐻(𝜉).
[Hint: the distribution (𝜉|𝐴) has not much in common with the distribution of 𝜉,
especially if 𝐴 has small probability.]

Informally speaking, 𝐻(𝜉|𝐴) is the minimal average code length if average is
taken only over the cases when 𝐴 happens.

Now let us consider two random variables 𝜉 and 𝜂 (as it was done in the previous
section). Let as assume that each value of both 𝜉 and 𝜂 has non-zero probability
(zero-probability outcomes could be ignored). For each value 𝜂𝑗 (for 𝜂) consider
the event 𝜂 = 𝜂𝑗 . (Its probability was denoted by 𝑝*𝑗 .) Consider the conditional
entropy of variable 𝜉 having this event as the condition. In other terms, consider
the entropy of the distribution 𝑖 ↦→ 𝑝𝑖𝑗/𝑝*𝑗 . Then we average these entropies,
using probabilities of the events 𝜂 = 𝜂𝑗 as weights. The resulting average is called
conditional entropy of 𝜉 with condition 𝜂. It is denoted by 𝐻(𝜉|𝜂). So by definition

𝐻(𝜉|𝜂) =
∑︁
𝑗

Pr[𝜂 = 𝜂𝑗]𝐻(𝜉|𝜂 = 𝜂𝑗)

or, using the notation above,

𝐻(𝜉|𝜂) =
∑︁
𝑗

𝑝*𝑗
∑︁
𝑖

𝑝𝑖𝑗
𝑝*𝑗

(︂
− log

𝑝𝑖𝑗
𝑝*𝑗

)︂
.

232 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

The following theorem sums up the basic properties of conditional entropy (that
are true for any random variables 𝜉 and 𝜂):

Theorem 142. (a) 𝐻(𝜉|𝜂) > 0;
(b) 𝐻(𝜉|𝜂) = 0 if and only if 𝜉 = 𝑓(𝜂) with probability 1 for some function 𝑓

(in other terms, we ignore the cases that have zero probability);
(c) 𝐻(𝜉|𝜂) 6 𝐻(𝜉);
(d) 𝐻(⟨𝜉, 𝜂⟩) = 𝐻(𝜂) + 𝐻(𝜉|𝜂).

Proof. The item (a) is evident: all 𝐻(𝜉|𝜂 = 𝜂𝑗) are non-negative, so the same
is true for their weighted sum.

(b) If the weighted sum of non-negative terms equals zero, then all the terms
that have non-zero weights are equal to zero. So for each value 𝜂𝑗 the restricted
variable (𝜉|𝜂 = 𝜂𝑖) has zero entropy, and therefore has only one value if we ignore
values that have probability 0.

The statement (c) can be explained as follows: 𝐻(𝜉|𝜂) is the average length of
an optimal code for 𝜉 if we allow different codes for 𝜉 for different values of 𝜂 (for
each value of 𝜂 we consider the code that is optimal with respect to conditional
distribution). This provides some additional freedom (compared to the case when
the same code should be used for all values of 𝜂), and this freedom can only decrease
the optimal code length.

The same argument made formal: for each 𝑗 the value of 𝐻(𝜉|𝜂 = 𝜂𝑗) is the
minimal value of the sum ∑︁

𝑖

𝑝𝑖𝑗
𝑝*𝑗

(− log 𝑞𝑖𝑗)

taken over all non-negative values of the variables 𝑞1𝑗 + 𝑞2𝑗 + . . . + 𝑞𝑘𝑗 = 1 (we use
different variables for each 𝑗). Therefore, 𝐻(𝜉|𝜂) is the minimal value of the sum∑︁

𝑗

𝑝*𝑗
∑︁
𝑖

𝑝𝑖𝑗
𝑝*𝑗

(− log 𝑞𝑖𝑗)

taken over all tables that contain non-negative reals 𝑞𝑖𝑗 and each column has sum 1.
If we restrict ourselves to tables where all columns are equal (𝑞𝑖𝑗 = 𝑞𝑖), the sum
turns into∑︁

𝑗

𝑝*𝑗
∑︁
𝑖

𝑝𝑖𝑗
𝑝*𝑗

(− log 𝑞𝑖) =
∑︁
𝑗

∑︁
𝑖

𝑝𝑖𝑗(− log 𝑞𝑖) =
∑︁
𝑖

𝑝𝑖*(− log 𝑞𝑖)

and its minimum is 𝐻(𝜉). Therefore 𝐻(𝜉|𝜂) 6 𝐻(𝜉).
Finally, item (d) is just an exercise in transformation of logarithms:∑︁

𝑖,𝑗

𝑝𝑖𝑗(− log 𝑝𝑖𝑗) =
∑︁
𝑗

𝑝*𝑗
∑︁
𝑖

𝑝𝑖𝑗
𝑝*𝑗

(− log
𝑝𝑖𝑗
𝑝*𝑗

− log 𝑝*𝑗) =

=
∑︁
𝑗

𝑝*𝑗
∑︁
𝑖

𝑝𝑖𝑗
𝑝*𝑗

(− log
𝑝𝑖𝑗
𝑝*𝑗

) +
∑︁
𝑗

𝑝*𝑗
∑︁
𝑖

𝑝𝑖𝑗
𝑝*𝑗

(− log 𝑝*𝑗) =

=
∑︁
𝑗

𝑝*𝑗𝐻(𝜉|𝜂 = 𝜂𝑗) +
∑︁
𝑗

𝑝*𝑗(− log 𝑝*𝑗) = 𝐻(𝜉|𝜂) + 𝐻(𝜂).

Theorem is proven. �

This theorem implies Theorem 141 (p. 230). We see also that entropy of the
pair of random variables cannot be less than the entropy of any of variables (since
conditional entropy is non-negative). Thus we easily obtain the following statement:

7.2. PAIRS AND CONDITIONAL ENTROPY 233

Theorem 143. Let 𝜉 be a random variable with a finite range and let 𝑓 be a
function defined on that range. Then

𝐻(𝑓(𝜉)) 6 𝐻(𝜉),

where 𝑓(𝜉) is a random variable that is a composition of 𝑓 and 𝜉 (i.e., 𝑓 is applied
to the value of 𝜉).

In terms of distribution the transition from 𝜉 to 𝑓(𝜉) means that we combine
several values into one summing up the corresponding probabilities.

Proof. Indeed, the random variable ⟨𝜉, 𝑓(𝜉)⟩ has the same distribution as 𝜉,
and its entropy cannot be less than the entropy of the second coordinate. �

219 Provide an interpretation of this result in terms of minimal average length
of codes, and the direct proof.

220 When the inequality of Theorem 143 becomes an equality?

7.2.3. Independence and entropy. The notion of independent random vari-
ables could be easily expressed in terms of entropy. Recall the variables 𝜉 and 𝜂 are
called independent if the probability of the event “𝜉 = 𝜉𝑖 and 𝜂 = 𝜂𝑗” is equal to
the product of probabilities of the events 𝜉 = 𝜉𝑖 and 𝜂 = 𝜂𝑗 . (A reformulation: the
conditional distribution of 𝜉 with condition 𝜂 = 𝜂𝑗 coincides with the unconditional
distribution. Also we can exchange 𝜉 and 𝜂 and say that conditional distribution
of 𝜂 with condition 𝜉 = 𝜉𝑖 coincides with the unconditional distribution.)

In the notation used above the independence can be written as 𝑝𝑖𝑗 = 𝑝𝑖*𝑝*𝑗
(probability matrix has rank 1).

Theorem 144. Random variables 𝜉 and 𝜂 are independent if and only if

𝐻(⟨𝜉, 𝜂⟩) = 𝐻(𝜉) + 𝐻(𝜂).

In other words, we get an independence criterion: the inequality of Theorem 141
becomes an equality. Using Theorem 142, we can rewrite this criterion as 𝐻(𝜉) =
𝐻(𝜉|𝜂) (or, symmetrically, 𝐻(𝜂) = 𝐻(𝜂|𝜉)).

Proof. Let us use once more that logarithm is a strictly convex function: the
inequality

log
(︁∑︁

𝑝𝑖𝑥𝑖

)︁
>
∑︁

𝑝𝑖 log 𝑥𝑖,

holds for all positive weights 𝑝𝑖 with sum 1 and all positive 𝑥𝑖. This inequality
becomes an equality only if all 𝑥𝑖 are equal.

Therefore, for positive 𝑝𝑖 with sum 1 the expression∑︁
𝑝𝑖(− log 𝑞𝑖)

(where 𝑞𝑖 are positive and sum up to 1) takes its minimal value only at the point
𝑞𝑖 = 𝑝𝑖.

Now recall the proof of Theorem 141 above. The minimum over rank 1 matrices
(that makes the right-hand side equal to the sum of entropies) was achieved for

𝑞𝑖𝑗 = 𝑝𝑖* · 𝑝*𝑗
If this minimum coincides with the minimum taken over all matrices 𝑞𝑖𝑗 (the latter
is achieved for 𝑞𝑖𝑗 = 𝑝𝑖𝑗), then we have

𝑝𝑖𝑗 = 𝑝𝑖* · 𝑝*𝑗

234 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

and variables 𝜉 and 𝜂 are independent. �

221 Provide an another (though similar) proof using Theorem 142.

222 Prove that three random variables 𝛼, 𝛽, 𝛾 are independent (this means
that the probability of the event (𝛼 = 𝛼𝑖, 𝛽 = 𝛽𝑗 , 𝛾 = 𝛾𝑘) equals the product of
three probabilities for each of the variables) if and only if

𝐻(⟨𝛼, 𝛽, 𝛾⟩) = 𝐻(𝛼) + 𝐻(𝛽) + 𝐻(𝛾).

Theorems 141 and 144 show that the difference 𝐻(𝜉) + 𝐻(𝜂) − 𝐻(⟨𝜉, 𝜂⟩) is
always non-negative and equals zero if and only if 𝜉 and 𝜂 are independent. So
we can take this difference for a quantitative measure of dependence between 𝜉
and 𝜂. This difference is denoted by 𝐼(𝜉 : 𝜂) and called the mutual information of
two random variables 𝜉 and 𝜂. Theorem 142 allows us to rewrite the definition for
𝐼(𝜉 : 𝜂) in the following way:

𝐼(𝜉 : 𝜂) = 𝐻(𝜂) −𝐻(𝜂|𝜉) = 𝐻(𝜉) −𝐻(𝜉|𝜂).

(mutual information shows how much the knowledge of one random variable de-
creases the entropy of the other one).

To see all these notions in action, let us return to the McMillan inequality. Now
we change the order and prove first that a uniquely decodable code for a random
variable 𝜉 has the average length of the codeword at least 𝐻(𝜉).

First note that for an injective code where all codewords have length less than 𝑐
the average length is at least 𝐻(𝜉) − log 𝑐. Indeed, if 𝑛𝑖 are the lengths of the
codewords, the sum of 2−𝑛𝑖 does not exceed 𝑐 (for every fixed length the sum does
not exceed 1). Therefore, the inequality of theorem 138 is violated at most by log 𝑐.

This is not enough, and to get a tight bound we consider 𝑁 independent iden-
tically distributed copies of random variable 𝜉. We get a random variable that
could be denoted by 𝜉𝑁 . Its entropy is 𝑁𝐻(𝜉). Let us use our code for each of
𝑁 coordinates and then concatenate all the strings. The unique decoding property
guarantees that this is an injective code. Its average length is 𝑁 times greater than
the average length of initial code for 𝜉 (linearity of expectation). And the maximal
length does not exceed 𝑐𝑁 where 𝑐 is an upper bound for the length of the code-
words of the uniquely decodable code we started with. So the previous paragraph
gives us

𝑁 · (average length of the uniquely decodable code) > 𝑁𝐻(𝜉) − log(𝑐𝑁)

Now we divide over 𝑁 and take 𝑁 → ∞. Since log(𝑐𝑁)/𝑁 → 0 as 𝑁 → ∞, this
gives us the bound 𝐻(𝜉) for the average length of an uniquely decodable code.

Now the McMillan inequality is easy. Assume that uniquely decodable code has
code-lengths 𝑛1, . . . , 𝑛𝑘 and

∑︀
2−𝑛𝑖 > 1. We start with probabilities 𝑝𝑖 = 2−𝑛𝑖 and

then proportionally decrease all of them making their sum equal to 1. Consider the
random variable that has the distribution 𝑝𝑖 (obtained in this way) and its coding
by means of our uniquely decodable code. The average length is

∑︀
𝑝𝑖𝑛𝑖 which is

less than 𝐻 =
∑︀

𝑝𝑖(− log 𝑝𝑖) (recall that 𝑛𝑖 < − log 𝑝𝑖 since we have decreased the
values 𝑝𝑖).

223 Look closely at this proof and trace the correspondence between it and
the proof given above.

7.2. PAIRS AND CONDITIONAL ENTROPY 235

7.2.4. “Relativization” and basic inequalities. All the statements about
entropy have “relativized” (conditional) versions. For example, we could add some
random variable 𝛼 as a condition in the inequality

𝐻(⟨𝜉, 𝜂⟩) 6 𝐻(𝜉) + 𝐻(𝜂)

and get its conditional version

𝐻(⟨𝜉, 𝜂⟩|𝛼) 6 𝐻(𝜉|𝛼) + 𝐻(𝜂|𝛼)

The conditional version is an easy consequence of the unconditional one. Indeed,
for each fixed value 𝛼𝑖 of a random variable 𝛼 we have

𝐻(⟨𝜉, 𝜂⟩|𝛼 = 𝛼𝑖) 6 𝐻(𝜉|𝛼 = 𝛼𝑖) + 𝐻(𝜂|𝛼 = 𝛼𝑖)

(Theorem 141 is applied to conditional distributions of 𝜉 and 𝜂 with condition
𝛼 = 𝛼𝑖). Then we sum up all these inequalities with weights Pr[𝛼 = 𝛼𝑖].

So we get a conditional inequality as a consequence of the unconditional one.
Now, going in the opposite direction and using the equation

𝐻(𝛽|𝛾) = 𝐻(⟨𝛽, 𝛾⟩) −𝐻(𝛾),

we can express all conditional entropies in terms of unconditional ones.
After canceling some terms we get the following inequality:

Theorem 145 (basic inequality).

𝐻(𝜉, 𝜂, 𝛼) + 𝐻(𝛼) 6 𝐻(𝜉, 𝛼) + 𝐻(𝜂, 𝛼).

We use a simplified notation and write 𝐻(𝜉, 𝜂, 𝛼) instead 𝐻(⟨𝜉, 𝜂, 𝛼⟩) (or even
more formal 𝐻(⟨⟨𝜉, 𝜂⟩, 𝛼⟩)).

The similar “relativization” (adding random variables as conditions) can be
applied to the mutual information. For example, we can naturally define 𝐼(𝛼 : 𝛽|𝛾)
as

𝐻(𝛼|𝛾) + 𝐻(𝛽|𝛾) −𝐻(⟨𝛼, 𝛽⟩|𝛾).

The basic inequality (Theorem 145) says that 𝐼(𝛼 : 𝛽|𝛾) > 0 for all random variables
𝛼, 𝛽, 𝛾.

224 Prove that 𝐼(⟨𝛼, 𝛽⟩ : 𝛾) > 𝐼(𝛼 : 𝛾)

225 Prove that

𝐼(⟨𝛼, 𝛽⟩ : 𝛾) = 𝐼(𝛼 : 𝛾) + 𝐼(𝛽 : 𝛾|𝛼).

If 𝐼(𝛼 : 𝛾|𝛽) = 0, the random variables 𝛼 and 𝛾 are called independent relative
to 𝛽 (when 𝛽 is known). Experts in probability theory say in this case that 𝛼, 𝛽, 𝛾
form a Markov chain where the dependence between the “past” (𝛼) and the “future”
(𝛾) is caused only by the “current state” (𝛽).

226 Prove that in this case 𝐼(𝛼 : 𝛾) 6 𝐼(𝛼 : 𝛽), and therefore 𝐼(𝛼 : 𝛾) 6 𝐻(𝛽).

To prove all these (and similar) statements one could use the diagrams that
are similar to the diagrams for Kolmogorov complexity discussed in Chapter 2.
The diagram for two variables consists of three regions. Each region carries a non-
negative value. The sum of these values for two left regions is 𝐻(𝛼) and for two
right regions is 𝐻(𝛽) (see Fig.1).

For three variables 𝛼, 𝛽, 𝛾 we get a more complicated diagram (Fig. 2). The
central region carries a number that is denoted by 𝐼(𝛼 : 𝛽 : 𝛾). It can be defined

236 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

𝐻(𝛼|𝛽)
𝐻(𝛽|𝛼)

𝐼(𝛼 : 𝛽)

𝛼 𝛽

Figure 1. Entropies of two random variables.

as 𝐼(𝛼 : 𝛽) − 𝐼(𝛼 : 𝛽|𝛾), or, equivalently, as 𝐼(𝛼 : 𝛾) − 𝐼(𝛼 : 𝛾|𝛽) etc. In terms of
unconditional entropies we get the following expression:

𝐼(𝛼 : 𝛽 : 𝛾) = 𝐻(𝛼) + 𝐻(𝛽) + 𝐻(𝛾) −𝐻(𝛼, 𝛽) −𝐻(𝛼, 𝛾) −𝐻(𝛽, 𝛾) + 𝐻(𝛼, 𝛽, 𝛾)

𝛼 𝛽

𝛾

𝐻(𝛼|𝛽, 𝛾)

𝐼(𝛼 : 𝛽|𝛾) 𝐻(𝛽|𝛼, 𝛾)

𝐼(𝛼 : 𝛾|𝛽)

𝐼(𝛼 : 𝛽 : 𝛾)

𝐼(𝛽 : 𝛾|𝛼)

𝐻(𝛾|𝛼, 𝛽)

Figure 2. Entropies of three random variables.

Note that (unlike other six values shown) the value of 𝐼(𝛼 : 𝛽 : 𝛾) can be
negative. For example, this happens if variables 𝛼 are 𝛽 independent, but become
dependent when 𝛾 is known.

227 Construct three variables 𝛼, 𝛽, 𝛾 with this property. [Hint. Following the
example given on p. 64, consider uniformly distributed independent variables 𝛼 and
𝛽 with range {0, 1} and let 𝛾 = (𝛼 + 𝛽) mod 2.]

228 (Fano inequality) Prove that if the random variables 𝛼 and 𝛽 differ with
probability at most 𝜀 < 1/2, and 𝛼 takes at most 𝑎 values, then

𝐻(𝛼|𝛽) 6 𝜀 log 𝑎 + ℎ(𝜀),

where ℎ(𝜀) is the entropy of a random variable with two values and probabilities 𝜀
and 1 − 𝜀. [Hint. Let 𝛾 be a random variable with two values; 𝛾 = 0 when 𝛼 ̸= 𝛽

7.3. COMPLEXITY AND ENTROPY 237

and 𝛾 = 1 when 𝛼 = 𝛽. Then 𝐻(𝛼|𝛽) 6 𝐻(𝛾) + 𝐻(𝛼|𝛽, 𝛾). The first term is ℎ(𝜀),
and the second one can be rewritten as

Pr[𝛾 = 0]𝐻((𝛼|𝛽)|𝛾 = 0) + Pr[𝛾 = 1]𝐻((𝛼|𝛽)|𝛾 = 1),

i.e.,
Pr[𝛼 ̸= 𝛽]𝐻((𝛼|𝛽)|𝛼 ̸= 𝛽) + Pr[𝛼 = 𝛽]𝐻((𝛼|𝛽)|𝛼 = 𝛽),

which does not exceed 𝜀 log 𝑎 + 0.]

229 Assume that 𝐻(𝛼|𝛽, 𝛾) = 0 and 𝐼(𝛽 : 𝛼) = 0. Prove that 𝐻(𝛾) > 𝐻(𝛼).

This problem has the following interpretation. If a spy wants to send to the
headquarters a secret message 𝛼 as a plain text 𝛽 using a key 𝛾 (that is agreed
in advance) and wants the adversary who does not know 𝛾 to get no information
about 𝛼, then the entropy of key 𝛾 cannot be less than entropy of the message 𝛼.
This statement is sometimes called Shannon theorem on perfect cryptosystems.

230 Prove that

2𝐻(𝛼, 𝛽, 𝛾) 6 𝐻(𝛼, 𝛽) + 𝐻(𝛽, 𝛾) + 𝐻(𝛼, 𝛾)

for any three random variables 𝛼, 𝛽, 𝛾. [Hint: see the proof of the corresponding
statement about Kolmogorov complexity, Theorem 26, (p. 62).]

231 Prove a similar inequality for 𝑛 random variables:

(𝑛− 1)𝐻(𝛼1, . . . , 𝛼𝑛) 6 𝐻(𝛼2, . . . , 𝛼𝑛) + · · · + 𝐻(𝛼1, . . . , 𝛼𝑛−1).

(The right hand side contains 𝑛 terms when one of the variables is omitted.)

232 (Shearer inequality [43]) Prove the following generalization of the pre-
ceding inequality. Let 𝑇1, . . . , 𝑇𝑘 be arbitrary tuples made of (some of the) ran-
dom variables 𝛼1, . . . , 𝛼𝑛, and each variable appears exactly in 𝑟 tuples (among
𝑇1, . . . , 𝑇𝑘). Then

𝑟𝐻(𝛼1, 𝛼2, . . . , 𝛼𝑛) 6 𝐻(𝑇1) + · · · + 𝐻(𝑇𝑘).

233 Prove that the inequality of Problem 231 implies the upper bound for the
volume of a 𝑛-dimensional body in terms of the volumes of its (𝑛− 1)-dimensional
projections onto coordinate hyperplanes (the case 𝑛 = 3 was mentioned on p. 22):
if 𝑉 is the volume of the body and 𝑉1, . . . , 𝑉𝑛 are volumes of its projections, then

𝑉 𝑛−1 6 𝑉1 · 𝑉2 · . . . · 𝑉𝑛.

[Hint: First consider the discrete version when the body is made of unit cubes on
the grid. For this a random variable that is uniformly distributed among these
cubes, is useful. An arbitrary case can be treated as the limit of the discrete one.]

The last inequality is a special case of a general Loomis–Whitney inequal-
ity [104].

7.3. Complexity and entropy

As you surely have noticed, the properties of Shannon entropy (defined for
random variables) resemble the properties of Kolmogorov complexity (defined for
strings, see Chapter 2). Is it possible to formalize this similarity by converting it
into exact statements?

This question has two interpretations. First, one can prove that Kolmogorov
complexity and Shannon entropy have similar properties (in particular, the same
linear inequalities are true for them, see Section 10.6, p. 335). On the other hand,

238 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

one may compare the numeric values for complexity and entropy, and this is what
we do in this section.

The problem here is that Kolmogorov complexity is defined for strings while
Shannon entropy is defined for random variables, so how could one compare them?
However, sometimes this comparison is possible, as we shall see. Let us start with
a very vague and philosophical description of the results below: Shannon entropy
takes into account only frequency regularities while Kolmogorov complexity takes
into account all algorithmic regularities, so in general the latter is smaller. On the
other hand, if an object is generated by a random process in such a way that it has
only frequency regularities, entropy is close to complexity with high probability.

Let us give now some specific results that illustrate this general statement.

7.3.1. Complexity and entropy of frequencies. Consider an arbitrary fi-
nite alphabet 𝐴 which may contain more than two letters. Kolmogorov complexity
for 𝐴-strings can be defined in a natural way. (Note that we have never used that
finite objects whose complexity is defined are binary strings. However, it is im-
portant that binary strings are used as descriptions: complexity measured in bytes
would be eight time less than complexity measured in bits!)

Let 𝑥 be an 𝐴-string of length 𝑁 and let 𝑝1, . . . , 𝑝𝑘 be the frequencies of letters
in 𝑥. All these frequencies are fractions with denominator 𝑁 and integer numera-
tors. The sum of frequencies equals 1. Let ℎ(𝑝1, . . . , 𝑝𝑘) be the Shannon entropy of
corresponding distribution.

Theorem 146.
𝐶(𝑥)

𝑁
6 ℎ(𝑝1, . . . , 𝑝𝑘) +

𝑂(log𝑁)

𝑁
.

Here the constant in 𝑂(log𝑁) does not depend on 𝑁 , 𝑥 and frequencies 𝑝1, . . . , 𝑝𝑘.
However, this constant may depend on 𝑘 (we consider an alphabet of a fixed size).

Proof. In fact this is a purely combinatorial statement. Indeed, 𝐶(𝑥|𝑁, 𝑝1, . . . , 𝑝𝑘)
does not exceed log𝐶(𝑁, 𝑝1, . . . , 𝑝𝑘) + 𝑂(1), where

𝐶(𝑁, 𝑝1, . . . , 𝑝𝑘) =
𝑁 !

(𝑝1𝑁)!(𝑝2𝑁)! . . . (𝑝𝑘𝑁)!

is the number of 𝐴-strings of length 𝑁 that have frequencies 𝑝1, . . . , 𝑝𝑘. (Each
string with given frequencies can be determined by its ordinal number in this set if
the parameters 𝑁, 𝑝1, . . . , 𝑝𝑘 are known, and this number has log𝐶(𝑁, 𝑝1, . . . , 𝑝𝑘)
bits.)

The number 𝐶(𝑁, 𝑝1, . . . , 𝑝𝑘) can be estimated using Stirling’s approximation.

Ignoring factors bounded by a polynomial in 𝑁 (that appear due to the term
√

2𝜋𝑘

in Stirling’s approximation formula 𝑘! ≈
√

2𝜋𝑘(𝑘/𝑒)𝑘), we get exactly 2𝑁ℎ(𝑝1,...,𝑝𝑘).
This computation was performed (for 𝑘 = 2) when we proved the strong law of large
numbers (Theorem 27, p. 70). The general case (for arbitrary 𝑘) can be treated in
the same way.

Finally, note that we need about 𝑘 log𝑁 bits to specify 𝑁, 𝑝1, . . . , 𝑝𝑘 (we need to
specify 𝑘 integers whose sum is 𝑁), so by deleting the condition in 𝐶(𝑥|𝑁, 𝑝1, . . . , 𝑝𝑘)
we increase the complexity by 𝑂(log𝑁) (and the constant in 𝑂(log𝑁)-notation is
close to 𝑘). �

7.3. COMPLEXITY AND ENTROPY 239

Another proof uses the upper bound for monotone complexity (Theorem 89,
p. 158). Consider a probability distribution on infinite 𝐴-sequences that corre-
sponds to independent trials with probabilities 𝑝1, . . . , 𝑝𝑘 in each trial.

The event “a sequence with prefix 𝑧 appears” where 𝑧 is an 𝐴-string of length 𝑁
that has frequencies 𝑞1, . . . , 𝑞𝑘, equals

𝑝𝑞1𝑁1 . . . 𝑝𝑞𝑘𝑁𝑘

(letter 𝑎𝑖 has probability 𝑝𝑖 and appears 𝑞𝑖𝑁 times). The binary logarithm of this
probability is equal to

−𝑁 · (𝑞1(− log 𝑝1) + . . . + 𝑞𝑘(− log 𝑝𝑘)).

For the special case 𝑞𝑖 = 𝑝𝑖 we get −𝑁ℎ(𝑝1, . . . , 𝑝𝑘), therefore monotone complexity
has upper bound 𝑁ℎ(𝑝1, . . . , 𝑝𝑘). (Recall also that monotone complexity differs
from other complexity versions by a term 𝑂(log𝑁) for strings of length 𝑁 .)

In fact, this argument is flawed. When we proved the upper bound for mono-
tone complexity, we have assumed that distribution is fixed. The constant term,
therefore, may depend on the distribution. And now we try to estimate KM (𝑥)
using measure that depends on the letter frequencies in the string 𝑥. So formally
Theorem 89 is not applicable. But if we recall its proof, we see that it provides a
bound for “conditional” monotone complexity when 𝑝1, . . . , 𝑝𝑘 are given. The dif-
ference between this conditional complexity and the unconditional one is 𝑂(log𝑁),
so we indeed get another proof for Theorem 146.

234 What is a value of a constant hidden in 𝑂(log𝑁) (as a function of 𝑘)?
[Hint: both proofs give 𝑘(1 + 𝑜(1)) log𝑁 .]

235 Show that when all frequencies 𝑝1, . . . , 𝑝𝑘 are not very close to 0, the
statement of the previous problem could be improved up to (𝑘/2 + 𝑂(1)) log𝑁 .
[Hint. In the first proof one should take into account the square roots in Stirling’s
approximation; most of them are in the denominator. The second proof can also
be modified: instead of exact values of frequencies one can consider approximate
frequencies with error of order 𝑂(1/

√
𝑁). This gives a weaker bound, but the dif-

ference is bounded by a constant. (Recall that a smooth function is quadratic near
its minimum.) In this way we can save half of the bits when specifying 𝑝1, . . . , 𝑝𝑘.]

Note that the inequality provided by Theorem 146 may be very far from equal-
ity. Indeed, if 𝐴 has two letters and they alternate in a string 𝑥, then the right hand
size equals 1 and the left-hand size is of order (log𝑁)/𝑁 . This is not surprising and
fits well into the general picture: the complexity is small since it reflects all the reg-
ularities (not only frequencies). In the next sections we prove that the complexity
of a randomly generated string is close to the entropy with high probability.

7.3.2. Expected complexity. Let us fix 𝑘, a 𝑘-letter alphabet 𝐴 and 𝑘 pos-
itive numbers 𝑝1, . . . , 𝑝𝑘 whose sum is 1 (for simplicity we assume that all 𝑝𝑖 are
rational numbers).

Consider a random variable 𝜉, whose values are letters of 𝐴 and probabilities are
𝑝1, . . . , 𝑝𝑘. For each 𝑁 consider a random variable 𝜉𝑁 consisting of 𝑁 independent
identically distributed copies of 𝜉. Its values are 𝐴-strings of length 𝑁 . Now we may
ask a question: what is the expected complexity of a string generated according to
this distribution?

240 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

Theorem 147. The expected value of 𝐾(𝜉𝑁 |𝑁) is 𝑁𝐻(𝜉)+𝑂(1) (the constant
in 𝑂(1) may depend on 𝜉 but not on 𝑁).

Note that (for positive 𝑝𝑖) all 𝐴-strings of length 𝑁 are among the values of
𝜉𝑁 . Some of them have complexity much greater than 𝑁𝐻 (except for the case of
uniform distribution), but others have complexity much less than 𝑁𝐻.

Proof. For each 𝐴-string of length 𝑁 (i.e., for each value of 𝜉𝑁) consider its
shortest description (with respect to some fixed prefix-stable decompressor). These
descriptions form a prefix code (in the sense of Section 7.1.1). The average length
of the codeword is exactly the expected value of 𝐾(𝜉𝑁). Therefore, Theorem 138
(p. 226) guarantees that this expected value cannot be less than 𝐻(𝜉𝑁) = 𝑁𝐻(𝜉).
The lower bound is proved (and even the 𝑂(1)-term can be omitted).

The same theorem is useful for the upper bound, too. Indeed, it guarantees that
there exists a prefix code that has average length of a codeword at most 𝐻(𝜉𝑁)+1.
Such a code can be constructed by an algorithm if 𝑁 (and numbers 𝑝𝑖, which are
fixed) is given. For example, one may use the construction used in the proof of
Theorem 138, or use Huffman code, or even just try all codes until a good one is
found.

Anyway, the constructed code can be used as a conditional decompressor (with
𝑁 as the condition) such that average length of the shortest description of 𝜉𝑁 does
not exceed 𝐻(𝜉𝑁) + 1 = 𝑁𝐻(𝜉) + 1. Replacing this decompressor by an optimal
one, we increase the average length by 𝑂(1). �

236 Show that one can slightly improve the upper bound and prove that the

average value of monotone complexity KM (𝜉𝑁) does not exceed 𝑁𝐻(𝜉) + 𝑂(1).
[Hint. Apply Theorem 89 to the distribution of 𝜉∞.]

We assumed that 𝑝1, . . . , 𝑝𝑘 are fixed rational numbers. One may wish to get a
uniform bound that is true for all tuples 𝑝1, . . . , 𝑝𝑘. Then we should add 𝑝1, . . . , 𝑝𝑘
to the condition and prove bounds for the expected value of 𝐾(𝜉𝑁 |𝑁, 𝑝1, . . . , 𝑝𝑘)
instead of 𝐾(𝜉𝑁 |𝑁). The lower bound is not affected at all, since it is true for
any prefix code, and for the code construction the information in the condition is
sufficient. (We assume that 𝑝𝑖 are rational numbers; this is not very important,
since one may replace arbitrary reals by their approximations with sufficiently small
error.)

237 Formulate the exact statement and prove it.

This theorem says that average complexity equals entropy though individual
values of complexity could be much smaller or much larger. In fact, a stronger
statement it true: most values of 𝜉𝑁 have complexity close to 𝑁𝐻(𝜉). More for-
mally, the event “the complexity of string 𝜉𝑁 differs significantly from 𝑁𝐻(𝜉)” has
small probability. This statement could be considered as an algorithmic version of
the Shannon theorem on (noiseless) channel capacity, and we will return to this
question in Section 7.3.4.

7.3.3. Prefixes of random sequences and their complexity. In this sec-
tion we consider infinite Martin-Löf random sequences and compare complexities
of their prefixes with the entropy of a generating distribution. Let 𝐴 again be an
alphabet that has 𝑘 letters and let 𝑝1, . . . , 𝑝𝑘 be a probability distribution on 𝐴.
We assume that 𝑝1, . . . , 𝑝𝑘 are computable positive reals.

7.3. COMPLEXITY AND ENTROPY 241

Consider the space 𝐴∞ of infinite 𝐴-sequences and the probability distribution
on this space that corresponds to independent identically distributed variables with
distribution 𝑝1, . . . , 𝑝𝑘. This is a computable probabilistic measure on 𝐴∞, so
Martin-Löf definition of randomness can be used. (In fact, we have defined Martin-
Löf randomness for two-letter alphabet, but essentially the same definition can be
used for any finite alphabet.)

Theorem 148. Let 𝜔 be a Martin-Löf random sequence with respect to this
distribution. Let (𝜔)𝑁 be its prefix of length 𝑁 . Then

lim
𝐶((𝜔)𝑁)

𝑁
= 𝐻,

where 𝐻 is the Shannon entropy, i.e., 𝐻 =
∑︀

𝑝𝑖(− log 𝑝𝑖).

238 Prove that for the uniform distribution this statement is an immediate
consequence of the randomness criterion (Theorem 90, p. 160).

(It is a rare occasion when the uniform case is really special.)

The statement refers to plain complexity 𝐶; however, this is not important,
since different versions of complexity differ only by 𝑂(log𝑁) = 𝑜(𝑁). So we may
use monotone complexity in the proof, and this is convenient.

Proof. The Levin–Schnorr randomness criterion (Theorem 90, p. 160) says
that complexity of a prefix of a random sequence is close to the minus logarithm
of probability that this prefix appears. The probability refers to the distribution
on 𝐴∞ considered above, and the minus logarithm equals 𝑁

∑︀
𝑞𝑖(− log 𝑝𝑖) where

𝑞𝑖 is the frequency of 𝑖th letter in (𝜔)𝑁 . It remains to use the Strong Law of Large
Numbers that guarantees that 𝑞𝑖 tends to 𝑝𝑖 as 𝑁 → ∞ for a random sequence. �

Looking at this proof we see that the difference between the complexity (per let-
ter) and entropy has three reasons: first, “the randomness deficiency” from Levin–
Schnorr theorem that gives 𝑂(1)/𝑁 difference; second, the difference between the
plain and monotone complexities (of order 𝑂(log𝑁/𝑁)) and, finally, the differ-
ence between frequencies and probabilities which makes the most important term.
(The law of iterated logarithm says that this term typically is a bit larger than

𝑂(
√
𝑁)/𝑁 .)
We have assumed that 𝑝𝑖 are computable reals, otherwise the notion of Martin-

Löf randomness cannot be used. If they are not computable, we can still consider
the set of sequences such that complexity of their prefixes (per letter) do not have
entropy as limit. Then we can prove that this set has measure zero (with respect
to the corresponding distribution).

239 Prove this statement. [Hint. For an upper bound we can use some

approximations for 𝑝𝑖; the precision 1/𝑁2 is enough if we consider prefixes of length
𝑁 . The additional information needed to specify these approximate values is of size
𝑂(log𝑁). The lower bound does not use at all the algorithmic properties of 𝑝𝑖;
for example, we can get a bound for relativized complexity with any oracle 𝐴 that
makes all 𝑝𝑖 computable.]

7.3.4. The complexity deviations. Theorem 148 is asymptotic. One may
look for a bound of difference between complexity and entropy of frequencies for
finite sequences. (This follows the example provided by the probability theory that

242 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

has the Strong Law of Large Numbers for the limit values as well as large deviation
bounds for finite sequences.)

Let 𝐴 be a 𝑘-letter alphabet and let 𝑝1, . . . , 𝑝𝑘 be a distribution on 𝐴. Again
we assume for simplicity that 𝑝𝑖 are rational (or at least computable). Consider
the product distribution on 𝐴𝑁 that corresponds to 𝑁 independent trials with
probabilities 𝑝1, . . . , 𝑝𝑘. So each 𝐴-string of length 𝑁 has certain probability (and
certain complexity). We already know from Theorem 147 that the average value of
complexity is close to 𝑁𝐻, where 𝐻 =

∑︀
𝑝𝑖(− log 𝑝𝑖). But we want to know also

how far this complexity deviates from its average value.
The simplest case of two equiprobable letters (which is quite untypical, as we

shall see) gives a uniform distribution on all binary strings of length 𝑁 . We know
that all these strings have complexity at most 𝑁 + 𝑂(1) and the (overwhelming)
majority of strings has complexity close to 𝑁 : the fraction of strings that have
complexity less than 𝑁 − 𝑐 is at most 2−𝑐. So in this case the significant difference
between complexity and entropy has exponentially small probability.

The case of uniform distribution on 𝑘-letter alphabet is similar. However, if
not all the letters have the same probability, the situation changes significantly.

Here is the key observation. For any string 𝑥 of length 𝑁 we compare probabil-
ities 𝑝𝑖 with “empirical frequencies” 𝑞𝑖(𝑥) (frequencies of letters in 𝑥). It turns out
that with high probability the complexity of a random (with respect to our distri-
bution on 𝐴𝑁) string is close to 𝑘(𝑥) = 𝑁

∑︀
𝑖 𝑞𝑖(𝑥)(− log 𝑝𝑖). Indeed, Theorem 89

(p. 158) says that monotone complexity can exceed 𝑘(𝑥) by at most 𝑂(1). On
the other hand, the argument used in the proof of Levin–Schnorr theorem (p. 160,
Lemma 1) shows that for any 𝑐 the probability of the event KM (𝑥) < 𝑘(𝑥) − 𝑐
(according to the distribution considered) does not exceed 2−𝑐.

Therefore, the question about the complexity reduces to the question about
the distribution of empirical frequencies. This question has been studied in the
probability theory for centuries. It is known (Moivre–Laplace theorem) that this
distribution is close to a normal (Gaussian) one: the expectation of frequency equals
the probability, and the variance is proportional to 1/𝑁 . This is the main term,
since it is much larger than terms caused by 𝑂(log𝑁) difference between different
complexity versions and by using 𝑁 as a condition. This argument (made precise)
gives us the proof of the following statement:

Theorem 149. Let 𝜉 be a random variable with 𝑘 values. For each positive
𝜀 > 0 there exists 𝑐 such that for all 𝑁 the probability of the event

𝑁𝐻(𝜉) − 𝑐
√
𝑁 < 𝐶(𝑥) < 𝑁𝐻(𝜉) + 𝑐

√
𝑁

is at least 1 − 𝜀. (Here 𝑥 is a string formed by 𝑁 independent copies of 𝜉.)

In fact our arguments assumed that 𝑝𝑖 are computable. However, this assump-
tion can be dropped if we replace 𝑝𝑖 by their approximations with sufficiently small
error (the precision 1/𝑁2 is enough and requires only 𝑂(log𝑁) additional bits).

7.3.5. Shannon coding theorem. The theorem of the last section is a nat-
ural translation of classical Shannon results into the complexity language. These
results deal with the length of a code that allows us to transmit 𝑁 -letter blocks
correctly with high probability (according to the given distribution).

Let 𝜉 be (again) a random variable with 𝑘 values (letters of 𝐴) and some fixed
distribution. Let 𝑁 be a positive integer. By 𝜉𝑁 we denote a random variable with

7.3. COMPLEXITY AND ENTROPY 243

range 𝐴𝑁 that is formed by 𝑁 independent copies of 𝜉. We want to encode values
of 𝜉𝑁 by 𝑚-bit strings (see Figure 3):

𝜉𝑁 𝜉𝑁
𝑚 bits

encoder decoder
?

Figure 3. Using 𝑚 bits for transmission of 𝜉𝑁 .

Here “encoder” is any mapping of type 𝐴𝑁 → B𝑚, and “decoder” is any map-
ping of type B𝑚 → 𝐴𝑁 . A given value of 𝜉𝑁 causes an error if the input and output
𝐴-strings (of length 𝑁) differ. The probability of error is measured according to
the distribution of 𝜉𝑁 . The question is: what conditions on 𝑚 and 𝑁 guarantee
the existence of an encoder/decoder pair that has small error probability? First,
let us make the following evident remark:

Theorem 150. For given 𝑁,𝑚 and 𝜀 > 0 the code with error probability at
most 𝜀 exists if and only if the 2𝑚 most probable values of 𝜉𝑁 have total probability
at least 1 − 𝜀.

Proof. Indeed, when 𝑚 bit are used for encoding, one may transmit (without
errors) at most 2𝑚 values. To minimize the error probability, we should choose 2𝑚

most probable values. �

In the next theorem the alphabet 𝐴 and the random variable 𝜉 are fixed.

Theorem 151. For each 𝜀 > 0 there exists a constant 𝑐 such that:
(a) The values of 𝜉𝑁 can be encoded/decoded with 𝑁𝐻(𝜉)+𝑐

√
𝑁 bits with error

probability at most 𝜀;
(b) Any code for 𝜉𝑁 of length at most 𝑁𝐻(𝜉) − 𝑐

√
𝑁 has error probability at

least 1 − 𝜀 (i.e., the probability of correct decoding is at most 𝜀).

Proof. (a) As we know, for a suitable 𝑐 the value of random variable 𝜉𝑁 has

complexity less than 𝑚 = 𝑁𝐻(𝜉)+𝑐
√
𝑁 with probability at least 1−𝜀. So for these

values one can use shortest descriptions (see the definition of plain complexity) as
codes. (Formally speaking, we get strings not of length 𝑚, but of length less than 𝑚,
but there are at most 2𝑚 of them and they can be replaced by strings of length 𝑚.)

Note that coding is not performed by an algorithm, but the theorem (as stated)
does not say anything about that, it claims the existence of a code mapping.

(b) Here we need to use some trick. If there exists a code of given length,
then such a code can be constructed algorithmically using the previous theorem
(or just by an exhaustive search). Then the decoding function for this code can be
considered as a conditional decompressor (where conditions are 𝑝𝑖 and 𝑁). There-
fore, all values of 𝜉𝑁 that are decoded without error, have complexity at most
𝑁𝐻(𝜉) − 𝑐

√
𝑁 + 𝑂(log𝑁) (the latter term corresponds to the complexity of pa-

rameters and can be omitted if we increase 𝑐). As we know (Theorem 149, p. 242),
the probability of this event is at most 𝜀. �

240 As before, we assume that probabilities 𝑝𝑖 are known exactly, and if 𝑝𝑖
are not computable, we get some problems. Correct the argument replacing 𝑝𝑖 by
their approximations with sufficient precision.

244 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

241 Give a statement and proof for a similar result about conditional coding
and conditional entropy. [Hint. Assume that two dependent random variables 𝜉
and 𝜂 are given. We make 𝑛 independent trials, the value of 𝜂𝑁 is known both to
the sender and the receiver, and the sender wants to send 𝑚 bits in such a way that
receiver could reconstruct the value of 𝜉𝑁 . How large should be 𝑚?]

CHAPTER 8

Some applications

8.1. There are infinitely many primes

Let us start with a toy example and prove that there are infinitely many primes.
Assume that there are only 𝑚 different prime numbers 𝑝1, . . . , 𝑝𝑚. Then every

positive integer 𝑥 has prime decomposition of the form

𝑥 = 𝑝𝑘1
1 𝑝𝑘2

2 . . . 𝑝𝑘𝑚
𝑚

and can be described by the list of exponents 𝑘1, . . . , 𝑘𝑚. Each of 𝑘𝑖 does not
exceed log 𝑥, since the base is at least 2, and has complexity at most 𝑂(log log 𝑥)
(its binary representation has 𝑂(log log 𝑥) bits). Since 𝑚 is fixed, i.e., 𝑚 is the same
for different 𝑥’s, the complexity of the tuple ⟨𝑘1, 𝑘2, . . . , 𝑘𝑚⟩ is 𝑂(log log 𝑥). As 𝑥
can be obtained from that tuple, its complexity is 𝑂(log log 𝑥). But for a “random”
(incompressible) 𝑛-bit integer 𝑥 the complexity is close to 𝑛 and is not 𝑂(log 𝑛), as
this formula says (the logarithm of an 𝑛-bit number does not exceed 𝑛). Euclid’s
theorem is proven.1

Is this a real application of Kolmogorov complexity or just cheating? A skep-
tical reader would say that we just retell, in terms of Kolmogorov complexity, the
following counting arguments. If there are only 𝑚 prime numbers, then there are
at most (log 𝑥)𝑚 different integers between 1 and 𝑥, since any integer in this range
is determined by the 𝑚 powers in its decomposition, and each power is less than
log 𝑥. This immediately leads to a contradiction, since 𝑥 > (log 𝑥)𝑚 for large 𝑥.

This is indeed true: our reasoning using Kolmogorov complexity is a direct
translation of this argument (and is a bit more cumbersome due to asymptotic
notation). However, such a translation may still have sense, since the new language
provides new intuition, and this intuition may be useful even if later the same
argument can be translated into the standard language.

We return to this discussion after looking at other applications.

8.2. Moving information along the tape

The other toy example is a well knows result saying that duplication of a 𝑛bit
string on the tape of a Turing machine (with one tape only) requires 𝜀𝑛2 steps in the

1In [102] this argument continues as follows: if 𝑁 has a prime factor 𝑝𝑛 (the 𝑛th prime), then
we may encode 𝑁 as a pair (𝑛,𝑁/𝑝𝑛), so 𝐶(𝑁) 6 𝐾(𝑛)+𝐶(𝑁/𝑝𝑛)+𝑂(1). If 𝑁 is incompressible,
then log𝑁 6 𝐶(𝑁) 6 𝐾(𝑛) + log(𝑁/𝑝𝑛) with 𝑂(1)-precision, so log 𝑝𝑛 6 𝐾(𝑛) + 𝑂(1). This
gives an upper bound for 𝑝𝑛 for infinitely many 𝑛; one should note only that (as we have seen)

incompressible integers may have arbitrarily large factors.

The combinatorial translation of this argument goes as follows. Let us choose some threshold
𝑚, and consider all integers that have only prime factors below 𝑚. These integers form a minority

among large integers, and all other integers have large prime factors. This implies that every tail
of the series

∑︀
1/𝑝 (inverse primes) is at least 1/2, so this series diverge.

245

246 8. SOME APPLICATIONS

𝑏

𝐿 𝑅

Figure 1. A buffer zone of size 𝑏.

worst case. This classical result was obtained in 1960s using the so-called “crossing
sequences”; our proof is just a translation of this argument into the language of
Kolmogorov complexity. (We assume that the reader is familiar with the basic
notions related to Turing machines, see, e.g., [182]).

Consider a zone of size 𝑏 on a tape of an one-tape Turing machine; this zone
is considered as a “buffer” and we want to transmit information across this zone,
say, from left (𝐿) to right (𝑅), see Figure 1.

Initially the buffer zone and 𝑅 are empty (filled with blanks), and 𝐿 is arbitrary.
We give an upper bound for the complexity of 𝑅 after 𝑡 steps. The upper bound is
(𝑡 log𝑚)/𝑏+𝑂(log 𝑡) where 𝑚 is the number of states that our Turing machine has
and 𝑏 is the width of the buffer zone. Informally the argument is quite simple: each
state of the TM carries log𝑚 bits of information, and during one computation step
this information can be moved to the neighbor cell, so moving it at the distance 𝑏
requires 𝑏 times more time.

Now we have to convert this intuitive explanation into a formal argument.

Theorem 152. Let 𝑀 be a Turing machine that has 𝑚 states. Then there exists
a constant 𝑐 such that for any 𝑏 and for any computation that starts with empty
buffer zone of size 𝑏 and empty tape on the right of the buffer zone the complexity
of the contents 𝑅(𝑡) of the right part of the tape after 𝑡 steps of computation does
not exceed

𝑡 log𝑚

𝑏
+ 4 log 𝑡 + 𝑐.

Proof. Let us consider some line between cell inside the buffer zone as a
“border”, and let us write down the state of 𝑀 when it crosses the border from
left to right (as it was done in the times of iron curtain). The sequence of states
is called the crossing sequence. Knowing the crossing sequence, we can reconstruct
the behavior of 𝑀 “abroad” (on the right of the border) not using the contents of
the tape on the left. Indeed, we should artificially put the machine into the first
state of the crossing sequence and let it go abroad. When 𝑀 returns back, we put
it in the second state of the crossing sequence and let it go abroad again. In this
way we correctly reconstruct the abroad behavior of the machine (since it does not
remember anything except its state when crossing the border). In particular, at
some moment 𝑡′ the tape on the right of the buffer zone contains 𝑅(𝑡). Note that 𝑡′

may be different from 𝑡 since we do not take into account the time 𝑀 spends on the
left of the border, but 𝑡′ cannot exceed 𝑡. Therefore, to reconstruct 𝑅(𝑡) we need
to now the crossing sequence, 𝑡′ and the distance between the border and 𝑅-zone.
So there exists a constant 𝑐 (depending on 𝑀 but not on 𝑏 and 𝑡) such that for any
crossing sequence 𝑆 and any 𝑏 and 𝑡 we have

𝐶(𝑅(𝑡)) 6 𝑙(𝑆) log𝑚 + 4 log 𝑡 + 𝑐.

8.2. MOVING INFORMATION ALONG THE TAPE 247

𝑛 𝑛/2

𝑢 𝑢

𝑥

Figure 2. Buffer zone for duplication

Here we multiply the length 𝑙(𝑆) of the crossing sequence by log𝑚 since 𝑆 is a
string in a 𝑚-letter alphabet and each letter carries log𝑚 bits. To add 𝑏′ and 𝑡′

in a self-delimiting encoding we need at most 2 log 𝑏 + 2 log 𝑡 bits. We may assume
that 𝑡 > 𝑏, otherwise 𝑅(𝑡) is empty since the head never visited 𝑅. The constant 𝑐
appears when we switch to the optimal decompressor.

This inequality is true for any contents of 𝐿 and for any placement of the
border. Now if for a given contents of 𝐿 we consider the shortest crossing sequence,
the length of this sequence is less then 𝑡/𝑏 (there is 𝑏 + 1 possible positions of the
border, and at each step only one of the positions is crossed, so the sum of the
lengths of crossing sequences does not exceed 𝑡). In this way we get the inequality
stated by the theorem. �

242 Show that this bound can be improved by replacing 𝑏 in the denominator
by 2𝑏. [Hint: The return trips need almost the same time (the difference is at most
𝑏).]

The quadratic lower bound for the duplication of a 𝑛-bit string immediately
follows.

Assume that a one-tape Turing machine 𝑀 duplicates its input: if initially the
tape contains a binary string 𝑥 (followed by blanks), at the end of the computation
the tape has a second copy of 𝑥 (i.e., contains 𝑥𝑥).

Theorem 153. There exists a constant 𝜀 > 0 such that for every 𝑛 there exists
a 𝑛-bit string that requires at least 𝜀𝑛2 steps to duplicate it.

Proof. For simplicity let us assume that 𝑛 is even, and let 𝑥 be a string
whose second half 𝑢 has complexity close to its length (i.e., to 𝑛/2). Then apply
the inequality we have proven considering the zone of size 𝑛/2 on the right of 𝑥 as
the buffer (Figure 2).

Assume that duplication takes 𝑡 steps. Then the complexity of 𝑅 zone after 𝑡
steps (which is at least 𝑛/2) does not exceed 𝑡 log𝑚/𝑏 + 4 log 𝑡 + 𝑐, where 𝑏 is the
size of the buffer zone, i.e., 𝑛/2. Therefore,

𝑛

2
6

𝑡 log𝑚

𝑛/2
+ 4 log 𝑡 + 𝑐,

We may assume without loss of generality that 𝑡 < 𝑛2 (otherwise the statement is
trivial). Then we replace 4 log 𝑡 by 8 log 𝑛 and conclude that

𝑡 >
𝑛2

4 log𝑚
−𝑂(𝑛 log 𝑛);

the second term is small compared to the first one for large 𝑛 (we may then formally
extend the result to every 𝑛 by decreasing the coefficient 𝜀). �

248 8. SOME APPLICATIONS

Is the Kolmogorov complexity essential in this proof? The skeptical observer
may say again that we in fact just counted the number of different strings that
can be copied in a limited time (using the fact that different string should have
different crossing sequences, otherwise the behavior of the machine at the right of
the boundary would be identical). Indeed, the original proof follows this scheme (in
fact, it deals with palindrome recognition, not the duplication, but the technique
is the same). Does the language of complexity make the proof more intuitive and
easy to understand? Probably this is a matter of taste.

Many bounds in the computational complexity theory can be proven in the
same way, using the string of maximal complexity as the “worst case” and prov-
ing that the violation of the bound would imply this string to be compressible.
Many applications of this type (and further references) are given in the classical
textbook [102]; its authors, Ming Li and Paul Vitányi, played an important role
in development of this approach, called “incompressibility method”. Note that in
several cases the historically first proof was obtained using Kolmogorov complexity.

In the next section we consider one more application of the incompressibility
method. Then we switch to other applications. The most interesting thing in these
applications is not the statements in itself but the various methods that allow us
to apply Kolmogorov complexity to prove statements that do not mention it.

8.3. Finite automata with several heads

A finite automaton with 𝑘 heads is similar to the ordinary one (we assume
that the reader is acquainted with basic notions related to finite automata, see,
e.g., [183]) but has 𝑘 one-way read-only heads. Here “one-way” means that the
head can only move from left to right.

Initially all 𝑘 heads observe the leftmost character of the input string. At each
step the behavior of the automaton is determined by its state and 𝑘 symbols it
observes (under 𝑘 heads): automaton changes the state and instructs some heads
(at least one) to move to the right. Then the automaton performs the next step,
etc.

The input string is followed by a special marker; the automaton terminates if all
the heads observe this marker. (We assume that the head that sees the marker does
not move to the right.) Automaton accepts the string if it gets into an accepting
state after processing this string. We say that automaton recognizes the set of all
accepted strings.

Example. Consider the language (=set of strings) 𝑥#𝑥 where 𝑥 is any binary
string. It is well known that this language cannot be recognized by a standard
(one-head) automation. However, it is easily recognized by a two-head automaton.
Indeed, we should send one head to look for the separator #, when the separator is
found, two heads move synchronously and check that they read the same symbol.

So two heads are better than one (more languages can be recognized). It turns
out that the same is true for more heads: 𝑘 + 1 heads are (strictly) better than 𝑘
heads.

Theorem 154. For every 𝑘 there exists a language that can be recognized by a
(𝑘 + 1)-head automaton but not by a 𝑘-head one.

Proof. For each 𝑚 > 1 consider th language 𝐿𝑚 that consists of all strings

𝑤1# . . . 𝑤𝑚#𝑤𝑚# . . . 𝑤1

8.3. FINITE AUTOMATA WITH SEVERAL HEADS 249

(for any binary strings 𝑤1, . . . , 𝑤𝑚). Each 𝑤𝑖 is repeated twice, and in the right
half the strings 𝑤𝑖 go in the reversed order (this is crucial for the argument).

A 𝑘-head automaton can recognize this language if 𝑚 is not very large (is

at most
(︀
𝑘
2

)︀
, see below). One of the heads goes to the right half, and remaining

𝑘− 1 heads are placed before 𝑤1, . . . , 𝑤𝑘−1. Then each of these 𝑘− 1 heads checks
its string while the first head crosses its copy. After that the first 𝑘 − 1 strings
are checked, the first head is of no use (it is at the end of the input string), but
remaining 𝑘− 1 heads are useful since they are on the left of the remaining strings
𝑤𝑘, 𝑤𝑘+1, Now we repeat the same trick: one of 𝑘 − 1 heads is sent across the
right half, 𝑘 − 2 heads check next 𝑘 − 2 strings etc. Repeating this, we can check

(𝑘 − 1) + (𝑘 − 2) + . . . + 1 =
𝑘(𝑘 − 1)

2
=

(︂
𝑘

2

)︂
strings. (Note that 𝑚 is fixed, so for finding a substring with a given number the
finite memory is enough.)

Therefore, the language 𝐿𝑚 can be recognized by a 𝑘-head automaton if 𝑚 6
(︀
𝑘
2

)︀
.

It remains to show that if 𝑚 >
(︀
𝑘
2

)︀
, the language 𝐿𝑚 cannot be recognized by

a 𝑘-head automaton. Assume that is not the case and some 𝑘-head automaton
𝑀 recognizes this language. To get a contradiction, let us consider independent
random string 𝑤1, . . . , 𝑤𝑚 of sufficiently large length 𝑁 . More formally, consider
a string of length 𝑚𝑁 and complexity at least 𝑚𝑁 and split it into 𝑚 strings of
length 𝑁 denoted by 𝑤1, . . . , 𝑤𝑚. By assumption, the string

𝑊 = 𝑤1# . . . 𝑤𝑚#𝑤𝑚# . . . 𝑤1

is accepted by 𝑀 ; we get a contradiction by showing that either 𝑤1 . . . 𝑤𝑚 is com-
pressible or the automaton does not recognize 𝐿𝑚.

Let us say that a given pair of heads of 𝑀 visited 𝑤𝑖 if at some moment (while
processing 𝑊 by 𝑀) these heads were simultaneously inside two copies of 𝑤𝑖. A key
observation: a given pair of heads cannot visit both 𝑤𝑖 and 𝑤𝑗 for 𝑖 ̸= 𝑗. Indeed,
consider the moment when 𝑤𝑖 was visited. After that the left heads reads only 𝑤𝑗

with 𝑗 > 𝑖 and the right head visits only 𝑤𝑗 with 𝑗 < 𝑖.

By our assumption 𝑚 >
(︀
𝑘
2

)︀
; therefore there exists 𝑖 such that 𝑤𝑖 is not visited

by any pair of heads. Let us show that either 𝑤𝑖 is compressible or one of its copies
can be counterfeited in such a way that 𝑀 will still accept the string (so 𝑀 does
not work correctly).

Let us observe the actions of 𝑀 on 𝑊 . A special attention is needed when one
of the heads enters or leaves 𝑤𝑖 (any of two copies): we write down the positions
of all heads and the state of 𝑀 at these moments. The obtained “log-file” 𝑃 has
complexity 𝑂(log𝑁) where the hidden constant depends on 𝑘, 𝑚 and the number
of states in 𝑀 but not on 𝑁 . Indeed, there are at most 4𝑘 moments to consider
(4 per head) and at each moment we record the state of the automaton and head
positions, and this requires 𝑂(log𝑁) bits.

Let us show that (if 𝑀 recognizes 𝐿𝑚 correctly) the string 𝑤𝑖 can be uniquely
reconstructed if all other 𝑤𝑗 (with 𝑗 ̸= 𝑖) and 𝑃 are given. This would imply that
the complexity of the string 𝑤1 . . . 𝑤𝑚 does not exceed (𝑚 − 1)𝑁 (the number of
bits in 𝑤𝑗 for 𝑗 ̸= 𝑖) plus 𝑂(log𝑁) (the complexity of the log-file) plus 𝑂(1), which
is less than 𝑚𝑁 for large 𝑁 , so we get a desired contradiction.

The reconstruction goes as follows: we try all strings of length 𝑚 as candidates
for 𝑤𝑖 (keeping 𝑤𝑗 with 𝑗 ̸= 𝑖 intact). For each candidate 𝑤 we run 𝑀 on the

250 8. SOME APPLICATIONS

resulting string and check whether we get the same protocol 𝑃 . There are three
possible cases:

(1) If (for some 𝑤) 𝑀 rejects (does not accept) the string, then 𝑀 does not
recognize our language.

(2) 𝑀 accepts all these strings (for all candidates) and the protocol 𝑃 appears
only once, for 𝑤 = 𝑤𝑖. Then the reconstruction is possible (and 𝑤1 . . . 𝑤𝑚 is
compressible).

(3) 𝑀 accepts all these strings and 𝑃 appears both for 𝑤𝑖 and for some 𝑤 ̸= 𝑤𝑖.
Let us show that in this case 𝑀 accepts a string not in 𝐿𝑚, namely, the string 𝑊 ′

that has 𝑤𝑖 in the left half while in the right half 𝑤𝑖 is replaced by 𝑤.
Indeed, there are two accepting computations of 𝑀 : one if 𝑤𝑖 is used on both

sides and the other one for 𝑤. Let us split both of them into parts; the splitting
points are moments when one of the head enters or leaves 𝑤𝑖 (or 𝑤). The positions
of all other heads and the states of 𝑀 are recorded in 𝑃 so they are the same for
both computations. (Note that the moments of time can be different since they
are not recorded. In fact, we may add them also, but this is not needed.) So we
can glue the computation intervals for both cases; let us show that we can get an
accepting computation of 𝑀 on a bad string (the left half has 𝑤𝑖 while the right
half has 𝑤).

By our assumption during the processing of 𝑊 there is no moment when both
copies of 𝑤𝑖 carry some heads; since the border crossings for both copies are recorded
in 𝑃 , the same is true when 𝑤𝑖 is replaced by 𝑤. So for each interval between two
protocol events related to 𝑤𝑖/𝑤 there are three possibilities: (a) there is a head in
the 𝑖th string on the left; (b) there is a head in the 𝑖th string on the right; (c) none
of the above. Then we can copy-paste the intervals into a new computation: for
(a)-parts we use the computation of 𝑀 on 𝑊 ; for 𝑏-parts we use the computation
of 𝑀 of changed input (where 𝑤𝑖 is replaced by 𝑤); for (c)-parts we can use either
of two (they are the same). Then we get a computation of 𝑀 on a mixed string
𝑊 ′, so 𝑀 does not work properly. �

8.4. Laws of Large Numbers

The Strong Law of Large Numbers was proven in Section 3.2 (Theorem 27,
p. 70) without any references to Kolmogorov complexity, by a straightforward
counting. We consider (mainly) the uniform case. In the case the SLLN says
that the set of all sequences 𝜔 = 𝜔0𝜔1 . . ., such that the sequence

𝑝𝑛 =
𝜔0 + 𝜔1 + . . . + 𝜔𝑛−1

𝑛

has limit 1/2 as 𝑛 tends to infinity, has full measure (with respect to the uniform
Bernoulli measure on Ω). In other words, SLLN says that the complement of this
set (i.e., the set of sequences 𝜔 such that 𝑝𝑛 either have no limit or have limit not
equal to 1/2) is a null set. Later (Theorem 32, p. 79) we have shown that this
null set is in fact an effectively null set; this implies that for every ML-random
(with respect to the uniform measure) sequence 𝜔 the sequence 𝑝𝑛 converges to 1/2
(Theorem 33, p. 79).

However, we can go in the other direction. Namely, we may first prove that
for any ML-random sequence the frequencies converge to 1/2 using the randomness
criterion in terms of complexity (Theorem 90, p. 160). This criterion says that
for a ML-random (with respect to the uniform Bernoulli measure) sequence 𝜔 the

8.4. LAWS OF LARGE NUMBERS 251

monotone complexity of its prefix (𝜔)𝑛 of length 𝑛 is 𝑛 + 𝑂(1). This property
implies that the frequency of ones in (𝜔)𝑛 (i.e., 𝑝𝑛) converges to 1/2. Indeed,
Theorem 146 says that the complexity of 𝜔𝑛 does not exceed 𝑛ℎ(𝑝𝑛, 1 − 𝑝𝑛) +
𝑂(log 𝑛), so ℎ(𝑝𝑛, 1 − 𝑝𝑛) = 1 + 𝑂(log 𝑛/𝑛) for any ML-random sequence. (Note
that the difference between plain and prefix complexity of 𝜔𝑛 is 𝑂(log 𝑛), so any of
them can be used.) This implies that 𝑝𝑛 → 1/2 as 𝑛 → ∞ (see the graph of entropy
function, Figure 1, p. 71). So the SLLN is true for all ML-random sequence, which
form a set of full measure.

The skeptical observer would say that this is not a different proof, or we have
just repeated the same arguments using different language. And she is probably
right. If we recall the proof of Theorem 146, we see that it uses the same estimate
(based on Stirling’s approximation) that was used for the proof of SLLN. (Another
argument, where monotone complexity is bounded by a negative logarithm of the
measure, Theorem 89, also has a direct translation in the probabilistic language; it
was discussed in Section 3.2 after the proof of Theorem 27 on p. 70).

So why do we get by using the complexity language? First, we find a broader
class of sequences that satisfy SLLN:

Theorem 155. Let 𝜔 be a binary sequence such that 𝐶((𝜔)𝑛) = 𝑛+𝑜(𝑛). Then
the sequence 𝑝𝑛 (frequency of ones in (𝜔)𝑛) converges to 1/2.

Proof. The proof remains essentially unchanged: in this case ℎ(𝑝𝑛, 1 − 𝑝𝑛) is
still 1 + 𝑜(1). �

Second, we can not only prove that 𝑝𝑛 → 1/2 but also give some estimates for
the convergence speed. The corresponding result in probability theory is known
as the Law of Iterated Logarithm, and V. Vovk [206] has shown that it is valid
for Martin-Löf random sequences. Following his argument, let us use Kolmogorov
complexity to provide a (rather simple) proof of the upper bound provided by this
law.

Theorem 156. Let 𝜔 be a ML-random sequence with respect to the uniform
measure. Let 𝑝𝑛 be the frequency of ones in (𝜔)𝑛. Then for every 𝜀 > 0 the
inequality

|𝑝𝑛 − 1/2| 6 (1 + 𝜀)

√︂
ln ln𝑛

2𝑛
holds for any sufficiently large 𝑛.

Proof. Let us first look what bound can be obtained by the argument above
(that uses Kolmogorov complexity). We know that

𝑛−𝑂(1) 6 𝐾𝑀((𝜔)𝑛) 6 𝑛ℎ(𝑝𝑛, 1 − 𝑝𝑛) + 𝑂(log 𝑛),

therefore
ℎ(𝑝𝑛, 1 − 𝑝𝑛) > 1 −𝑂(log 𝑛/𝑛)

The function

𝑝 ↦→ ℎ(𝑝, 1 − 𝑝) = 𝑝(− log 𝑝) + (1 − 𝑝)(− log(1 − 𝑝))

has maximum at 𝑝 = 1/2, and the second derivative at this point is non-zero (equals
−4/ ln 2). Therefore, Taylor expansion gives us

ℎ(1/2 + 𝛿) = 1 − 2

ln 2
𝛿2 + 𝑜(𝛿2)

252 8. SOME APPLICATIONS

as 𝛿 → 0, and for 𝛿𝑛 = 𝑝𝑛 − 1/2 we have

𝛿2𝑛 = 𝑂(log 𝑛/𝑛),

i.e.,

|𝑝𝑛 − 1/2| = 𝑂

(︃√︂
log 𝑛

𝑛

)︃
.

So we get at least something, though the bound we need is much stronger. (Let us
mention that in the probability theorem the final bound was obtained in many steps.
First Hausdorff (1913) proved the bound 𝑂(𝑛𝜀/

√
𝑛); then Hardy and Littlewood

(1914) improved it and replaced 𝑛𝜀 by
√

log 𝑛; then Steinhaus (1922) came with the

bound (1 + 𝜀)
√︀

(2 ln𝑛)/𝑛, and only later Khinchin (1924) got the final result. So
we are now on the level of Hardy and Littlewood in this respect — not that bad.)

Let us think about possible improvements for the upper bound that we had
for KM ((𝜔)𝑛). This upper bound was obtained by comparing KM ((𝜔)𝑛) and the
negative logarithm of the probability of the prefix (𝜔)𝑛 with respect to the Bernoulli
measure with parameter 𝑝𝑛. This logarithm is exactly 𝑛ℎ(𝑝𝑛, 1 − 𝑝𝑛), but the
Bernoulli measure used for comparison depends on 𝑛, so the construction used in
the proof of Theorem 89 needs an additional term that is 𝐾(𝑝𝑛) (we start with
a self-delimiting encoding of 𝑝𝑛). Here 𝐾(𝑝𝑛) does not exceed (2 + 𝜀) log 𝑛, since
both numerator and denominator of the fraction 𝑝𝑛 do not exceed 𝑛. Altogether
we get the bound

2

ln 2
(𝑝𝑛 − 1/2)2 ≈ 1 − ℎ(𝑝𝑛, 1 − 𝑝𝑛) 6 (2 + 𝜀) log 𝑛/𝑛,

which is still not good enough.
What else can we do? Note that we already know that 𝑝𝑛 is rather close to

1/2: with denominator 𝑛 the numerators differs from 𝑛/2 by
√
𝑛 or a bit more. So

(when the denominator 𝑛 is known) we can use less bits to describe the numeration,
and this allows us to replace 2 by 1.5 in the right-hand side. But this is still not
enough for us.

The crucial idea is to use approximations for 𝑝𝑛 instead of the exact values. Let
us assume that 𝑝𝑛 = 1/2+ 𝛿𝑛 > 1/2 (the case when 𝑝𝑛 < 1/2 is similar). Instead of
𝑝𝑛 we use (while constructing the Bernoulli measure used to get the upper bound for
complexity) its approximation 1/2 + 𝛿′𝑛 where 𝛿′𝑛 is an approximation to 𝛿𝑛 from
below with a small (fixed) relative error. For example, let us take 𝛿′𝑛 such that
0,9𝛿𝑛 < 𝛿′𝑛 6 𝛿𝑛. Such a 𝛿′𝑛 can be founded among the geometric sequence (0,9)𝑘,
and its complexity is about log 𝑘, i.e., about log(− log 𝛿𝑛/ log 0,9) = log(− log 𝛿𝑛)+𝑐.
Note that if 𝛿𝑛 < 1/

√
𝑛 then we have nothing to prove, so the complexity of 𝛿′𝑛 can

be upper-bounded by (1+𝜀) log log 𝑛 (for every 𝜀 this bound holds for all sufficiently
large 𝑛).

This is good news; the bad news is that we have a more complicated bound for
the complexity of (𝜔)𝑛. Now instead of ℎ(𝑝𝑛, 1 − 𝑝𝑛) we have

𝑝𝑛[− log 𝑝′𝑛] + (1 − 𝑝𝑛)[− log(1 − 𝑝′𝑛)], (*)

where 𝑝′𝑛 = 1/2+𝛿′𝑛; recalling our discussion of entropy, we may say that a sequence
(𝜔)𝑛 where frequencies of zeros and ones are 𝑝𝑛 and 1 − 𝑝𝑛 is encoded by a code
adapted to the simplified frequencies 𝑝′𝑛 and 1 − 𝑝′𝑛. The expression (*) can only
increase if we replace 𝑝𝑛 by 𝑝′𝑛: since 𝑝𝑛 > 𝑝′𝑛 > 1/2, the second expression in square

8.5. FORBIDDEN SUBSTRINGS 253

brackets is greater than the first one, and increasing its weight by decreasing 𝑝𝑛,
we increase the entire expression (*).

Finally we get the bound

𝑛−𝑂(1) 6 𝑛ℎ(𝑝′𝑛, 1 − 𝑝′𝑛) + (1 + 𝜀) log log 𝑛

for every 𝜀 > 0 (the inequality holds for all sufficiently large 𝑛). As before, it implies

𝛿′𝑛 6 (1 + 𝜀)
√︀

ln 2 · log log 𝑛/2𝑛.

For a “true” 𝛿𝑛 we get a slightly bigger bound (1/0.9 times bigger); since 0.9 can
be replaced by an arbitrary number less than 1 we get the desired statement (the
factor ln 2 is used to convert the binary logarithm to the natural one, while the
replacement of the second binary logarithm by the natural one can be compensated
by a change of 𝜀 in the factor (1 + 𝜀)). �

243 Show that this argument can be used to prove the statement of Theo-
rem 156 not only for Martin-Löf random sequences but also for arbitrary sequence 𝜔
such that 𝑛−KM ((𝜔)𝑛) = 𝑜(log log 𝑛).

8.5. Forbidden substrings

8.5.1. Forbidden and simple substrings. The statement we prove in this
section is an example of a non-trivial application of Kolmogorov complexity (that
cannot be directly translated into a counting argument).

Theorem 157. Let 𝛼 < 1 be a positive real number. Assume that for each 𝑛
some binary strings are called forbidden strings and there are at most 2𝛼𝑛 forbidden
strings for any length 𝑛. Then there exists some 𝑐 and an infinite sequence of zeros
and ones that does not have forbidden substrings of length 𝑐 or more.

For example, we can declare strings of length 𝑛 and (plain) complexity less than
𝛼𝑛 as forbidden strings. Then we get the following corollary (“Levin’s lemma”,
see [51]):

Theorem 158. Let 𝛼 < 1 be a positive real number. There exists an infinite
sequence of zeros and ones such that any its substring of sufficiently large length 𝑛
has complexity at least 𝛼𝑛.

It is instructive to compare this statement with the randomness criterion for
the uniform measure (Theorem 94, p. 165). In this criterion we considered only
the prefixes of the sequence (instead of all substrings); on the other hand the lower
bound for complexity was 𝑛 − 𝑂(1) instead of a weaker bound 𝛼𝑛 that we have
now. (The bound 𝑛−𝑂(1) was for the monotone complexity; it implies 𝑛−𝑂(log 𝑛)
bound for the plain complexity that we use now). The following problem shows
that such a strong bound cannot be true for all the substrings (not a surprise, since
a truly random sequence contains all substrings, including simple ones).

244 For each infinite sequence 𝜔 of zeros and ones there exist 𝛼 < 1 and infin-
itely many substrings that have complexity per letter (the ratio complexity/length)
at most 𝛼. [Hint: Consider two cases: if all binary strings appear as substrings, the
claim is evident. If 𝜔 does not contain some string 𝑢 of length 𝑘, we can split long
substrings into blocks of length 𝑘 and use efficient coding that takes into account
that block 𝑢 is never used and does not need a code; this gives complexity per letter
at most (log(2𝑘 − 1))/𝑘.]

254 8. SOME APPLICATIONS

The proof of Theorem 157 consists of two steps. First we prove its special case,
Theorem 158. Then it turns out (surprisingly) that the general case follows from
this special one.

Proof. To prove Theorem 158 let us consider an intermediate 𝛽 such that
𝛼 < 𝛽 < 1. Using Theorem 71 (p. 125) we find a number 𝑁 with the following
property: to each string 𝑥 we can append 𝑁 bits (on the right) in such a way that
prefix complexity of the string increases at least by 𝛽𝑁 .

Let us use this property iteratively starting from the empty string. We get an
infinite sequence of 𝑁 -bit blocks; the prefix complexity increases at least by 𝛽𝑁
when the next block is appended. This implies that the complexity of every group
of consecutive 𝑘 blocks is at least 𝛽𝑘𝑁 − 𝑂(1). Indeed, appending this group we
increase complexity by 𝛽𝑘𝑁 at least, but the inequality 𝐾(𝑥𝑦) 6 𝐾(𝑥)+𝐾(𝑦)+𝑂(1)
shows that 𝐾(𝑦) > 𝐾(𝑥𝑦) −𝐾(𝑥) −𝑂(1).

This implies that for every substring 𝑢 (not necessarily block-aligned) the com-
plexity of 𝑢 is at least 𝛽𝑙(𝑢) −𝑂(1) since the change in complexity and length due
to boundary effects (by cutting the incomplete block on the border) is 𝑂(1). It
remains to note that we have some reserve due to the difference between 𝛼 and
𝛽, and this reserve is enough to compensate both the boundary effects and the
difference between plain and prefix complexities. �

245 Give a similar argument that uses plain complexity instead of prefix one.
[Hint: Use Problem 46, p. 55.]

246 Prove the statement of Problem 47 (p. 55) with the prefix complexity
instead of the plain one.

Proof. Now let us prove Theorem 157; the simplest approach is to use the
relativized version of complexity. Let us consider the set 𝐹 of forbidden strings as
an oracle; this means that we consider algorithms that can ask (for free) whether
a given string is forbidden or not. As usually, this relativization goes smoothly
both in the statement of Theorem 158 and its proof, and this theorem is true for
𝐹 -relativized complexity.

Now all forbidden strings of length 𝑛 have 𝐹 -complexity at most 𝛼𝑛+𝑂(log 𝑛),
since each forbidden string can be determined by 𝑛 and by its ordinal number in the
list of all forbidden strings of length 𝑛. In fact the stronger bound 𝛼𝑛+𝑂(1) is valid
since we can use the list of all forbidden strings in the order of increasing length,
but this does not matter much since a small change in 𝛼 covers this difference.
So it remains to apply Theorem 158 and get a sequence which does not have long
substrings with complexity less than 𝛽 (per letter), for some 𝛽 > 𝛼. �

One can also make the following (rather unexpected) observation [159]: The-
orem 157 can be derived from Theorem 158 directly, without any relativization,
using the following statement:

Theorem 159. If for some rational 𝛼 and some set 𝐹 of forbidden strings
the statement of Theorem 157 is false (𝐹 has less than 2𝛼𝑛 forbidden strings for
each 𝑛, but there is no infinite sequence without long forbidden strings), then the
same happens for some decidable set 𝐹 .

8.5. FORBIDDEN SUBSTRINGS 255

(Note that for a decidable 𝐹 the relativization does not change anything; the
restriction to rational 𝛼 is also not important, since we can increase 𝛼 to a greater
rational number.)

Proof. Assume that for some 𝛼 < 1 and some set 𝐹 the statement of Theo-
rem 157 is false. Then for each 𝑐 we may find a set 𝐹𝑐 in such a way that

(a) 𝐹𝑐 contains only strings of length greater than 𝑐;
(b) 𝐹𝑐 contains at most 2𝛼𝑘 strings of length 𝑘 (for every 𝑘);
(c) each infinite sequence contains at least one substring that belongs to 𝐹𝑐.
(Indeed, we can let 𝐹𝑐 be the set of all strings in 𝐹 that have length greater

than 𝑐.)
The standard argument (compactness, König’s lemma) shows that every suffi-

ciently long string has at least one substring in 𝐹𝑐, so one can find finite 𝐹𝑐 with
the same properties. Moreover, such a finite set can be found by an exhaustive
search, so we get 𝐹𝑐 that has these properties and can be found effectively when 𝑐
is given. (Why do we need first switch to finite sets? to make the search possible.)

Now we construct the sequence 𝑐𝑖 such that 𝑐𝑖+1 is greater than the lengths of
all strings in 𝐹𝑐𝑖 . The union of all 𝐹𝑐𝑖 is a decidable set that violates the statement
of Theorem 157. �

Note the structure of our arguments: knowing that object with some property
exists, we perform an exhaustive search and effectively find (may be, different)
object with the same property. This observation is often useful when dealing with
Kolmogorov complexity.

247 Prove that if for some set 𝐹 of strings there exists a (one-sided) infi-
nite sequence that does not contain substrings from 𝐹 , there exists a bidirectional
sequence that does not contain substrings from 𝐹 . [Hint: compactness argument
shows that both properties are equivalent to the existence of arbitrarily long finite
sequences that do no contain substrings from 𝐹 .]

J. Miller [124] suggested a direct proof of Theorem 157, where the required
sequence is constructed inductively, and we at each step guarantee that some quan-
tity (“emergency level”) is not very large. Let us explain how the emergency level
is computed and why it can be kept bounded.

Fix a set of forbidden strings 𝐹 . The emergency level for a string 𝑥 (the already
constructed part of the sequence) is denoted by 𝑤𝑐(𝑥), where 𝑐 will be some constant
slightly greater that 1/2. The value of 𝑤𝑐(𝑥) is big if we are almost got a forbidden
substring. The definition: for every possible occurence of a forbidden string 𝑧 ∈ 𝐹
in the possible extension of 𝑥 (this means that 𝑧 is on the right of 𝑥, but there is
a non-zero overlap), we take the number 𝑘 of bits of 𝑧 that are missing in 𝑥, and
add 𝑐𝑘 to 𝑤𝑐(𝑥). In other words, 𝑤𝑐(𝑥) is the sum of 𝑐𝑘 for all 𝑧 ∈ 𝐹 and for all
possible occurences.

When 𝑐 = 1/2, it is easy to explain the meaning of 𝑤𝑐(𝑥): it is the expected
number of occurrences of forbidden strings that overlap 𝑥, assuming that 𝑥 is ex-
tended to the right by a sequence of independent random bits. Having this inter-
pretation in mind, it is easy to see that

𝑤1/2(𝑥) = 1
2𝑤1/2(𝑥0) + 1

2𝑤1/2(𝑥1) −
∑︁
𝑧∈𝐹

(1/2)𝑙(𝑧).

256 8. SOME APPLICATIONS

𝑘

𝑥

𝑧

Figure 3. A possible occurence of a forbidden string 𝑧: part of 𝑧
is already in 𝑥, but 𝑘 bits are missing. This occurence adds 𝑐𝑘 to
𝑤𝑐(𝑥).

Indeed, we add 0 with probability 1/2, and add 1 with probability 1/2, and need
to take into account that in this way we count also occurrences that happen imme-
diately after 𝑥 (and they should not be counted: the definition requires non-zero
overlap with 𝑥). In fact, this equation is a purely combinatorial fact and is valid
for arbitrary 𝑐 (assuming that 𝑥 does not contain forbidden strings):

𝑤𝑐(𝑥) = 𝑐𝑤𝑐(𝑥0) + 𝑐𝑤𝑐(𝑥1) −
∑︁
𝑧∈𝐹

𝑐𝑙(𝑧).

Initially (when 𝑥 is empty) the value 𝑤𝑐(𝑥) is zero, and if 𝑥 contains a forbidden
substring, then 𝑤𝑐(𝑥) is at least 1. So it is enough to show that we can maintain
the invariant relation “𝑤𝑐(𝑥) < 1” when adding the next bit. It is enough to prove
that

𝑤𝑐(𝑥0) + 𝑤𝑐(𝑥1) =
1

𝑐

(︁
𝑤𝑐(𝑥) +

∑︁
𝑧∈𝐹

𝑐𝑙(𝑧)
)︁
< 2

(assuming 𝑤𝑐(𝑥) < 1), and this happens for sure if 1 +
∑︀

𝑧∈𝐹 𝑐𝑙(𝑧) < 2𝑐.

To finish the proof of Theorem 157 it remains to make the sum
∑︀

𝑧∈𝐹 𝑐𝑙(𝑧) finite
by choosing 𝑐 close enough to 1/2 (the value of 𝑐 depends on 𝛼 and becomes closer
to 1/2 as 𝛼 approaches 1), and then to make this sum small by deleting the strings
of small lengths from 𝐹 .

248 Using this argument, prove an effective version of Theorem 157: if the set
𝐹 satisfies the conditions and is decidable, then there exists a computable sequence
that does not have short substrings from 𝐹 .

The result of the last problem can be extended to bi-infinite sequences (as noted
by K. Makarychev): one can also prove the existence of a computable bi-infinite
sequence with the same property. (His argument follows Miller’s scheme, but we
should define “left” and “right” emergency levels and look how then change when
several characters are added: one of the levels should decrease significantly while
the other should not increase much.) More general argument is given in [158]; it
uses an effective version of Lovász local lemma (see the next section) and can be
generalized to multidimensional case.

8.5.2. Lovász local lemma. We have seen how a statement about Kol-
mogorov complexity (the existence of a sequence without simple substrings) may be
used to prove the combinatorial version of this result (the existence of a sequence
without forbidden strings). In this section we move in the opposite direction. We
start with a combinatorial statement (namely, the Lovász local lemma) and use
it to prove statements about Kolmogorov complexity. But first let us make some
general remarks.

8.5. FORBIDDEN SUBSTRINGS 257

Probabilistic existence proofs. To prove that there exist an object satisfying
some conditions, one can consider a probability distribution on objects and compute
for each condition the probability that it is violated. If these probabilities are very
small and their sum (over all conditions) is less than 1, the random object with
positive probability satisfies all the conditions, and the existence is proven.

In this argument we use the following (trivial) property: if the probability of
an event 𝐴𝑖 is at most 𝜀𝑖, then the probability of the union of the events 𝐴1, . . . 𝐴𝑛

is bounded by the sum of 𝜀𝑖, and the probability to avoid all these events is at least

1 − 𝜀1 − 𝜀2 − . . .− 𝜀𝑛.

Computing probabilities, we often count “bad” elements is some class; if the
total number of bad elements is less than the cardinality of the class, there exist
“good” elements. This reasoning can be also translated to complexity language:
if there are only a few bad elements, then bad elements have small complexity, so
every random (incompressible) element of the class is good.

However, we cannot use arguments of this type to prove Theorem 157: indeed
the probability to find a bad string in a given position is small (2(𝛼−1)𝑛), but if there
are many possible positions, the sum of probabilities exceeds 1. (Recall that we
need to prove the existence of arbitrarily long strings without forbidden substrings.)
However, there is an important observation that can be used to save the argument:
if two positions when a bad string can appear are disjoint (do not overlap), then the
corresponding events are independent. This is what Lovász local lemma is about.

The case of independent events. Let us consider first the case when all events
𝐴𝑖 are independent. If the probability of 𝐴𝑖 equals 𝜀𝑖, then the probability of the
event “none of 𝐴𝑖 happens” is equal to

(1 − 𝜀1) · (1 − 𝜀2) · . . . · (1 − 𝜀𝑛).

(and also greater than 1− 𝜀1 − 𝜀2 − . . ., as guaranteed by the Bernoulli inequality).
So for independent 𝐴𝑖 the probability to avoid all 𝐴𝑖 is positive even if the sum

of 𝜀𝑖 exceeds 1; the only thing we need is that each of 𝜀𝑖 is less than 1.
Lovász lemma deals with an intermediate situation when there is a lot of events

(so our first observation does not help), and not all events are independent (so our
second observation does not help either).

Assume that 𝑛 events 𝐴1, . . . , 𝐴𝑛 are given, and for each 𝑖 ∈ {1, . . . , 𝑛} some
set 𝑁(𝑖) ⊂ {1, . . . , 𝑛} is fixed that does not contain 𝑖. The elements of 𝑁(𝑖) are
called neighbors of 𝑖 in the sequel. (We do not require the neighborhood relation
to be symmetric, so a point may be not a neighbor of its neighbor.)

Assume that each event 𝐴𝑖 is independent with all other events, except for
𝑖 itself and 𝑖’s neighbors (for simplicity we identify index 𝑖 and event 𝐴𝑖). More
precisely, we assume that 𝐴𝑖 is independent with the tuple of non-neighbor events
(not only with each of them). Then the following bound can be proven.

Theorem 160 (Lovász local lemma (LL)). Assume that for each 𝑖 = 1, 2, . . . , 𝑛
a positive real 𝜀𝑖 < 1 is fixed such that

Pr[𝐴𝑖] 6 𝜀𝑖
∏︁

𝑗∈𝑁(𝑖)

(1 − 𝜀𝑗)

for all 𝑖. Then the probability to avoid all the 𝐴𝑖 is at least

(1 − 𝜀1) · (1 − 𝜀2) · . . . · (1 − 𝜀𝑛).

258 8. SOME APPLICATIONS

So we get the same bound as in the case of independent events, but the condi-
tions are stronger: for each neighbor event 𝑗 we need to add the factor (1 − 𝜀𝑗) in
the right hand side of the assumption.

Proof. The proof of LL is a bit strange: all the steps are quite easy, but the
intuition behind them is rather unclear (so it was probably difficult to invent it and
even it is quite difficult to reproduce it). So we prepare ourselves by making simple
observations first.

(a) For every two events 𝐴 and 𝐵 we have

Pr[𝐴 |𝐵] 6
Pr[𝐴]

Pr[𝐵]
.

Indeed, the conditional probability is Pr[𝐴∧𝐵]/Pr[𝐵] and Pr[𝐴∧𝐵] 6 Pr[𝐴]. (As
usual, ∧ stands for “and”.)

(b) One can add some condition 𝐶 to all the events in the previous inequality
(“relativization trick”), and get

Pr[𝐴 |𝐵 ∧ 𝐶] 6
Pr[𝐴 |𝐶]

Pr[𝐵 |𝐶]
.

This observation is used in the proof of Lovász lemma for independent 𝐴 and 𝐶
(in this case the numerator Pr[𝐴 |𝐶] equals Pr[𝐴]) and the denominator Pr[𝐵 |𝐶]
is not very small.

Now we are prepared to prove LL by induction. As it often happens, we need
a stronger statement for induction purposes. Let us prove the following statements
(here ¬ stands for the negation, or complement, of the event):

(1) For every 𝑖 and for every 𝑝, 𝑞, . . . that are not equal to 𝑖 and to each other,
we have

Pr[𝐴𝑖 |¬𝐴𝑝 ∧ ¬𝐴𝑞 ∧ . . .] 6 𝜀𝑖;

(2) For every two disjoint families 𝑖, 𝑗, . . . and 𝑝, 𝑞, . . . we have

Pr[¬𝐴𝑖 ∧ ¬𝐴𝑗 ∧ . . . |¬𝐴𝑝 ∧ ¬𝐴𝑞 ∧ . . .] > (1 − 𝜀𝑖) · (1 − 𝜀𝑗) · . . .
Note that the first statement implies the second one for the case when the family
𝑖, 𝑗, . . . consists of one event 𝑖: if the probability of 𝐴𝑖 (with some condition) is at
most 𝜀𝑖, then the probability of its negation is at least (1 − 𝜀𝑖).

Moreover, this argument can be extended to the case when there is more than
one event in the family 𝑖, 𝑗, . . .:

Pr[¬𝐴𝑖 ∧ ¬𝐴𝑗 |¬𝐴𝑝 ∧ ¬𝐴𝑞 ∧ . . .] =

= Pr[¬𝐴𝑖 |¬𝐴𝑗 ∧ ¬𝐴𝑝 ∧ ¬𝐴𝑞 ∧ . . .] · Pr[¬𝐴𝑗 |¬𝐴𝑝 ∧ ¬𝐴𝑞 ∧ . . .];

it remains to apply (1) to each factor.
On the other hand, the following argument derives (1) from (2). Let us split

the conditions in (1) and consider separately the events inside 𝑁(𝑖) and outside
𝑁(𝑖). (Here 𝑖 is the number of the event in the left hand side of (1).) Let 𝑁 and 𝐹
be the conjunctions of the negations of the events in these two groups (“near” and
“far”). Then, following the scheme explained above, we estimate the probability as
follows:

Pr[𝐴𝑖 |𝑁 ∧ 𝐹] 6
Pr[𝐴𝑖 |𝐹]

Pr[𝑁 |𝐹]
=

Pr[𝐴𝑖]

Pr[𝑁 |𝐹]
.

8.5. FORBIDDEN SUBSTRINGS 259

We can use the inequality (2) and conclude that the denominator in the last fraction
is at least the product of (1−𝜀𝑡) for all 𝑡 ∈ 𝑁 , and it remains to recall the assumption
of LL where these factors (and, may be, others) appear. We assume here that there
are neighbor events among the conditions. If not, the left hand side in (1) equals
Pr[𝐴𝑖] (due to independence) and is bounded by 𝜀𝑖.

It remains to explain why the reductions of (1) to (2) and vice versa (that we
have described) do not lead to a vicious circle. Reducing (1) to (2) as explained
above, we use (2) in the situation where the number of events in the inequality (on
both sides of “|”) is smaller than in the inequality (1) we want to prove. (Indeed,
the event 𝐴𝑖 disappears). The other reduction, where we derive (2) from (1), does
not increase the total number of events in the inequality. �

Here is an example of a combinatorial problem when Lovász local lemma is
useful:

249 A finite tape is given where each cell may contain a number between 1
and 𝑁 . For each borderline between neighbor cells some pairs of numbers (𝑙, 𝑟) are
prohibited in the sense that one should not put 𝑙 on the left and 𝑟 on the right of
this border. Prove that if for each border the fraction of prohibited pairs (among
𝑁2 pairs) is at most 4/27, then one can fill all cells satisfying all restrictions. [Hint:
For each border consider the event “a prohibited pair appears”. Each event has at
most two neighbors, and for 𝜀𝑖 = 1

3 one can apply Lovász local lemma.]

250 Prove a similar result (even with slightly better parameters) without
using Lovász local lemma: if each set of forbidden pairs contains less than 1/4 of
all pairs, then one can satisfy all the restrictions. [Hint: in each position more
than half of candidates accept more than half right neighbors, and more than half
of candidates accept more than half left neighbors. So there exist some candidate
that accepts more than half of left neighbors and more than half of right neighbors
at the same time. Starting with this number, one may add numbers to the left to
the right, using the fact that two sets containing more than half elements always
have a common element.]

8.5.3. Lovász lemma and forbidden strings. Now let us use Lovász local
lemma (LL) to prove Theorem 157. As usual, it is enough to prove the existence of
arbitrarily long strings without forbidden substrings (due to standard compactness
argument).

So we fix some length and consider random string of this length where all the
bits are independent and uniformly distributed. Bad event happens when some
forbidden string appears at some position. For every 𝑛 consecutive bits, the ap-
pearance of a forbidden string in this position has probability 2(𝛼−1)𝑛. Using LL,
we need to fix some number 𝜀𝑖 for each event 𝐴𝑖, and for this event (appearance of
a forbidden string in a given position of length 𝑛) we use 2(𝛽−1)𝑛 for some constant
𝛽 ∈ (𝛼, 1). Then we need to check that for suitable 𝛽 the conditions of LLL are
satisfied.

Let 𝐼 be the position of some event (the interval where we look for a forbidden
string). The neighbor events happen at intervals 𝐽 that overlap with 𝐼 (all other
events are independent). The bounds 𝜀𝑖 depend on the lengths, so we group all
possible intervals 𝐽 according to their lengths. There exist 𝑛 + 𝑘 − 1 intervals 𝐽 of
length 𝑘 that have a non-zero overlap with a given interval 𝐼 of length 𝑛. Each of
them adds a factor (1 − 2(𝛽−1)𝑘) in the right hand side of the condition of LL, and

260 8. SOME APPLICATIONS

in total we get
(1 − 2(𝛽−1)𝑘)𝑛+𝑘−1.

Now we have to multiply these expressions for all 𝑘, starting with some 𝑁 (if we
construct a sequence with forbidden substrings of length at least 𝑁). So to apply
LL we need to prove the inequality

2(𝛼−1)𝑛 6 2(𝛽−1)𝑛 ·
∏︁
𝑘>𝑁

(1 − 2(𝛽−1)𝑘)𝑛+𝑘−1.

(In fact, we included 𝐼 while considering intervals of length 𝑘 = 𝑛 though we were
not obliged to, but this makes our task only more difficult.) Now we use a quite
rough bound: we replace 𝑛+𝑘−1 by 𝑛𝑘, take 𝑛th roots and use Bernoulli inequality.
It remains to prove that

2𝛼−𝛽 6 1 −
∑︁
𝑘>𝑁

𝑘2(𝛽−1)𝑘.

The infinite series
∑︀

𝑘 𝑘2(𝛽−1)𝑘 converges when 𝛽 < 1, and the left hand side is less
than 1 for 𝛼 < 𝛽, so the inequality is true is 𝑁 is large enough.

Let us repeat what we are doing. First, we take arbitrary 𝛽 ∈ (𝛼, 1) and then
choose a suitable 𝑁 that makes the tail of the series small. Then we apply LL to
an arbitrarily large finite length and show that there exists a string of that length
which does not have forbidden strings of length 𝑁 or more. (Our bounds work
for arbitrary lengths.) Finally, we use the compactness argument to get an infinite
sequence.

251 Prove a two-dimensional version of Theorem 157: one can fill an infinite
cell paper by zeros and ones in such a way that every rectangle of large enough
area is not forbidden. (We assume that for every rectangle of area 𝑘 at most 2𝛼𝑘

forbidden combinations of zeros and ones inside this rectangle are fixed, for some
constant 𝛼 < 1.) [Hint: similar bounds can be proven, and LL can be used.]

8.5.4. Forbidden subsequences. In the previous section we considered for-
bidden substrings, i.e., forbidden combinations of consecutive bits. But why the bits
should be consequtive? This looks artificial, and we may consider a more general
setting, as in [157]. Assume that we have a countable family of Boolean variables
and some restrictions; each of them forbids some combination of values for some
variables. We are interested in the result of the following type: if the restrictions
are not too numerous, there exists an assignment of Boolean values to all the vari-
ables that satisfies all the restrictions. (In this kind of results, we do not care about
exact combinations of values that are forbidden; the only thing we use is that there
is not too many restrictions.)

In other language, we want to prove a satisfiability of a formula in a conjunctive
normal form (CNF), i.e., a conjunction of several clauses. For example, in the
formula

(¬𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ . . .

the first clause (¬𝑎 ∨ 𝑏 ∨ 𝑐) forbids the combination of values 𝑎 = 1, 𝑏 = 0, 𝑐 = 0.
Our goal is to find a satisfying assignment, a combination of values that satisfies
all the requirements.

Assuming that all variables are independent, we observe that disjoint clauses
(that do not have common variables) are independent. So, if we want to apply LL,
we have to bound the number of clauses that contain a given variable.

8.5. FORBIDDEN SUBSTRINGS 261

Let us fix some notation. Let 𝜔 = 𝜔0𝜔1𝜔2 . . . be an infinite sequence of bits.
For a finite set 𝐹 ⊂ N we denote by 𝜔(𝐹) a string composed of 𝜔𝑖 for 𝑖 ∈ 𝐹 (in the
order of increasing 𝑖). Consider a pair (𝐹,𝑋) where 𝐹 is a finite set of indices and
𝑋 is a binary string whose length is equal to the cardinality of 𝐹 . We say that a
sequence 𝜔 is forbidden by the pair (𝐹,𝑋) if 𝜔(𝐹) = 𝑋. We call the pair (𝐹,𝑋) a
restriction, and the number of elements in 𝑋 is called the size of this restriction.
We say that the restriction (𝐹,𝑋) covers the indices in 𝐹 . Now we are ready to
formulate and prove the statement we spoke about [157]:

Theorem 161. Let 𝛼 ∈ (0, 1) be a constant. Assume that we have a set of
restrictions (𝐹,𝑋) such that for every position 𝑖 and for every positive integer 𝑛
there are at most 2𝛼𝑛 restrictions of size 𝑛 that cover 𝑖. Then there exists a number
𝑁 and a sequence that is not forbidden by any of the restrictions of size greater
than 𝑁 .

Proof. For compactness reasons, it is enough to prove the statement for finite
sequences (and for some 𝑁 that is the same for all lengths).

For each restriction we have an event (“this restriction is violated”). The
probability of such an event for a restriction of size 𝑛 is 2−𝑛. To apply LL, let us
choose 𝜀𝑖 for restrictions of size 𝑛 as 2−𝛽𝑛 where 𝛽 is some constant in (𝛼, 1) (in
fact, every value in this interval can be used).

The neighbors of some restriction are the restrictions that have common vari-
ables with the first one. To apply LL, we need to consider a restriction of size 𝑛 and
check that 2−𝑛 does not exceed 2−𝛽𝑛 times the product of all the factors (1−2−𝛽𝑚)
for all neighbor restrictions.

We split the product into parts that correspond to common variables. There
are 𝑛 parts (for each of the variables involved in the restriction). If a neighbor
shares two or more variables, we arbitrarily break the tie and choose one of them.
In each part, we classify the factors according to their sizes. Then for each variable
and for each size 𝑚 we get at most 2𝛼𝑚 factors, each equal to (1−2−𝛽𝑚). Then we
take product over all 𝑚, and the 𝑛th power (since we have 𝑛 parts that correspond
to 𝑛 possible common variables). So we need to show that

2−𝑛 6 2−𝛽𝑛
∏︁

𝑚>𝑁

(1 − 2−𝛽𝑚)2
𝛼𝑚𝑛,

or (since all the terms are 𝑛th powers)

2𝛽−1 6
∏︁

𝑚>𝑁

(1 − 2−𝛽𝑚)2
𝛼𝑚

.

Using Bernoulli inequality, we see that it is enough to prove that

2𝛽−1 6 1 −
∑︁
𝑚>𝑁

2𝛼𝑚2−𝛽𝑚.

The left hand side is less than 1, and∑︁
𝑚

2(𝛼−𝛽)𝑚

is a converging geometric series, so this inequality is true for large enough 𝑁 .
Let us repeat how the proof goes: first we choose some 𝛽 ∈ (𝛼, 1), then we

note that the series is converging and choose a suitable 𝑁 , then (for every length)

262 8. SOME APPLICATIONS

apply LL and show that there exists an assignment of this length that satisfies all
the restrictions, and finally we use the compactness argument. �

A direct proof of Theorem 161 (that does not refer to LL but uses some ideas
similar to the proof of LL) was suggested by An. Muchnik and A.L. Semenov. This
proof goes as follows. Assume that a set of restrictions is fixed that satisfies the
conditions of this theorem; let 𝑁 be the minimal size of restrictions in this set.

For each finite set of indices 𝐼 ⊂ N let us denote by 𝑐(𝐼) the number of valid
partial assignments, i.e., the number of mappings 𝐼 → {0, 1} that do not violate any
restrictions. (Here we consider only restrictions (𝐹,𝑋) where 𝐹 ⊂ 𝐼: our mapping
is defined only on 𝐼 and we cannot check the restrictions that involve variables
outside 𝐼.) For empty 𝐼 we let 𝑐(𝐼) = 1.

Fix some 𝛽 ∈ (𝛼, 1). Let us prove then 𝑐(𝐼) is multiplied at least by 2𝛽 when
we add a new point to 𝐼. (We assume that 𝑁 is large enough.) This implies that
𝑐(𝐼) > 2𝛽𝑘 if 𝐼 contains 𝑘 variables. In particular, 𝑐(𝐼) > 0 (this is what we really
need, but for induction purposes we use a stronger statement).

Imagine that we add to 𝐼 new point (=variable, index) 𝑖, and 𝐼 ′ = 𝐼∪{𝑖}. Every
good assignment for 𝐼 creates two assignments for 𝐼 ′ (new variable may have two
values), but not all of these 2𝑐(𝐼) assignments for 𝐼 ′ are good, so we need to subtract
the number of assignments that violate the restrictions. Since the 𝐼-assignment was
good, the violated restriction should contain 𝑖 in addition to some other points in
𝐼. Fix some restriction; let 𝐾 ⊂ 𝐼 be the set of these other points used in this
restriction. How many assignments do we lose because of this restriction? Since
the variables that are part of the restriction, are fixed to make it false, the number
of lost assignments is bounded by the number of good assignments on 𝐼 ∖𝐾, and
this number in bounded by 𝑐(𝐼)/2𝛽𝑘 due to the induction assumption. (Indeed, if
we increase the number of assignments at least by factor 2𝛽 when adding a new
point, then we decrease the number of assignments at least by the same factor when
deleting one of the points.) Now we need to sum up all the deleted assignments for
all 𝑘 = 𝑁 − 1, 𝑁, . . . , 𝐼, and for each 𝑘 there is at most 2𝛼(𝑘+1) restrictions that
involve 𝑖 and also 𝑘 elements in 𝐼.

In this way we get the bound

𝑐(𝐼 ′) > 2𝑐(𝐼) −
|𝐼|∑︁

𝑘=𝑁−1

2𝛼(𝑘+1) 𝑐(𝐼)

2𝛽𝑘
.

Let us make it weaker: replace 2𝛼 by 2 and include all 𝑘 > 𝑁 −1 in the sum. Then
we get

𝑐(𝐼 ′) > 2𝑐(𝐼)

(︃
1 −

∑︁
𝑘>𝑁−1

2𝛼𝑘

2𝛽𝑘

)︃
.

The series in the right hand side converges, therefore for large enough 𝑁 the factor
in the right hand side (in the parentheses) is at least 2𝛽−1, and the induction step
is finished. (Note that we applied the inductive assumption only to sets of size less
than |𝐼|, so there is no circle in our argument.)

8.5.5. Complex subsequences. Now we want to translate the result of the
previous section into the complexity language and prove that there exist a sequence
that has complex subsequences, and not only substrings (as it was before).

8.5. FORBIDDEN SUBSTRINGS 263

What kind of statement can we get? Can we guarantee that every subsequnce
of (large enough) length 𝑚 has complexity at least 𝛼𝑚 for some 𝛼 < 1 (similar
result was true for substrings)? Of course not: one can select a subsequence that
consists only of zeros (or ones). But in this case the set of indices may have high
complexity. So we should take into account both the complexity of the set of indices
and the complexity of the subsequence.

Indeed a result of this type can be proven, as we saw in Problem 145 (and
Theorem 94, p. 165, for the case of the uniform measure): if a sequence 𝜔 is ML-
random with respect to the uniform measure, then

𝐾(𝐹, 𝜔(𝐹)) > |𝐹 | − 𝑐

for some 𝑐 and for all finite sets 𝐹 .
But now we want to prove a different result [157]:

Theorem 162. Let 𝛼 ∈ (0, 1) be a real number. There exists a sequence 𝜔 and
a constant 𝑁 such that

max
𝑡∈𝐹

𝐶(𝐹, 𝜔(𝐹) | 𝑡) > 𝛼|𝐹 |

for every 𝐹 that contains at least 𝑁 elements.

To understand better the meaning of this result, let us consider the following
corollary: for every finite set 𝐹 of size at least 𝑁 there exists 𝑡 ∈ 𝐹 such that

𝐶(𝜔(𝐹) |𝐹, 𝑡) > 𝛼|𝐹 | − 2𝐶(𝐹 | 𝑡)
(constant 2 can be made smaller, but we want a simple statement). Omitting 𝑡 in
the left hand side, we may conclude also that for every finite 𝐹 the inequality

𝐶(𝜔(𝐹) |𝐹) > 𝛼|𝐹 | − 2 max
𝑡∈𝐹

𝐶(𝐹 | 𝑡).

holds.
This implies that all substrings are complex. Indeed, if 𝐹 is an interval, then

the complexity 𝐶(𝐹 |𝑡) is logarithmic for every 𝑡 ∈ 𝐹 and can be absorbed by a small
change in 𝛼. Moreover, this gives us also a two-dimensional version: if indices form
a planar grid and 𝐹 is a rectangle, the complexity 𝐶(𝐹 |𝑡) is also logarithmic in
the size of 𝐹 and the same trick works. So we get the statement of Problem 251
(p. 260) as a corollary.

Note also that this corollary shows that ML-random sequences do not have the
required property and LL is essential here.

Proof. In fact, Theorem 162 is just a complexity reformulation of Theo-
rem 161. Indeed, consider the set of all restrictions (𝐹,𝑍) such that 𝐶(𝐹,𝑍 | 𝑡) <
𝛼|𝐹 | for all 𝑡 ∈ 𝐹 . Then for every index 𝑡 the number of restrictions (𝐹,𝑍) of size
𝑘 where 𝐹 contains 𝑡, is at most 2𝛼𝑘, and we can apply Theorem 161. �

8.5.6. The “effective” proof of the Lovász local lemma. Are the prob-
abilistic existence proofs “constructive”? No, in the sense that they do not provide
an “explicit” example of an object with required properties. (One can perform a
brute-force search and call the first object with the property an “explicit” exam-
ple, but this looks more like a cheating, and the search usually takes a very long
time.) On the other hand, if the probability that a random object has the required
property is close to 1, we at least have a probabilistic algorithm that generates an
object with required properties, with small probability of error (and rather fast).

264 8. SOME APPLICATIONS

What can be said about existence proofs based on LL? In these proofs the
probability is exponentially small (though positive). Random choice is no more an
option: we cannot just take a random object according to the distribution used in
LL. However, we can use random bits in a more clever way, and in this section we
explain how (and get a new proof for LL in some special cases as a byproduct).

Assume that we want to construct a binary string (an assignment) that sat-
isfies some restrictions (=clauses of a CNF, see section 8.5.4). Let us first choose
independent random values for all the bits. Most probably some small part of the
restrictions will be violated. Take one of them and try to improve the situation by
resampling all the variables that appear in this restriction. (Resampling means that
we assign fresh random bits to these variables.) Most probably this will solve the
problem with this restriction; it is quite unlikely that we get the same bad values for
these variables once more. Of course, other restrictions may still be violated, and
new violations may happen (for the restrictions involving the changed variables).
Then we can repeat the process: take some restriction that is currently violated,
and perform the random resampling for its variables. And so on.

More formally, the initial values of all variables are chosen at random, and
then we iterate the following procedure: while some restrictions are violated, take
one of them (say, the first one in some ordering, or the random one, or use some
other rule) and perform the resampling for all variables that appear in it. This is
repeated until all restrictions are satisfied. It looks like a miracle, but R. Moser and
G. Tardos recently proved [129, 130] that this trivial algorithm indeed achieves
the goal rather fast with high probability. (Before them, much more complicated
algorithms were studied and much weaker results with much more complicated
proofs were obtained.)

We do not present their proof in full generality; instead we consider a special
case when all the clauses have the same number of variables. Moreover, we assume
that the resampling is made in some special order (determined by recursive calls,
see below). In this case a simple argument using Kolmogorov complexity can be
used, and we explain this argument, following L. Fortnow.

So let us assume that a CNF is given with 𝑛 variables and 𝑁 clauses, and each
clause has some fixed length 𝑚 (contains 𝑚 variables). We say that two clauses are
neighbors if they have a common variable. Assume that every clause has at most 𝑡
neighbors. We claim that if 𝑡 is not very large, LL guarantees the satisfiability of
the CNF in question.

How large can be 𝑡 to make LL applicable? Since all the clauses have the same
size, it is natural to use the same value of 𝜀 for all of them. This 𝜀 should satisfy
the inequality

2−𝑚 6 𝜀(1 − 𝜀)𝑡

(the left hand side is the probability that a given clause is false). The right hand
side is maximal when 𝜀 = 1/(𝑡+ 1), but to simplify the computation we let 𝜀 = 1/𝑡
instead. Then the right hand side is (1 − 1/𝑡)𝑡/𝑡, which is almost 1/𝑒𝑡. So we
need (approximately) 𝑡 6 2𝑚/𝑒 to apply LL. In the constructive proof we use a bit
stronger requirement, namely, 𝑡 6 2𝑚/8.

Theorem 163. There exists a probabilistic algorithm that founds a satisfying
assignment for a given CNF with 𝑛 variables and 𝑁 clauses of size 𝑚 where each
clause has at most 2𝑚/8 neighbors, in time polynomial in 𝑛 + 𝑁 and with success
probability at least 1/2.

8.5. FORBIDDEN SUBSTRINGS 265

(As usual, the bound for success probability can be amplified easiily: repeating
the algorithm 𝑠 times, we find a satisfying assignment with probability at least
1 − 2−𝑠.)

Proof. Our algorithm uses the recursive procedure Fix (𝑑) (where 𝑑 is some
clause) and works as follows:

for all clauses 𝑑 of a given CNF:
if 𝑑 is false: Fix (𝑑)

All the clauses of a given CNF are processed in some order; the processing of a
clause 𝑑 is simple: if 𝑑 is not satisfied yet, is is “fixed” by calling Fix (𝑑). To prove
the correctness of the algorithm, we need the following property of the procedure
Fix (𝑑): it makes clause 𝑑 true and keeps true all clauses that were true before the
call. (Some clauses that were false before the call may become true, this is even
better for us since it saves some future work.)

The procedure Fix (𝑑) is simple, too:

resample all variables in 𝑑 using fresh random bits;
for all clauses 𝑑′ that are neighbors of 𝑑:

if 𝑑′ is false: Fix (𝑑′)

Note that it may happen (with small probability) that the new random values
are in fact the same as before, so the resampling does not make 𝑑 true. It would be
natural to perform the resampling again until we get new values, but it is easier to
postpone this and just consider 𝑑 as its own neighbor (so that the resampling will
be performed later as part of the loop, if it would still be necessary at that time).

The correctness of this procedure (assuming that the recursive calls work cor-
rectly) is obvious: during the resampling only the clauses that are neighbors of
𝑑 may become false, and they all will be fixed in the loop (including 𝑑 itself, if
necessary). The only problem is to prove that the process terminates with high
probability in polynomial time. For that let us analyze how this process uses ran-
dom bits. (We assume that random bits are produced in advance and used when
needed.)

First of all, we use 𝑛 random bits as initial values of the variables. Then each
call Fix (𝑑) uses next 𝑚 random bits to resample variables in 𝑑. (Recall that we do
not resample 𝑑 twice even if the resampling gives the same bad values; it simplifies
our analysis.) The crucial observation: at every step

the values of used random bits can be reconstructed if we know
(1) the current values of all the variables of the CNF; (2) the
list of clauses for which the procedure Fix (𝑑) was called, in the
order of calls.

Indeed, the call Fix (𝑑) is performed only when 𝑑 is false, and this determines
the values of variables in 𝑑 before the call. And their values after the call are just
the next random bits. Unrolling the execution backwards, we can reconstruct the
values of variables between the calls and finally 𝑛 initial values, so we know all the
random bits used.

Now the idea of the proof can be explained as follows: if the algorithm makes a
lot of calls, then we can compress the values of random bits used by the algorithm,
because the list of clauses for which Fix was called has shorter description. To
finalize the proof, we should estimate the complexity of this list. Here it is very

266 8. SOME APPLICATIONS

important that Fix (𝑑) calls Fix (𝑑′) only for 𝑑′ that are neighbors of 𝑑, and these
𝑑′ can be specified by their ordinal number in the list of neighbors.2 (Here we use
the bound for the number of neighbors.)

Now let us compare the number of random bits used and the number of bits
needed to describe them (as explained in the previous paragraph). Consider the
situation after 𝑘 calls of Fix. At that time algorithm have used 𝑛 + 𝑘𝑚 random
bits. To reconstruct them, we need to know:

∙ current values of the variables;
∙ for which clauses the procedure Fix was called in the main loop;
∙ which recursive calls of Fix were made during each of those calls.

Current values are 𝑛 bits; the list of clauses called in the main loop can be
described by 𝑁 bits (for each clause we say whether it was processed or not; the
order of clauses is fixed, so 𝑁 bits are enough). To estimate the complexity of
the third component, let us consider trees of recursive calls. For example, the tree
below starts with a call Fix (𝑎). This call generates three calls for 𝑏, 𝑐, 𝑑; the call
for 𝑏 generates calls for 𝑒, 𝑓, 𝑔, the call for 𝑐 does not generate anything, and the
call for 𝑑 generates only one call for ℎ. The chronological order of all the calls is
𝑎, 𝑏, 𝑒, 𝑓, 𝑔, 𝑐, 𝑑, ℎ (the left to right ordering of the sons of a vertex corresponds to the
order of calls). Indeed, we call 𝑐 only after we return from 𝑏-call (that generated
calls for 𝑒, 𝑓, 𝑔), and then make 𝑑-call that generates ℎ-call. In other terms, the

𝑎

𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

order of calls can be described as follows: imagine that our picture is a bird’s view
of a wall; we start walking around it from 𝑎 and always touch the wall by the right
hand. The we visit the vertices in the order

𝑎–𝑏–𝑒–𝑏–𝑓–𝑏–𝑔–𝑏–𝑎–𝑐–𝑎–𝑑–ℎ–𝑑–𝑎,

and this corresponds to the control flow during the execution. New random bits
are used when we come to some vertex for the first time (from below).

So to specify the processed clauses (and the order of processing) it is enough
to encode the tree walk. It consists of steps up and down. For a step up, we
need to specify not only the fact that we are going up but also the number of the
neighbor where we are going. In total we use 1 + log 𝑡 bits (one for the direction,
and one for the number). Here 𝑡 is the upper bound for the number of neighbors,
i.e., 2𝑚/8 = 2𝑚−3 according to the assumption. When going down, only one bit
that indicated the direction, is sufficient. (In other words, when making a recursive
call, we perform a push operation for the stack of calls, and we should specify the
top of the stack; for pop operation no additional information is needed.)

2So it is a bit surprising that the result is true for other rules that select the next clause for

resampling. It is indeed the case, as Moser and Tardos recently proved [129, 130], this trivial

algorithm indeed achieves the goal rather fast with high probability. (Before them, much more
complicated algorithms were studied and much weaker results with much more complicated proofs

were obtained.)

8.6. A PROOF OF AN INEQUALITY 267

So for each vertex (except the root) we use log 𝑡 + 2 bits (we need log 𝑡 + 1
bits when we come to this vertex from below, and then one more bit when going
back to its father). In total (for all the vertices) we need 𝑁 + 𝑛 + 𝑘(log 𝑡 + 2) bits
for description. If the random bits used in the algorithm are incompressible, then
𝑁 + 𝑛 + 𝑘(log 𝑡 + 2) > 𝑛 + 𝑘𝑚, and we get an upper bound for 𝑘. Namely, we get
the bound 𝑘 6 𝑁 (recall that log 𝑡+ 2 = 𝑚− 1), so we make at most 𝑁 calls of the
procedure Fix, and the algorithm is polynomial (in 𝑁 + 𝑛).

Some final clarifications are needed still.
1. If we literally use Kolmogorov complexity, then some constant appears and

we should keep track of all these details. As usual, when the idea is clear, we can
switch to the probabilistic language: if 𝑘 = 𝑁 + 𝑐, then the difference between the
number of random bits used and the number of bits in the description is 𝑐. This
means that the number of random bit strings that cause 𝑁 + 𝑐 or more calls of Fix,
is 2𝑐 times smaller than the total number of possible strings, so the probability is
bounded by 2−𝑐.

2. When we describe several objects by a sequence of bits, we should check
that no separators are needed to perform the decoding. Here it is indeed the case:
the number of variables, clauses and the clause size (as well as the bound for the
number of neighbors) are known; after a bit that specifies the direction (whether
we go up or down) is read, the decoder knows how many bits it should read next.

3. The last problem: it may happen that we stopped the execution at the
moment when one of the trees is only partially processed, so we should be able to
describe the unfinished tree walk. But our way of description works in this case as
well; we should only note that at every moment the number of steps down does not
exceed the number of steps up (the number of Fix-calls). �

8.6. A proof of an inequality

As we have said (see p. 22), the inequalities for Kolmogorov complexity have
quite unexpected consequences. In this section we explain one of them, a version
of Loomis–Whitney inequality (this topic will be continued in Chapter 10).

Theorem 164. Let 𝑋, 𝑌 , and 𝑍 be finite sets. Let 𝑓 : 𝑋×𝑌 → R, 𝑔 : 𝑌×𝑍→ R,
and ℎ : 𝑋×𝑍→ R be some functions with non-negative values. Then(︃∑︁

𝑥,𝑦,𝑧

𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧)

)︃2

6

(︃∑︁
𝑥,𝑦

𝑓2(𝑥, 𝑦)

)︃
·

(︃∑︁
𝑦,𝑧

𝑔2(𝑦, 𝑧)

)︃
·

(︃∑︁
𝑥,𝑧

ℎ2(𝑥, 𝑧)

)︃
.

Proof. Believe us or not, but this inequality in fact is a corollary of the
inequality

2𝐾(𝑥, 𝑦, 𝑧) 6 𝐾(𝑥, 𝑦) + 𝐾(𝑦, 𝑧) + 𝐾(𝑥, 𝑧) + 𝑂(log 𝑛)

for prefix complexity (Theorem 26, p. 62). We wrote the last inequality for prefix
complexity, not the plain one, but this does not matter since the difference is
𝑂(log 𝑛). (For prefix complexity this inequality is true up to 𝑂(1)-precision, see
Problem 114, p. 125; for now the 𝑂(log 𝑛)-precision is enough.)

It is convenient to assume that elements of the finite sets 𝑋, 𝑌 , 𝑍 are binary
strings. It is enough to show that if the sums in the right-hand side of the inequality
do not exceed 1, the same is true for the left-hand side. (Indeed, we can multiply
𝑓 by arbitrary constant 𝑐, and both sides of the inequality are multiplied by the
same factor, so we can “normalize” 𝑓 ; the same for 𝑔 and ℎ.)

268 8. SOME APPLICATIONS

Now assume that
∑︀

𝑥,𝑦 𝑓
2(𝑥, 𝑦) = 1 and that the same is true for two other

sums. We have to show that
∑︀

𝑥,𝑦,𝑧 𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧) 6 1.

The idea is simple: the function 𝑓2 is a probability distribution on pairs
(𝑥, 𝑦), so 𝐾(𝑥, 𝑦) 6 − log 𝑓2(𝑥, 𝑦) = −2 log 𝑓(𝑥, 𝑦) (we temporarily ignore the
constant in the comparison of this distribution and the a priori one). Similarly,
𝐾(𝑦, 𝑧) 6 −2 log 𝑔(𝑦, 𝑧) and 𝐾(𝑥, 𝑧) 6 −2 log ℎ(𝑥, 𝑧). Then we apply the inequal-
ity for 𝐾(𝑥, 𝑦, 𝑧) (temporarily ignoring the logarithmic term) and get

2𝐾(𝑥, 𝑦, 𝑧) 6 −2 log 𝑓(𝑥, 𝑦) − 2 log 𝑔(𝑦, 𝑧) − 2 log ℎ(𝑥, 𝑧),

i.e.,
𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧) 6 2−𝐾(𝑥,𝑦,𝑧).

Since the sum of 2−𝐾(𝑥,𝑦,𝑧) over all triples 𝑥, 𝑦, 𝑧 does not exceed 1 (Theorem 57,
p. 106), we get the desired inequality.

This argument is, of course, too simple to be valid: all our bounds are of asymp-
totic nature, so we have to switch somehow from individual strings to sequences of
strings. Let us show how it can be done.

We start with a simple remark: it is enough to prove the inequality for functions
𝑓 , 𝑔, ℎ with rational values (by continuity).

Let 𝑁 be some natural number (later we take the limits as 𝑁 tends to infinity).
Consider the sets 𝑋𝑁 , 𝑌 𝑁 , and 𝑍𝑁 whose elements are 𝑁 -tuples (of elements
of 𝑋, 𝑌 , 𝑍 respectively). Consider a probability distribution on 𝑋𝑁 × 𝑌 𝑁 =
(𝑋 × 𝑌)𝑁 that corresponds to 𝑁 independent copies of distribution 𝑓2 on 𝑋 × 𝑌 .
Formally speaking, the probability of a point ⟨⟨𝑥1, . . . , 𝑥𝑁 ⟩, ⟨𝑦1, . . . , 𝑦𝑁 ⟩⟩ is equal
to the product 𝑓2(𝑥1, 𝑦1) · . . . · 𝑓2(𝑥𝑁 , 𝑦𝑁). We get a family of distributions that
computably depends on 𝑁 . Therefore, there exists a constant 𝑐 such that

𝐾(⟨𝑥1, . . . , 𝑥𝑁 ⟩, ⟨𝑦1, . . . , 𝑦𝑁 ⟩|𝑁) 6 2
∑︁
𝑖

(− log 𝑓(𝑥𝑖, 𝑦𝑖)) + 𝑐

for all 𝑁 and for all 𝑥1, . . . , 𝑥𝑁 , 𝑦1, . . . , 𝑦𝑁 (we compare our distribution with a
priori probability). We can delete the condition 𝑁 in the left-hand side replacing 𝑐
by 𝑐 log𝑁 in the right-hand side. Then (as before) we add three inequalities if this
type and apply the inequality for complexities. Then we get

𝐾(⟨𝑥1, . . . , 𝑥𝑁 ⟩, ⟨𝑦1, . . . , 𝑦𝑁 ⟩, ⟨𝑧1, . . . , 𝑧𝑁 ⟩) 6

6
∑︁
𝑖

(− log 𝑓(𝑥𝑖, 𝑦𝑖)) +
∑︁
𝑖

(− log 𝑔(𝑦𝑖, 𝑧𝑖)) +
∑︁
𝑖

(− log ℎ(𝑥𝑖, 𝑧𝑖)) + 𝑐 log𝑁

for some constant 𝑐 and for all 𝑁 , 𝑥1, . . . , 𝑥𝑁 , 𝑦1, . . . , 𝑦𝑁 , 𝑧1, . . . , 𝑧𝑁 (note that total
length of all the strings 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 for 𝑖 = 1, . . . , 𝑁 is 𝑂(𝑁), so all logarithmic terms
are absorbed by 𝑐 log𝑁). Combining this bound with the inequality

∑︀
𝑢 2−𝐾(𝑢) 6 1,

we conclude that for every 𝑁 the sum∑︁∏︁
𝑖

𝑓(𝑥𝑖, 𝑦𝑖)𝑔(𝑦𝑖, 𝑧𝑖)ℎ(𝑥𝑖, 𝑧𝑖)

(over all tuples 𝑥1, . . . , 𝑥𝑁 , 𝑦1, . . . , 𝑦𝑁 , 𝑧1, . . . , 𝑧𝑁) does not exceed 2𝑂(log𝑁), i.e., is
bounded by a polynomial in 𝑁 . But this sum is the 𝑁 -th power of the sum∑︁

⟨𝑥,𝑦,𝑧⟩∈𝑋×𝑌×𝑍

𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧),

8.6. A PROOF OF AN INEQUALITY 269

so the polynomial growth is possible only if the latter sum does not exceed 1, and
this ends the proof. �

252 Show that this inequality implies the bound for the volume of a three-
dimensional body in terms of its two-dimensional projections mentioned on p. 22.
[Hint: We can let 𝑓, 𝑔, ℎ be the characteristic functions of the projections. This
works for the discrete case; for the continuous case we should either approximate
the body using a cubic grid or approximate the integral by finite sums.]

For comparison let us give two other proofs of the same inequality. Here is the
first one (rather simple) using the Cauchy–Schwarz inequality (𝑢, 𝑣)2 6 ‖𝑢‖2 · ‖𝑣‖2,
or, in coordinates, (

∑︀
𝑢𝑖𝑣𝑖)

2 6 (
∑︀

𝑢2
𝑖)(
∑︀

𝑣2𝑖). We can argue as follows:(︃∑︁
𝑥,𝑦,𝑧

𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧)

)︃2

6

(︃∑︁
𝑥,𝑦

𝑓2(𝑥, 𝑦)

)︃(︃∑︁
𝑥,𝑦

(︃∑︁
𝑧

𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧)

)︃2)︃
6

6

(︃∑︁
𝑥,𝑦

𝑓2(𝑥, 𝑦)

)︃∑︁
𝑥,𝑦

(︃(︃∑︁
𝑧

𝑔2(𝑦, 𝑧)

)︃(︃∑︁
𝑧

ℎ2(𝑥, 𝑧)

)︃)︃
=

=

(︃∑︁
𝑥,𝑦

𝑓2(𝑥, 𝑦)

)︃(︃∑︁
𝑦,𝑧

𝑔2(𝑦, 𝑧)

)︃(︃∑︁
𝑥,𝑧

ℎ2(𝑥, 𝑧)

)︃
.

Another proof uses Shannon entropy (and can be considered as a translation
of the Kolmogorov complexity argument into the probabilistic language). Let
us assume that

∑︀
𝑓2 =

∑︀
𝑔2 =

∑︀
ℎ2 = 1. We want to prove the inequality∑︀

𝑥,𝑦,𝑧 𝑝(𝑥, 𝑦, 𝑧) 6 1, where 𝑝(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧). Assume that is not

the case and this sum equals 𝑐 > 1. Then we can multiply it by 1/𝑐 and get a
probability distribution 𝑝′ on 𝑋 × 𝑌 × 𝑍:

𝑝′(𝑥, 𝑦, 𝑧) = 1
𝑐𝑓(𝑥, 𝑦)𝑔(𝑦, 𝑧)ℎ(𝑥, 𝑧).

The corresponding random variable (whose range is 𝑋×𝑌 ×𝑍) is denoted by 𝜉. It
can be considered as a triple of (dependent) random variables 𝜉𝑥, 𝜉𝑦, 𝜉𝑧. One can
also consider the joint distributions 𝜉𝑥𝑦 = ⟨𝜉𝑥, 𝜉𝑦⟩ etc. For example, the random
variable 𝜉𝑥𝑦 takes value ⟨𝑥, 𝑦⟩ with probability

∑︀
𝑧 𝑝

′(𝑥, 𝑦, 𝑧).
Recall that by definition the Shannon entropy of the distribution (𝑝1, . . . , 𝑝𝑘)

equals
∑︀

𝑝𝑖(− log 𝑝𝑖); it does not exceed
∑︀

𝑝𝑖(− log 𝑞𝑖) for any other distribution
(𝑞1, . . . , 𝑞𝑘). Therefore the entropy 𝐻(𝜉𝑥𝑦) can be bounded (from above) by using
𝑓2(𝑥, 𝑦) as the “other” distribution:

𝐻(𝜉𝑥𝑦) 6
∑︁
𝑥,𝑦

(︃∑︁
𝑧

𝑝′(𝑥, 𝑦, 𝑧)

)︃
(−2 log 𝑓(𝑥, 𝑦)).

Then we write similar bounds for two other projections and apply the inequality

𝐻(𝜉) = 𝐻(𝜉𝑥, 𝜉𝑦, 𝜉𝑧) 6 1
2 (𝐻(𝜉𝑥𝑦) + 𝐻(𝜉𝑦𝑧) + 𝐻(𝜉𝑥𝑧))

(problem 230, p. 237). We conclude that

𝐻(𝜉) 6
∑︁
𝑥,𝑦,𝑧

𝑝′(𝑥, 𝑦, 𝑧)(− log 𝑓(𝑥, 𝑦) − log 𝑔(𝑦, 𝑧) − log ℎ(𝑥, 𝑧)) =

=
∑︁
𝑥,𝑦,𝑧

𝑝′(𝑥, 𝑦, 𝑧)(− log 𝑝(𝑥, 𝑦, 𝑧)).

270 8. SOME APPLICATIONS

By definition 𝐻(𝜉) =
∑︀

𝑥,𝑦,𝑧 𝑝
′(𝑥, 𝑦, 𝑧)(− log 𝑝′(𝑥, 𝑦, 𝑧)), so we get a contradiction,

since 𝑝′ is 𝑐 times smaller than 𝑝 (and therefore − log 𝑝′ exceeds − log 𝑝 by log 𝑐).

8.7. Lipschitz transformations are not transitive

In this section we apply Kolmogorov complexity to analyze the properties of
infinite sequences. Let us start with the following definition related to the Cantor
(metric) space Ω of infinite binary sequences.

A mapping 𝑓 : Ω → Ω is a Lipschitz one if

𝑑(𝑓(𝜔1), 𝑓(𝜔2)) 6 𝑐𝑑(𝜔1, 𝜔2)

for some constant 𝑐 and for all 𝜔1, 𝜔2 ∈ Ω. Here 𝑑 is the standard distance in the
Cantor space defined as 2−𝑘 where 𝑘 is the first place where two sequences differ.

Informally speaking, Lipschitz property means that the first 𝑛 digits of the se-
quence 𝑓(𝜔) are determined by 𝑛+𝑂(1) first digits of 𝜔. In particular, all mappings
defined by local rules (each bit in 𝑓(𝜔) is determined by some its neighborhood in 𝜔)
have Lipschitz property.

We are interested in the following property of a mapping 𝑓 : for every two
sequences 𝜔1, 𝜔2 and for every 𝜀 > 0 there exists a number 𝑁 and sequences 𝜔′

1

and 𝜔′
2 such that

𝜔′
2 = 𝑓(𝑓(𝑓(. . . 𝑓(𝜔′

1) . . .))) (𝑁 iterations)

and
𝑑(𝜔1, 𝜔

′
1) < 𝜀, 𝑑(𝜔2, 𝜔

′
2) < 𝜀.

(In other terms, for any two open neighborhoods there exists an orbit that starts in
the first one and gets inside the second one.) We call this property the transitivity
of 𝑓 (in this section).

It is easy to check that left shift (that deletes the first bit of the sequence)
is transitive: if we need a sequence that starts with 𝑥1 and is transformed (after
several shifts) into a sequence that starts with 𝑥2, just take a sequence that starts
with 𝑥1𝑥2.

Now the question: does the left shift remains transitive if we change the defi-
nition and replace Cantor distance 𝑑 by the so-called Besicovitch distance:

𝜌(𝜔1, 𝜔2) = lim sup
𝑛→∞

𝑑𝑛(𝜔1, 𝜔2)/𝑛,

where 𝑑𝑛 is a number of discrepancies among the first 𝑛 terms, i.e., the number of
𝑖 < 𝑛 such that 𝑖th terms of 𝜔1 and 𝜔2 differ.

It turns out that in this case the left shift is no more transitive (is not “Besi-
covitch-transitive”). Moreover, the following statement is true (we reproduce the
proof given in [17]):

Theorem 165. No Lipschitz mapping can be Besicovitch-transitive.

(Speaking about the Lipschitz property, we have in mind the original definition
using Cantor distance.)

The reason is quite simple: the Lipschitz mapping does not increase significantly
the complexity of the prefixes of a sequence, since 𝑛 bits of the output sequence are
determined by 𝑛+𝑂(1) bits of the input sequence (we assume that transformation
rule is computable; if not, we have to relativize complexity by a suitable oracle).
On the other hand, if two sequences are Besicovitch-close, then their prefixes have

8.7. LIPSCHITZ TRANSFORMATIONS ARE NOT TRANSITIVE 271

almost the same complexities (a change in a small fraction among the first 𝑛 bits
can be encoded by a short string compared to 𝑛).

Proof. For a formal proof it is convenient to use the notion of effective Haus-
dorff dimension of a sequence (which is equal to lim inf 𝐶(𝜔0 . . . 𝜔𝑛−1)/𝑛 for a sin-
gleton {𝜔}, see Theorem 120 in Section 5.8, p. 188).

Lemma 1. A computable Lipschitz mapping does not increase the effective
Hausdorff dimension of a sequence.

(Speaking about computability of a Lipschitz mapping 𝑓 : Ω → Ω, we mean that
𝑛 first bits of 𝑓(𝜔) are effectively determined by 𝑛 + 𝑐 first bits of 𝜔 for some 𝑐.)

Proof. Indeed, if 𝑓(𝜔1) = 𝜔2, then the complexity of 𝑛-bit prefix of 𝜔2 does
not exceed (up to 𝑂(1)) the complexity of (𝑛 + 𝑐)-bit prefix of 𝜔1, and for the
dimension these constants are not important.

Lemma 2. If Besicovitch distance 𝜌(𝜔1, 𝜔2) is less than 𝜀, then effective Haus-
dorff dimensions of 𝜔1 and 𝜔2 differ at most by 𝐻(𝜀).

(Here 𝐻(𝜀) is the Shannon entropy of a random variable with two values that
have probabilities 𝜀 and 1 − 𝜀.)

Proof. Indeed, if the first 𝑛 terms of 𝜔1 and 𝜔2 differ in 𝑘 places, then the com-
plexities differ at most by the complexity of the bitwise xor of these two sequences
(since knowing one sequence and their xor we easily get the other one). And every
sequence of length 𝑛 that has 𝑘 ones has complexity at most 𝑛𝐻(𝑘/𝑛) + 𝑂(log 𝑛)
(see Section 7.3.1, Theorem 146, p. 238). Lemma 2 is proven.

So if we take a sequence of a zero dimension (say, a computable sequence), then
any sequence that is Besicovitch-close to it has small dimension, and computable
Lipschitz mapping does not increase this dimension, so we can get only sequences
of small effective Hausdorff dimension. On the other hand, any sequence that is
Besicovitch-close to a random sequence (that has dimension 1) has dimension close
to 1 (Lemma 2 again).

So we have proven our theorem for computable Lipschitz mappings. It remains
to note that all our arguments are relativizable and that every Lipschitz mapping
is computable relative to some oracle. �

CHAPTER 9

Frequency and game approaches to randomness

9.1. The original idea of von Mises

Nowadays the axiomatic approach to probability (that makes is a special part
of measure theory) is standard, and it is difficult to forget all we know now and
return to the situation in the beginning of XX century when Richard von Mises
suggested to base the probability theory on the notion of random sequence (he used
the word “Kollektiv”). Still let us try to describe von Mises’ ideas.

Some natural phenomena are easy to predict (after we have discovered the laws
of nature they obey). For example, the laws of classical mechanics can be used to
predict the positions of planets in the sky with very high precision. But there exists
another class of phenomena: even we try very hard to predict the outcome of coin
tossing, usually we get about 50% of correct predictions. Those phenomena are the
subject of probability theory.

So the basic notion of the probability theory (according to von Mises) is the
notion of a Kollektiv — a sequence 𝜔 of outcomes (we will assume there are two
possible outcomes 0 and 1) that is hard to predict. Since this is a basic notion, we
do not try to give a definition that would reduce it to other mathematical notions;
instead we formulate a frequency stability axiom that captures the main property
of Kollektivs:

there exists a limit

𝑝 = lim
𝑛→∞

𝜔0 + 𝜔1 + . . . + 𝜔𝑛−1

𝑛
;

moreover, 𝑝 remains the limit if we consider not the entire se-
quence 𝜔 but some its subsequence selected according to some
rule, for example, the subsequence 𝜔2𝑛, or the subsequence of
𝜔𝑛 with composite 𝑛, or the terms that follow ones (i.e., 𝜔𝑛 such
that 𝜔𝑛−1 = 1).

This 𝑝 is called the probability of 1 in a given Kollektiv.
Why do the Kollektivs exists? We know that the gambling facilities are com-

mercially successful, and this would be impossible if some selection rule exists that
allows the gamblers to select a subsequence of games with different frequencies of
outcomes.

This is short (but faithful, we hope) summary of what von Mises wrote; see,
e.g., his book “Wahrscheinlichkeit, Statistik und Wahrheit” [126]. But his book
was written not in times of Euclid or Spinoza, but in the beginning of XX centure,
when people tend to ask nasty questions about exact definitions and detailed proofs.
Indeed, one can declare that the existence of sequences with some properties is
an axiom that is confirmed experimentally (though to speak about experimental

273

274 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

confirmation of the statement the deals with limits of infinite sequences is a bit
strange). But even then one should say exactly what property we have in mind.

The problem is with the selection rules: we did not say what kind of selections
are allowed. Mises gave only some examples of admissible selection rules (we gave
three examples of this type), and noted that the decision to select (or not to select)
some 𝜔𝑛 should not depend on the value of 𝜔𝑛 itself, otherwise we can select a sub-
sequence of zeros (or ones) only from every sequence, and this violate the frequency
stability property.

Trying to make Mises’ ideas precise, one can give different formal definition of
admissible selection rules, and therefore get different notions of Kollektivs. After
some version is chosen, one can ask whether Kollektivs exist. This question is
a mathematical one, while the question whether the coin tossing really gives a
Kollektiv, belongs to natural sciences or philosophy (and can be put aside).

For simplicity we restrict ourselves to the case of symmetric coin (𝑝 = 1/2)
unless the opposite is not said explicitly. To simplify the statement, let us define
a balanced sequence of zeros and ones as a sequence where the frequency of ones
(and, therefore, the frequency of zeros) has limit 1/2.

9.2. Set of strings as selection rules

The first (and, probably, the most natural) interpretation of Mises’ ideas of
“admissible selection rule” is the following one. We decide whether to select some
term 𝜔𝑛 looking at all the preceding terms, i.e., 𝜔0𝜔1 . . . 𝜔𝑛−1. So an admissible
selection rule is a function that maps all binary strings 𝜔0 . . . 𝜔𝑛−1 to a two-element
set {select,do not select}. In other terms, a selection rule is a set 𝑅 of binary strings
(corresponding to the value “select”).

Formally speaking, for every set 𝑅 of binary strings we define a selection rule as
a mapping 𝑆𝑅 that maps an infinite binary sequence 𝜔 ∈ Ω into a (finite or infinite)
subsequence 𝑆𝑅(𝜔). Namely, 𝑆𝑅(𝜔) consists of terms 𝜔𝑛 such that 𝜔0 . . . 𝜔𝑛−1 ∈ 𝑅.
(The order of terms is the same as in the original sequence.)

An example: if 𝑅 consists if string whose length are is some set {𝑛0, 𝑛1, . . .}
(where 𝑛0<𝑛1<. . . is an increasing sequence of integers), then 𝑆𝑅(𝜔) is 𝜔𝑛0𝜔𝑛1 . . .
(note that the length of 𝑥0 . . . 𝑥𝑘−1 is 𝑘). Another example: the rule “select terms
that follow 1s” corresponds to the set 𝑅 which contains all strings with last bit 1.

Assume that we fix some 𝑅 and then go to a casino where a sequence 𝜔 of zeros
and ones is generated by tossing a fair coin. Then we get some subsequence 𝑆𝑅(𝜔).
(In other terms, we use 𝑅 to decide when to make bets). It is natural to expect
that this selection does not give us any advantage and the limit frequency of ones
in the subsequence is still 1/2. There is an important point, however: we assume
that we have chosen 𝑅 before we came to the casino. After the game it is easy to
find a rule 𝑅 that would win if it were used in the game. In other terms, we make
the following (obvious) observation: for every sequence 𝜔 there exists a set 𝑅 such
that 𝑆𝑅(𝜔) consists only of zeros or consists only of ones, and therefore 𝑆𝑅(𝜔) is
not balanced. So we cannot define Kollektiv as a sequence 𝜔 such that 𝑆𝑅(𝜔) is
balanced for all 𝑅: with this definition there are no Kollektivs at all.

However, as Wald noted in [215], for every countable family of selection rules
𝑆𝑅𝑖

(that corresponds to a countable family of sets 𝑅𝑖 there exists a sequence 𝜔
that has frequency stability property with respect to all 𝑅𝑖: for every 𝑖 the sequence
𝑆𝑅𝑖(𝜔) is balanced (or finite).

9.2. SET OF STRINGS AS SELECTION RULES 275

This is easy to prove by a probabilistic argument:

Theorem 166. Let 𝑅 be an arbitrary set of strings. Then the set of all se-
quences 𝜔 ∈ Ω such that 𝑆𝑅(𝜔) is infinite unbalanced sequence, is a null set with
respect to the uniform measure on Ω.

This theorem says that every selection rule discards a null set. So a countable
class of selection rule generates a countable family of null sets, and the union of
these null set is a null set. So there are sequences not discarded by any selection
rule in the class (moreover, this happens with probability 1).

Proof. This statement follows from the strong law of large number (the set
of unbalanced sequences is a null set, see Section 3.2) and the following lemma that
holds for every selection rule 𝑆𝑅.

Lemma. Let 𝑈 ⊂ Ω be a null set. Then its preimage 𝑆−1
𝑅 (𝑈) is a null set.

Informally, each next bit of the sequence 𝑆𝑅(𝜔) has the same chances to be zero
and one (for every fixed combination of previous bits); the difference with uniform
distribution is that the next bit may be absent (if the sequence is finite), but this
may only decrease the probability.

(Recall an old question: will the fraction of men change if the families will stop
giving birth to children after a son is born, to keep their heir unique? The answer
is negative for the same reasons.)

Now let us present the formal argument.
Consider the set Σ𝑥 of all finite and infinite extensions of 𝑥, and two its subset

Σ𝑥0 and Σ𝑥1. Let us prove that 𝑆𝑅-preimages of Σ𝑥0 and Σ𝑥1 have equal measure
(in other terms: 0 and 1 can appear after 𝑥 in 𝑆𝑅(𝜔) with the same probability).

Indeed, consider all strings 𝑧 such that 𝑧 ∈ 𝑅 and 𝑆𝑅 selects 𝑥 from 𝑧. They
correspond to situation when 𝑥 is already selected and the next bit will be selected
right now. So every two strings 𝑧 with this property are incompatible, and the sets
Ω𝑧0 are disjoint. The union of these sets in the preimage of the set Σ𝑥0. Similarly,
the preimage of Σ𝑥1 is the union of disjoint sets Ω𝑧1. So we have split the preimages
into equal parts, so the preimages have equal measures.

Now it is easy to prove by induction that the measure of the 𝑆𝑅-preimage
of Σ𝑥 is bounded by 2−𝑙(𝑥). Therefore, the preimage of a null set is a null set,
too. Indeed, consider the cover of 𝑈 by intervals Ω𝑥𝑖 with small total measure.
Consider the preimages of Σ𝑥𝑖 ; each of these preimages is a countable union of
intervals. Combining all these intervals, we get a cover of 𝑆−1

𝑅 (𝑈) with small total
measure. So the lemma—and Theorem 166 as well—are proven. �

Note that the standard measure-theoretic argument (a measure of a set is the
infimum of the measures of its covers) now implies that

𝜇(𝑆−1
𝑅 (𝑈)) 6 𝜇(𝑈)

for every measurable 𝑈 ⊂ Ω. If 𝑆𝑅(𝜔) is infinite for every 𝜔 (or for almost every
𝜔) then we can guarantee also that 𝑆𝑅(𝜔) is uniformly distributed:

𝜇(𝑆−1
𝑅 (𝑈)) = 𝜇(𝑈)

for every measurable 𝑈 . (Consider 𝑈 and its complement.)

253 Fix some selection rule 𝑅. Show that if 𝜔 has a Bernoulli distribution
(independent trials with the same probability 𝑝, not necessarily equal to 1/2), then
𝑆𝑅(𝜔) has the same distribution (assuming that it is infinite with probability 1).

276 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

So the definition of Kollektiv gives a non-empty notion (Kollektivs exists) if we
restrict ourselves to some countable family of sets 𝑅 and consider corresponding
selection rules. But which countable family should we choose?

9.3. Mises–Church randomness

The ideas of von Mises appeared before the notion of algorithm (or computabil-
ity) was formalized. As soon as the notion of computable function appeared, it
became possible to use in in the Mises’ scheme. This was done by A. Church [44],
so selection rules 𝑆𝑅 that correspond to decidable (=computable, recursive) sets 𝑅
are called Church-admissible in the sequel. The corresponding class of sequences,
i.e., sequences 𝜔 such that 𝑆𝑅(𝜔) is finite or balanced for every Church-admissible
rule, are called Mises–Church random, or Church stochastic.

We know already that they exists and form a set of full measure. Moreover,
the following stronger statement is true:

Theorem 167. Every Martin-Löf random sequnce (with respect to the uniform
measure) is Mises–Church random.

Proof. The effective version of the strong law of large numbers (Theorem 32,
p. 79; see also Section 8.4) guarantees that the set 𝑈 of non-balanced sequences (that
do not have the limiting frequency or have it different from 1/2) is an effectively
null set.

Let us show that for a Church-admissible selection rule 𝑆𝑅 the preimage of
an effectively null set is an effectively null set. Indeed, if 𝑅 is decidable, the con-
struction used in the proof of Theorem 166 becomes effective (one can effectively
enumerate all the intervals that form a preimage of a given interval). So a ML-
random sequence does not belong to this preimage, i.e., its image is balanced (or
finite). �

What else can we prove about Mises–Church random sequences, except for the
strong law of large numbers (that is satisfied by definition)? For example, we can
prove that each substring (not only each symbol) appears with a correct frequency:

Theorem 168. Let 𝜔 be a Mises–Church random sequence, and let 𝑈 be a
binary string. Consider the positions 𝑘 where 𝑈 appears in 𝜔 (this means that
𝑈0𝑈1 . . . = 𝜔𝑘𝜔𝑘+1 . . .). The fraction of those 𝑖 among the first 𝑁 positions tends
to 1/2𝑙(𝑈) as 𝑁 → ∞.

Proof. We already know that zeros appear in (approximately) half of the
positions. Consider now the rule “select terms that go just after zeros”. Mises–
Church randomness guarantees that the selected subsequence contains (approxi-
mately) equal number of zeros and ones. This means that the groups 00 and 01
have approximately the same frequency, so the limit frequency of each group is 1/4.
The same is true for 10 and 11. Now consider the rule “select terms that follow 00”
(or “select terms that follow 01”), etc. �

254 Consider a Mises–Church random sequence and split it into 𝑘-bit blocks

(for some 𝑘). Show that in the resulting sequence (in 2𝑘-letter alphabet) each of
2𝑘 blocks appears with limit frequency 1/2𝑘. [Hint: This problems differs from
the preceding theorem, because now we take into account only 𝑘-aligned blocks.
However, the same argument works.]

9.3. MISES–CHURCH RANDOMNESS 277

The sequences where each combination of letters (of every fixed size) has the
same limit frequency (as claimed by Theorem 168), were considered independently
of Mises; they are called normal.

255 Let us change the definition of normality of a bit sequence 𝛼 and require
that for every 𝑚 the sequence of 𝑚-bit strings obtained by splitting 𝛼 into 𝑚-
bit blocks, contains every 𝑚-bit string with limit frequency 2−𝑚. Prove that this
definition is equivalent to the original one.

[Hint. The difference is that now we consider only aligned 𝑚-bit occurences
instead of all occurences. Still we can prove equivalence considering not only 𝑚-bit
blocks but also 𝑀 -bit blocks where 𝑀 is a large multiple of 𝑚. Assume that aligned
𝑀 -bit blocks appear with right frequencies. Then for a fixed position inside each
long 𝑀 -bit block (modulo 𝑀) all short 𝑚-bit blocks appear with right frequencies,
and short blocks that cross the boundaries between large blocks are rare (𝑚 ≪ 𝑀).
In the other direction: Assume that non-aligned frequencies are OK. Most of 𝑀 -
bit blocks are “good” in the sense that frequencies of short blocks inside them are
almost right. Bad blocks are exponentially (in 𝑀) rare in terms of non-aligned
frequencies. Aligned frequencies could be at most 𝑀 times bigger, and factor 𝑀 is
absorbed by the exponent.]

The reals whose binary representations are normal sequences, are called normal
in base 2; similarly one can define reals that are normal in base 𝑏. If a real is normal
in base 𝑏 for every integer 𝑏, it is called absolutely normal.

256 Prove that the same reals are normal in base 𝑏 and in base 𝑏𝑘.
[Hint. Use the preceding problem.]

One can prove that the class of normal in base 𝑏 reals depends on 𝑏, but this is
a non-trivial number-theoretic result [160], and we will not prove it here.

257 Let us consider a bit sequence 𝜔 as a binary representation of a real
𝛼 ∈ [0, 1]. The tails of 𝜔 form a sequence of points in [0, 1] which is the orbit of 𝛼
under the mapping 𝑥 ↦→ {2𝑥} where {𝑢} stands for the fractional part of 𝑢. Show
that 𝜔 is normal if and only if this orbit is uniformly distributed in [0, 1]. (The
latter means that for every interval the fraction of points that are in this interval,
has a limit proportional to the length of the interval.)

258 Prove that multiplication by an integer factor preserves normality: if 𝛼
is normal in base 2 and 𝑘 is an integer, then 𝛼𝑘 is normal in base 2. (The same
is true for other bases.) [Hint: Use the preceding problem. Applying the 𝑛-th
iteration of the mapping 𝑥 ↦→ {2𝑥} to some real 𝑢, we get {2𝑛𝑢}. For every integer
𝑘 the number {2𝑛(𝑘𝑢)} is obtained from {2𝑛𝑢} by the transformation 𝑦 ↦→ {𝑘𝑦}.
It remains to prove that this mapping preserves the uniform distribution property.]

One can prove also that normality is preserved also when we divide a number
by some integer (and therefore, when we multiply a number by arbitrary rational
number). This was shown by D. Wall [216] (see also [87]), but the proof is also
non-trivial and we do not provide it here.

We know that Mises–Church random sequences are normal, but one can also
find computable normal sequence. For example, if we write numbers 1, 2, 3, . . . in
binary and concatenate all these strings, we get a normal sequence

1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 . . .

278 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

(Champernowne’s example [36]; he considered base 10, but this does not matter
much).

259 Prove this statement. [Hint. Fix 𝑘, the block size. Starting from some
point, the numbers have much more than 𝑘 digits, and after that the boundaries
between numbers do not change the frequencies significantly. And the average of
block frequencies in all strings of a given length 𝑁 is as it should be. (Some care is
needed to deal with the case when we stop in the middle of strings of length 𝑁 .)]

This construction of a computable normal sequence is performed for one base,
and we cannot use it to get a computable absolutely normal number. But such
a number (whose 𝑏-ary representation is a computable normal sequence for every
base 𝑛) exists. This observation was made long ago by Turing in his unpublished
notes, see [8].

260 Prove that computable absolutely normal number exist. [Hint: Numbers
that are not normal in base 𝑏, form a Schnorr effectively null set; this is true for all
𝑏, and the union of these sets is also a Schnorr effectively null set, so there exist a
computable point outside it.]

Unlike normal sequences, Mises–Church random sequences cannot be com-
putable for obvious reasons (otherwise we can select a sequence of zeros or a se-
quence of ones by a computable rule). Moreover, the following statement is true:

Theorem 169. For every total algorithm the gets bits of a sequence from left to
right and predicts the next bit before getting it, the fraction of successful predictions
for a Mises–Church random sequence tends to 1/2.

Proof. Indeed, a (total) algorithm that makes prediction, can be converted
into two selection rules: one selects the terms where the algorithm predicts zero, the
other selects the terms where the algorithm predicts one. So our sequence is split
into a “mixture” of two subsequences, and Mises–Church randomness gurantees
that each of the two sequences is balanced (or finite, but then the statement is
trivial), so the fraction of successful predictions for each subsequence tends to 1/2.
So the total fraction of successful predictions tends to 1/2. �

This statement can be generalized further. Consider the following game: before
the next term of the sequence appears, we may make a bet on zero or one; the
amount of a bet is a rational number in [0, 1]. If our guess is correct, we get the
doubled amount; if not, we lose the money. A strategy in a game of this type is a
function 𝑆 whose arguments are binary strings (the bits already disclosed) and the
values are rational number in [−1, 1]. The positive values mean that we bet on 0,
the negative values mean that we bet on 1. The total gain of the strategy 𝑆 playing
with the initial segment 𝜔0 . . . 𝜔𝑛−1 is then

𝑛−1∑︁
𝑖=0

𝑆(𝜔0 . . . 𝜔𝑖−1) · (−1)𝜔𝑖 ;

the negative values correspond to our loss (in this game we can go below zero).

Theorem 170. Let 𝑆 be a total computable strategy of this type, and let 𝜔 be a
Mises–Church random sequence. Then the gain of 𝑆 playing against 𝜔 is 𝑜(𝑛) after
𝑛 steps.

9.4. VILLE’S EXAMPLE 279

Proof. Assume that the strategy may have only values 1 and −1. Then it is
essentially equivalent to guessing of the next bit. We already know that the fraction
of successfull guesses tends to 1/2, and this means that the average gain per bit
tends to 0.

Now consider more general strategies that whose values are rational numbers
between −1 and 1 with denominator 𝑘 (i.e., multiples of 1/𝑘), for some fixed 𝑘.
Every strategy 𝑆 of this type can be considered as an average of 2𝑘 strategies with
values −1 and 1 only, and the gain of 𝑆 is the average of their gains. We know that
for each of them the gain is 𝑜(𝑛), so the average is also 𝑜(𝑛).

Finally, we consider an arbitrary strategy with rational values. For each 𝜀 > 0
we need to prove that the gain of 𝑆 after 𝑛 bits is at most 𝜀𝑛, is 𝑛 is large enough.
So let us fix some 𝜀. Choose 𝑘 in such a way that 1/𝑘 < 𝜀, and approximate 𝑆 by
a strategy 𝑆′ whose values are multiples of 1/𝑘 (taking the closest multiple). The
approximation error is bounded by 𝜀/2. For 𝑆′ we already know that its gain is
𝑜(𝑛), so it is less than (𝜀/2)𝑛 for large enough 𝑛, and the difference between gains
of 𝑆 and 𝑆′ is at most (𝜀/2)𝑛. �

Here is one more property of Mises–Church random sequeences. (It was men-
tioned by Mises as one of the basic property of Kollektivs.)

Theorem 171. Applying a Church-admissible selection rule to a Mises–Church
random sequence, we get either a finite sequence or a Mises–Church random one.

Proof. It is easy to see that the composition of two Church-admissible selec-
tion rules is a selection rule of the same type. If we select some terms (by looking
at the precious ones) into a subsequence and then again select some terms of these
subsequence looking at the previous one, the resulting decision for some 𝜔𝑖 (whether
it will survive the first and the second selection or not) is determined by 𝜔0 . . . 𝜔𝑖−1.
(And the composition of two computable selection rules is computable.) �

Later (Section 9.12, p. 302) we consider more general selection rules (non-mono-
tonic ones) and modify accordingly the notion of randomness (the so-called Mises–
Kolmogorov–Loveland randomness, or Kolmogorov–Loveland stochasticity). This
new class of selection rules will not be closed under composition, and, moreover,
the corresponding notion of randomness in not closed under selection rules (see
Theorem 203, p. 319.)

We have not discussed yet the relation between Martin-Löf randomness and
Mises–Church randomness. As we will see soon, they differ and not all Mises–
Church random sequence are Martin-Löf random. But first let us make some re-
marks about Mises’ definition.

9.4. Ville’s example

We have seen already that for every countable family of sets 𝑅𝑖 there exists a
sequence that satisfies the frequency stability property with respect to all selection
rules 𝑆𝑅𝑖

(each of these rules selects finite or balanced subsequence). Indeed, the
set of sequences with this properties has measure 1. This is an existence proof; can
we give a more explicit construction of such a sequence? Indeed this is possible,
and we now explain such a construction following A. Wald [215], J. Ville [204] and
D. Loveland [105].

280 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Let us first consider the case when there is only one selection rule 𝑆𝑅 that
corresponds to some set 𝑅. Then it is easy to construct a sequence 𝜔 such that
𝑆𝑅(𝜔) = 01010101 . . . (zeros and ones alternate), so 𝑆𝑅(𝜔) is balanced. Indeed, we
construct 𝜔 from left to right. When the rule 𝑆𝑅 informs us that it intends to select
the next term, we look at the number of this term in the subsequence (whether it
is even or odd) and choose the next term to be 0 or 1 depending on this number.
(The terms of 𝜔 that are not selected by 𝑆𝑅 can be chosen arbtrarily.).

Now assume that we have 𝑚 sets 𝑅1, . . . , 𝑅𝑚 that define selection rules. We
want to construct a sequence 𝜔 such that 𝑆𝑅𝑖(𝜔) is finite or balanced for each 𝑅𝑖.
Again we construct the sequence from left to right. Before we choose the value of
the next term 𝜔𝑛, let us apply all the rule to the previous terms and see which of
the rules 𝑆𝑅𝑖

will select 𝜔𝑛. We get a 𝑚-bit vector, so we can classify the terms
of 𝜔 into 2𝑚 classes depending on this vector, even before the value of the term is
chosen. The sequence 𝜔, therefore, is a mixture of 2𝑚 interleaving sequences (some
of them may be finite).

We have not said yet how we construct 𝜔. We use the following rule: all
the 2𝑚 subsequences (corresponding to 2𝑚 values of the 𝑚-bit vector) should be
01010101 This can be achieved in a unique way: before 𝜔𝑛 is chosen, we know
𝜔0 . . . 𝜔𝑛−1 and know which rules will select 𝜔𝑛, so we know in which subsequences
is 𝜔𝑛 and can choose its value.

Note that 𝑆𝑅𝑖
(𝜔) is a mixture of 2𝑚−1 subsequences (that correspond to 2𝑚−1

bit vectors that have 1 at position 𝑖). Therefore 𝑆𝑅𝑖
(𝜔) is balanced; moreover, we

can guarantee that in each prefix of 𝑆𝑅𝑖
(𝜔) the number of 1s does not exceed the

number of 0, and the difference is bounded by 2𝑚−1 (one for each subsequence).
Now we switch to the general case of countable many rules 𝑅𝑖. The main idea:

we add these rules one by one, and at each moment deal with finitely many rules. If
we do it slowly, the transition effects are negligible and every selection rule selects
a balanced subsequence.

If this is not convincing, here are the details. Assume that we have already
constructed some prefix 𝜔0 . . . 𝜔𝑛−1 of the sequence 𝜔. Then it is already known
which rules 𝑆𝑅𝑖 will select the next term 𝜔𝑛 (while the value of 𝜔𝑛 is yet to be de-
termined). This information is now not a 𝑚-bit vector, but an infinite bit sequence
𝑢1𝑢2 . . . (where 𝑢𝑖 = 1 if 𝑆𝑅𝑖

selects the next term). We consider the sequence
𝑢1𝑢2 . . . as a path in an infinite binary tree.

Fix some increasing sequence 𝑘0 < 𝑘1 < 𝑘2 < . . . of positive integer. We assume
that it grows fast enough; for example, we may let 𝑘𝑖 = 22𝑖. At each step of the
construction (for each term 𝜔𝑛) one of the tree vertices will be declared as active.
Namely, following the path 𝑢1𝑢2 . . ., we select the first vertex that was active less
than 𝑘𝑖 times, were 𝑖 is the height of this vertex, and declare it as active. In other
words, an active vertex (at the step when 𝜔𝑛 is chosen) is a shortest string 𝑥 such
that

∙ 𝑖-th bit of 𝑥 is 1 if and only if 𝑆𝑅𝑖 selects 𝜔𝑛;
∙ at previous steps of the construction (when 𝜔0 . . . 𝜔𝑛−1 was constructed)

the vertex 𝑥 was active less than 𝑘𝑙(𝑥) times.

So first the root is active, until it happens 𝑘0 times. Then 0 or 1 is active (depending
on whether the rule 𝑆𝑅1

selects the next term or not) until they become “tired” of
being active 𝑘1 times, etc.

9.4. VILLE’S EXAMPLE 281

In this way we construct a sequence 𝜔0𝜔1 . . . that is a mixture of countable many
finite subsequences that correspond to countably many possible active vertices. The
subsequence that corresponds to vertex 𝑥 (the terms constructed at the steps when
𝑥 was active) has length at most 𝑘𝑙(𝑥) (but may be shorter). As before, we choose
𝜔𝑛 in such a way that all these subsequences are of the form 010101

Let us look at the subsequence selected from 𝜔 by 𝑆𝑅𝑖
and show that it is bal-

anced (or finite). Now situation is a bit more complicated: first, we have countable
many subsequences; second, the rule 𝑆𝑅𝑖 was initially ignored (when the active
vertices were shorter than 𝑖). Let us look at 𝑆𝑅𝑖

closer. It consists of terms of two
types. First, there are some terms that correspond to active vertices of height less
than 𝑖, so 𝑆𝑅𝑖

was not taken into account. Second, 𝑆𝑅𝑖
includes all the terms that

correspond to active vertices where 𝑖-th bit equals 1. The number of terms of the
first type is bounded by 20𝑘0 + . . . + 2𝑖−1𝑘𝑖−1, so we can safely ignore them.

As to the terms of the second type, note that for every active vertex the sub-
sequence corresponding to this vertex is 010101 . . ., and each its prefix contains no
more 1s than 0s, and the difference is at most 1. So the disbalance in the selected
subsequnce (if we ignore terms of the first type) at some moment 𝑡 is bounded by
number of the active vertices appeared at that moment. Let 𝑁 be the maximal
height of the active vertices used before 𝑡; we assume that 𝑁 > 𝑖 (otherwise there
is no terms of the second type). Then at most 𝑂(2𝑁) active vertices were used
and the disbalance is at most 𝑂(2𝑁). On the other hand, since vertex of height
𝑁 became active, the preceding active vertices should be used completely, so the
length of the sequence is at least 𝑘𝑁−1. It remains to use that 2𝑁 = 𝑜(𝑘𝑁−1).

So we have described an explicit construction of a sequence that has the fre-
quency stability property with respect to a given countable family of selection rules.
Does it give something really new (compared to the probabilistic existence proof)?
Yes: for example, we may note that in this sequence each prefix contains at least
as many zeros as ones, since this is true for all the 010101 . . . pieces. So we have
proved the following result (Ville’s example):

Theorem 172. There exists a Mises–Church random sequences where each
prefix contains at least as many zeros as ones.

(We can also get a sequence whose prefixes have strictly more zeros than ones,
just by starting with first bit 1 and then using the construction.)

This result can be used to prove that there exists a Mises–Church random
sequence that is not Martin-Löf random. For that it would be enough to prove
that this property (more zeros than ones) is not possible for a Martin-Löf random
sequence. It is indeed that the case, and it is a consequence of the effective law of
iterated logarithm — but, unfortunately, not the part that we proved in Section 8.4
(Theorem 156).

261 Prove that in this case we do not really need the effective version: if the
set of sequences that have more zeros than ones in all prefixes is a null set, then
it is an effectively null set. [Hint: Let 𝑝𝑛 be the probability of the event “up to
length 𝑛 all prefixes have more zeros that ones”. The sequence 𝑝𝑛 is a decreasing
computable sequence, and its limit is the measure of the set in question. So if this
limit is 0, we for a given 𝜀 > 0 can wait until 𝑝𝑛 becomes less than 𝜀. One can also
refer to the results about Kurtz randomness (p.84).]

282 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

262 Prove that the set of sequences that contain more zeros than ones in all
prefixes in an effectively null set, not referring to the law of iterated logarithm.
[Hint: for every 𝑛 the probability of the event “𝑛-bit prefix has more zeros than
ones” is about 1/2. If we take a sequence of values of 𝑛 that grow fast, these
events will be almost independent (the deviations for the short prefixes is negligible
compared to the expected deviation for the long prefixes).]

We do not provide that details of this argument here. Instead, we prove in a
different way that there exist Mises–Church random sequences that are not Martin-
Löf random. Namely, we show that there exists a Mises–Church random sequence
whose prefixes have logarithmic complexity, using the same explicit construction.

Theorem 173. There exists a Mises–Church random sequence 𝜔 = 𝜔0𝜔1 . . .
such that

𝐶(𝜔0 . . . 𝜔𝑛−1) = 𝑂(log 𝑛).

Proof. To construct such a sequence, we apply our construction to the count-
able list of all Church-admissible selection rules: the sets 𝑅𝑖 are all decidable sets
of strings. This is not an effective construction, since we cannot enumerate all
decidable sets (all total algorithms) — not a surprise, otherwise we would get a
computable Mises–Church random sequence!

We can enumerate all programs, but then we need some extra “advice”: some-
body should tell us which of the programs define decidable sets (so we can replace
the bad ones by some fixed decidable set). This information for the first 𝑚 programs
takes 𝑚 bits (one bit per program), and it is enough to perform our construction
until we reach active vertices of height (length) 𝑚. At that moment we have con-
structed at least 𝑘𝑚−1 = 22𝑚−2 bits of the sequence. So the amount of additional
information (“advice”) is logarithmic in the length of the prefix. �

Let us repeat again the important corollary of this result:

Theorem 174. There exists a Mises–Church random sequence that is not
Martin-Löf random (with respect to the uniform measure).

If the Mises–Church definition is too weak, may be, we should make it stronger?
For example, one can consider a broader class of selection rules, or different type of
gambling. In the following sections of this chapter we consider some generalizations
that involve non-monotonic rules (the order of terms in the subsequence is not the
same as in the entire sequence) and martingales (where we start playing with a
fixed amount and can bet all the money we have).

9.5. Martingales

When discussing why Kollektivs exist we referred to gambling practice. But
from the “practical” viewpoint our gambling framework looks quite unnatural: a
gambler comes to a casino when the fair coin is tossed, select some of the bits (before
they are produces) and then “wins” (discredits the casino’s source of randomness)
if the selected outcomes are not balance (do not have limit frequency 1/2).

As we have said (trying to make the game more natural), we get the same
definition if we allow the gamble to make a bet of fixed size at some moments
(having an unlimited credit needed for long sequences of losses), and require that
the gambler’s average gain (per game) tends to zero as number of games increases.
One can also allow to make variable bets of bounded size, see above.

9.5. MARTINGALES 283

J. Ville suggested another setting that looks more natural. Here the gambler
comes to the casino with some fixed amount of money, say, $1. Before a coin is
toosed, the gambler splits the capital into two parts: the first is used to make a
bet on 0, and the second is used to make a bet on 1. One of the bets is successful;
the corresponding amount is doubled (and the other part is lost). For example, a
cautious gambler may split the current amount into two equal parts, then one is lost
and the other one is doubled, so the capital remains unchanged. (It is clear therefore
that a special option to leave some part of the money aside is not necessary, it can
be emulated anyway.) Now we cannot go into negative, so both parts should be
non-negative numbers.

After a game is described, it is clear what is a gambler’s strategy in such a game:
it is a function that maps the history of the game (the sequence of already seen bits)
to the next move (how much should be bet on 0 and on 1). In fact, we will use more
convenient representation of the strategy: let 𝑚(𝑥) is the gambler’s capital after
playing with 𝑥 (if she follows the stategy). This (non-negative) function determines
the strategy uniquely: after seeing 𝑥 we bet 𝑚(𝑥0)/2 on 0 and 𝑚(𝑥1) on 1. Not all
non-negative functions correspond to strategies; two conditions are necessary (and
sufficient):

∙ 𝑚(Λ) = 1 (as we agreed, the initial capital when we observed the empty
string Λ equals 1);

∙ 𝑚(𝑥) = (𝑚(𝑥0) + 𝑚(𝑥1))/2 (the sum of bets on both outcomes is equal
to the current capital).

A non-negative function 𝑚 that has both properties is called a martingale with
respect to the uniform measure on the Cantor space. Later we consider also mar-
tingales with respect to other measure on the Cantor space. In probability theory
a more general notion of martingale is used, but for our purposes this will be suffi-
cient. So from now on we speak mostly about martingales instead of corresponding
strategies.

Let 𝜈 be an abritrary measure on the Cantor space. It is easy to check that
the ratio 𝜈(Ω𝑥)/𝜇(Ω𝑥) (here 𝜇 is the uniform measure on the same spacem and Ω𝑥

is the set of all extensions of 𝑥) is a martingale, and every martingale is obtained
in this way from some measure.

263 Show that it is indeed the case.

The following intuitively obvious statement is sometimes called Doob inequality
or Kolmogorov inequality :

Theorem 175. Let 𝑚 be some martingale and let 𝑘 be some positive threshold.
Consider the strings where martingale exceeds 𝑘, and all infinite sequences that have
a prefix in this set. The the (uniform) measure of the set of all these sequences does
not exceed 1/𝑘.

Proof. Let us follow the strategy that correspond to 𝑚, but when the capital
achieves 𝑘 (or more), we stop playing and go home. This modified strategy has
the expected return at most 1 (since the game is fair), so that probability that we
achieve 𝑘 or more, is at most 1/𝑘.

To make this argument formal, consider the corresponding measures. Assume
that 𝑚(𝑥) is 𝜈(Ω𝑥)/𝜇(Ω𝑥) for some measure 𝜈 (and 𝜇 is the uniform measure). We
consider vertices (strings) 𝑥 such that 𝜈-measure of cone Ω𝑥 is 𝑘 (or more) times
bigger that 𝜇-measure of the same cone. Now consider only the minimal strings

284 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

𝑥 with this property (this does not change the union of Ω𝑥). They correspond to
disjoint cones. The total 𝜇-measure of these cones is 𝑘 times smaller than their
total 𝜈-measure (or even smaller), and the latter is at most 1. �

264 Prove that for a lower semicomputable martingale 𝑚 the function

𝑡(𝜔) = sup
𝑥4𝜔

𝑚(𝑥)

is a probability-bounded randomness test in the sense of Section 3.5.

We have seen that the set where martingale wins a lot, has small measure.
The reverse statement is also true: for every set 𝑆 of small measure there exists a
strategy (martingale) that win a lot on every sequence in 𝑆.

Theorem 176. Let 𝑈 ⊂ Ω be an open set of measure at most 𝜀 > 0. Then
there exists a martingale 𝑚 with the following property : each sequence 𝜔 ∈ 𝑈 has
a prefix 𝑥 where 𝑚(𝑥) > 1/𝜀.

Proof. Consider a measure 𝜈 such that 𝜈(𝑋) = 𝜇(𝑋 ∩ 𝑈)/𝜀. (This measure
is zero outside 𝑈 , and is (1/𝜀) times the uniform measure inside 𝑈 .) Then the
function𝑚(𝑥) = 𝜈(Ω𝑥)/𝜇(Ω𝑥) is a martingale with required properties. Indeed, if
𝜔 ∈ 𝑈 , there exists s prefix 𝑥 of 𝜔 such that Ω𝑥 ⊂ 𝑈 and 𝑚(𝑥) = 1/𝜀. �

This theorem can be explained as follows. Imagine the there are dishonest
people in the casino management who are ready to sell some “insider information”.
Namely, they specify some open set 𝑈 and guarantee that the sequence of future coin
tossing (due to cheating) is in 𝑈 . What is the “market value” of this information
(together with the option to start the game with initial capital 1 in the casino)?
Our theorem says that it is 1/𝜇(𝑈). For example, if the insiders tell us (in advance)
the first 𝑁 bits, the corresponding open set has measure 1/2𝑁 , and indeed we can
win 2𝑁 by betting all the money on the known outcome for 𝑁 first games. The
same is true for more complicated type of cheating. For example, if the insiders tell
you that some outcome is not possible (“in our casino we never have 𝑁 consecutive
zero after opening”), this is still something valuable (this information allows the
gambler to make 2𝑁/(2𝑁 − 1) dollars out of 1).

The proof of the theorem also can be explained easily in these terms. If at the
first step the set 𝑈 is split between Ω0 and Ω1 proportional to 𝑎0 : 𝑎1, we split our
money in the same proportion. (For example, if all element s of 𝑈 start with 0, we
bet all the money on 0.) Then the ratio

current capital

the fraction of 𝑈 among the extensions of current situation

does not change during the game. Initially the numerator is 1 and the denominator
is 𝜀 (or even less). When we bump into 𝑈 (and this will surely happen, unless the
insiders sold us a wrong information), the denominator is 1, so the numerator is at
least 1/𝜀.

Similar statements are true for the limit behavior of a martingale. Let us
say that a martingale 𝑚 wins on a sequence 𝜔 if the values of 𝑚 on the prefixes
of 𝜔 are not bounded. The following result, discovered by Ville (who introduced
martingales), was one of the main his motivations.

Theorem 177. (a) Let 𝑚 be a martingale. Then the set of sequences on which
𝑚 win, has measure 0.

9.5. MARTINGALES 285

(b) Let 𝑋 be a set of measure 0. Then there exists a martingale 𝑚 that wins
on all elements of 𝑋.

Proof. (a) The set 𝑈𝑘 of sequences where 𝑚 reaches the value 𝑘 or more, has
measure at most 1/𝑘 and is open; all sequences where 𝑚 wins belong to 𝑈𝑘 for
every 𝑘.

(b) For every 𝑘 consider the open set 𝑈𝑘 of measure at most 1/𝑘 that contains 𝑋,
and the corresponding martingale 𝑚𝑘 that achieves 𝑘 or more on all elements of 𝑈𝑘.
Now we need to combine these martingales into one. Note that the weighted sum
of martingales is a martingale (we may split the capital into pieces and use separate
strategy for every piece). Let us use martingale 𝑚4𝑛 with initial capital (weight)
2−𝑛 for all 𝑛 in parallel (note that 1 =

∑︀
𝑛 2−𝑛). Then for all sequences that belong

to 𝑈4𝑁 we guarantee return 4𝑛 · 2−𝑛 = 2𝑛 (plus, may be, some return from other
investment strategies). So the return on every element of 𝑋 is infinite. �

The proof of this result is similar to the proof of randomness criterion (The-
orem 90, p. 160); we can say that we now have proved the classical version of
Theorem 90 by the same argument.

In fact we have proved a bit more that was promised. Let us say that 𝑚 strongly
wins on the sequence 𝜔 if its values on the prefixes of 𝜔 are not only unbounded,
but have limit +∞. In the proof of Theorem 177 we have constructed a martingale
that strongly wins on all elements of 𝑋 (Indeed, the martingale constructed in the
proof of Theorem 176 is at least 1/𝜀 on all sufficiently long prefixes.)

Again, Theorem 93 on p. 162 can be considered as a contructive version of
this stronger result. (We will discuss later the connection between randomness and
effective versions of the martingale notions.)

Combining these observation, we get the following corollary:

Theorem 178. For every martingale 𝑚 there exists (another) martingale 𝑚′

that strongly win on all sequences where 𝑚 wins.

Proof. As we have noted, we can obtain 𝑚′ going to sets and back. There
is also a very intuitive direct construction. The martingale 𝑚′ should behave like
a wise stock market player: when it achieves capital 2 (using 𝑚-strategy), it puts
aside half of its money as a safety measure (i.e., this part of the money is bet on
0 and 1 in equal parts), and the other half is used according to 𝑚 (but with twice
smaller amounts). When the capital reaches 4 (i.e., when 𝑚 would reach 8), again
the half (2) is saved, and the rest is used for playing, etc.

Another version of the argument (which is better if we want to keep the mar-
tingales enumerable from below): for each martingale 𝑚 and each number 𝑐 > 0
consider the martingale 𝑚𝑐 which imitates 𝑚 while the capital is smaller than 𝑐,
and then stops. Then the limit of 𝑚𝑐 is at least 𝑐 on every sequence where 𝑚 reach
𝑐 at least once. It remains to take the weighted sum of 𝑚4𝑘 with weights 2−𝑘. �

Choosing the weight more carefully, one may prove the following general state-
ment [170, 47]. Let 𝑓 : [1,+∞) → [0,+∞) be a nondecreasing continuous function
such that

∫︀∞
1

𝑓(𝑡)/𝑡2 𝑑𝑡 6 1. Then for every martingale 𝑚 there exists a martingale
𝑚′ with the following property: if at some sequence 𝜔 the martingale 𝑚 reaches 𝑐
at some moment, then 𝑚′ reaches 𝑓(𝑐) at the same moment and never goes below
𝑓(𝑐) later. (The integral bound in the condition is sharp.)

286 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Up to now we assumed that the coin is symmetric: the probabilities of heads
and tails declared by the casino are equal. This means that in the fair game the
bets on zeros and ones should be doubled. But we can consider other setting.
Imagine that casino claims that 0 appears with probability 1/3 and 1 appears with
probability 2/3. To make the game rules consistent with this claim, the casino
should return bets on 0 multiplied by 3, and bets on 1 multiplied only by 1.5. The
definition of martingale changes accordingly: 𝑚(𝑥), the capital after 𝑥, should be
equal to the sum of its two parts: the amount bet on 0 equals 𝑚(𝑥0)/3, and the
amount bet on 1 equals to 𝑚(𝑥1)/3. So we get the condition

𝑚(𝑥) =
1

3
𝑚(𝑥0) +

2

3
𝑚(𝑥1),

which can also be read as “the capital before the next game is equal to the expected
capital after it”.

Let us give a formal definition now. Let 𝜋 be an arbitrary probability distri-
bution on Ω (informally, casino claims that the coin behaves according to it). The
corresponding function on strings we will also denote by 𝜋, so 𝜋(𝑥) = 𝜋(Ω𝑥).

A non-negative function 𝑚 on binary strings is called a martingale with respect
to 𝜋 (with initial capital 1) if 𝑚(Λ) = 1 and

𝑚(𝑥)𝜋(𝑥) = 𝑚(𝑥0)𝜋(𝑥0) + 𝑚(𝑥1)𝜋(𝑥1)

for all 𝑥. (This definition corresponds to the informal discussion above: dividing
the equation by 𝜋(𝑥), we get conditional probabilities 𝜋(𝑥0)/𝜋(𝑥) and 𝜋(𝑥1)/𝜋(𝑥)
of 0 and 1 after 𝑥.)

In other terms, we require that the function 𝑚(𝑥)𝜋(𝑥) is a measure, so a mar-
tingale with respect to 𝜋 (or 𝜋-martingale) is just a ration of some other measure
and 𝜋. Now we can extend the results above (essentially with the same proofs) to
the case of arbitrary measures:

(1) Let 𝑚 be a 𝜋-martingale, and 𝑘 be some threshold. The 𝜋-probability of
the event “𝑚 reaches 𝑘 on some prefix of 𝜔” is at most 1/𝑘.

(2) For every open set 𝑈 there exists a martingale that reaches 1/𝜋(𝑈) on all
elements of 𝑈 .

(3) A set 𝑋 is a 𝜋-null set if and only if there exists a 𝜋-martingale that wins
[version: stronly wins] on all elements of 𝑋.

The Doob-Kolmogorov inequality guarantees that every martingale is bounded
almost everywhere. There following stronger statement (Doob’s theorem) is also
true.

Theorem 179. For every 𝜋-martingale 𝑚 for 𝜋-almost every sequence 𝜔 the
values of 𝑚 on prefixes of 𝜔 have a finite limit.

(In other words, the set of sequences 𝜔 where 𝑚 does not have a finite limit, is
a 𝜋-null set.)

Proof. Kolmogorov’s inequality guarantees that 𝑚 is bounded on prefixes of
𝜔 with probability 1. So it remains to prove that for every rational 𝑝, 𝑞 such that
0 < 𝑝 < 𝑞, the following event has probability zero: “the capital on prefixes of 𝜔
oscillates becoming less than 𝑝 infinitely often and greater than 𝑞 infinitely often”.
To show this, we consider another martingale 𝑚′ that is unbounded at all sequences
𝜔 where the oscillations happen. The martingale 𝑚′ implements the classical “buy
low – sell high” strategy: it looks at the capital of the original martingale, but

9.6. A DIGRESSION: MARTINGALES IN PROBABILITY THEORY 287

keeps its own capital unchanged until 𝑚 becomes less than 𝑝. Then 𝑚′ behaves
like 𝑚 (with some constant factor) until 𝑚 reaches capital greater than 𝑞; then 𝑚′

again keeps the capital unchanged until 𝑚 goes below 𝑝, etc. At each iteration 𝑚′

increases its capital by factor (𝑞/𝑝), so it tends to infinity for sequences where 𝑚
oscillates. �

This theorem can be used to define conditional probabilities. Consider some
measure 𝜇 on the product Ω × Ω. Then we can consider 𝜇1 that is the projection
of 𝜇 at the first coordinate (the marginal distribution). We want also to define the
conditional distribution of the second coordinate when the first coordinate is equal
to some 𝛼 ∈ Ω. We cannot use the elementary definition of conditional probability
with some event as a condition, since the event “the first coordinate is equal to
𝛼” often has zero probability. Usually the conditional probability is defined (for
𝜇1-almost every 𝛼) using the Radon–Nikodym derivative, but in our case we can
give a more concrete definition using the Doob theorem.

Let 𝐴 be some property of the second coordinate. Consider the conditional
probability of 𝐴 with the condition “the first coordinate has prefix 𝑎 = 𝑎0 . . . 𝑎𝑘−1”.
For a fixed 𝐴 this probability (as a function of 𝑎) is a 𝜇1-martingale (up to a con-
stant), so the Doob theorem guarantees that for 𝜇1-almost every 𝛼 these probabil-
ities converge to some limit; this limit (defined 𝜇1-almost everywhere) is called the
conditional probability of 𝐴 when the first coordinate is equal to 𝛼. (It is possi-
ble that some prefix has probability 0, and then the conditional probability is not
defined, but this creates problems only for set of measure 0.)

The advantage of this construction: it allows us to define the conditional prob-
ability for computable measure 𝜇 on Ω×Ω and every ML-random (with respect to
𝜇1) sequence. See [7] for details.

Returning to our main topic, we conclude this section with the following (evi-
dent) observation:

Theorem 180. For every martingale there exists a sequence on which it does
not win (and, moreover, is bounded by 1 on all prefixes).

Proof. The definition of martingale implies that one of the numbers 𝑚(𝑥0)
and 𝑚(𝑥1) does not exceed 𝑚(𝑥), so to each 𝑥 we can add one bit not increasing
the value of the martingale. �

(If the casino can choose the outcome of coin tossing after the gambler make a
bet, it can guarantee that the gambler never wins anything.)

9.6. A digression: martingales in probability theory

Theorem 177 can be interpreted as follows:
(a) to prove that some set has 𝜇-measure 0, it is enough to construct a 𝜇-

martingale that wins on all its elements;
(b) this method can be applied to every null set (by finding a suitable martin-

gale).
This interpretation is important for two reasons. First, from a purely technical

viewpoint, we get a tool to prove that some set has measure zero (by constructing
a martingale that wins on all its elements).

288 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

To illustrate the point, let us present in this style the proof of the strong law
of large numbers. Let 𝜇 = 𝐵𝑝, the Bernoulli distribution with independent trials
and success probability 𝑝.

For a given 𝑞 > 𝑝 let us prove that the 𝐵𝑝-probability of the event “the fre-
quency of ones exceeds 𝑞 infinitely many times” is zero. (For 𝑞 < 𝑝 and the event
“the frequency of ones falls below 𝑞 infinitely many times” the arguments are simi-
lar.) To achieve this, consider 𝐵𝑝-martingale 𝐵𝑞/𝐵𝑝. For a sequence 𝑧 of length 𝑛
where the frequency of ones is 𝑟 (with 𝑛𝑟 ones and 𝑛(1− 𝑟) zeros) the value of this
martingale is

𝑞𝑛𝑟(1 − 𝑞)𝑛(1−𝑟)

𝑝𝑛𝑟(1 − 𝑝)𝑛(1−𝑟)
,

and the logarithm of this value is

𝑛[(𝑟 log 𝑞 + (1 − 𝑟) log(1 − 𝑞)) − (𝑟 log 𝑝 + (1 − 𝑟) log(1 − 𝑝))].

Since 𝑞 > 𝑝, the latter expression is an increasing linear function of 𝑟; the coefficient
is log[𝑞/𝑝] + log[(1− 𝑝)/(1− 𝑞)] and both terms are positive. So for 𝑟 > 𝑞 (the case
we are interested in) we can only decrease this expression replacing 𝑟 by 𝑞, so the
logarithm of the martingale value is

𝑛[(𝑞 log 𝑞 + (1 − 𝑞) log(1 − 𝑞)) − (𝑞 log 𝑝 + (1 − 𝑞) log(1 − 𝑝)].

The Gibbs inequality (p. 227) guarantees that the expression in the square brackets,
the Kullback–Leibler distance between the distribution (𝑞, 1 − 𝑞), (𝑝, 1 − 𝑝), is
positive. So the martingale is unbounded on the sequences where frequency
exceeds 𝑞 infinitely often.

This proof of the strong law of large numbers does not follow completely the
scheme outlined above: we consider not one martingale but a family of martingales
(one for each 𝑞). Each of the martingales is used to prove that some set has measure
zero, and then we observe that the countable union of null sets is a null set.

Instead, we could take a countable family of 𝑞𝑖 (say, all rational 𝑞), construct
a martingale for each 𝑞𝑖 and then mix all these martingales with positive weights.
If some of the martingales is infinite, the mix will be infinite, too.

Essentially the same proof of the strong law of large numbers was discussed
in Section 3.2 (Problem 67, p. 72), but there we considered finite sequences and
did not use the term “martingale” speaking just about the ratio of two measures.
Similar arguments will be used later in Section 9.13.)

The second reason why martingales are important is more philosophical. What
do we do when we prove some theorem using the martingale approach? We consider
some property 𝐿 of binary sequences (“to be balanced”, for the case of the strong
law of large numbers) and some martingale 𝑚. Then we prove that for every binary
sequence 𝜔 at least one of the two things happens:

∙ the sequence 𝜔 has the property 𝐿;
∙ the martingale 𝑚 wins on 𝜔.

Moving in this direction, one can suggest the following “market” (or game) approach
to the notion of randomness and say that

the randomness of a bit sequence is not the property of the se-
quence but the type of insurance provided for this sequence.

It sounds a bit strange at first, but still makes sense. Imagine a shop when we
can pay $1 in exchange for a bit sequence written on a scratch card. The sequence

9.7. LOWER SEMICOMPUTABLE MARTINGALES 289

is guaranteed to be random: the seller guarantees that our martingale (its copy is
given to the seller in a sealed envelope) will not win much on that sequence. More
precisely, we discover the bits on the card one by one (from left to right) and at
every moment we may get back the value of martingale on the currently discovered
bits.

In other words, we come to the shop with $1 and a description of some mar-
tingale in a sealed envelope. Giving the money and the envelope to the seller, we
get in exchange the scratch card with an (infinite) bit sequence. Then we reveal
the bits on the card sequentially, and at every moment (at our discretion) we can
get 𝑚 dollars as a refund, where 𝑚 is the value of our martingale on the sequence
of bits that we have read. (After that the seller has no other obligations.)

Note that it is important that we do not see the next bits (otherwise we could
cheat: if the next bits decrease the martingale, we demand the refund now, other-
wise we wait for a better refund).

Buying the random bits from such a seller, we may hedge the risks of getting a
“bad” sequence of random bits. If we have a randomized algorithm that works fast
for most values of random bits, and we were unlucky and bought a bit sequence that
makes it work long, then we can at least get some refund according the martingale
(carefully chosen when we made a purchase: this martingale should be large on
rare sequences that make the algorithm work long). So we need to deposit different
martingales depending on the future use of the sequence. For example, if we use the
sequence in the probabilistic algorithm that generates large primes (i.e., produces
a large prime number with high probability), the martingale should be large on
random sequences that lead to composite numbers. Then, if we lose some money
because of the non-primality of the generated number, we at least can get a refund
from the randomness provider.

To make the story more realistic, one should consider finite sequences, but
the scheme remains the same. Also note that the parties should agree about the
measure on bit sequences when making a deal (because the notion of a martingale
depends on it). According to this philosophy, one may say that the probability
distribution does not exist anywhere in the real world, but is a part of the contract.
(However, a wise seller would take into account this part of the contract when
producing the sequence for sale.)

This approach to probability theory is discussed thoroughly in the book of
V. Vovk and G. Shafer [171].

9.7. Lower semicomputable martingales

The results about martingales proven above have natural effective version. We
already have studied the notion of effective null sets. Since null sets are related to
martingales, one could expect that effectively null sets correspond to some class of
martingales. This is indeed the case.

Fix some computable measure 𝜋 on Ω. In this section we consider martingales
and null sets with respect to 𝜋; we do not require now that the initial capital of
the martingale is 1. Now consider lower semicomputable martingales in the sense
of Section 4.1 (a function 𝑚 is lower semicomputable it the set of pairs ⟨𝑟, 𝑥⟩ where
rational number 𝑟 is less than 𝑚(𝑥), is enumerable).

The following problem explains why we should not require the initial capital
to be 1.

290 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

265 Show that a lower semicomputable martingale 𝑚 with 𝑚(Λ) = 1 is always
computable.

The following effective version of Ville’s result (Theorem 177) was discovered
by C. Schnorr [165]:

Theorem 181. (a) Let 𝑚 be a lower semicomputable martingale. Then the set
of sequences on which 𝑚 wins, is an effectively null set.

(b) Let 𝑋 be an effectively null set. Then there exists a lower semicomputable
martingale 𝑚 that wins on all sequences in 𝑋.

Proof. (a) Since 𝑚 is lower semicomputable, the set of sequences where it
exceeds an integer 𝑘 at some prefix is effectively open and has measure at most
1/𝑘. (Here we consider the measure of an open set that is a union of a computable
sequence of intervals. As usual, we should modify the sequence and make these
intervals disjoint.)

(b) If a set is effectively open and has measure less than 1/𝑘, then the martingale
constructed in the proof of Theorem 176 is lower semicomputable (when a new
interval appears, the approximation to the martingale increases). One precaution
is necessary, though: we should divide the measure of the intersection not by the
measure of the set (it may be non-computable), but by its upper bound 1/𝑘 (so
we should multiply the measure by 𝑘). The root value of the martingal is then less
than 1, but this is allowed.

It remains to sum up the martingales for different 𝑘 with suitable (computable)
coefficients, as it is done in the proof of Theorem 177). Note that the sum will also
be semicomputable. �

This result can be strengthened in two directions. First in the proof of (b) we
actually construct a martingale that strongly wins on all sequences in 𝑋 (as we
have discussed). In fact, we also can repeat the second proof of Theorem 178 and
convert a lower semicomputable martingale into another martingale which is also
lower semicomputable and strongly wins on all sequences where the first one wins.

Second, we can extend the notion of martingale and consider lower semicom-
putable semimartingales, also called supermartingales. Supermartingales corre-
spond to games where the player at each step can donate some part of the capital.
The definition of a supermartingale requires that

𝑚(𝑥) > (𝑚(𝑥0) + 𝑚(𝑥1))/2

(for the uniform measure) or

𝑚(𝑥)𝜋(𝑥) > 𝑚(𝑥0)𝜋(𝑥0) + 𝑚(𝑥1)𝜋(𝑥1)

(for arbitrary measure 𝜋) instead of the corresponding equality. Since the dona-
tions can only decrease the capital, the upper bound for the probability of winning
remains the same, so the proof of the part (a) still works. And the part (b) be-
comes only weaker, so we can replace martingales by supermatringales everywhere
in Theorem 181.

It is clear that a 𝜋-supermartingale is just the ratio of some semimeasure and
𝜋. Since 𝜋 is computable, lower semicomputable martingales correspond to lower
semicomputable semimeasures. Therefore, we immediately see that there exists the
largest (up to 𝑂(1)-factor) supermartingale, and it is equal to

𝑚(𝑥) = 𝑎(𝑥)/𝜋(𝑥),

9.8. COMPUTABLE MARTINGALES 291

This gives us a new proof of Levin–Schnorr theorem in the version for the a
priori probability (Theorem 91, p. 162): a sequence 𝜔 is ML-random with respect
to a computable measure 𝜋 if and only if the ratio 𝑎(𝑥)/𝜋(𝑥) is bounded for the
prefixes of 𝜔.

9.8. Computable martingales

The notion of a lower semicomputable martingale is rather unnatural from the
gambler’s point of view: the proportion in which the capital is split between two
bets, is then a ratio of two lower semicomputable reals, which is rather strange.

May be we should consider only computable martingales? Let us assume that
a computable measure 𝜋 on Ω is fixed and all the values 𝜋(𝑥) = 𝜋(Ω𝑥) are strictly
positive (this is important since these values are in the denominators). Then a
computable martingale corresponds to a computable (in the natural sense) strategy
in the game.

We say that a sequence 𝜔 is computably random with respect to 𝜋 if no com-
putable 𝜋-martingale wins on it, i.e., every computable martingale is bounded on
its prefixes. (The name ‘computably random’ sounds a bit strange; it would be
better to say something like ‘random with respect to computable martingales’, but
here we stick to the commonly used terminology even if it is not perfect.)

266 (a) Show that we get an equivalent definition if we consider only martin-
gales that are separated from zero; for example, we can consider only martingales
with values at least 1/2.

(b) Assume that 𝜋(Ω𝑥) are positive rational numbers that can be computed
given 𝑥 (exactly). Show that we get an equivalent definition if we consider only
martingales with rational values and require them to be exactly computable. [Hint:
(a) Take the average of a given martingale and the constant 1. (b) If all the values
are separated from zero, we can approximate the proportions by rational numbers,
and it is easy to guarantee that the approximation error do not affect the winning
property.]

How does the notion of computable random sequence relate to other definition
of randomness? The following theorem gives some answer to this question; the first
two statements are valid for every computable measure 𝜋, while the two following
ones are for the uniform measure. (They can be also stated for the case of Bernoulli
measure 𝐵𝑝 with computable probability 𝑝; the proof remains essentially the same.)

Theorem 182. (a) Every ML-random sequence is computably random.
(b) There exists a computably random sequence whose prefixes have logarithmic

complexity. (So the previous statement cannot be reversed.)
(c) Evey computably random sequence is Mises–Church random.
(d) Not every Mises–Church random sequence is computably random.

Proof. (a) We know from Theorem 181 that even lower semicomputable mar-
tingales (not only computable ones) cannot win on a ML-random sequence.

(b) We have already mentioned that for every martingale there exists a sequence
on which this martingale is bounded (we should go in the direction where the
martingale does not increase).

If a martingale is computable, one can find a computable sequence on which
this martingale is bounded. It is a bit more difficult: now we cannot find the
minimal value among 𝑚(𝑥0) and 𝑚(𝑥1) since we can compute these number only

292 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

with some precision. But this is in fact not needed: it is enough to choose an
extension where the martingale increases at most by 1/2𝑛 (and this can be done
easily if the approximation errors on step 𝑛 are small compared to 1/2𝑛).

(An immediate corollary: the largest computable martingale does not exist.
This is one of the main reasons to consider lower semicomputable martingales and
supermartingales.)

But we need to continue the proof of (b). The next step: consider two com-
putable martingale and find a computable sequence where both are bounded. It is
easy to achieve: take a weighted sum (e.g., the average) of these two martingales;
it is a computable martingale, so we know already that there exists a computable
sequence where the average martingale is bounded. Then both martingales are
bounded (with twice bigger bound; recall that martingales are non-negative func-
tions).

A similar argument can be used to deal with a computable sequence of com-
putable martingales (i.e., of programs for them). Then we may mix all the martin-
gales in a weighted sum with weight 2−𝑖 for 𝑖-th martingale.

The problem is that there is no computable sequence that would include all
computable martingales (otherwise there would be a computable sequence on which
all computable martingales are bounded, which is evidently not the case: it is
easy to win on a computable sequence). So to construct a sequence 𝜔 such that
no computable martingale wins on it, requres some non-algorithmic steps. The
additional information that allows us to perform this construction: for each program
we should be informed whether this program computes a martingale, so we require
one bit of information per program. To get a sequence with logarithmic complexity,
we should use this information in a very economic way, taking into account the
information about 𝑖-th program only after a long prefix of the sequence (say, of
length 2𝑖, or even more) is constructed.

Let us describe the construction in more details. At every step we have some
bit string 𝑥 (the bits already fixed), and some linear combination

𝑚1(𝑥) + 𝜀2𝑚2(𝑥) + . . . + 𝜀𝑘𝑚𝑘(𝑥)

with positive coefficients. Here 𝑚𝑖 is a martingale computed by 𝑖-th program (or
some replacement martingale, or just zero, if 𝑖-th program does not compute a
martingale according to the advice we got). We maintain the invariant relation:
this combination is strictly less than 2. (Initially 𝑥 = Λ, we have only one martingale
𝑚1 and the combination is equal to 1.)

As we already discussed, the string 𝑥 can always be extended by one bit in such
a way that the expression remains less than 1 (and this can be done effectively is
we know the programs for martingales). So we can extend 𝑥 while keeping 𝑘 (the
number of martingales involved) unchanged. On the other hand, we may (from
time to time) add new term 𝜀𝑘𝑚𝑘(𝑥) to this linear combination, choosing 𝜀𝑘 > 0
so small that the sum remains less than 2 (the closer the combination is to 2 and
the bigger is the value 𝑚𝑘(𝑥) for current 𝑥, the smaller 𝜀𝑘 should be).

In this way we get a sequence on which all 𝑚𝑖 are bounded, because each 𝑚𝑖

appears in the sum (bounded by 2) with a positive coefficient (though may be very
small one).

The decision complexity of this sequence is bounded by the number of used
advice bits, and can grow as slow as we want (if we add new martingales only

9.8. COMPUTABLE MARTINGALES 293

rarely). And the plain (or prefix) Kolmogorov complexity of the initial segments is
𝑂(log 𝑛), as we promised.

(c) Recall the the strong law of large numbers says that the set of unbalanced
sequences has measure zero, and the corresponding martingale (that wins on all
unbalanced sequences) can be chosen to be computable (see Section 9.6 where we
constructed martingales for each threshold and then mixed them; it can be done in
a computable way).

Moreover, if 𝑅 is a set and 𝑆𝑅 is the corresponding selection rule, we can
easily construct a martingale that wins on every sequence 𝜔 such that 𝑆𝑅(𝜔) is
not balance. Indeed, the martingale should ignore the terms that are not selected
by 𝑆𝑅 (keeping the capital unchanged) and use the martingale from the preceding
paragraph playing with the selected terms.

For computable 𝑅 we get a computable martingale, so for every sequence that
is not Mises–Church random we can find a computable martingale that wins on it
and thus proves that it is not computably random.

(d) Consider a Mises–Church random sequence where each prefix contains as
many zeros as ones (or more), Theorem 172). Let 𝑝𝑛 be the probability (with respect
to the uniform Bernoulli distribution) that all prefixes of length at most 𝑛 contain
at least as many zeros as ones. As we already discussed (Problems 261 and 262), the
probabilities 𝑝𝑛 form a computable decreasing sequence that converges to zero. For
each 𝑛 we can computably find a martingale 𝑀𝑛 that wins 1/𝑝𝑛 on every sequence
such that all prefixes up to length 𝑛 contain at least as many zeros as ones. It
remains to take a weighted sum of some 𝑀𝑛 (in such a way that 1/𝑝𝑛 increases
faster than the coefficients decrease) and get a computable martingale that is not
bounded on the sequence we started with. �

267 Give an explicit construction of a martingale used in the proof of (d).
[Hint: Assume that we come to a casino knowing in advance that every prefix of the
game sequence has at least as many heads as tails. Then we can make bets of fixed
size being sure that we never run out of money. If the difference between the number
of heads and tails tends to infinity, this is the winning strategy (martingale). If it is
not the case, there exists some moment 𝑡 and some number 𝑙 such that starting from
𝑡 the difference between heads and tails is at least 𝑙 and it is equal to 𝑙 infinitely
often (lim inf). Then after 𝑡 we can make a bet on tail when the difference is 𝑙 and
always win. So we get a martingale for the first case and a family of martingale
(with parameters 𝑡 and 𝑙) for the second case; it remains to combine them into one
martingale.]

Note that the statements (b) and (c) imply that there exists a Mises–Church
random sequence with logarithmic complexity of prefixes. In this way we get a new
proof of Theorem 173 (following [119]).

268 Prove the following stronger version of the statement (b) in the last the-
orem: Let 𝑓 is a total computable nondecreasing unbounded function with natural
arguments and values. There exists a computably random sequence 𝜔 such that
𝐶(𝜔0 . . . 𝜔𝑛−1 |𝑛) 6 𝑓(𝑛) + 𝑂(1) for all 𝑛. [Hint: adding a new martingale costs us
one bit of advice, it should be done only when the value of 𝑓 increases.]

Moreover, there exists a computably random sequence 𝜔 such that the state-
ment of the last problem is true for every total computable nondecreasing un-
bounded function 𝑓 . [119].

294 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

269 Show that for a computable measure 𝑃 on Ω×Ω and for every sequence
𝛼 that is computably random with respect to the first projection of 𝑃 , one can
defined the conditional probability along the second coordinate with condition “the
first coordinate equals 𝛼”, using a computable version of Doob’s theorem (p. 287).

Let us stress again that all the results about computable martingales can be
translated into the language of computable gambling strategies (algorithms that
look on the known bits and compute in which (rational) proportion the current
capital should be split between two bets. (Recall that the underlying measure 𝑃
that determines the rules of the game, is assumed to be computable, and strictly
positive for all intervals. When performing the rational approximations, we may
assume that martingale values are separated from zero, e.g., by taking average with
martingale that equals 1 everywhere.)

9.9. Martingales and Schnorr randomness

The notion of computable randomness is closely related to Schnorr randomness
(see Section 3.4). Both these notions were introduces in C. Schnorr’s book [165]
The following statement was also proved there:

Theorem 183. Let 𝜋 be a computable measure, and all intervals Ω𝑥 have pos-
itive 𝜋-measure. A sequence 𝜔 is not Schnorr random if and only if there exists
a computable 𝜋-martingale 𝑚 and computable total nondecreasing unbounded func-
tion 𝑔 : N → N such that

𝑚(𝜔0𝜔1 . . . 𝜔𝑛−1) > 𝑔(𝑛)

for infinitely many 𝑛.

So sequences that are not Schnorr random are not computably random, and,
moreover, there is a martingale that is not only unbounded, but unbounded in a
strong sense (exceeds infinitely often some computable nondecreasing unbounded
function).

Proof. Assume that 𝜔 is not Schnorr randoms. As we have seen in Section 3.4
(Probles 90, p. 84), there exists a sequence of strings 𝑥0, 𝑥1, 𝑥2 . . . such that the
series

∑︀
𝜋(𝑥𝑖) computably converges and infinitely many of 𝑥𝑖 are prefixes of 𝜔.

Let us split the series 𝜋(𝑥0)+𝜋(𝑥1)+𝜋(𝑥2)+ . . .+𝜋(𝑥𝑖)+ . . . into groups (each
contains finitely many consecutive terms) in such a way that the sum of 𝑘-th group
is at most 4−𝑘 (discard some initial segment of the series if necessary). Since the
series coverges computably, this splitting can be performed in a computable way.
We may also assume without loss of generality that the groups can be separated
by string lengths: there exists a computable sequence 𝑛0 < 𝑛1 < 𝑛2 < . . . , and
string in 𝑘-th group have length in the interval [𝑛𝑘, 𝑛𝑘+1). Indeed, every string 𝑥𝑖

can be replaced by a group of strings of some large length (the interval is split into
many interval of the same size), and we can do this for all 𝑥𝑖 sequentially using
longer and longer strings (this does not change the covering property and the sums
in groups).

Consider now separately the strings from 𝑘-th group. The corresponding inter-
vals have total measure less that 4−𝑘 and there exists a martingale 𝑚𝑘 that reaches
4𝑘 on all these strings. Now we mix all these martingales and get a combined mar-
tingale 𝑚 =

∑︀
2−𝑘𝑚𝑘. It reaches 2𝑘 at the strings of 𝑘-th group. It remains to

9.9. MARTINGALES AND SCHNORR RANDOMNESS 295

let 𝑔(𝑛) = 2𝑘 for all 𝑛 between 𝑛𝑘 and 𝑛𝑘+1 and note that infinitely many group
contain prefixes of 𝜔.

Now the reverse direction. Assume that a computable martingale 𝑚 and total
unbounded computable function 𝑔 are given. We need to cover a sequnce 𝜔 for
which we know only that 𝑚(𝜔0 . . . 𝜔𝑛−1) > 𝑔(𝑛) for infinitely many 𝑛. And the
measure of this cover should not exceed some given 𝜀 > 0 and be computable. How
do we do this?

First of all, we increase 𝑔 at some initial segment of N and assume that it is at
least 1/𝜀 + 1 everywhere (this does not matter when we speak about events that
happen infinitely often). Now we consider all the strings in the order of increasing
lengths and select those where 𝑚 exceeds 𝑔. (More precisely, since we know 𝑚 only
with some precision, we select strings in such a way that 𝑚 > 𝑔− 1 for all selected
strings and all string with 𝑚 > 𝑔 are selected.)

The assumption guarantees that the intervals that correspond to the selected
strings, cover 𝜔. Since for these string the martingale is at least 1/𝜀, the total
measure of intervals does not exceed 𝜀. Finally, the sum of measures is computable:
to find it with error at most 𝛿, we wait until 𝑔 becomes bigger than 1/𝛿 + 1; all the
subsequent (longer) intervals can change the sum of measures at most by 𝛿. �

Similar argument can be used to prove the following criterion of Schnorr ran-
domness in terms of prefix complexity [10]:

270 Prove that a sequence 𝜔 is Schnorr random with respect to a computable
measure 𝜇 if and only if for every computable total upper bound 𝑘 for prefix com-
plexity and for every nondecreasing unbounded computable function ℎ : N → N the
inequality

𝑘((𝜔)𝑛) > − log2 𝜇(Ω(𝜔)𝑛) − ℎ(𝑛) −𝑂(1)

holds for all 𝑛 (the constant in 𝑂(1) does not depend on 𝑛).
[Hint: for computable 𝑘 and ℎ the cover constructed in the proof of Schnorr–

Levin theorem has computable measure. The argument in the other direction is
similar to the proof of the preceding theorem: we split the cover into groups of
strings of the same length, where 𝑛-th group has total measure less than 4−𝑛,
increase the measure of strings in 𝑛-th group to get 2−𝑛 instead of 4𝑛, and use
Kraft–Chaitin lemma to get a computable bound for prefix complexity; ℎ can be
found since all strings in 𝑛-th group have the same length.]

This result can be used to show that there exists a Schnorr random sequence
(with respect to the uniform measure) that is not Mises–Church random [10]. In-
deed, it shows that if 𝐾((𝜔)𝑛) > 𝑛−ℎ(𝑛)−𝑂(1) for some nondecreasing unbounded
function ℎ that tends to infinity slower than every computable nondecreasing un-
bounded function, then 𝜔 is Schnorr random. Such functions ℎ exist (diagonal
construction), and it remains to select one of them and find a sequence that satis-
fies the inequality above but is not Mises–Church random.

How can we do this? Take a random sequence 𝛼 and insert zeros at some places;
these zeros will later form an unbalanced subsequence (so the sequence is not Mises–
Church random). What are the requirements for the places of zeros? They should
be (1) computable (or at least one can find them looking at the previous bits);
(2) very rare (so the complexity of prefixes does not decrease significantly). The
requirement (2) hints that the function 𝐹 : 𝑛 ↦→ (place of 𝑛th insertion) should grow
faster than any computable function, but how to combine this with (1)? The key

296 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

idea: Kučera–Gács theorem says that we can take arbitrary 𝐹 and then find a
sequence 𝛼 that computes 𝐹 . There is a subtle point: we are able to compute 𝐹
having access to the entire 𝛼, and only some prefix is available. But this is not a
problem: if the current prefix of 𝛼 is not enough to compute 𝐹 , we just wait (and
place zero after the value of 𝐹 is computed; if this place is farther than we planned,
the better). It remains to estimate prefix complexity; here we note that adding zero
at predictable places we do not change the prefix complexity of an initial segment.

271 Fill the missing detail in this argument and prove that there exist Schnorr
random sequences that are not Mises–Church random.

(These sequences will not be computable random, so we also know now that
Schnorr randomness is strictly weaker than computable randomness.)

It turns out that Kurtz randomness also can be characterized in terms of mar-
tingales.

272 Prove that a sequence 𝜔 is not Kurtz random (Section 3.4, p. 84) if and
only if there exists a computable martingale such that computable converges to
infinity on prefixes of 𝜔 (equivalent formulation: there is a computable monotone
lower bound that is not bounded).

[Hint: The sets of small measure that cover 𝜔 and are finite unions of intervals,
can be converted to martingales. We know how long should be the prefix of 𝜔 for
this martingale to work, and this can be used to find a computable lower bound for
the final martingale. On the other hand, knowing the martingale 𝑚 and a length 𝑙
where the martingale should exceed some 𝑐, we can consider all the strings of length
𝑙 where 𝑚 exceeds 𝑐, and get a finite cover of 𝜔 of measure at most 1/𝑐.]

This shows that Schnorr random sequences are Kurtz random (and the inclusion
is strict, since some Kurtz random sequence do not satisfy even the strong law of
large numbers, see Problem 92, p. 84).

9.10. Martingales and effective dimension

In the previous section we have seen how the notions of null, effectively null,
and Schnorr null set can be translated into the language of martingales. A similar
translation is possible for the notion of Hausdorff dimension. In one sentence this
translation can be described as follows: the smaller is the dimension of a set, the
faster martingales can grow on its elements. (In this section we consider martingales
with respect to the uniform measure.)

Let us start from a statement that relates classical Hausdorff dimension (no
algorithms) and martingales.

Theorem 184. A set 𝐴 ⊂ Ω is an 𝛼-null set if and only if there exists a
martingale 𝑚 such that for every 𝜔 ∈ 𝐴 the ratio

𝑚(𝑥)

2(1−𝛼)𝑙(𝑥)

is not bounded on prefixes of 𝜔.

(For 𝛼 = 1 we get Theorem 177.)
This result can be reformulated as follows: assume that the gambles is taxed:

after each game she pays a tax proportional to her capital, so the capital is multi-
plied by some constant factor 2𝛼−1 < 1. Then the capital 𝑚(𝑥) (as a function of a

9.10. MARTINGALES AND EFFECTIVE DIMENSION 297

history 𝑥 of the game) is no more a martingale, but satisfies the following condition:

2𝛼−1𝑚(𝑥) =
𝑚(𝑥0)

2
+

𝑚(𝑥1)

2
,

and this can be rewritten as

2𝛼𝑚(𝑥) = 𝑚(𝑥0) + 𝑚(𝑥1).

Functions that satisfy this condition are called (following [109]) 𝛼-gales. They also
can be equivalently defined in terms of measures: an 𝛼-gale is a function

𝑝(𝑥)2𝛼𝑙(𝑥),

where 𝑝(𝑥) = 𝜋(Ω𝑥) and 𝜋 is a measure on Ω (we do not require here that 𝜋(Ω) = 1
(or 𝑚(Λ) = 1). Similarly we can define 𝛼-supergales, where additional decrease in
capital is allowed after each game; the condition is

2𝛼𝑚(𝑥) > 𝑚(𝑥0) + 𝑚(𝑥1).

In this language the statement of Theorem 184 says that for every 𝛼-gale the set of
sequences for whose prefixes this 𝛼-gale is unbounded, is an 𝛼-null set; every 𝛼-null
set is contained in a set of this kind (for some 𝛼-gale).

Proof. The proof is just a slightly modified argument used to prove Theo-
rem 177. We use the language of 𝛼-gales (see above). Let 𝑚 be an arbitrary 𝛼-gale.
We need to show that the set of sequences where 𝑚 is unbounded, is an 𝛼-null set.
It is enough to show that strings 𝑥 where 𝑚 achieves 𝑘 (or more) for the first time,
have the sum of 𝛼-powers of measures at most 1/𝑘. Writing 𝑚(𝑥) as 𝑝(𝑥)2𝛼𝑙(𝑥), we
see that for these strings we have 𝑝(𝑥) > 𝑘2−𝛼𝑙(𝑥). All the strings are incompatible
(none of them is a prefix of any other), so the sum of 𝑝-measures is at most 1, so
the sum of 2−𝛼𝑙(𝑥) for all these 𝑥 (=the sum of 𝛼-sizes of corresponding intervals)
does not exceed 1/𝑘.

In the other direction: let 𝐴 be an 𝛼-null set. We need to construct an 𝛼-gale
that is unbounded on prefixes of 𝜔 for every 𝜔 ∈ 𝐴. For each 𝑘, consider a cover
of 𝐴 by intervals with sum of 𝛼-sizes at most 1/𝑘; we will construct an 𝛼-gale 𝑚𝑘

that reaches 𝑘 on these intervals. (Then we can add 𝑚4𝑘 with coefficients 2𝑘, since
the sum of 𝛼-gales is an 𝛼-gale.)

How do we construct 𝑚𝑘? For each 𝑥 we consider an 𝛼-gale that equals 1 on 𝑥
and equals 0 on all other strings of the same length; the values for shorter strings
are determined uniquely by the definition of 𝛼-gale, and for longer strings we choose
some extension. On the root (empty string) the value of this martingale is 2−𝛼𝑙(𝑥),
i.e., the 𝛼-size of 𝑥. So the sum of this martingales (over all 𝑥 in the cover) is at
most 1/𝑘 in the root, and multiplying it by 𝑘, we get 𝑚𝑘. �

Now we switch to the effective version of this theorem. Let 𝛼 ∈ (0, 1] be a
computable real. We can define the notions of lower semicomputable 𝛼-gale (or
𝛼-supergale) in a natural way. As in the case 𝛼 = 1, we do not require that
𝑚(Λ) = 1, only that 𝑚(Λ) 6 1. One may expect that lower semicomputable 𝛼-
gales (or supergales) correspond to effectively 𝛼-null sets and this can be proved by
an effective version of the argument above.

In one direction it is indeed the case:

298 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Theorem 185. Let 𝛼 ∈ (0, 1] be a computable real number and let 𝐴 ⊂ Ω be
an effectively 𝛼-null set. Then there exists a lower semicomputable 𝛼-gale that is
unbounded on prefixes of 𝜔 for every 𝜔 ∈ 𝐴.

Proof. Indeed, the construction above gives computable 𝑚𝑘 and their mix is
lower semicomputable. �

In the other direction the situation is more complicated. Let 𝑚 be a lower
semicomputable 𝛼-gale. For some integer 𝑘 we may consider the set of strings 𝑥
such that 𝑚(𝑥) > 𝑘. This is an enumerable set. Moreover, the sum of 𝛼-sizes of
its minimal elements in bounded by 1/𝑘. The problem is that the set of minimal
elements of an enumerable set is not guaranteed to be enumerable, and if we consider
all (not only minimal) elements, we do not have the bound for the sum of 𝛼-sizes
anymore. So we cannot use this argument to prove that the set of sequences where
a given lower semicomputable 𝛼-gale is unbounded, is an effectively 𝛼-null set.

In fact this is not true: lower semicomputable 𝛼-gales correspond to a weaker
notion of effectively 𝛼-null set where we bound not the sum of 𝛼-sizes of all intervals
in a cover but only the sum of 𝛼-sizes of subfamilies of disjoint intervals. (Equivalent
definition considers only maximal intervals that are not part of other intervals in
the cover.) But if we are interested only in effective dimensions, all these subtle
differences are easily compensated by an arbitrarily small change in 𝛼, and the
following statement is enough:

Theorem 186. Let 𝑚 be a lower semicomputable 𝛼-gale. The set of the se-
quences 𝜔 such that 𝑚 is not bounded on the prefixes of 𝜔, is an effectively 𝛽-null
set for every 𝛽 > 𝛼.

(We assume here that 𝛼 and 𝛽 are computable.)

Proof. Let 𝑘 be a positive integer. Consider strings 𝑥 such that 𝑚(𝑥) > 𝑘 and
the corresponding intervals. We get a cover of the set in question. What can be said
about the sum of 𝛽-sizes of the covering intervals? As we have seen, every subset
of disjoint intervals in this family has sum of 𝛼-sizes at most 1/𝑘. In particular, for
every length 𝑁 the sum of 𝛼-sizes for strings of length 𝑁 in the family is at most
1/𝑘, and the sum of 𝛽-sizes is at most (1/𝑘)2−𝑁(𝛽−𝛼). So taking the sum over all
lengths we multiply the bound 1/𝑘 by the sum of the geometric series, which is
finite. �

Two last results give the following corollary:

Theorem 187. For an arbitrary set 𝐴 ⊂ Ω its effective Hausdorff dimension is
equal to the infimum of the set of 𝛼 such that there exists a lower semicomputable
𝛼-gale that is unbounded on all elements of 𝐴.

The same is true for 𝛼-supergales instead of 𝛼-gales (with the same proof).

This result provides an alternative proof of Theorem 120. Indeed, 𝛼-supergales
are semimeasures multiplied by 2𝛼𝑙(𝑥). So there exists a maximal lower semicom-
putable 𝛼-gale that corresponds to maximal lower semicomputable semimeasure
(=continuous a priori probability). In the last result we can therefore consider only
this 𝛼-supergale, and the effective dimension of {𝜔} is equal to the infimum of 𝛼
such that 𝑎(𝜔0𝜔1 . . . 𝜔𝑛−1)2𝛼𝑛 is an unbounded function of 𝑛. The logarithm of

9.11. PARTIAL SELECTION RULES 299

this expression is 𝛼𝑛−KA (𝜔0𝜔1 . . . 𝜔𝑛−1), so the infimum of those 𝛼 is

lim inf
KA (𝜔0 . . . 𝜔𝑛−1)

𝑛
.

(In Theorem 120 we used plain complexity instead of a priori complexity, but the
difference is 𝑂(log 𝑛) while we have 𝑛 in the denominator.)

9.11. Partial selection rules

Returning to the selection rules, note that we required the selection rule to be
total (the selection always says in finite time whether to select the next term or
not, for all possible sequences). But this condition can be relaxed. Of course, if
the rule is undefined on some prefix of the given sequence, then it does not select a
subsequence. But the rule may hang in some other situations (that do not happen
for our sequence).

Let us define this broader class of rules formally. Let 𝑟 be a computable par-
tial function that maps (some) bit strings to {0, 1}. To decide whether the term
𝜔𝑛 should be selected (while applying the rule to some sequence 𝜔) we compute
𝑟(𝜔0 . . . 𝜔𝑛−1). The value 1 means that we select 𝜔𝑛, the value 0 means that we do
not select 𝜔𝑛; if the value is undefined, selection process hangs and we get a finite
sequence. This selection rule is denoted by 𝑆𝑟. (It is equivalent to the rule 𝑆𝑅

where 𝑅 is the set of all 𝑥 such that 𝑟 is defined on all prefixes of 𝑥 and 𝑟(𝑥) = 1.
Note that this 𝑅 is not always decidable for computable partial functions 𝑓 .)

This class of selection rules was considered by R. Daley [46]; we call them
Church–Daley admissible selection rules. The sequence is called Mises–Church–
Daley random if every Church–Daley admissible rules selects a balanced (or finite)
sequence.1

273 Prove that a Church–Daley admissible selection rule applied to a Mises–
Church–Daley random sequence gives a Mises–Church–Daley random sequence.

This extension of the class of selection rules makes the class of random sequence
smaller, as it follows from Theorem 173 (p. 282) and the following result proven by
W. Merkle [119]:

Theorem 188. There is no Mises–Church–Daley random sequence 𝜔 such that

𝐶(𝜔0 . . . 𝜔𝑛−1) = 𝑂(log 𝑛).

Proof. Assume that

𝐶(𝜔0 . . . 𝜔𝑛−1) < 𝑐 log 𝑛

for some 𝑐 and for some large enough 𝑛. We want to show that 𝜔 is not Mises–
Church–Daley random, i.e., construct a rule that selects an unbalanced sequence.

Let us first consider the case when 𝑐 < 1. The set of all strings of complexity
less than 𝑐 log 𝑛 is an enumerable set of at most 𝑛𝑐 elements, and for large 𝑛 the
number or elements in this set (we denote it by 𝐶𝑛) is bounded, say, by 𝑛/10. Fix
some of those large values of 𝑛.

1W. Merkle called them “Mises–Wald–Church stochastic sequence” in [119], though the
historical reasons for this name are unclear: Church never considered partial computable rules,
while Mises and Daley did not consider computability at all, so the difference between partial and

total rules was not essential for them.

300 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Reading the 𝑛-bit prefix from left to right, we try to the predict the next bit
(after reading all the previous ones). Let us show that we can guarantee at least
90% of success. Enumerating 𝐶𝑛, we find a first element in this enumeration, call
it the “current candidate” and predict the bits that are there until our prediction
turns out to be incorrect. As soon as this happens, we continue the enumeration of
𝐶𝑛 until we find a new element that is consistent with all already discovered bits.
Then it becomes the current candidate and is used for predictions until one of the
predictions turns out to be incorrect, etc. Since we know that the actual prefix is
in 𝐶𝑛, we will never run out of candidates, and the number of changes (=number
of errors) is bounded by the cardinality of 𝐶𝑛, i.e., by 𝑛/10. So at least 90% of
predictions are correct.

This can be done for every large enough 𝑛. To deal with an infinite sequence,
we consider a fast growing computable sequence 𝑛0 < 𝑛1 < 𝑛2 . . . where 𝑛0 is
large enough (so our prediction method works for all 𝑛𝑖). Using 𝐶𝑛𝑖 for predictions
between 𝑛𝑖−1 and 𝑛𝑖, we make at most 0.1𝑛𝑖 errors, and in total we get at most
0.2𝑛 errors (even if all previous predictions are false, which is not the case, but
we do not need a better estimate). So our prediction method will be successful
infinitely often.

It remains to note (as it was done in Theorem 169) that the prediction algorithm
corresponds to two selection rules: one select terms when we predict ones, and the
other select terms when we predict zeros. If predictions are successful, at least one
of these selection rules will select a highly unbalanced sequence. This ends the
proof for 𝑐 < 1.

This trick does not work for 𝑐 > 1. For example, if 𝑐 = 1.5 we have 𝑛1.5 can-
didates and all our predictions could be false (leading to the change in the current
candidate without any contradiction). But we can use a more clever argument.

Let us split the string 𝜔0 . . . 𝜔𝑛−1 in two halves and get a pair ⟨𝑢, 𝑣⟩ where 𝑢
and 𝑣 are (𝑛/2)-bit strings. The complexity of this pair is at most 1.5 log 𝑛 (we
still consider our example with 𝑐 = 1.5). On the other hand, the complexity of
the pair is equal to 𝐶(𝑢) + 𝐶(𝑣 |𝑢) up to 𝑂(log 𝑛), so either 𝐶(𝑢) < 0.8 log 𝑛 or
𝐶(𝑣 |𝑢) < 0.8 log 𝑛. In both cases we can apply the trick used for 𝑐 < 1, since
𝑛0.8 is much less that 𝑛/2. Note also that while predicting the bits in the second
half we already know the bits in the first half, so the condition 𝑢 in the inequality
𝐶(𝑣 |𝑢) < 0.8 log 𝑛 is not an obstacle.

So at least one of the two prediction algorithms is successful (on its half). Then
one of the two selection rules corresponding to this algorithm will select a highly
unbalanced sequence. (The selection rule does not select any terms from the other
half.)

There is a problem, however: all this can be done for every 𝑛, but how to
combine the selection rules for different 𝑛? Imagine, for example, that we tried to
predict bits in the left half assuming that 𝐶(𝑢) < 0.8𝑛 while in fact it is not the
case. Then our algorithm can make many errors (this is not a big problem) and
even can hang (and this is the problem, because then it cannot be used as a step
in a prediction algorithm for infinite sequence).

To get around this problem, we should recall the proof for the formula for
complexity of pairs (Theorem 21, p. 51) and use it as a part of our construction.
Let us explain what does it mean.

9.11. PARTIAL SELECTION RULES 301

As before, we make predictions for the left and the right halves (𝑢 and 𝑣) of
𝑛-bit prefix separately. When we read the right half 𝑣 bit by bit, we enumerate
the set 𝐶𝑛 of possible candidates for 𝑛-bit prefix (=strings of complexity less than
1.5𝑛), waiting until a canditate appears that is consistent with 𝑢 and already known
bits of 𝑣. When such a candidate is found, we use it for predictions until one of the
predictions turns out to be false. Then we look for the next candidate, etc.

Will this prediction algorithm be successful? It depends on 𝑢. More specifically,
it depends on the number of different 𝑣 such that 𝑢𝑣 ∈ 𝐶𝑛. If there are many of
them, we can make error and change the candidate at each step. But at least our
prediction algorithm will not hang as far as 𝑢𝑣 is indeed in 𝐶𝑛.

Now about the left half. Here we use as candidates the values of 𝑢 such that
there is at least 𝑛0.8 different 𝑣 with 𝑢𝑣 ∈ 𝐶𝑛. The prediction in the left half is
guaranteed to be successful if 𝑢 is among the candidates (and this will happen for
sure if the predictions in the right half are not successful). But if not, this prediction
algorithm may hang (at some moment we could wait forever for a candidate which
is consistent with known bits).

What happens when combining these algorithms for different prefixes? First
we consider the joint algorithm based on the predictions of right halves for each 𝑛𝑖.
There algorithms never hang (we assume that 𝑛0 is large enough, so all prefixes of
length 𝑛𝑖 have complexity less than 1.5𝑛𝑖). If for infinitely many 𝑖 the prediction
is successful, then we are done (the fraction of successful prediction does not con-
verge to 1/2). So it is enough to consider the case when the right-half prediction
works only for finitely many 𝑖. Then for all sufficiently large 𝑖 the left-half predic-
tion works, and the finite number of bad prediction algorithms can be replace by
something safe (that never hangs).

So we see that in both cases 𝜔 is not Mises–Church–Daley random.
This prove the theorem for 𝑐 = 1.5 (and the same trick works for every 𝑐 < 2).

But what should be do for bigger values of 𝑐? One can split the sequence not in two
halfs, but in 𝑘 pieces of equal size for some 𝑘 > 2. (One should take 𝑘 greater than
𝑐.) and repeat the same argument. The prediction algorithm for the rightmost
piece never hangs, so we can combine these algorithm into a prediction algorithm
for the entire sequence. If it is successful for infinitely many prefixes, we are done.
If not, it fails starting from some moment, and then the prediction algorithm for
the second (from the right) piece is total (but not necessarily successful). If it is
successful infinitely often, we are again done. If not, we should consider the third
piece, etc.

(More formal exposition with all details can be found in [119].) �

So we know the Mises–Church–Daley random sequence cannot have 𝑂(log 𝑛)-
complexity of prefixes. However, it can only slightly exceed this bound (e.g.,
𝑂(log 𝑛 log log 𝑛) complexity is possible), as shown in [119]:

Theorem 189. Let 𝑓 : N → N be a total nondecreasing unbounded computable
function. Then there exists a Mises–Church–Daley random sequence whose 𝑛-bit
prefix has complexity at most 𝑓(𝑛) log 𝑛 + 𝑂(1) for all 𝑛.

Proof. Recall how we constructed Mises–Church random sequences in Theo-
rem 173. The advice information there was very small, only one bit per algorithm
(that may or may not compute a selection rule) — we needed to know whether it
does compute a selection rule. Now this is not enough, because the selection rules

302 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

are partial. Now we can enumerate all selection rules, but for each selection rule
we need to know when it becomes undefined for the first time (so it can be replaced
by something harmless starting from this moment). So, if we use 𝑓(𝑛) programs
to construct the first 𝑛 bits, the total size of the advice needed is 𝑓(𝑛) log 𝑛 bits
(for each of 𝑓(𝑛) programs we need log 𝑛 bits to specify the first place where it is
undefined — we may agree that this place is 𝑛 + 1 if it is defined for all currently
known prefixes).2

Note that we use 𝑛 in the condition, but the 𝑂(log 𝑛) change does not matter
since this corresponds to 𝑂(1)-change in 𝑓 . �

A similar extension (allowing partial functions) can be done for martingales.
Recall that we may define computably random sequences using total computable
functions with rational values as martingales. Now we can consider also partial
computable functions requiring the equation (defining martingales) to be true if
all three quantities 𝑚(𝑥), 𝑚(𝑥0) and 𝑚(𝑥1) are defined.3 We call these functions
partial martingales. A partial martingale wins on a sequence 𝜔 if it is defined for
all prefixes of 𝜔 and is unbounded. A sequence is partial-computably random if no
computable partial martingale wins on it. Now, following [119], we may generalize
Theorem 189:

Theorem 190. (a) Every partial-computably random sequence is also Mises–
Church–Daley random.

(b) Let 𝑓 : N → N be a nondecreasing unbounded computable function. Then
there exists a partial-computably random sequence 𝜔 such that 𝑛-bit prefix of 𝜔 has
complexity at most 𝑓(𝑛) log 𝑛 + 𝑂(1).

(These two statements together imply the statement of Theorem 189.)

Proof. (a) We use that same construction to convert a selection rule into a
martingale as in Theorem 182, (c). If the rule is partial, we get a partial mar-
tingale. But if the rule selects an infinite subsequence from some sequence 𝜔, the
corresponding martingale is defined on all prefixes of 𝜔.

(b) Here again we may follow the argument used to prove Theorem 182, (b).
For each martingale that is added to the construction we need to know at which
moment it becomes undefined (so we can replace it by something harmless, e.g.,
by its last value). This information requires at most log 𝑛 for each martingale used
to construct the first 𝑛 bits of the sequence, and if at this moment we use at most
𝑓(𝑛) martingales, we get the required bound. �

9.12. Non-monotonic selection rules

Up to now we considered selection rules that keep the ordering of terms in
the input sequence (read it from left to right). However, this restriction can be
relaxed in a natural way. Such a relaxation was suggest by Kolmogorov in [76] and
independently by D. Loveland in [105, 106].

2One may ask also why we need to know exactly the moment when the algorithm becomes
undefined for the first time, not just one bit saying whether this happened or not. This is because

the constructions for different 𝑛 should give prefixes of the same infinite sequence.
3From the gambling point of view it is natural to require that 𝑚(𝑥0) and 𝑚(𝑥1) are both

defined or both undefined: one cannot toss the coin before both bets are made. However, it is not
important: if 𝑚(𝑥) and 𝑚(𝑥0) are defined, we can compute 𝑚(𝑥1) knowing that 𝑚 is a martingale,

and vice versa.

9.12. NON-MONOTONIC SELECTION RULES 303

Let us explain informally how it is done. Imagine that casino outsources the
coin tossing to some producer of random bits who writes these bits on paper cards
and put the cards on a table face down. The gambler may then ask to reveal some
bit, then the corresponding card is turned over. Also the gambler may select some
bit that is not revealed yet; then the corresponding card is also turned over, and
the bit written on it is added to the subsequence.

More formally this class of selection rules can be described as follows. The
cards (and corresponding bits) are indexed by natural numbers. The selection
rule is determined by a pair of functions 𝐹 and 𝐺. The function 𝐹 maps binary
strings to natural numbers and says which bit should be revealed at the next step
(depending on the bits already revealed). We assume that the values of 𝐹 on every
two compatible bit strings (one is a prefix of the other) are different. This guarantees
that the same bit is never asked to be revealed again. The second function, 𝐺, is
also defined on binary strings and has values in {0, 1}. The value 1 means that the
bit chosen by 𝐹 is selected (and becomes the next bit of the output subsequence);
the value 0 means that it is observed but not selected.

According to this decription, for every two partial functions 𝐹 (that satisfies
the condition above) and 𝐺 we define the selection rule 𝑆𝐹,𝐺 : Ω → Σ as follows.
First we consider (finite or infinite) sequence of integers 𝑛0, 𝑛1, . . . where

𝑛0 = 𝐹 (Λ), 𝑛1 = 𝐹 (𝜔𝑛0
), 𝑛2 = 𝐹 (𝜔𝑛0

𝜔𝑛1
), . . .

(the construction stops when the next value of 𝐹 is undefined). The condition for
𝐹 guarantees that all 𝑛𝑖 are different.

Then we select the terms 𝜔𝑛𝑖 for which the value of 𝐺 on 𝜔𝑛0𝜔𝑛1 . . . 𝜔𝑛𝑖−1 is
defined and equal to 1, and, moreover, the values of 𝐺 on all prefixes of this string
are defined. The corresponding 𝜔𝑛𝑖

(in the order of increasing 𝑖) form the output
subsequence 𝑆𝐹,𝐺(𝜔). (We call it “subsequence” though usually subsequences are
defined as monotonic subsequences, keeping the ordering of the initial sequence.)

The selection rules 𝑆𝐹,𝐺 that correspond to computable partial functions 𝐹 and
𝐺 are called Kolmogorov–Loveland admissible selection rules. A sequence 𝜔 ∈ Ω is
called Mises–Kolmogorov–Loveland random, or Kolmogorov–Loveland stochastic, if
every Kolmogorov–Loveland admissible rule selects a balanced (or finite) sequence.

We consider mainly the case of the uniform measure, but similar definition can
be given for Bernoulli measure 𝐵𝑝 (independent trials with success probability 𝑝).

The following simple (though unexpected) observation was made by W. Merkle
in [118]:

Theorem 191. Restricting the class of selection rules and requiring 𝐹 and 𝐺
to be total, we get the same class of Mises–Kolmogorov–Loveland random sequences.

Proof. Assume that some selection rule 𝑆𝐹,𝐺, applied to some sequence 𝜔,
selects an infinite unbalanced subsequence. Let us split the selected subsequence
into two: 𝜔𝑛𝑖

is included in the first subsequence if 𝑛𝑖 is even, and in the second
subsequence otherwise. At least one of these two subsequences is infinite and unbal-
anced. So we can assume without loss of generality that the selection rule produces
an infinite unbalanced sequnce that consists only of terms with even numbers (or
only of terms with odd numbers — this case is similar). Knowing the we select only
bits with even numbers, we can read other bits at any time, this will not interfere
with the selection since these bits will be never selected. So if the partial com-
putable rule starts a long computation, we may in parallel read the bits with odd

304 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

numbers (they may be requested later by the original rule or not; if the original rule
requests them, we have them already at hand and do not read them again). This
new selection rule is defined by total functions 𝐹 ′ and 𝐺′ (if the original algorithm
hangs at some point, then the new one reads the terms with odd numbers one after
another, and never selects anything). �

This proof reduces one partial selection rule to two total ones.
How is the new definition of randomness related to the previously given? A

partial answer is provided by the following theorem:

Theorem 192. (a) Every Mises–Kolmogorov–Loveland random sequence is
Mises–Church–Daley random (and, therefore, Mises–Church random).

(b) Every Martin-Löf random sequence is Mises–Kolmogorov–Loveland ran-
dom.

More precisely, (a) holds for every real 𝑝 ∈ (0, 1); in (b) we assume that the
measure is uniform or 𝐵𝑝 for some computable 𝑝 (and both notions of randomness
are understood accordingly).

Proof. (a) Church–Daley admissible selection rules (including Church admis-
sible rules) are special case of Kolmogorov–Loveland admissible rules.

(b) Here we use essentially the same argument as for Mises–Church random-
ness. Assume that some computable 𝑝 is fixed in the definition of Mises–Kolmogo-
rov–Loveland randomness, and we require that every selected subsequence should
be finite or have limit frequency 𝑝. For Martin-Löf randomness we consider com-
putable Bernoulli measure 𝐵𝑝 that corresponds to independent trials with success
probability 𝑝.

Fix some computable (partial) functions that consider the corresponding selec-
tion rule 𝑆𝐹,𝐺. For every integer 𝑛 and for every rational 𝑞 consider the set 𝐷𝑛,𝑞

of all 𝑛-bit strings where the frequency of ones exceed 𝑞. We know that for the
fixed 𝑞 > 𝑝 and for 𝑛 → ∞ the 𝐵𝑝-measure of the set 𝐷𝑛,𝑞 (more precisely, the
𝐵𝑝-measure of the set 𝐷𝑛,𝑞 of all sequences that have a prefix in 𝐷𝑛,𝑞) decreases
exponentially.

Now consider the preimage of this set with respect to 𝑆𝐹,𝐺; more precisely, con-
sider the set of all sequences 𝜔 for which the selection rule produces a subsequence
of length at least 𝑛 and the frequency of ones among the first 𝑛 terms exceeds 𝑞. It
is easy to see that B 𝑝-measure of this set is bounded by 𝐵𝑝(𝐷𝑛,𝑞).

Informally speaking, this happens because the output distribition of the selec-
tion rule applied to 𝐵𝑝-distributed sequence has the same distribution 𝐵𝑝, if we
ignore that some sequences are cut at some point (output sequence can be finite),
and cutting may only decrease the probability. More precisely, let 𝑡 be a binary
string of length 𝑘 − 1. Consider the conditional probability of the event 𝐸 = 𝑘-th
bit of the selected sequence is 1 with the condition 𝐶 = selected sequence has length
at least 𝑘 and preceding bits are 𝑡. This probability is equal to 𝑝. Indeed, there are
many cases when bits equal to 𝑡 are selected and the next bit to be selected is chosen
(depending of the values of the revealed but not selected bits), so the condition 𝐶
can be split into a union of disjoint subsets 𝐶𝑖, and for each of them the conditional
probability Pr[𝐸|𝐶𝑖] equals 𝑝: the event 𝐶𝑖 determines the position 𝑝 of the bit
that will become the 𝑘-th bit in the selected sequence, and 𝐶𝑖 is determined by the
values of the other bits (not in position 𝑝). Then we (by induction) concude that

9.12. NON-MONOTONIC SELECTION RULES 305

the probability that the first 𝑛 selected bits form a given string 𝑢 is bounded by the
probabilty to get 𝑢 according to 𝐵𝑝, and sum these inequalities over all 𝑢 ∈ 𝐷𝑛,𝑞.

It remains to note that the set of sequences 𝜔 such that 𝑆𝐹,𝐺(𝜔) has a prefix in
𝐷𝑛,𝑞 not only has small measure, but also is effectively open (since we can enumerate
different scenarios when such a prefix could appear). So for each 𝑞 we get (as in
the proof of effective version of the strong law of large numbers) an effectively null
set. (Similar sets should be considered for all rational 𝑞 < 𝑝.) So a ML-random
sequence does not belong to these sets, and this finishes the proof. �

In the next section we prove the following generalization of the statement (b):
if a computable sequence 𝑝𝑛 of real numbers in (0, 1) computably converges to
some 𝑝 ∈ (0, 1), then every sequence that is Martin-Löf random with respect to
the product measure (independent trials with success probability 𝑝𝑖 in 𝑖-th trial)
is Mises–Kolmogorov–Loveland random with parameter 𝑝. This statement is an
important tool (suggested by M. van Lambalgen) to construct examples of Mises–
Kolmogorov–Loveland random sequences with pathological properties (not Martin-
Löf random, having more zeros that ones in all prefixes, and others).

Now we take another direction and show (for the case of uniform measure)
that every Mises–Kolmogorov–Loveland sequence has almost maximal complexity
of prefixes. (Recall that it is not the case for Mises–Church and Mises–Church–
Daley random sequences.)

Theorem 193. Let 𝜔 be a binary sequence such that 𝐶(𝜔0 . . . 𝜔𝑛−1) < 𝛼𝑛 for
some 𝛼 < 1 and for all sufficiently large 𝑛. Then 𝜔 is not Mises–Kolmogorov–
Loveland random.

This result (proven by An. Muchnik in the end to 1980s) was later strengthened:
it turned out that if the inequality is true for infinitely many 𝑛, the sequence is
not Mises–Kolmogorov–Loveland random. But we prove only the original weaker
statement.

For this proof we need some auxiliary statement about the price of “insider
information” in the game with fixed size bets. Let us state and prove this statement
first, and then come back to the proof of Theorem 193.

Assume that we come to a casino when a sequence of random bits is generated
by coin tossings, and before each of them we can make a bet 𝑢 ∈ [−1, 1], where
positive (resp. negative) 𝑢 mean that we bet on 1 (resp. on 0). After the coin is
tossed, we get 𝑢 dollars if the bit is 1 and −𝑢 dollars if the bit is 0.

Note that (unlike for martingale games) our maximal bet is always 1 and does
not depend on how much we have won (or lost) in the previous games. So our
potential loss is not bounded (in the martingale games the loss was bounded by the
initial capital). To avoid confusion, let us stress also that we play with the bits in
the same order as they appear (we do not consider the non-monotonic rules yet).

Lemma. Assume that we know in advance some set 𝐴 of 𝑛-bit strings that
contains at most 2𝑠 elements for some 𝑠 < 𝑛. Then there exixts a strategy in the
described game that guarantees that we win at least 𝑛 − 𝑠 on every element of 𝐴
(for every series of 𝑛 games when the sequence of outcomes belongs to 𝐴).

For example, if 𝐴 contains only one string (in the other words, we know in
advance all the outcomes for all 𝑛 games), the lemma says that we can win 𝑛
dollars (not a surprise: we win one dollar in each game). For comparison: in the
martingale setting we could make 2𝑛 dollars out of $1. If we know results of some 𝑘

306 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

games, the lemma guarantees that we can win 𝑘 dollars (and this is again trivial).
A bit more complicated example: assume that we know that the number of ones is
even; in this case 𝑠 = 𝑛− 1. Lemma says that we can win one dollar. (Indeed, we
can make zero bets till the last game, and then put $1 on the right outcome which
is known at that moment.)

Proof. After this examples let us give a general proof. At each moment we
know some prefix 𝑤 of the sequence; let 𝑗 be its length. There are 2𝑛−𝑗 possible
extensions of 𝑗 (up to a 𝑛-bit string), but only some of them are in 𝐴. Let us
consider their fraction (the conditional probability of 𝐴 after 𝑤); minus logarithm
of this fraction is called the information capital of the player.

Initially this capital equals 𝑛− 𝑠. We will show that we can make bets in such
a way that the sum of the information and (real) capitals never decreases. Then at
the end of the game, when the sequence is in 𝐴 and the information capital is 0,
the (real) capital is at least 𝑛− 𝑠, as required by the lemma.

Why can we make a bet that guarantees the non-decrease? Assume that the
information capital is now (− log 𝑝) for some 𝑝 (the current fraction of 𝐴-elements
among the extensions). Knowing 𝐴, we can compute this capital; we know also
how it will change after the next game: if 0 appears, it becomes equal to (− log 𝑝0),
and if 1 appears, it becomes equal to (− log 𝑝1), where 𝑝0 and 𝑝1 are fractions of 𝐴
among the extenstions of 𝑤0 and 𝑤1. Evidently 𝑝 = (𝑝0 + 𝑝1)/2. We need to find
a bet 𝑑 such that in both cases the sum of information and real capitals does not
decrease:

− log 𝑝0 − 𝑑 > − log 𝑝,

− log 𝑝1 + 𝑑 > − log 𝑝,

or (finding the corresponding bounds for 𝑑)

− log 𝑝0 + log 𝑝 > 𝑑 > − log 𝑝 + log 𝑝1,

− log(𝑝0/𝑝) > 𝑑 > log(𝑝1/𝑝).

Such a 𝑑 exists if and only if 𝑝/𝑝0 > 𝑝1/𝑝. This can be rewritten as 𝑝2 > 𝑝0𝑝1
and follows from the inequality between arithmetic and geometric means. Note
also that 𝑝0 and 𝑝1 do not exceed 2𝑝, so the bounds for 𝑑 (and 𝑑 itself) are in the
interval [−1, 1]. Lemma is proven.

One can explain the relation of this lemma and martingale (and an alternative
proof of the lemma) as follows. The martingale makes some decision about the
proportion between two opposing bets, and this decision determines a multiplication
factor for the capital in a given round. The possible choices are parametrized by a
point in a closed interval. The factors for different rounds are multiplied, so their
logarithms are added. The choices for the different values of the parameter can be
shown in logarithmic scale, then we get a curve (instead of a line segment, if we
use a normal scale). It is easy to see that this curve is below the tangent line, so
the game will be better for us if we replace the curve by the line. And this line
corresponds exactly to the game with bounded bets considered in the lemma.

Now it is easy to prove the following statement (where both the condition and
the claim are stronger than in Theorem 193):

Theorem 194. Let 𝑘 be an arbitrary computable upper bound for the function
𝐶, and 𝜔 be a sequence such that

𝑘(𝜔0 . . . 𝜔𝑛−1) 6 𝛼𝑛

9.12. NON-MONOTONIC SELECTION RULES 307

1 2

1

2
1

1

−1
−1

Figure 1. Possible choices of a gambler presented in usual (left)
and logarithmic (right) scale. A dashed line represents possible
choices for the game with bounded bets considered in the lemma.

for some 𝛼 < 1 and for all sufficiently large 𝑛. Then 𝜔 is not Mises–Church
random.

Proof. For every 𝑛 we can compute the list 𝐴𝑛 for all 𝑛-bit string 𝑥 such that
𝑘(𝑥) < 𝛼𝑛. This list contains at most 2𝛼𝑛+𝑂(1) strings, and for al sufficiently large
𝑛 the 𝑛-bit prefix of 𝜔 is among them.

For these 𝑛 the strategy constructed using our lemma (for the set 𝐴𝑛) wins
at least (1 − 𝛼)𝑛 − 𝑂(1) dollars playing with the first 𝑛 bits of 𝜔. Consider a
computable fast growing sequence of 𝑛𝑖 (we assume that 𝑛𝑖−1/𝑛𝑖 → 0) and combine
the strategies for all 𝐴𝑛𝑖

into one. In fact, the strategy for 𝐴𝑛𝑖
will be used only

after 𝑛𝑖−1 (where the preceding one stops), but this is a negligible fraction of 𝑛𝑖.
So the combined strategy is successful: its gain on first 𝑛 bits exceeds 𝜀𝑛 for some
fixed 𝜀 and for infinitely many 𝑛. (Take 𝜀 < 1 − 𝛼 and 𝑛 = 𝑛𝑖 for large 𝑖.)

This is not possible for a Mises–Church random sequence (see Theorem 170 on
p. 278). �

Now we are prepared to prove Theorem 193.

Proof. Following the same scheme, we consider the set 𝐴𝑛 of all 𝑛-bit strings
that have complexity at most 𝛼𝑛; it contains about 2𝛼𝑛 strings, including the prefix
of 𝜔. However, now we cannot compute the list of all elements of 𝐴𝑛, we only can
enumerate it and never know whether all the elements appeared or not. So we
cannot use 𝐴𝑛 in the lemma. To overcome this problem, we use non-monotonic
selection rules.

Again, we need to select a fast growing sequence 𝑛𝑖, for example, 𝑛𝑖 = 𝑖!, and
cut the sequence into pieces of size 𝑛𝑖−𝑛𝑖−1. Increasing 𝛼, we may assume that the
complexity of 𝑖-th piece is at most 𝛼 times its length, so the complexity per letter
is at most 𝛼. Let 𝐴𝑖 be the set of all strings of length 𝑛𝑖 − 𝑛𝑖−1 where complexity
per letter is at most 𝛼. We know that 𝑖-th piece of 𝜔 (we denote it by 𝜔𝑖 in the
sequel) is in 𝐴𝑖 and we can enumerate 𝐴𝑖 given 𝑖. (The problem is that we cannot
compute 𝐴𝑖 as a list of strings.)

Let 𝑡𝑖 be the number of steps of the enumeration of 𝐴𝑖 that are needed for
𝑡𝑖 to appear. Let us group the values of 𝑖 into pairs and compare the values 𝑡2𝑚
and 𝑡2𝑚+1. Trivially, either 𝑡2𝑚 6 𝑡2𝑚+1 or 𝑡2𝑚+1 6 𝑡2𝑚 (or both). How does
this helps? We can now construct two strategies: one reads 𝜔2𝑚 not making any
bets, then waits until 𝜔2𝑚 appears in 𝐴2𝑚, thus finding 𝑡2𝑚, and then makes the
same number of steps enumerating 𝐴2𝑚+1 and uses the discovered part of 𝐴2𝑚+1 to
construct a gambling strategy (in the hope that 𝜔2𝑚+1 is already discovered). This
works only if 𝑡2𝑚 > 𝑡2𝑚+1, otherwise we may lose all bets. But then the symmetric

308 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

strategy that reads 𝜔2𝑚+1, waits until it appears in 𝐴2𝑚+1 and then makes the
same number of steps enumerating 𝐴2𝑚, will win.

So for every sufficiently large 𝑚 we have a pair of strategies (that make bets
in [−1, 1]) and we know that at least one of them is successful (wins at least 1 −
𝛼 per bet). Omitting small 𝑚, we can combine them into two strategies in the
infinite game. One of them is monotone, and we may (as we did in Theorem 170)
approximate it by an average of finitely many selection rules. The number of the
selection rules depend on the required precision; we need the error to be small
compared to 1 − 𝛼, and this can be achieved by a fixed (=not depending on 𝑚)
number of Church admissible selection rules. We denote this number by 𝑁 . The
other strategy is not monotonic, and we get 𝑁 Kolmogorov–Loveland admissible
selection rules. In total we get 2𝑁 selection rules.

Recall that 𝑛𝑖−1/𝑛𝑖 is small, we note that the frequency deviation for some 𝑚
can not be compensated by any behavior for previous 𝑚. So for each 𝑚 at least
one of 2𝑁 selection rules leads to a significant deviation. Therefore, there exist
one rule that leads to a significant deviation for infinitely many 𝑚, and 𝜔 is not
Mises–Kolmogorov–Loveland random.

Theorem 193 is proven. �

Together with Theorem 189) we get the following corollary:

Theorem 195. There exists Mises–Church–Daley random sequences that are
not Mises–Kolmogorov–Loveland random.

There is a natural question related to Theorem 193: is there some finite coun-
terpart for this result? Assume that we know that complexity of some (finite)
string 𝑥 is small. Is there a non-monotonic selection rule of small complexity that
selects from 𝑥 some unbalanced sequence? Of course, the exact statement of this
type should include several parameters: the length 𝑛 of the strings, its random-
ness deficiency 𝑑, the complexity of the selection rule (with 𝑛 as a condition) and
the required disbalance in the selected subsequence. In [53] the following result
in this direction is proven: there exists a selection rule of complexity 𝑂(log(𝑛/𝑑))
(with 𝑛 as a condition) that selects a subsequnce where the number of ones and
zeros differ at least by Ω(𝑛/ log(𝑛/𝑑)). In particular, if the randomness deficiency
is proportional to 𝑛 (as in Theorem 193), then the complexity of the selection rule
is bounded, and the disbalance is proportional to the length.

9.13. Change in the measure and randomness

In this section we describe a tool (suggested by M. van Lambalgen) that allows
us to construct Mises–Kolmogorov–Loveland random sequences with “pathological”
properties (not Martin-Löf random, with more ones that zeros in prefixes, etc.).

9.13.1. Randomness with respect to two measures. Let us start with a
question that is interesting in itself: imagine that we change slightly the measure;
what happens with the class of random sequences (with respect to this measure)?

Here are two examples of opposite types.

Example 1. Let 𝜇 be the uniform Bernoulli measure 𝜇 = 𝐵1/2. Consider
another measure 𝜇′ that has independent trials with success probability 1/2 in all
trials except the first one where the success probability is (for example) 2/3. It
is intuitively clear that the same sequences should be random with respect to both

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 309

measures (for all reasonable notions of randomness): only the first trial is different,
and in both cases both outcome are possible (though the probabilities are not the
same). Indeed, this happens for Martin-Löf randomness: the effectively null sets
are the same (because for every set its 𝜇-measure and 𝜇′-measure differs less by a
factor 2).

274 Show the same result using the complexity criterion for randomness.

275 Show that the class of computably random sequences for these two mea-
sures is the same.

Example 2. Consider the uniform Bernoulli measure 𝐵1/2 and also some other
Bernoulli measure, say, 𝐵2/3. Is it possible that some sequence is Martin-Löf ran-
dom with respect to both of them? No, because for a random sequence with respect
to Bernoulli measure 𝐵𝑝 the limit frequency is 𝑝, so it cannot be both 1/2 and 2/3
at the same time.

So we come to the following question. Imagine that two sequences of reals
𝑝𝑖, 𝑝

′
𝑖 ∈ (0, 1) are given. Consider the measures for independent trials with prob-

ability 𝑝𝑖 (call it 𝜇) and 𝑝′𝑖 (call it 𝜇′). What can be said about the classes of
Martin-Löf random sequences with respect to these two measures? Our examples
suggest that if 𝑝𝑖 and 𝑝′𝑖 are close to each other, then these classes should coincide,
and if 𝑝𝑖 and 𝑝′𝑖 differ significantly, these classes should be disjoint.

Let us prove that this is indeed the case, assuming that 𝑝𝑖 and 𝑝′𝑖 are separated
from 0 and 1, i.e., all belong to (𝜀, 1 − 𝜀) for some positive 𝜀. We also assume
that 𝑝𝑖 and 𝑝′𝑖 are computable sequences of computable real numbers (we need the
measures to be computable, otherwise Martin-Löf randomness is not well defined).

V. Vovk proved [205] the following result which is a constructive version of
classical Kakutani’s theorem:

Theorem 196. (a) If the sum
∑︀

(𝑝𝑖−𝑝′𝑖)
2 is finite, then the classes of Martin-

Löf random sequences with respect to 𝜇 and 𝜇′ coincide.
(b) If the sum

∑︀
(𝑝𝑖 − 𝑝′𝑖)

2 is infinite, these classes are disjoint.

The classical version of this result [69] says that in the first case the classes of
null sets coincide, and in the second case the measures are orthogonal, i.e., there
exists a set that has probability 0 with respect to one measure and probability 1
with respect to the other.

Proof. Let us first try the following näıve approach to (a). Assume that
𝜔 ∈ Ω is random with respect to 𝜇 (that corresponds to probabilities 𝑝𝑖). Then the
(monotone) complexity of its 𝑛-bit prefix is close to the logarithm of the measure
of the corresponding interval, which equals

𝑛−1∏︁
𝑖=0

𝑟𝑖,

where 𝑟𝑖 = 𝑝𝑖 if 𝜔𝑖 = 1 and 𝑟𝑖 = 1− 𝑝𝑖 if 𝜔𝑖 = 0. If 𝑝𝑖 is close to 𝑝′𝑖, then 𝑟𝑖 is close
to 𝑟′𝑖 (defined in the similar way as 𝑟𝑖, but for the other measure). So the product
of all 𝑟𝑖 is close to the product of all 𝑟′𝑖, so randomness with respect to one measure
implies randomness with respect to the other.

310 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

All this is indeed true and can be formalized easily, but for this argument we
need to know that the sum

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) −
𝑛−1∑︁
𝑖=0

(− log 𝑟′𝑖) (*)

is bounded; this is indeed true if
∑︀

|𝑝𝑖 − 𝑝′𝑖| < ∞ (recall that we assume that 𝑝𝑖
and 𝑝′𝑖 are separated from 0 and 1). But this is a much stronger assumption than
the one we have: we know only that the sum of squares is bounded.

How can we improve this argument? Note that it is enough for us if the
difference (*) is bounded for every random with respect to 𝜇 sequence. Let us see
why this happens. Indeed, if 𝜔 is random with respect to 𝜇, then

KM (𝜔0 . . . 𝜔𝑛−1) =

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) + 𝑂(1).

Since the complexity and the logarithm of measure differ by 𝑂(1), the upper bound
for the complexity in terms of 𝜇′ (recall that we can use arbitrary measure to get
an upper bound for monotone complexity) guarantees that

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) 6
𝑛−1∑︁
𝑖=0

(− log 𝑟′𝑖) + 𝑂(1).

Let us denote 𝑟′𝑖 − 𝑟𝑖 by 𝛿𝑖. Using this notation and taking the exponents, we get
the following inequality (that is true up to a constant factor):

𝑛−1∏︁
𝑖=0

𝑟𝑖 >
𝑛−1∏︁
𝑖=0

(𝑟𝑖 + 𝛿𝑖).

We know that
∑︀

𝑖 𝛿
2
𝑖 < ∞, so 𝛿𝑖 → 0 as 𝑖 → ∞. Therefore, for sufficiently large 𝑖

the value of 𝛿𝑖 is smaller than 𝜀 (the gap between probabilities and 0, 1). We can
change finitely many 𝑝′𝑖 and assume that it is true for all 𝑖. Then we may consider
a measure 𝜇′′ that is “symmetric” to 𝜇 (i.e., 𝑝𝑖 is the middle point between 𝑝′𝑖 and
𝑝′′𝑖). For this measure we can write a similar inequality, only the sign before 𝛿𝑖 is
different:

𝑛−1∏︁
𝑖=0

𝑟𝑖 >
𝑛−1∏︁
𝑖=0

(𝑟𝑖 − 𝛿𝑖)

(it is also true up to a constant factor). Multiplying these two inequalities, we get
the inequality

𝑛−1∏︁
𝑖=0

𝑟2𝑖 >
𝑛−1∏︁
𝑖=0

(𝑟2𝑖 − 𝛿2𝑖),

which is obvious anyway (without any constant). Due to our assumptions about
𝑟𝑖 (separation from 0) and 𝛿𝑖 (the convergence of

∑︀
𝛿2𝑖) the last inequality is an

equality (up to Θ(1)-factor). Indeed, the product
∏︀

(1 − ℎ𝑖) is strictly positive
(assuming that 0 < ℎ𝑖 < 1) if and only if

∑︀
ℎ𝑖 < ∞.

Now the main point: since the product of two inequalities is an equality, then
each of them is also an equality (up to Θ(1)-factor). Then the randomness criterion
(Theorem 90) guarantees that 𝜔 is random also with respect to 𝜇′ (and also 𝜇′′,
but this does not matter). So the statement (a) is proven.

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 311

For the statement (b) we postpone the proof since it works for the more general
case of dependent trials, and we will prove it soon in this more general version, see
Theorem 197 below. �

The classical version of Kakutani’s theorem can now be proven as a corollary:

276 Let 𝑝0, 𝑝1, 𝑝2, . . . and 𝑝′0, 𝑝
′
1, 𝑝

′
2, . . . be sequences of reals in (𝜀, 1 − 𝜀) for

some 𝜀 > 0. Consider the measures 𝜇 and 𝜇′ that correspond to independent trials
with success probabilities 𝑝𝑖 and 𝑝′𝑖 respectively. Prove that

(a) if
∑︀

(𝑝𝑖 − 𝑝′𝑖)
2 < ∞, the classes of null sets with respect to 𝜇 and 𝜇′ are the

same;
(b) if

∑︀
(𝑝𝑖 − 𝑝′𝑖)

2 = ∞, then 𝜇 and 𝜇′ are orthogonal (there exists a set that
has measure 0 with respect to one measure and measure 1 with respect to the
other one). [Use Theorem 196 in a relativized version: note that for every null set
one can find an oracle that makes the measures computable and makes this set an
effectively null one. For (b) consider the set of random sequences.]

Now we state this more general statement. Let 𝜇 be a measure on Ω, and let
𝑝(𝑥) = 𝜇(Ω𝑥) be the corresponding function on binary strings. If 𝑝(𝑥) > 0 for some
𝑥, we can consider the conditional probabilities of 0 and 1 after 𝑥, i.e., the ratios
𝑝(0 |𝑥) = 𝑝(𝑥0)/𝑝(𝑥) and 𝑝(1 |𝑥) = 𝑝(𝑥1)/𝑝(𝑥) (their sum is 1). For the case of
independent trials these values depend only on the length of 𝑥 (and were denoted
earlier by 𝑝𝑖).

If, in addition to 𝜇, some sequence 𝜔 ∈ Ω is fixed, we may consider the con-
ditional probabilities of 1 after each term of this sequence, i.e., the sequence of 𝑝𝑖
defined as

𝑝𝑖 = 𝑝(1 |𝜔0 . . . 𝜔𝑖−1) = 𝑝(𝜔0 . . . 𝜔𝑖−11)/𝑝(𝜔0 . . . 𝜔𝑖−1)

(they are well defined if 𝑝 is not equal to zero on the prefixes of 𝜔). The next
result [205] shows that these probabilities for a given sequence do no depend much
on the measure that makes this sequence random:

Theorem 197. Let 𝜔 be a sequence that is Martin-Löf random with respect
to two computable measures 𝜇 and 𝜇′. Assume that the conditional probabilities 𝑝𝑖
and 𝑝′𝑖 along 𝜔 constructed using 𝜇 and 𝜇′ are all in the interval (𝜀, 1− 𝜀) for some
𝜀 > 0. Then ∑︁

𝑖

(𝑝𝑖 − 𝑝′𝑖)
2 < ∞.

Before proving this statement, let us note that it directly implies the statement
(b) of Theorem 196. Note also that for a random sequence the numbers 𝑝𝑖 are well
defined: the denominator 𝑝(𝑥) in 𝑝(𝑥1)/𝑝(𝑥) is non-zero for a random sequence
(otherwise Ω𝑥 is an effectively null set).

Proof. Consider one more measure �̃� that averages the conditional probabil-
ities for 𝜇 and 𝜇′. Namely, the probability of 1 after 𝑥 for 𝜇′′ is an average of two
similar probabilities for 𝜇 and 𝜇′. (Note that 𝜇′′ is not an average of 𝜇 and 𝜇′: if
we let �̃�(𝑋) = (𝜇(𝑋) + 𝜇′(𝑋))/2, we also get a measure, but a different one.)

Since the sequence 𝜔 is random with respect to 𝜇, we can use Levin–Schnorr
criterion:

KA (𝜔0 . . . 𝜔𝑛−1) =

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) + 𝑂(1),

312 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

where (as before) 𝑟𝑖 = 𝑝𝑖 if 𝜔𝑖 = 1 and 𝑟𝑖 = (1 − 𝑝𝑖) otherwise. Similar equality is
valid for 𝑟′𝑖 that correspond to 𝜇′. For the intermediate measure �̃� and corresponding
𝑟𝑖 we know only the inequality (the upper bound for complexity).

Thus, we have the following inequalities for conditional probabilities:

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) 6
𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) + 𝑂(1),

𝑛−1∑︁
𝑖=0

(− log 𝑟′𝑖) 6
𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) + 𝑂(1).

Taking average of these two inequalities, we get

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) + (− log 𝑟′𝑖)

2
6

𝑛−1∑︁
𝑖=0

(− log 𝑟𝑖) + 𝑂(1).

Recalling that 𝑟𝑖 = (𝑟𝑖 + 𝑟′𝑖)/2, we get

𝑛−1∑︁
𝑖=0

(︃
(− log 𝑟𝑖) + (− log 𝑟′𝑖)

2
−

(︃
− log

𝑟𝑖 + 𝑟′𝑖
2

)︃)︃
6 𝑂(1).

Each summand in the left hand side is non-negative (logarithm is a concave func-
tion) and is (up to a Θ(1)-factor) equal to (𝑟𝑖 − 𝑟′𝑖)

2, so∑︁
(𝑟𝑖 − 𝑟′𝑖)

2 ∼
∑︁

(𝑝𝑖 − 𝑝′𝑖)
2 < ∞

as we claimed.
(This argument has a subtle point which need to be mentioned. We consider the

average of conditional probabilities, which creates a problem if one of the measures
has zero values: in this case the computation of conditional probabilities never
terminates. So the average measure �̃� is in fact a semimeasure, but this is enough
for us (since the upper bound for complexity is still valid, and 𝜔 never goes through
problematic points being random with respect to both measures.) �

Note that this theorem says only that 𝜇 and 𝜇′ are close to each other along 𝜔
(that is random with respect to both). Of course, they can be completely different
in other parts of the Cantor space.

277 Give a corresponding example. [Hint: Consider two measures that are
uniform in the left half of the Cantor space, and differ significantly in the right
half.]

278 Note that in fact for this argument we do not need Martin-Löf random-
ness, it is enough to know that 𝜔 is computably random with respect to both
measures (assuming that both measures are non-zero on all Ω𝑥 and conditional
probabilities are well defined).

This proof has an interesting game interpretation. Assume that there are two
bookmakers who take bats for the same (sequence of) events, but have different
ideas about their probabilities. Each event have two possible outcomes 0 and 1;
the first bookmaker think that the probability of 1 is 𝑝 (and the probability of 0 is
𝑞 = 1 − 𝑝) and therefore returns the bets on 1 [0] with coefficients 1/𝑝 [1/𝑞], and
the second bookmaker does the same for probabilities 𝑝′ and 𝑞′. The probabilities
𝑝, 𝑞, 𝑝′, 𝑞′ may be different for different event. [Note also that we assume that the

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 313

bookmakers are altruistic; more practical bookmaker would use coefficients 𝑐0 and
𝑐1 such that 1/𝑐0 + 1/𝑐1 < 1.]

Now assume that we are allowed to play with both bookmakers at the same
time, having a separate account for each (so we cannot use money got from one
bookmaker to make bets with the other one). In this language the argument above
shows that if all 𝑝, 𝑞, 𝑝′, 𝑞′ are separated from 0 and the sum

∑︀
(𝑝− 𝑝′)2 is infinite

(for the sequence of events), then we can achieve the unbounded capital in (at least)
one of the games for sure (for every sequence of outcomes).

How do we achieve this? Assume that in the first game our current capital
is 𝑢, in the second game our capital is 𝑣, and the (assumed) probabilities of the
outcomes are 𝑝, 𝑞 (in the first game) and 𝑝′, 𝑞′ (in the second one). Let us split 𝑢
between two bets in the proportion that brings us (𝑝 + 𝑝′)𝑢/2𝑝 for outcome 1 and
(𝑞 + 𝑞′)𝑢/2𝑞 for outcome 0. (It is easy to check that these bets are valid, i.e., the
expected value of capital after the game according to the (𝑝, 𝑞)-distribution is 𝑢.)
In the second came capital 𝑣 becomes (𝑝+ 𝑝′)𝑣/2𝑝′ (for outcome 1) or (𝑞+ 𝑞′)𝑣/2𝑞′

(for outcome 0). Let us track the product of capitals in both games. It is multiplied
either by (𝑝 + 𝑝′)2/4𝑝𝑝′ or (𝑞 + 𝑞′)2/4𝑞𝑞′. The inequality between arithmetic and
geometric means (the concavity of the logarithm function) guarantees that in both
cases the product increases. Taking the logarithm and estimating the increase, we
note that for 𝑝, 𝑞, 𝑝′, 𝑞′ separated from 0 and for the case

∑︀
(𝑝 − 𝑝′)2 = +∞ the

product of the capitals tends to infinity, so at least for one of the games the capital
is unbounded.

In other words, we have constructed two martingales (with respect to two mea-
sures), and they have the following property: for every sequence where conditional
probabilities for both measures are separated from 0 and 1, and the differences of
probabilities have infinite sum of squares, at least one of the martingales is un-
bounded.

9.13.2. The law of large numbers for variable probabilities. The strong
law of large numbers says that for every 𝑝 ∈ (0, 1) and for corresponding measure
𝐵𝑝 (independent trials with success probability 𝑝) the set of sequences with limit
frequency 𝑝 has measure 1 (and its complement, the set of sequences where the
limit does not exist or is different from 𝑝, is a null set).

Now assume that the trials are independent, but the success probabilities are
different for different trials (𝑝𝑖 for 𝑖-th trial). One would expect that if 𝑝𝑖 converges
to some 𝑝, then again for almost all (with respect to the product measure) sequences
the limit frequency is 𝑝. The intuitive explanation: consider some 𝜀 > 0. All 𝑝𝑖
except for a finite number of them (which could be ignored) are smaller than 𝑝+𝜀/2.
We know that if we replace all 𝑝𝑖 by 𝑝+ 𝜀/2, then almost surely the frequency will
be less than 𝑝+𝜀 starting from some moment. By monotonicity reasons this should
be true also for the original 𝑝𝑖.

With some efforts, this argument can be made precise, but we prefer to prove
a more general statement that is useful in many cases. It deals with an arbitrary
measure 𝜇 on Ω, let 𝑝(𝑥) = 𝜇(Ω𝑥) be the corresponding function on strings. For
every binary string 𝑥 = 𝑥0 . . . 𝑥𝑛−1 consider the number of ones in 𝑥, and also the
sum of conditional probabilities 𝑝𝑖 of the appearance of 1 in 𝑖-th position of 𝑥 (after
the corresponding prefix):

𝑝𝑖 = 𝑝(𝑥0 . . . 𝑥𝑖−11)/𝑝(𝑥0 . . . 𝑥𝑖−1).

314 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Both quantities (𝑚 and the sum of 𝑝𝑖) depend on 𝑥; the bound below guarantees
that with high 𝜇-probability for a given 𝑛 these quantities are close to each other.
Here is the exact statement (we have explained what is 𝑚 and 𝑝𝑖; the probability
is taken with respect to 𝜇):

Theorem 198.

Pr[|𝑚− (𝑝0 + . . . + 𝑝𝑛−1)| > 𝑑] 6 2𝑒−𝑑2/4𝑛.

This theorem is essentially finite, and this inequality is true for every probability
distribution on 𝑛-bit strings. This is a weak form of a classical inequality in prob-
ability theory called Azuma–Hoeffding inequality . We will give a simple argument
that uses the same technique that we used for the proof of the strong law of large
number, though it does not give the best possible result (in fact, the constant 1/4

can be replaced by 2, so one can get the bound with right-hand side 2𝑒−2𝑑2/𝑛 [66,
Theorem 2]).

Proof. We consider separately the probabilities for 𝑚 to be too big or too
small. Both cases are similar, so we need to consider one of them and prove, for
example, that

Pr[𝑚− (𝑝0 + . . . + 𝑝𝑛−1) > 𝑑] 6 𝑒−𝑑2/4𝑛.

We use the standard trick and construct some measure 𝜇′ for which the ratio 𝜇′/𝜇
is big for all sequences that belong to the event in the left hand side. (The ration

𝜇′/𝜇 is a martingale that reaches 𝑒𝑑
2/4𝑛 if this event happens.)

Since we want to increase the measure for the sequence with many ones, it is
natural to increase the conditional probability of 1 in 𝜇′ (compared to 𝜇). Namely,
if for the original sequence the conditional probabilities of 1 and 0 after some 𝑥 are
𝑝 and 𝑞, in the new measure we let these probabilities to be

𝑝′ = 𝑝 + 𝜀𝑝𝑞, 𝑞′ = 𝑞 − 𝜀𝑝𝑞,

where 𝜀 is some positive real. The value of 𝜀 will be chosen later; now we say only
that 𝜀 does not exceed 1/2. It is easy to check the 𝑝′ and 𝑞′ are still in [0, 1].

So we get another probability distribution on 𝑛-bit strings. Let us compute the
ratio of these two distributions on some string 𝑥 of length 𝑛. Each bit of 𝑥 adds
factor 𝑝′/𝑝 (if this symbol is 1) or 𝑞′/𝑞, where 𝑝, 𝑞, 𝑝′, 𝑞′ are conditional probabilities
of 1 and 0 in the old measure and in the changed measure. In logarithmic scale:
the logarithm of the ratio in question is equal to the sum of

ln(𝑝′/𝑝) = ln(1 + 𝜀𝑞) > 𝜀𝑞 − (𝜀𝑞)2 > 𝜀(1 − 𝑝) − 𝜀2

or
ln(𝑞′/𝑞) = ln(1 − 𝜀𝑝) > −𝜀𝑝− (𝜀𝑝)2 > −𝜀𝑝− 𝜀2

for all bits in 𝑥 (with corresponding probabilities 𝑝 and 𝑞); the first expression
is used for ones in 𝑥 and the second is used for zeros. (We used the inequality
ln(1 + ℎ) > ℎ− ℎ2 that is true for all ℎ with |ℎ| 6 1/2.)

What happens when we add all these inequality? We get a lower bound for
the logarithm of the ratio 𝑝′(𝑥)/𝑝(𝑥) of two measures for 𝑥; this lower bound has
a common factor 𝜀. Then we have 𝑚 ones (each term (1 − 𝑝) contributes one, and
there are 𝑚 of terms of this type) minus sum of all 𝑝𝑖, where 𝑝𝑖 is the conditional
probability of 1 at 𝑖-th place, and minus 𝑛𝜀2:

ln
𝑝′(𝑥)

𝑝(𝑥)
> 𝜀(𝑚−

∑︀
𝑝𝑖) − 𝑛𝜀2.

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 315

We are interested in 𝑥 where the excess 𝑚−
∑︀

𝑝𝑖 exceeds 𝑑; for them we have

ln
𝑝′(𝑥)

𝑝(𝑥)
> 𝜀𝑑− 𝑛𝜀2 = 𝜀(𝑑− 𝑛𝜀).

This is true for all 𝜀 ∈ (0, 1/2), so let us choose 𝜀 to get a most strong statement.
The right hand side achieves maximal value when 𝜀 = 𝑑/2𝑛 (note that 𝑑 6 𝑛,
because the number of ones in 𝑥 does not exceed 𝑛, so 𝜀 = 𝑑/2𝑛 6 1/2).

Therefore

ln
𝑝′(𝑥)

𝑝(𝑥)
> 𝑑2/4𝑛

for 𝑥 where the excess is greater than 𝑑, and

𝑝′(𝑥)

𝑝(𝑥)
> 𝑒𝑑

2/4𝑛,

as we claimed. This finishes the proof. �

It is instructive to look at the special case where zeros and ones are equiproba-
ble. The probability that the number of ones exceeds its expectation (𝑛/2) by 2

√
𝑛

is bounded by 1/𝑒, and expectation exceeds 2𝑘
√
𝑛 with probability at most 1/𝑒𝑘

2

.
Comparing this with classical de Moivre–Laplace theorem, we see that our bound
is not optimal, but the difference is only in the coefficient (in the power).

Now we can repeat the proof of the strong law of large number with this bound
and get the following result that is true for arbitrary measure 𝜇 on the space Ω:

Theorem 199. For a sequence 𝜔 = 𝜔0𝜔1 . . . that has distribution 𝜇, the fol-
lowing property holds with probability 1:

lim
𝑛→∞

(︁𝑚
𝑛

− 𝑝0 + . . . + 𝑝𝑛−1

𝑛

)︁
= 0,

where 𝑚 is the number of ones among 𝜔0, 𝜔1, . . . , 𝜔𝑛−1 and 𝑝 is the conditional
probability of 1 after 𝜔0𝜔1 . . . 𝜔𝑖−1 according to 𝜇.

In particular, this theorem implies that for independent trials where success
probabilities 𝑝𝑖 converge to some limit 𝑝, the limit frequency 𝑝 exists with proba-
bility 1 (since the limit of averages (𝑝0 + . . . + 𝑝𝑛−1)/𝑛 is also 𝑝).

On the other hand, we need more: we wanted to show that the sequence is
random according to Mises-style definition (in one of the version), so we need to
ensure that the limit frequency is 𝑝 not only for the sequence itself, but for all
its subsequences selected by some admissible rule. Let us look at this question,
starting with monotone selection rules (Church–Daley definition).

9.13.3. The law of large numbers for subsequences. Let us generalize
Theorem 198 by adding selection rules. This theorem considered some measure
𝜇 on Ω, and the corresponding function 𝑝(𝑥) = 𝜇(Ω𝑥) and conditional probability
𝑝(1 |𝑥) = 𝑝(𝑥1)/𝑝(𝑥). For a sequence 𝜔 and number 𝑛 we considered two quantities:

∙ the number 𝑚 of ones among 𝜔0, . . . , 𝜔𝑛−1;
∙ the sum of conditional probabilities of 1 at 𝑛 first positions, i.e.,

𝑝(1 |Λ) + 𝑝(1 |𝜔0) + 𝑝(1 |𝜔0𝜔1) + . . . + 𝑝(1 |(𝜔0 . . . 𝜔𝑛−1)).

316 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Theorem 198 guaranteed that (for every 𝑛) these two quantities differ significantly
only for a 𝜇-small fraction of sequences 𝜔 (the 𝜇-measure of the set of 𝜔 such that

the difference exceeds 𝑑, is bounded by 2𝑒−𝑑2/4𝑛.
Now let us add some selection rule 𝑆𝑅 to this picture. Here 𝑅 is an arbitrary

set of binary strings (the set of prefixes before the selected terms). For every
sequence 𝜔 the rule 𝑆𝑅 selects some positions 𝑖0, 𝑖1, . . . and outputs a subsequence
𝑆𝑅(𝜔) = 𝜔𝑖0𝜔𝑖1 . . . made by the terms at that positions. Now we compare:

∙ the number 𝑚 of ones among the first 𝑛 selected terms, i.e., the number
of ones among 𝑛 first bits of 𝑆𝑅(𝜔);

∙ the sum of conditional probabilities of ones for the 𝑛 first selected posi-
tions, i.e.,

𝑝(1 |𝜔0𝜔1 . . . 𝜔𝑖0−1) + 𝑝(1 |𝜔0𝜔1 . . . 𝜔𝑖1−1) + . . . + 𝑝(1 |𝜔0𝜔1 . . . 𝜔𝑖𝑛−1).

When 𝑅 is the set of all strings, we get the same quantities as in Theorem 198.
The following theorem says that the same bound is valid in the general case:

Theorem 200. The 𝜇-measure of the set of 𝜔 where these two quantities differ

by 𝑑, is at most 2𝑒−𝑑2/4𝑛.

Note that for some 𝜔 the sequence 𝑆𝑅(𝜔) may contain less than 𝑛 terms. These
𝜔 are not element of the set whose measure is bounded.

Example. Consider an arbitrary measure 𝜇 and a selection rule 𝑅 that selects
the terms where the conditional probability of 1 is at most 1/2. Theorem 200 guar-
antees that the 𝜇-probability of the event “there is at least 51% of ones among the
first 𝑛 selected terms” is exponentially small (as 𝑛 increases).

Proof. This theorem is also a simple consequence of a general Azuma–Hoeffding
inequality for martingales in the sense of probability theory, but we can easily mod-
ify the argument used to prove Theorem 200.

First note that this theorem now deals with the entire sequence 𝜔 instead of its
prefix of some length (since the first 𝑛 selected terms may appear arbitrarily late).
But due to the continuity of measure, it is enough to prove the same inequality for
first 𝑁 bits of 𝜔 (it gives a smaller set, but the union of all these sets for all 𝑁 is
the set in question).

As in the proof of Theorem 200, we construct a new measure, but now we change
conditional probabilities only in the positions where the next term is selected, i.e.,
the conditional probabilities of 𝑝(1 |𝑥) for 𝑥 ∈ 𝑅. Then the ratio of probabilities
(for the modified and original measures) will include the length of the selected
subsequence (instead of the sequence itself) and the sum of conditional probabilities
for the selected terms (instead of the sum of all conditional probabilities), i.e.,
exactly what we need. �

This result gives us a tool to construct (following van Lambalgen [89]) Mises–
Church–Daley sequences. Let 𝑝0, 𝑝1, . . . be a computable sequence of computable
reals that computably converges to some 𝑝 ∈ (0, 1). This means that for every
given 𝜀 > 0 one can compute some 𝑁 such that |𝑝𝑖 − 𝑝| < 𝜀 for all 𝑖 > 𝑁 . (It is
easy to see that in this case 𝑝 is computable.) Consider a computable measure 𝜇
that corresponds to a sequence of independent trials with probabilities 𝑝𝑖.

Theorem 201. Every Martin-Löf random sequence with respect to 𝜇 is Mises–
Church–Daley random with frequency 𝑝.

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 317

Proof. Consider some rational 𝜀 > 0 and some Church–Daley admissible rule
𝑆𝑟 (not necessarily total). We need to show that the set 𝑈 of all sequences 𝜔 where
𝑆𝑟(𝜔) gives an infinite sequence where the frequency of ones exceeds 𝑝+𝜀 infinitely
often, is an effectively null set. (The argument for frequencies less than 𝑝 − 𝜀 is
similar.)

Fix some 𝑛 and consider the set 𝑈𝑛 of sequences 𝜔 such that 𝑆𝑟(𝜔) has length
at least 𝑛 and the frequency of ones among the first 𝑛 terms exceeds 𝑝 + 𝜀. This
set is effectively open (applying computable partial selection rule to all branches,
we enumerate all strings that guarantee that every its extension is in 𝑈𝑛).

Theorem 200 provides the upper bound for the 𝜇-measure of 𝑈𝑛. If 𝑛 is large
enough, the average of conditional probabilities is less than 𝑝 + 𝜀/2 (and we know
how large should be 𝑛, since 𝑝𝑖 converge computably to 𝑝). This bound decreases
exponentially as 𝑛 increases. So one can cover 𝑈 by an effectively open set of arbi-
trary small measure (taking all the intervals in 𝑈𝑁 , 𝑈𝑁+1, 𝑈𝑁+2, . . . for arbitrarily
large 𝑁 ; recall that by definition of 𝑈 each element of 𝑈 belongs to infinitely many
𝑈𝑛. Therefore, 𝑈 is an effectively null set and cannon contain a Martin-Löf random
sequence. �

Now we extend this statement to Mises–Kolmogorov–Loveland random se-
quences.

Theorem 202. Every Martin-Löf random sequence with respect to 𝜇 is Mises–
Kolmogorov–Loveland random with limit frequency 𝑝.

Proof. The application of a Kolmogorov–Loveland admissible selection rule
𝑆𝐹,𝐺 to a sequence 𝜔 consists of two phases. First we use 𝐹 to select a sequence of
revealed bits (both selected and not select). Then 𝐺 is used to select some of the
revealed bits, and this operation is a Church–Daley admissible selection rule.

After this decomposition is done, let us consider the distribution of a sequence
𝜔𝐹 that is obtained at the first step. (We assume that the original sequence is
obtained by independent trials with probability 𝑝𝑖 in 𝑖-th trial.) Let us first assume
that 𝐹 and 𝐺 are total functions.

The first term of 𝜔𝐹 is chosen when no bits are reveals, it occupies a fixed
position in 𝜔. This position is 𝑛0 = 𝐹 (Λ). So the probability that 1 appears as
the first term in 𝜔𝐹 is 𝑝𝑛0 . Now consider the second term of 𝜔𝐹 . Its position in
Ω depends on the value of 𝜔𝑛0 and can be either 𝐹 (0) or 𝐹 (1). So the conditional
probability for the second term of 𝜔𝐹 to be one (given the first term as the condition)
is either 𝑝𝐺(0) or 𝑝𝐺(1). In general, the probability of 1 after 𝑥 in 𝜔𝐹 equals 𝑝𝐹 (𝑥),
since the next revealed bit has number 𝐹 (𝑥). Note that the restrictions of 𝐹 (no
bit is revealed twice) guarantee that conditional probabilities along any branch
form a subsequence of {𝑝𝑖} (without repetitions), so the number of terms outside
of (𝑝− 𝜀/2, 𝑝 + 𝜀/2) for this subsequence is bounded by the number of such terms
in the original sequence.

This allows us to apply the bound of Theorem 200 to sequence 𝜔𝐹 and the
selection rule determined by 𝐺, in the same way as in the proof of Theorem 201.

The same bound is true for partial 𝐹 and 𝐺: extending them to some total
functions, we may only increase the set whose measure is bounded. (A computable
partial function may have no computable extensions, but here we are interested in
the bound only, so a non-computable extension can be used.)

318 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Having proven the bound for partial 𝐹 and 𝐺, we now observe that for com-
putable 𝐹 and 𝐺 the set of 𝜔 such that 𝑆𝐹,𝐺(𝜔) starts with 𝑥, is an effectvely
open set (uniformly in 𝑥), so now we can finish the argument as in the preceding
theorem. �

Remark. One can give a more direct proof of Theorem 202. Here is one of
the possible arguments (takes from [176]).

Fix some (rational) 𝜀 > 0 and some Kolmogorov–Loveland admissible selection
rule 𝑆𝐹,𝐺. We need to show that the set 𝑈 of sequences 𝜔 such that 𝑆𝐹,𝐺(𝜔) is
infinite and the frequency of ones exceeds 𝑝+𝜀 infinitely often, is an effectively null
set. (The argument for 𝑝− 𝜀 is similar.)

By 𝑈𝑛 we denote the set of all sequence 𝜔 such that 𝑆𝐹,𝐺(𝜔) contains at least
𝑛 terms that the frequency of ones among the first 𝑛 terms exceeds 𝑝+ 𝜀. We need
to show that the series

∑︀
𝜇(𝑈𝑛) computably converges. (Here 𝜇 is our measure; it

corresponds to independent trials with success probabilities 𝑝𝑖.)
By 𝛼𝑛,𝑘(𝑟1, . . . , 𝑟𝑛) we denote the probability of getting more than 𝑘 ones on

𝑛 independent trials with success probabilities 𝑟1, . . . , 𝑟𝑛. The function 𝛼𝑛,𝑘 is
a nondecreasing one with respect to each argument 𝑟𝑖. (A side remark: it is a
multilinear function, i.e., a polynomial of degree at most 1 with respect to each
argument.) It is easy to see also that 𝛼𝑛,𝑘 6 𝛼𝑛,𝑙 if 𝑘 > 𝑙.

We claim that 𝜇(𝑈𝑛) 6 𝛼𝑛,𝑘(𝑟1, . . . , 𝑟𝑛), where 𝑘 = 𝑛(𝑝 + 𝜀) and 𝑟𝑖 is the 𝑖th
element of {𝑝0, 𝑝1, . . .} in the decreasing order, or, more precisely,

𝑟1 = sup 𝑝𝑖; 𝑟2 = sup
𝑖 ̸=𝑗

min(𝑝𝑖, 𝑝𝑗), 𝑟3 = sup
𝑖 ̸=𝑗 ̸=𝑘

min(𝑝𝑖, 𝑝𝑗 , 𝑝𝑘), . . .

Let us show that this bound implies the convergence of the series 𝜇(𝑈𝑛). Obviuosly,
𝑟1 > 𝑟2 > . . . and lim 𝑟𝑖 = 𝑝. Let us replace 𝑟𝑖 that exceed 𝑝 + 𝜀/2 by 1; let 𝑠 be
the number of these replacements. We conclude that

𝜇(𝑈𝑛) 6 𝛼𝑛−𝑠,𝑘−𝑠(𝑝 + 𝜀/2, . . . , 𝑝 + 𝜀/2),

so we have reduced the question to the case of constant probabilities (that we
already discussed several times). It is important to note that for large 𝑛 the ratio
(𝑘 − 𝑠)/(𝑛− 𝑠) is close to 𝑝 + 𝜀 and exceeds 𝑝 + 𝜀/2 significantly.

It remains to prove the bound for 𝜇(𝑈𝑛) mentioned above. Again imagine that
the bits of the sequence are written on cards that lay on the table face down, and
the selection rule determines which bit should be revealed next and whether it
is used just for information or selected. While applying the selection rule, let us
record which cards were turned over and the corresponding bits; we get an (infinite)
record, or “log file”. Let 𝜋 be the initial segment of such a record. By 𝑛(𝜋) we
denote the number of terms that were selected during 𝜋, and by 𝑘(𝜋) we denote
the number of ones among these terms. By 𝑟𝑖(𝜋) we denote 𝑖-th biggest number in
a sequence obtained from 𝑝0, 𝑝1, . . . by deleting the terms that correspond to the
bits already revealed (for information or for selection).

Let 𝜇(𝑈𝑛 |𝜋) be the conditional probability of 𝑈𝑛 with the condition “the record
starts with 𝜋”. Let us prove the generalized version of the inequality in question:
if 𝑛(𝜋) 6 𝑛, then

𝜇(𝑈𝑛 |𝜋) 6 𝛼𝑛−𝑛(𝜋),𝑘−𝑘(𝜋)(𝑟1(𝜋), 𝑟2(𝜋), . . .) (*)

For empty 𝜋 we get the bound we are interested in. This inequality can be proven
by backward induction. If 𝑛(𝜋) = 𝑛, this inequality becomes an equality (left and

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 319

right hand sides are either both zeros, or both ones). Let 𝑛(𝜋) < 𝑛 and let 𝑚 be
the index of the bit that is turned over immediately after 𝑝𝑖 (if 𝐹 (𝜋) is not defined,
then 𝜇(𝑈𝑛 |𝜋) = 0 and we have nothing to prove). Then

𝜇(𝑈𝑛 |𝜋) = 𝑝𝑚𝜇(𝑈𝑛 |𝜋1) + (1 − 𝑝𝑚)𝜇(𝑈𝑛 |𝜋0),

where 𝜋0 and 𝜋1 are obtained from 𝜋 by adding that 𝑚-th card contains 0 (respec-
tively 1). Let us show that if (*) is true for 𝜋0 and 𝜋1, then it is true for 𝜋. Indeed,
in this case 𝜇(𝑈𝑛 |𝜋) does not exceed

𝑝𝑚𝛼𝑛−𝑛(𝜋1),𝑘−𝑘(𝜋1)(𝑟1(𝜋1), . . .) + (1 − 𝑝𝑚)𝛼𝑛−𝑛(𝜋0),𝑘−𝑘(𝜋0)(𝑟1(𝜋0), . . .). (**)

If the bit on the 𝑚-th card is used only for information, then 𝑛(𝜋0) = 𝑛(𝜋1) = 𝑛(𝜋)
and 𝑘(𝜋0) = 𝑘(𝜋1) = 𝑘(𝜋), and it remains to use the monotonicity of 𝛼𝑛,𝑘 and the
inequality 𝑟𝑖(𝜋0) = 𝑟𝑖(𝜋1) 6 𝑟𝑖(𝜋). On the other hand, if 𝑚-th bit was selected,
then 𝑛(𝜋0) = 𝑛(𝜋1) = 𝑛(𝜋) + 1, 𝑘(𝜋0) = 𝑘(𝜋) and 𝑘(𝜋1) = 𝑘(𝜋) + 1, and (**) is
equal to

𝛼𝑛−𝑛(𝜋),𝑘−𝑘(𝜋)(𝑝𝑚, 𝑟1(𝜋1), 𝑟2(𝜋1), . . .);

note that 𝑟𝑖(𝜋1) = 𝑟𝑖(𝜋0)) and therefore does not exceed

𝛼𝑛−𝑛(𝜋),𝑘−𝑘(𝜋)(𝑟1(𝜋), 𝑟2(𝜋), . . .).

This ends the proof of the inequality (*) in the case when all 𝜋 with 𝑛(𝜋) = 𝑛 have
bounded length. If not, this argument gives a bound for 𝜇(𝑈𝑛,𝑡 |𝜋) where 𝑈𝑛,𝑡 is
the set of all sequences from which a subsequence of length 𝑛 with more than 𝑘
ones is selected after revealing at most 𝑡 bits. It remains to let 𝑡 tend to infinity.

9.13.4. Examples. Now it is easy to prove the existence of Mises–Kolmogorov–
Loveland sequences with some “pathological” properties.

Theorem 203. (a) There exists a Mises–Kolmogorov–Loveland random se-
quence with frequency 1/2 that is not Martin-Löf random with respect to the uniform
measure.

(b) There exists a Mises–Kolmogorov–Loveland random sequence with frequen-
cy 1/2 where each prefix has more zeros than ones.

(c) There exists a Mises–Kolmogorov–Loveland random sequence with frequency
1/2 such that some Kolmogorov–Loveland admissible (and even Church admissible)
rule selects from it a subsequence that is not Mises–Kolmogorov–Loveland random.

(d) There exists a Mises–Church–Daley random sequence with frequency 1/2
that becomes not Mises–Church random after a computable permutation of its terms.

Proof. (a) Consider a computable sequence of rational numbers that con-
verges to 1/2 very slowly, for example,

𝑝𝑖 =
1

2
− 1√

𝑖 + 5

(here 5 is added to make all 𝑝𝑖 positive). Consider the computable measure 𝜇 that
corresponds to independent trials with success probabilities 𝑝𝑖.

Since the series
∑︀

(𝑝𝑖 − 1/2)2 diverges, no Martin-Löf random sequence (with
respect to 𝜇) is Martin-Löf random with respect to the uniform measure (Theo-
rem 197). On the other hand, all these sequences are Mises–Kolmogorov–Loveland
random with limit frequency 1/2 (Theorem 202).

320 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

1
2

1
2 + 𝜀𝑘, . . . ,

1
2 + 𝜀𝑘

1
2 − 𝜀𝑘, . . . ,

1
2 − 𝜀𝑘

𝑛𝑘 𝑛𝑘

Figure 2. The 𝑘-th block and the probabilities.

(b) This statement can be proved in a similar way, but one should the sequence
𝑝𝑖 that converges to 1/2 even more slowly. For example, let

𝑝𝑖 =
1

2
− 1

log(𝑖 + 5)
.

What is the probability (according to 𝜇) of the event “𝑛-bit prefix contains less
zeros than ones” (the frequency of ones exceeds 1/2)? Theorem 198 says that this

probability (let us denote it by 𝛿𝑛) is bounded by 𝑒−𝑛/𝑂(log2 𝑛) (the threshold 𝑑 is
about 𝑛/𝑂(log 𝑛), and 𝑑2/4𝑛 = 𝑛/𝑂(log2 𝑛)). The series

∑︀
𝑛 𝛿𝑛 converges, so the

probability of the event “all prefixes of length at least 𝑁 contain at least as many
zeros as ones” is positive. The set of positive measure (obviously) contains some
Martin-Löf random (with respect to 𝜇) sequence. Now we know that there exists a
Martin-Löf random with respect to 𝜇 sequence where all prefixes of length at least 𝑁
have at least as many zeros as ones. This sequence is Mises–Kolmogorov–Loveland
random (Theorem 202). Adding 𝑁 +1 zeros before it, we get a Mises–Kolmogorov–
Loveland sequence with the required property.

(c) As W. Merkle has noted, here we can use the same trick to generate the re-
quired sequence. However, the sequence 𝑝𝑖 should be chosen in a more complicated
way. Let us split the sequence into blocks; 𝑘-th block consists of one term, where
probability (to be 1) equals 1/2, and two parts of equal (and large enough) length
𝑛𝑘. In the first part the probabilities of 1 are the same and exceed 1/2 slightly,
while in the second part they are slightly less than 1/2 (and again the same), see
Figure 2. Here 𝜀𝑘 is strictly positive and converges to 0 as 𝑘 → ∞, but the con-
vergence is slow. More precisely, we need the following relation between 𝑛𝑘 and 𝜀𝑘:
the probability that for 𝑛𝑘 independent trials with success probability 1

2 + 𝜀𝑘 the

fraction of ones is strictly greater than 1/2, is at least 1 − 2−(𝑘+3). (In fact, this
can be achieved for any sequence 𝜀𝑘 if 𝑛𝑘 are sufficiently large.)

If 𝑛𝑘 and 𝜀𝑘 are chosen in this way, we get with positive probability a sequence
𝜔 such that for all 𝑘 in each of the two halves of the 𝑘-th block the disbalance
between zeros and ones is in the expected direction (more ones in the left half and
more zeros in the right half).

Therefore, there exists a Martin-Löf random (with respect to 𝜇) sequence 𝜔
with this property, and Theorem 202 guarantees that it is also Mises–Kolmogorov–
Loveland random.

Now let us show that some Church admissible selection rule selects from 𝜔 a
sequence that is not Mises–Kolmogorov–Loveland random. The selection rule is
very simple: we select the first bit of each block all the time, and depending on its
value we select either all bits in the left half or all bits in the right half (of the rest
of the block).

9.13. CHANGE IN THE MEASURE AND RANDOMNESS 321

Why the selected subsequence 𝜔′ is not Mises–Kolmogorov–Loveland random?
This is easy: the disbalance condition allows us to reconstruct the value of the key
(the first bit of the block) by counting zeros and ones in the following 𝑛𝑘 bits. So
we first read 𝑛𝑘 bits that go after the key bit, and then predict correctly the value
of the key bit.

This ends the proof of (c). Also we may note that the sequence 𝜔′ is Mises–
Church–Daley random, since the composition of two Church–Daley admissible rules
is again a Church–Daley admissible rule. On the other hand, if we permute 𝜔′

(computably) by placing the key bit after all the other bits of the same block, we
get a sequence that is not Mises–Church random. So the statement (d) is also
proven. �

Note that this result shows that all the Mises-style definitions of randomness
are not very natural. Indeed, Mises noted the following important property of
Kollektivs: applying an admissible selection rule to a Kollektiv, we should get
another Kollektiv. And the statement (c) shows that Mises–Kolmogorov–Loveland
definition does not have this property. The definitions with monotonic selection
rules (Mises–Church, Mises–Daley) have this property, but are not stable with
respect to computable permutation of terms, which is also quite strange.

279 Prove that applying a Kolmogorov–Loveland admissible selection rule
to a Mises–Kolmogorov–Loveland random sequence we get a Mises–Church–Daley
random sequence.

280 Prove that there exists a Mises–Kolmogorov–Loveland random sequence
(with limit frequency 1/2) that is not even Kurtz random. [Hint: take a sequence
that is random with respect to a slightly biased measure; one of the martingales
constructed in the proof of Theorem 197 is bounded on it, so the other one has a
computable lower bound that computable converges to infinity.]

It seems that the examples of these section tell us that the Mises–Kolmogorov–
Loveland definition is probably too weak from the intuitive viewpoint. The same
can be said about the definition of computably random sequences. Now the natural
question is: what if we combine these two definition? Assume that we play with a
sequence of bits that is selected in arbitrary (not necessarily monotonic) order as in
Kolmogorov–Loveland selection rules, but can make bets of arbitrary computable
size (not exceeding the current capital), as in the definition of computable random
sequences? One can naturally define this class of sequences; they are sometimes
called “unpredictable”, or Kolmogorov–Loveland random. It is easy to prove that all
Martin-Löf random sequences have this property, but it is not known now (2013)
whether these two classes coincide. One can note also that for non-monotonic
martingales (games with non-monotonic subsequences) it does not matter whether
they are total or not (the same argument as in Theorem 191 (p. 303) works.

Finally, let us summarize what we know about relations between different no-
tions of randomness (Figure 3). We have two columns; in each column the notion be-
comes weaker (and the class of random sequnces increases) as we go down. The left
column contains game definitions (extending J. Ville’s idea in different ways) that
uses martingales of different types. The right column (extending R. von Mises’ ideas
in different ways) uses selection rules of different types. Both column start with
Martin-Löf randomness (that is equivalent to randomness with respect to enumer-
able martingales) and the definition of randomness with respect to non-monotonic

322 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

Martin-Löf random = random with respect to enumerable martin-
gales

?
random with respect to partial or total non-monotone

martingales (Kolmogorov–Loveland random)

random with respect to
computable partial martingales

Mises–Kolmogorov–
Loveland random

computably random Mises–Church–Daley random

Schnorr random Mises–Church random

Kurtz random satisfying the strong law
of large numbers

Figure 3. Relations between different notions of randomness.

(partial) computable martingales; we do not know whether these definitions are
equivalent or the second one is weaker.

In the right column the class of admissible selection rules decreases; in the
left column the requirements for a winning strategy increase (see Section 9.9, The-
orem 183 and Problem 272). So the corresponding classes of random sequences
increase when we go down.

To show why all the implications shown (except for the top one) are irreversible
and there are no other implications, let us consider the relations between columns.
As we have seen, Mises–Kolmogorov–Loveland randomness does not imply even the
weakest notion in the left column, Kurtz randomness (Problem 280), so there are
no implications going from right to left.

From left to right: random with respect to partial computable martingales
sequences are Mises–Church–Daley random (Theorem 190, p. 302); computably
random sequences are Mises–Church random (Theorem 182, p. 291); Schnorr ran-
domness implies the strong law of large numbers (Problem 92, p. 84). But these
implication cannot be improved: Kurtz randomness does not imply the strong law
of large numbers (Problem 92, p. 84); Schnorr randomness does not imply Mises–
Church randomness (Problem 271, p. 296); computably random sequence may be
not Mises–Church–Daley random, since in the first case the complexity may grow
as 𝑂(log 𝑛) (Theorem 182, p. 291) and in the second case this is impossible (Theo-
rem 188, p. 299); finally, randomness with respect to computable partial martingales
does not imply Mises–Kolmogorov–Loveland randomness, since in the first case the
complexity of prefixes may be sublinear (Theorem 190, p. 302) while in the second
case this is not possible(Theorem 193, p. 305).

Therefore in each column all the errors are irreversible (since the consequences
in the right column are different for each notion in the left column; similarly for
the right column), so indeed no other implications can be added to our table.

CHAPTER 10

Inequalities for entropy, complexity and size

10.1. Introduction and summary

The first publication of Kolmogorov where the definition of complexity was
given is “Three approaches to the quantitative definition of information” [77]. The
three approaches mentioned there were called combinatorial, probabilistic and algo-
rithmic.

Algorithmic approach measures the amount of information in a message by
its Kolmogorov complexity (as we call it now; of course, this name was not used
by Kolmogorov himself). Using probabilistic approach, we consider a message
as one of the possible values of some random random variable, and measure the
Shannon entropy of this random variable. But Kolmogorov started the paper by
the combinatorial approach, making the following (trivial) observation: if there are
𝑁 different messages that can be transmitted, we need log𝑁 bits to specify which
of the messages is transmitted. (If we need to guess one of 𝑁 objects, we need to
ask log𝑁 yes-or-no questions.)

We have already mentioned some results that relate these three approaches. For
example, Theorem 8 (p. 33) related the combinatorial and algorithmic approaches
and refines the following (absurd, if understood literally) statement: “a string 𝑥 has
complexity at most 𝑛 if and only if 𝑥 belongs to the set of at most 2𝑛 elements”.
Another example: the results of Section 7.3 relate Kolmogorov complexity and
Shannon entropy.

In this chapter, following [64, 156], we establish more formal connections be-
tween three approaches, and restrict ourselves to a rather specific class of state-
ments: linear inequalities for entropy and complexity (and corresponding combina-
torial statements).

Let 𝑥1, . . . , 𝑥𝑛 be binary strings. For every non-empty set 𝐼 ⊂ {1, 2, . . . , 𝑛}
of indices consider the tuple 𝑥𝐼 made of all 𝑥𝑖 with 𝑖 ∈ 𝐼. We are interested in
the Kolmogorov complexity of this tuple. For example, for 𝑛 = 3 we have seven
possible tuples, and we get a list of 7 complexities:

𝐶(𝑥1), 𝐶(𝑥2), 𝐶(𝑥3), 𝐶(𝑥1, 𝑥2), 𝐶(𝑥1, 𝑥3), 𝐶(𝑥2, 𝑥3), 𝐶(𝑥1, 𝑥2, 𝑥3).

Let us give several examples of linear inequalities where these complexities appear:

∙ 𝐶(𝑥1, 𝑥2) 6 𝐶(𝑥1) + 𝐶(𝑥2) + 𝑂(log𝑁);
∙ 𝐶(𝑥1, 𝑥2, 𝑥3) 6 𝐶(𝑥1) + 𝐶(𝑥2, 𝑥3) + 𝑂(log𝑁);
∙ 𝐶(𝑥1, 𝑥2, 𝑥3) + 𝐶(𝑥1) 6 𝐶(𝑥1, 𝑥2) + 𝐶(𝑥1, 𝑥3) + 𝑂(log𝑁);
∙ 2𝐶(𝑥1, 𝑥2, 𝑥3) 6 𝐶(𝑥1, 𝑥3) + 𝐶(𝑥2, 𝑥3) + 𝐶(𝑥1, 𝑥2) + 𝑂(log𝑁)

(we assume here that 𝑥1, 𝑥2, 𝑥3 are strings of length at most 𝑁).

323

324 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

In general, linear inequality for complexities has the form∑︁
𝐼

𝜆𝐼𝐶(𝑥𝐼) 6 𝑂(log𝑁),

where the sum is takes over all non-empty subsets of {1, . . . , 𝑛}. The coefficients 𝜆𝐼

may be positive, negative, or zeros; we assume that all strings 𝑥𝑖 have length at
most 𝑁 , and the constant in 𝑂-notation does not depend on 𝑁 (but may depend
on 𝑛 and the inequality chosen).

Which of these inequalities are true? More formally, we are looking for the
tuples of coefficients 𝜆𝐼 such that∑︁

𝐼

𝜆𝐼𝐶(𝑥𝐼) 6 𝑐 log𝑁

for some 𝑐 and for every 𝑁 and every strings 𝑥1, . . . , 𝑥𝑛 of length at most 𝑁 .
This question is still widely open, and only some partial results are known.
First of all, this question is not specific to algorithmic information theory, as

shown by A. Romashchenko who proved that such an inequality is true if and only
if the inequality for Shannon entropies with the same coefficients is true, where
strings 𝑥𝑖 are replaced by random variables 𝜒𝐼 (with arbitrary joint distribution):∑︁

𝐼

𝜆𝐼𝐻(𝜉𝐼) 6 0.

where 𝜉𝐼 is a random variable made from 𝑥𝑖 with 𝑖 ∈ 𝐼 (in other terms, projection
of the random vector ⟨𝜉1, . . . , 𝜉𝑛⟩ on 𝐼-coordinates.

The implication in one direction is an easy consequence of the result proven
in Section 7.3: Theorem 147 (p. 240) says that entropy is an expected value of
complexity, and any linear inequality that is true for complexities should be also
true for their expectations (with no error term, since the ration 𝑂(log𝑁)/𝑁 tends
to 0 as 𝑁 → ∞.

More precisely, let 𝜉𝑖 is a random variable with values in some finite set 𝑋𝑖.
Then the value of random vector 𝜉 = ⟨𝜉1, . . . , 𝜉𝑛⟩ can be represented by a column
of height 𝑛. To apply Theorem 147, consider 𝑁 independent variables distributed
as 𝜉. Together they form a random variable that we denote by 𝜉𝑁 . Its values are
matrices having 𝑁 columns and 𝑛 rows. Theorem 147 says that the expected value
of the complexity of this matrix is 𝑁𝐻(𝜉) +𝑂(log𝑁) (we spoke there about prefix
complexity and had 𝑁 as a condition, but with 𝑂(log 𝑛)-precision this does not
matter).

We can consider this matrix as a tuple of rows: 𝑖-th row is a string of length
𝑁 over the alphabet 𝑋𝑖. We can apply Theorem 147 not only to the entire matrix,
but also to selected rows indexed by 𝑖 ∈ 𝐼, where 𝐼 is some subset of {1, 2, . . . , 𝑛}.
The expected complexity of this part of the matrix is 𝑁𝐻(𝜉𝐼) + 𝑂(log𝑁).

If the inequality ∑︁
𝐼

𝜆𝐼𝐶(𝑥𝐼) 6 𝑂(log𝑁)

is true for all tuples 𝑥1, . . . , 𝑥𝑛, it can be applied to the rows of our matrix. So,
taking the averages, we get ∑︁

𝐼

𝜆𝐼𝑁𝐻(𝜉𝑖) 6 𝑂(log𝑁).

10.1. INTRODUCTION AND SUMMARY 325

The left hand side is (︃∑︁
𝐼

𝜆𝐼𝐻(𝜉𝑖)

)︃
·𝑁,

so this is possible only if ∑︁
𝐼

𝜆𝐼𝐻(𝜉𝑖) 6 0,

as we claimed.
The other direction is much less trivial. We want to show that if the inequality

is true for entropies, it should be true for complexities with logarithmic error. Here
some string 𝑥1, . . . , 𝑥𝑛 are given, and we need to construct a family of random
variables whose entropies (and the entropies of their combinations) are close to the
complexities, so we can apply the inequality for entropies. This can be done by a
“typization trick” suggested by A. Romashchenko: we consider the set of all tuples
of strings 𝑥′

1, . . . , 𝑥
′
𝑛 whose complexities and conditional complexities are bounded

by the corresponding complexities of 𝑥1, . . . , 𝑥𝑛, and take a random element of
this set (with uniform distribution). See below Section 10.6 (Theorem 212) for the
details.

Further results are related (in different ways) with the combinatorial interpre-
tation of inequalities. Let us start with a simple inequality

𝐶(𝑥1, 𝑥2) 6 𝐶(𝑥1) + 𝐶(𝑥2) + 𝑂(log𝑁)

and try to understand its combinatorial meaning. Let 𝑋1 and 𝑋2 be finite sets
whose elements 𝑥1 ∈ 𝑋1 and 𝑥2 ∈ 𝑋2 can be considered as messages. Assume
the we have a set 𝐴 ⊂ 𝑋1 × 𝑋2 whose elements are possible pairs of messages.
Then we have |𝐴| possibilities for the pair (here |𝐴| stands for the cardinality of
𝐴). For the first component the number of possibilities is equal to the size of the
first projection of 𝐴 (the set of 𝑥1 such that ⟨𝑥1, 𝑥2⟩ ∈ 𝐴 for some 𝑥2). Denoting
this number by 𝑚(1) and the similar number for the other coordinate by 𝑚(2), we
can write a combinatorial version of the same inequality:

log |𝐴| 6 log𝑚(1) + log𝑚(2);

or
|𝐴| 6 𝑚(1)𝑚(2)

(the size of a set is bounded by the product of sizes of its projections, an evident
observation).

To see a less trivial example, consider the inequality for complexities from
Theorem 26; similar inequality for entropies is considered in Problem 230):

2𝐶(𝑥1, 𝑥2, 𝑥3) 6 𝐶(𝑥1, 𝑥2) + 𝐶(𝑥1, 𝑥3) + 𝐶(𝑥2, 𝑥3) + 𝑂(log𝑁).

Using our analogy, we guess that for arbitrary subset 𝐴 of the Cartesian product
𝑋1 ×𝑋2 ×𝑋3 the following inequality holds:

2 log |𝐴| 6 log𝑚(1, 2) + log𝑚(1, 3) + log𝑚(2, 3)

(here 𝑚(𝑖, 𝑗) is the number of elements in the projection of 𝐴 onto 𝑋𝑖×𝑋𝑗 , Figure 1),
or

|𝐴|2 6 𝑚(1, 2)𝑚(1, 3)𝑚(2, 3).

And indeed this is true; moreover, this inequality can be deduced from the
inequality about complexities using the following simple argument. For an integer

326 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

1

2

3

𝑚(1, 2)

𝑚(1, 3)

𝑚
(2
, 3

)

Figure 1. Three projections.

𝑁 consider the set 𝐴𝑁 ; we represent elements ⟨𝑥1, 𝑥2, 𝑥3⟩ ∈ 𝐴 as columns of height
3, so every element of 𝐴𝑁 can be represented as a matrix of width 𝑁 and height 3.
There are |𝐴|𝑁 matrices in 𝐴𝑁 , so among them there is a matrix of complexity at
least log |𝐴|𝑁 = 𝑁 log𝐴. Such a matrix is a triple of strings ⟨�̄�2, �̄�2, �̄�3⟩ of length
𝑁 (its rows), and we can apply the inequality for complexities:

2𝐶(�̄�1, �̄�2, �̄�3) 6 𝐶(�̄�1, �̄�2) + 𝐶(�̄�1, �̄�3) + 𝐶(�̄�2, �̄�3) + 𝑂(log𝑁).

Note that the complexities in the right hand side are bounded. For example, the
pair ⟨�̄�1, �̄�2⟩, a matrix of width 𝑁 and height 2, is a 𝑁 -tuple of its columns. Each
column is an element of the projection of 𝐴 onto coordinates (1, 2), so the matrix
is a string of length 𝑁 over an alphabet of size 𝑚(1, 2). Therefore its complexity
(given 𝑁 and 𝐴) is bounded by 𝑁 log𝑚(1, 2) + 𝑂(1). The set 𝐴 does not depend
on 𝑁 , and the complexity of 𝑁 is 𝑂(log𝑁), so we get

𝑁 log |𝐴| 6 𝑁 log𝑚(1, 2) + 𝑁 log𝑚(1, 3) + 𝑁 log𝑚(2, 3) + 𝑂(log𝑁),

which is possible for arbitrarily large 𝑁 only if

2 log |𝐴| 6 log𝑚(1, 2) + log𝑚(1, 3) + log𝑚(2, 3).

281 Prove the same inequality for sets starting with the inequality

2𝐻(𝜉1, 𝜉2, 𝜉3) 6 𝐻(𝜉1, 𝜉2) + 𝐻(𝜉1, 𝜉3) + 𝐻(𝜉2, 𝜉3)

for entropies. [Hint: consider a triple uniformly distributed in 𝐴 and recall the the
entropy of every random variable is bounded by the log-size of its range.]

282 Give a direct proof of the same inequality without using complexities or
entropies. [Hint: It can be derived from the inequality of Theorem 164.]

This inequality can be used to show that the number of triangles in a graph
with 𝑉 edges is 𝑂(𝑉 1.5).

A similar argument can be applied to arbitrary linear inequality for complexites
that has only one term in the left-hand side (says that some complexity is bounded
by a positive linear combination of some other complexities). One can also extend

10.1. INTRODUCTION AND SUMMARY 327

this argument to inequalities that have conditional complexities in the right hand
side. For example, the inequality

𝐶(𝑥1, 𝑥2) 6 𝐶(𝑥1) + 𝐶(𝑥2 |𝑥1)

corresponds the (evident) combinatorial statement

𝑚(1, 2) 6 𝑚(1) ·𝑚(2 |1)

valid for arbitrary set 𝐴 ⊂ 𝑋1 × 𝑋2, where by 𝑚(1, 2) we mean the number of
elements in 𝐴, by 𝑚(1) we mean the number of elements in the first projection of
𝐴, and by 𝑚(2 |1) we mean the maximal size of all sections of 𝐴 obtained when the
first coordinate is fixed.

Let us explain informally why this inequality is a natural combinatorial coun-
terpart for the inequality about complexities. The “combinatorial amount of infor-
mation” in 𝑥1 is log𝑚(1); for a fixed value of 𝑥1 we have at most 𝑚(2 |1) possible
values of 𝑥2, so the amount of information in 𝑥2 given 𝑥1 is (from the combinato-
rial viewpoint) bounded by log𝑚(2 |1). And the amount of information in a pair
⟨𝑥1, 𝑥2⟩ ∈ 𝐴 we measure as log𝐴 = log𝑚(1, 2).

283 Show that every linear inequality of the form 𝐿 6 𝑅 where 𝐿 and 𝑅 are
positive linear combinations of (conditional or unconditional) complexities, and 𝐿
has only one term, corresponds to a (true) combinatorial inequality.

We can describe completely the inequalities of that type that do not include
conditional complexities. Consider an inequality

𝐶(𝑥1, . . . , 𝑥𝑛) 6
∑︁
𝐼

𝜆𝐼𝐶(𝑥𝐼) + 𝑂(log𝑁), (*)

where all the coefficients in the right hand side are non-negative, the sum is taken
over nonempty 𝐼 except for 𝐼 = {1, 2, . . . , 𝑛}. (We can assume without loss of
generality that the left hand side includes all 𝑥𝑖: the if some 𝑥𝑗 is missing there,
we can delete 𝑥𝑗 everywhere the right hand side: replacing 𝑥𝑗 by the empty string,
we get a stronger inequality.)

Theorem 204. The inequality (*) holds if and only if for every 𝑖 ∈ {1, 2, . . . , 𝑛}
the sum of coefficients in the right hand side for the terms including 𝑥𝑖 is at least 1.

Proof. If the sum of coefficients is less than 1, the inequality is false even for
the case when all strings except 𝑥𝑖 are empty.

Assume now that for all 𝑖 the sum of coefficients near terms that contain 𝑥𝑖 is
at least 1. Represent each term as a sum of conditional probabilities: for example,

𝐶(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛)

becomes now

𝐶(𝑥1) + 𝐶(𝑥2 |𝑥1) + 𝐶(𝑥3 |𝑥1, 𝑥2) + . . . + 𝐶(𝑥𝑛 |𝑥1, . . . , 𝑥𝑛−1).

In all the terms (in the left and in the right hand sides) we use the same ordering
(increasing indices, as in this example). Look at the terms 𝐶(𝑥𝑖 | . . .) with some
conditions in the left hand side and in the right hand side. On the left we use
all preceding variables as conditions, and on the right some terms may have less
conditions. But the complexity may only increase when a condition is deleted,
and it remains to recall that the sum of coefficients in the right hand side is at
least 1. �

328 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

284 Prove that for prefix complexity the inequalities from the previous the-
orem are true with 𝑂(1)-precision (better that 𝑂(log 𝑛) precision that we usually
have for strings of length 𝑛). [Hint: The argument above shows that this inequality
is a linear combination of basic inequalities, and the latter are true with 𝑂(1)-
precision for prefix complexity (Theorem 70, p. 124). Indeed, if we (temporarily)
redefine prefix complexity as 𝐾(𝑢 |𝑣) = 𝐾(𝑢, 𝑣) − 𝐾(𝑣), then the inequalities of
type 𝐾(𝑧 |𝑥, 𝑦) 6 𝐾(𝑧) are reduced to basic inequalities.]

However, we want to understand the combinatorial meaning of arbitrary linear
inequalities (and not only ones with one term in the left-hand side). To understand
what is the problem, let us consider an example: the basic inequality

𝐶(𝑥1) + 𝐶(𝑥1, 𝑥2, 𝑥3) 6 𝐶(𝑥1, 𝑥2) + 𝐶(𝑥1, 𝑥3) + 𝑂(log𝑁).

The näıve idea is to write a combinatorial inequality in the same way as before and
hope that for every 𝐴 ⊂ 𝑋1 ×𝑋2 ×𝑋3 the following inequality holds:

𝑚(1) ·𝑚(1, 2, 3) 6 𝑚(1, 2) ·𝑚(1, 3).

This is not the case. This inequality is indeed true for every parallelepiped 𝑎× 𝑏× 𝑐
where 𝑚(1) = 𝑎, 𝑚(1, 2, 3) = 𝑎𝑏𝑐, 𝑚(1, 2) = 𝑎𝑏, and 𝑚(1, 3) = 𝑎𝑐. But if we add to
this parallelepiped another one, 𝑎′×1×1, where 𝑎′ ≫ 𝑎, then the values of 𝑚(1, 2),
𝑚(1, 3), and 𝑚(1, 2, 3) remain almost unchanged while 𝑚(1) increases significantly,
so the inequality may become false.

Another example: consider the reverse inequality for the complexity of a pair:

𝐶(𝑥1) + 𝐶(𝑥2 |𝑥1) 6 𝐶(𝑥1, 𝑥2) + 𝑂(1).

What statement is its combinatorial translation? Again, the näıve attempt is to
consider the inequality

𝑚(1) ·𝑚(2 |1) 6 𝑚(1, 2),

but it does not work: the ratio 𝑚(1, 2)/𝑚(1) is an average size of a (non-empty)
section, and this average size can be much smaller than the maximal size 𝑚(2 |1).

So we now see the problem; what can be done? There are several possibilities.
First, one may consider not arbitrary sets but some special (“uniform” or “almost
uniform”) sets, where this problem does not appear. The other approach is to find a
better combinatorial translation of the inequalities. Both approches are considered
later; we start with the first one (uniform sets).

10.2. Uniform sets

Let us recall the notation used. Let 𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛 be a non-empty subset
of a Cartesian product of 𝑛 finite sets 𝑋1, . . . , 𝑋𝑛. For every set 𝐼 ⊂ {1, . . . , 𝑛} of
indices we consider the projection of 𝐴 onto corresponging coordinates, which is a
subset of

∏︀
𝑖∈𝐼 𝑋𝑖. The size of this projection is denoted by 𝑚𝐴(𝐼). We consider

not only projections, but also their section. Let 𝐼 and 𝐽 be two disjoint set of
indices. Let us fix 𝐼-coordinates in some way (by selection a point in

∏︀
𝑖∈𝐼 𝑋𝑖) and

consider the set of all 𝐽-coordinates of points in 𝐴 with given 𝐼-coordinates. So for
every point in

∏︀
𝑖∈𝐼 𝑋𝑖 we get some subset of

∏︀
𝑗∈𝐽 𝑋𝑗 . The maximal size of these

subsets is denoted by 𝑚𝐴(𝐽 |𝐼). (If the set 𝐴 is clear from the context, we omit the
subscript 𝐴 in this notation.)

We assume (as usual) that 𝑚(∅) = 1 and 𝑚(∅ |𝐽) = 1 for every 𝐽 . On the
other hand, we define 𝑚(𝐼 |∅) as 𝑚(𝐼).

For example, consider a set 𝐴 ⊂ 𝑋1 ×𝑋2 (Figure 2).

10.2. UNIFORM SETS 329

1

2

𝑚(1)

𝑚(2|1)

Figure 2. A two-dimensional set and its parameters.

Then 𝑚𝐴({1}) is the cardinality of the projection of 𝐴 onto a horizontal axis,
𝑚𝐴({2} is the size of the vertical projection, 𝑚𝐴({2}|{1}) is the maximal size of
the vertical section, and 𝑚𝐴({1}|{2}) is the maximal size of the horizontal section.
The total number of elements in the set is 𝑚𝐴({1, 2}).

We can write the following (obvious) inequality:

𝑚(1, 2) 6 𝑚(1) ·𝑚(2 |1)

(we omit the subscript 𝐴 and curly brackets for bravity). Indeed, each of 𝑚(1)
vertical sections contains at most 𝑚(2 |1) elements.

For a 𝑛-dimensional set a similar inequality says that

𝑚(1, 2, . . . , 𝑛) 6 𝑚(1) ·𝑚(2 |1) ·𝑚(3 |1, 2) · . . . ·𝑚(𝑛 |1, 2, . . . , 𝑛− 1).

It is true for the same reasons: for each of 𝑚(1) possible values of the first coordinate
there is at most 𝑚(2 |1) values of the second coordinate; for each pair there is at
most 𝑚(3 |1, 2) values of the third coordinate and so on. The same inequality is
true for every permutation (𝑘1, . . . , 𝑘𝑛) of (1, 2, . . . , 𝑛):

𝑚(𝑘1, . . . , 𝑘𝑛) 6 𝑚(𝑘1) ·𝑚(𝑘2 |𝑘1) ·𝑚(𝑘3 |𝑘1, 𝑘2) · . . . ·𝑚(𝑘𝑛 |𝑘1, . . . , 𝑙𝑛−1)

the left hand side remains the same (the cardinality of 𝐴).
Now we are ready to give the definition of a uniform set. A set 𝐴 is uniform

if all these inequalities (for all 𝑛! permutations of the set of indices) are equalities.
The simplest example of a uniform set is a (combinatorial) parallelepiped, i.e., the
set 𝐴1 × . . .×𝐴𝑛 for some 𝐴𝑖 ⊂ 𝑋𝑖.

However, there are other examples of uniform sets. For example, Figure 3
shows a uniform sets of 6 elements (all non-zero sections have two elements and
both projections have three).

Figure 3. A uniform set.

330 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

Let 𝐼, 𝐽,𝐾 be the disjoint set of indices. Then for arbitrary 𝐴 the following
inequality holds:

𝑚(𝐽 ∪𝐾 |𝐼) 6 𝑚(𝐽 |𝐼) ·𝑚(𝐾 |𝐼 ∪ 𝐽)

(for each combination of 𝐼-coordinates there are at most 𝑚(𝐽 |𝐼) combinations of
𝐽-coordinates, and for each of them there are at most 𝑚(𝐾 |𝐼 ∪ 𝐽) combinations
for 𝐾-coordinates.

We can use this inequality to prove the inequality considered earlier

𝑚(𝑘1, . . . , 𝑘𝑛) 6 𝑚(𝑘1) ·𝑚(𝑘2 |𝑘1) ·𝑚(𝑘3 |𝑘1, 𝑘2) · . . . ·𝑚(𝑘𝑛 |𝑘1, . . . , 𝑙𝑛−1),

(which is evident anyhow, but let us continue the argument, it will soon become
clear why we do this) by grouping factors in the right hand side. For example, the
product

𝑚(𝑘3 |𝑘1, 𝑘2) ·𝑚(𝑘4 |𝑘1, 𝑘2, 𝑘3)

is at least
𝑚(𝑘3, 𝑘4 |𝑘1, 𝑘2),

then the product
𝑚(𝑘2 |𝑘1) ·𝑚(𝑘3, 𝑘4 |𝑘1, 𝑘2)

can be replaced (without increase) by

𝑚(𝑘2, 𝑘3, 𝑘4 |𝑘1)

and so on, until we get the left hand side. For a uniform set, therefore, all these
inequalites are equalities (since the first and last terms in the chain of inequalities
are equal). Now we conclude that for uniform sets the inequality

𝑚(𝐽 ∪𝐾 |𝐼) 6 𝑚(𝐽 |𝐼) ·𝑚(𝐾 |𝐼 ∪ 𝐽)

turns into equality for all 𝐼, 𝐽,𝐾: we can find a chain of inequalities where this
inequality appears. The equation

𝑚(𝐽 ∪𝐾 |𝐼) = 𝑚(𝐽 |𝐼) ·𝑚(𝐾 |𝐼 ∪ 𝐽)

can be therefore considered as an (equivalent) definition of uniform sets: we require
it to be true for every disjoint sets 𝐼, 𝐽,𝐾of indices.

285 Following this argument, give a complete proof that the property above
is an equivalent definition of uniform sets.

286 Prove that a projection of a uniform set on every subset of coordinates
is again a uniform set.

287 Prove that every section of a uniform set (we fix some coordinate and
consider the set of possible values of all other coordinates) is again a uniform set.

Uniform sets are important as sources of random variables. Consider a uniform
set 𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛 and a random point that is uniformly distributed in 𝐴. Its
projection onto 𝑖-th coordinate is a random variable with values in 𝑋𝑖; we denote
this variable by 𝜉𝑖.

Theorem 205. A set 𝐴 is uniform if and only if for every 𝐼 = {𝑖1, . . . , 𝑖𝑘} the
random variable 𝜉𝐼 = ⟨𝜉𝑖1 , . . . , 𝜉𝑖𝑘⟩ has uniform distribution on its range.

10.3. A CONSTRUCTION OF A UNIFORM SET 331

Proof. Let 𝐼 be some set of indices and let 𝐽 be its complement (the difference
between {1, 2, . . . , 𝑛} and 𝐼. Then the equality

𝑚(1, 2, . . . , 𝑛) = 𝑚(𝐼) ·𝑚(𝐽 |𝐼)

means that that the average size of a (non-empty) section obtained by fixing 𝐼-
coordinates, i.e., 𝑚(1, 2, . . . , 𝑛)/𝑚(𝐼), is equal to its maximal size 𝑚(𝐽 |𝐼), so all
the sections have the same size. And this means that all the values of 𝜉𝐼 are
equiprobable.

On the other hand, assume that for some set 𝐴 for every set 𝐼 of indices all
the values of 𝜉𝐼 are equiprobable. In particular, for 𝐼 = {1, . . . , 𝑛− 1} we get that
all (non-empty) sections obtained by fixing first 𝑛 − 1 coordinates, have the same
size, so

𝑚(1, 2, . . . , 𝑛) = 𝑚(𝑛 |1, 2, . . . , 𝑛− 1) ·𝑚(1, 2, . . . , 𝑛− 1). (*)

Moreover, since the random variable ⟨𝜉1, 𝜉2, . . . , 𝜉𝑛−1⟩ is uniformly distributed in
the projection of the set 𝐴 to coordinates 1, 2, . . . , 𝑛 − 1, we get the same picture
for this projection: 𝜉1, . . . , 𝜉𝑛−1 are random variables obtained by projection of a
point uniformly distributed in this set. Using induction, we may assume that this
set is uniform. Then the equation (*) can be continued:

𝑚(1, 2, . . . , 𝑛) =

= 𝑚(𝑛 |1, 2, . . . , 𝑛− 1) ·𝑚(𝑛− 1 |1, 2, . . . , 𝑛− 2) · . . . ·𝑚(3 |1, 2) ·𝑚(2 |1) ·𝑚(1).

The same argument can be applied for every ordering of coordinates, so we conclude
that 𝐴 is uniform according to our definition. �

Corollary. For the random variables 𝜉1, . . . , 𝜉𝑛 constructed in this way the
entropy of the tuple 𝜉𝐼 equals log𝑚(𝐼) (for every 𝐼 ⊂ {1, 2, . . . , 𝑛}).

So we conclude that the following statement is true:

Theorem 206. Every linear inequality that is true for entropies is also true
for the log-sizes of projections for uniform sets.

For example, if 𝐴 ⊂ 𝑋1 ×𝑋2 ×𝑋3 is uniform, then the inequality

𝑚(1) ·𝑚(1, 2, 3) 6 𝑚(1, 2) ·𝑚(1, 3)

holds, since it corresponds to the basic inequalities for complexities and entropies
(Theorem 24). Note that (as we have discussed) this inequality is false for some
non-uniform sets.

In the next section, following [37], we prove a reverse statement; starting from a
tuple of random variables, we find a uniform set for which the log-sizes of projections
are (almost) proportional to the entropies of the corresponding groups of variables.

10.3. A construction of a uniform set

Assume that we have some tuple of (dependent) random variables 𝜂1, . . . , 𝜂𝑛; all
of them have finite range. We want to construct a uniform set 𝐴 whose projection
sizes (their logarithms) are proportional to the entropies of 𝜂𝐼 . The ideal situation:

log𝑚𝐴(𝐼) = 𝐻(𝜂𝐼)

for all 𝐼 ⊂ {1, . . . , 𝑛}. Then we would conclude immediately that every inequality
that is true for the (log-sizes of the) projections of uniform sets, is true for arbitrary
random variables.

332 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

Of course, this requirement is too restrictive: the entropies in general are not
logarithms of integer numbers. But if we are interested in linear inequalities, it
is enough if the log-sizes are proportional to entropies, or approximately propor-
tional to them. To achieve this, we consider first the case when the probabilities
of all values of ⟨𝜂1, . . . , 𝜂𝑛⟩ are rational. This is enough to conclude that the lin-
ear inequalities for entropies and log-sizes are the same (the rational numbers are
dense, and every distribution can be approximated by a distribution with rational
probabilities, while the entropy is a continuous function of the distribution).

Assume that a tuple of random variables 𝜂1, . . . , 𝜂𝑛 is given. Each value of
this tuple is a column of height 𝑛. Each column has (we assume) some rational
probability. Let 𝑁 be a common denominator for all the probabilities. Consider a
matrix with 𝑁 columns where the columns appear with given probabilities, so our
tuple can be obtained by taking at random a column from this matrix.

Let us consider the rows of this matrix; 𝑖-th row is a string of length 𝑁 over
an alphabet whose letters are possible values of 𝜉𝑖. Denote the set of all strings of
length 𝑁 in this alphabet by 𝑋𝑖. (The length 𝑁 is fixed, so we do not include 𝑁
in the notation). Then the entire matrix is an element of 𝑋1 × . . .×𝑋𝑛.

Consider now all matrices that can be obtained from this one by a permutation
of columns. In other terms, consider all matrices of width 𝑁 where the frequencies
of all the columns are exactly the same as in our matrix, i.e., correspond to the
distribution of the tuple 𝜂1, . . . , 𝜂𝑛. We get some set 𝑈 ⊂ 𝑋1 × . . . × 𝑋𝑛. Let us
show that this is a uniform set with the required sizes of all the projections.

First, let us note that every element of 𝑈 is obtained from the original table
by some permutation of columns. If we take a random permutation (all 𝑁 ! permu-
tations are equiprobable), the probability to get a given element of a set 𝑈 does
not depend on the element. (Indeed, the number of permutations that give this
element is equal to the number of permutations that keep this element unchanged,
and this depends only on the multiplicities of different columns and not on their
positions).

This property remains true if we delete some rows from the table. Therefore,
the projection of a random point in 𝑈 on arbitrary subset of coordinates is also
uniformly distributed, so the set 𝑈 is uniform.

Now we need to estimate the sizes of projections. First, let us find the size of
the set itself. Assume that the matrix has 𝑚 different columns that appear in it
with probabilities 𝑞1, . . . , 𝑞𝑚. Then the number of matrices that can be obtained
by permutations of columns, is equal to

𝑁 !

(𝑞1𝑁)! (𝑞2𝑁)! . . . (𝑞𝑚𝑁)!
,

and its logarithm is (by Stirling’s formula)

𝑁ℎ(𝑞1, . . . , 𝑞𝑚) + 𝑂(log𝑁),

where ℎ(𝑞1, . . . , 𝑞𝑚) =
∑︀

𝑞𝑖(− log 𝑞𝑖) is the Shannon entropy of a random vari-
able that has 𝑚 values with probabilities, 𝑞1, . . . , 𝑞𝑚, i.e., the Shannon entropy
of ⟨𝜂1, . . . , 𝜂𝑛⟩. So the log-size of 𝑈 is (approximately) 𝑁 times bigger than the
entropy of ⟨𝜂1, . . . , 𝜂𝑛⟩, and the same can be said about every projection of the set
(and the corresponding projection of the random variable).

If a linear inequality is true for log-sizes of the projection of all uniform set, it
will be true for the set 𝑈 . Increasing 𝑁 (we can multiply 𝑁 by a integer factor)

10.4. UNIFORM SETS AND ORBITS 333

and taking the limit (as 𝑁 → ∞), we conclude that the same inequality is true for
all random variables with rational probabilities. By continuity it is true for every
probability distribution, and we get the following result [37]:

Theorem 207 (Chan–Yeung). Every linear inequality that is true for log-sizes
of the projections of the uniform sets is also true for entropies of arbitrary random
variables.

10.4. Uniform sets and orbits

Let us think again about the construction of the previous section. How do we
get a uniform set? Usually uniformity is a byproduct of some algebraic structure on
the objects considered. Such a structure indeed can be found in our construction.

Namely, we have a permutation group 𝑆𝑁 and its action on the columns of the
matrix. The uniform set is an orbit of some point (and contains all the matrices with
the same frequencies). This is a special case of the following situation. Consider
some finite group 𝐺 and some its actions on finite sets 𝑋1, . . . , 𝑋𝑛. Together they
define an action of 𝐺 on 𝑋1× . . .×𝑋𝑛. Consider and arbitrary point ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈
𝑋1 × . . .×𝑋𝑛 and its orbit 𝑈 (for this action).

Theorem 208. The set 𝑈 is a uniform subset of 𝑋1 × . . .×𝑋𝑛.

Proof. Let us consider all elements of 𝐺 as equiprobable. Consider the action
of a random element of 𝐺 on the point 𝑥 = ⟨𝑥1, . . . , 𝑥𝑚⟩; the image is a random
variable whose range is the orbit of 𝐺. All the values of these random variables are
equiprobable. Indeed, the elements of 𝐺 that map a given point 𝑥 to a given point
𝑦, form a coset of a stabilizer subgroup of the point 𝑥 (that contains the group
elements that map 𝑥 to itself), and all the cosets have the same size.

The same is true for every subset of the set of indices, so a random element of
𝑈 has to same chances to be projected onto all points (of the projection of 𝑈), so
the set 𝑈 is uniform. �

How can we rewrite the inequalities for the sizes of projections in terms of the
size of the group and its subgroups? The orbit 𝑈 has size |𝐺|/|𝑆| where 𝑆 is the
stabilizer of the point 𝑥. This stabilizer (for our action) is the intersection of the
stabilizers of 𝑥1, . . . , 𝑥𝑛. The same can be said for every set 𝐼 of indices: the size
of the projection of 𝑈 on indices {𝑖1, 𝑖2, . . .} is the ratio |𝐺|/|𝑆𝑖1 ∩ 𝑆𝑖2 ∩ . . . | where
𝑆𝑗 is the stabilizer of 𝑥𝑗 . Note that we can go in the other direction: arbitrary
subgroup 𝐻 of 𝐺 is the stabilizer of some point in the action of 𝐺 on the cosets of
𝐻. In this way every inequality for the projections of uniform sets translates to an
inequality about the sizes of subgroups and their intersections.

For example, the inequaliry 𝑚(1, 2) 6 𝑚(1) ·𝑚(2) gives the following inequality
that is valid for arbitrary subgroups 𝐻1 and 𝐻2 of an arbitrary finite group 𝐺:

|𝐺|
|𝐻1 ∩𝐻2|

6
|𝐺|
|𝐻1|

· |𝐺|
|𝐻2|

,

or |𝐻1 ∩𝐻2| > |𝐻1| · |𝐻2|/|𝐺|.
More interesting inequality 𝑚(1, 2, 3)2 6 𝑚(1, 2)𝑚(1, 3)𝑚(2, 3) gives the fol-

lowing inequality

|𝐻1 ∩𝐻2 ∩𝐻3|2 > |𝐻1 ∩𝐻2| · |𝐻1 ∩𝐻3| · |𝐻2 ∩𝐻3|/|𝐺|
for arbitrary finite group 𝐺 and its subgroups 𝐻1, 𝐻2, 𝐻3.

334 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

The proof of Theorem 207 shows that the reverse statement is true: every
inequality for the size of a group and its subgroups (that contains the products
of them with some exponents) can be translated into an inequality for arbitrary
random variables, since we may approximate a random variable by the action of
the permutation group. We get the following surprising result [37]:

Theorem 209 (Chan–Yeung). Every linear equality for the entropies of random
variables translates into an inequality for the sizes of the group and its subgroups,
and vice versa.

10.5. Almost uniform sets

Recall that a set 𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛 is uniform if the inequaility

𝑚(𝑘1, . . . , 𝑘𝑛) 6 𝑚(𝑘1) ·𝑚(𝑘2 |𝑘1) ·𝑚(𝑘3 |𝑘1, 𝑘2) · . . . ·𝑚(𝑘𝑛 |𝑘1, . . . , 𝑘𝑛−1)

(that is true for all sets) turn out to be an equality for every permutation 𝑘1, . . . , 𝑘𝑛
of {1, 2, . . . , 𝑛}. Now consider a weaker requirement and say that 𝐴 is 𝑐-uniform if
the ratio between two sides of this inequality is bounded by 𝑐 (for every permuta-
tion). So 1-uniform sets are uniform sets as defined above.

Many properties of uniform sets are still true (up to some error factor) for
almost uniform sets.

Theorem 210. Let 𝐴 be a 𝑐-uniform set.
(a) Let 𝐼, 𝐽,𝐾 be disjoint sets of indices. The right hand side in the inequality

𝑚(𝐽 ∪𝐾 |𝐼) 6 𝑚(𝐽 |𝐼) ·𝑚(𝐾 |𝐼 ∪ 𝐽)

(it is true for every set 𝐴) exceeds the left hand side at most by a factor 𝑐.
(b) The projection of 𝐴 onto arbitrary set of coordinates is a 𝑐-uniform set.
(c) Let 𝐴′ be a subset of 𝐴 that contains at least 𝜀-fraction of elements of 𝐴.

Then 𝐴′ is 𝑐/𝜀-uniform.
(d) Let 𝜉 be a random variable uniformly distributed in 𝐴, and let 𝐼 be a

set of coordinates. Then its projection 𝜉𝐼 on 𝐼-coordinates has entropy between
log𝑚(𝐼) − log 𝑐 and log𝑚(𝐼).

(e) Let 𝐼 and 𝐽 be disjoint sets of coordinates. Then 𝐻(𝜉𝐽 |𝜉𝐼) is between
log𝑚(𝐽 |𝐼) − log 𝑐 and log𝑚(𝐽 |𝐼).

Proof. (a) We can group the factors in the right hand side of the inequality

𝑚(𝑘1, . . . , 𝑘𝑛) 6 𝑚(𝑘1) ·𝑚(𝑘2 |𝑘1) ·𝑚(𝑘3 |𝑘1, 𝑘2) · . . . ·𝑚(𝑘𝑛 |𝑘1, . . . , 𝑘𝑛−1)

using the inequality

𝑚(𝐽 |𝐼) ·𝑚(𝐾 |𝐼 ∪ 𝐽) > 𝑚(𝐽 ∪𝐾 |𝐼)

for some 𝐼, 𝐽 and 𝐾. The product decreases at each step, and at the end we get
the left hand side. If the initial inequality was an equality up to a 𝑐-factor, the
same is true for the inequalities used at each step. And the ordering of coordinates
can be chosen in such a way that this process goes through every triple 𝐼, 𝐽,𝐾.

(b) By assumption

𝑚(𝑛 |1, . . . , 𝑛− 1) ·𝑚(𝑛− 1 |1, . . . , 𝑛− 2) · . . . ·𝑚(2 |1) ·𝑚(1) 6 𝑐𝑚(1, . . . , 𝑛)

and this inequality can be continued:

𝑐𝑚(1, . . . , 𝑛) 6 𝑐𝑚(𝑛 |1, . . . , 𝑛− 1) ·𝑚(1, . . . , 𝑛− 1).

10.6. TYPIZATION TRICK 335

Canceling the terms 𝑚(𝑛 |1, . . . , 𝑛 − 1) in both sides, we see that the projection
onto 1, 2, . . . , 𝑛− 1 is 𝑐-uniform (and we can do the same for every group of 𝑛− 1
coordinates). Then we can delete one more coordinate, etc.

(c) The maximal sizes of the sections for a subset do not exceed the correspond-
ing sizes for the entire set, and the size of the entire set is multiplied by 𝜀, so the
constant 𝑐 can be replaced by 𝑐/𝜀.

(d) The random variable 𝜉𝐼 has 𝑚(𝐼) different values, so its entropy is bounded
by log𝑚(𝐼). On the other hand, let 𝐽 = {1, 2, . . . , 𝑛} ∖ 𝐼. Then

𝑚(𝐼) ·𝑚(𝐽 |𝐼) 6 𝑐𝑚(1, 2, . . . , 𝑛),

so every value of 𝜉𝐼 has probability at most

𝑚(𝐽 |𝐼)/𝑚(1, 2, . . . , 𝑛) 6 𝑐/𝑚(𝐼),

and the entropy is at least log𝑚(𝐼) − log 𝑐.
(e) Let us compare the equality

𝐻(𝜉1, . . . , 𝜉𝑛) = 𝐻(𝜉𝑛 |𝜉1, . . . , 𝜉𝑛−1) + 𝐻(𝜉𝑛−1 |𝜉1, . . . , 𝜉𝑛−2) + . . .

. . . + 𝐻(𝜉2 |𝜉1) + 𝐻(𝜉1)

and the inequality

log𝑚(1, . . . 𝑛) 6 log𝑚(𝑛 |1, . . . , 𝑛− 1) + log𝑚(𝑛− 1 |1, . . . , 𝑛− 2) + . . .

. . . + log𝑚(2 |1) + log𝑚(1).

The left hand sides are the same, since 𝜉 is uniformly distributed in 𝐴. Each entropy
term in the first inequality is bounded by the corresponding logarithm in the second
inequality (the conditional entropy is the average of entropies for all possible values
of the condition, and each entropy in this average is bounded by the log-size of
the range). Since 𝐴 is 𝑐-uniform, both sides of the inequality differ at most by
log 𝑐. Therefore, each entropy can differ from the corresponding log-size at most
by log 𝑐. Bu grouping the terms in these two sums (after a suitable permutation of
coordinates) we can prove the inequality

log𝑚(𝐽 |𝐼) − log 𝑐 6 𝐻(𝜉𝐽 |𝜉𝐼) 6 log𝑚(𝐽 |𝐼)

for arbitrary disjoint set of indices 𝐼 and 𝐽 . �

An immediate corollary of the statements (d) and (e): if some linear inequality
is true for entropies, it is also true for log-sizes of corresponding projections and
sections of a 𝑐-uniform set with error term at most 𝜆 log 𝑐 where 𝜆 is the sum of
absolute values of all coefficients. (Increasing 𝑐, we allow less uniform sets, so the
error term increases.)

This property will be used in the next section when we start from a tuple
of strings, construct a 𝑐-uniform set and then consider the corresponding random
variables.

10.6. Typization trick

The following theorem starts from an arbitrary tuple of strings 𝑥1, . . . , 𝑥𝑛 and
constructs an almost uniform set 𝐴 in some Cartesian product 𝑋1 ×𝑋2 × . . .×𝑋𝑛

of finite sets 𝑋𝑖 such that log𝑚(𝐽 |𝐼) ≈ 𝐶(𝑥𝐽 |𝑥𝐼) with logarithmic precision:

336 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

Theorem 211 (A. Romashchenko). For every 𝑛 there exists a constant 𝑑 such
that the following holds: for every 𝑁 > 1 and for every strings 𝑥1, . . . , 𝑥𝑛 of
complexity at most 𝑁 there exists finite sets 𝑋1, . . . , 𝑋𝑛 and a 𝑁𝑑-uniform sub-
set 𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛 such that

|log𝑚(𝐽 |𝐼) − 𝐶(𝑥𝐽 |𝑥𝐼)| 6 𝑑 log𝑁

for every disjoint subsets 𝐼, 𝐽 ⊂ {1, . . . , 𝑛}.

Note that the sets 𝑋𝑖 are not really relevant here: we can speak instead about
a finite set of arbitrary 𝑛-tuples with the required size of projections and sections.
Note also that a strange condition 𝑁 > 1 is needed since for 𝑁 = 1 the bound 𝑁 𝑐

does not grow as 𝑐 increases.
The proof uses the notion of a complexity vector for a tuple of strings. For a

given tuple 𝑥1, . . . , 𝑥𝑛 the complexity vector is the list of all complexities 𝐶(𝑥𝐼 |𝑥𝐽)
for all pairs (𝐼, 𝐽) of disjoint subsets of the set of indices {1, . . . , 𝑛}. Note that the
length of this vector is exponential in 𝑛: there are 2𝑛−1 unconditional complexities
(where 𝐽 = ∅, and a lot of conditional ones. Let us denote the complexity vector
for 𝑥1, . . . , 𝑥𝑛 by κ(𝑥1, . . . , 𝑥𝑛).

Proof. Consider (for given 𝑥1, . . . , 𝑥𝑛) the set 𝐴(𝑥1, . . . , 𝑥𝑛) of all strings
𝑦1, . . . , 𝑦𝑛 such that

κ(𝑦1, . . . , 𝑦𝑛) 6 κ(𝑥1, . . . , 𝑥𝑛)

componentwise. For example, for 𝑛 = 1 this is the set of all strings of complexity
at most 𝐶(𝑥1). For 𝑛 = 2 we consider all pairs (𝑥1, 𝑥2) such that

𝐶(𝑦1) 6 𝐶(𝑥1), 𝐶(𝑦2) 6 𝐶(𝑥2),

𝐶(𝑦1, 𝑦2) 6 𝐶(𝑥1, 𝑥2), 𝐶(𝑦1 |𝑦2) 6 𝐶(𝑥1 |𝑥2), 𝐶(𝑦2 |𝑦1) 6 𝐶(𝑥2 |𝑥1).

The set 𝐴(𝑥1, . . . , 𝑥𝑛) is guaranteed to be non-empty: it contains ⟨𝑥1, . . . , 𝑥𝑛⟩. In
fact, it contains about 2𝐶(𝑥1,...,𝑥𝑛) elements. Indeed, this is an upper bound since
the complexity of all elements of this set is bounded by 𝐶(𝑥1, . . . , 𝑥𝑛). It remains
to show that this set cannot be much smaller.

Indeed, knowing the complexity vector κ(𝑥1, . . . , 𝑥𝑛), we can enumerate the
elements of 𝐴(𝑥1, . . . , 𝑥𝑛). To specify the complexity vector, we need 𝑂(log𝑁) bits.
(Note that the number of components in the complexity vector depends only on 𝑛,
so we consider it as a constant even though this constant grows exponentially in 𝑛.)
So every element of 𝐴(𝑥1, . . . , 𝑥𝑛) can be described by specifying (in addition to
the complexity vector) its ordinal number in the enumeration, and has complexity
at most

log |𝐴(𝑥1, . . . , 𝑥𝑛)| + 𝑂(log𝑁).

In particular, tihs is true for the initial tuple ⟨𝑥1, . . . , 𝑥𝑛⟩, so we get the required
bound for the cardinality.

Let us show now that the set 𝐴(𝑥1, . . . , 𝑥𝑛) is 𝑐-uniform for somce constant
𝑐 the depends polynomially on 𝑛. For that let us consider the both sides of the
inequality

𝑚(1, 2, . . . , 𝑛) 6 𝑚(1) ·𝑚(2 |1) ·𝑚(3 |1, 2) · . . . ·𝑚(𝑛 |1, 2, . . . , 𝑛− 1).

The logarithms of the factors in the right hand side do not exceed the corresponding
complexities: 𝑚(1) 6 2𝐶(𝑥1), since by construction we have 𝐶(𝑦1) 6 𝐶(𝑥1) for every
tuple ⟨𝑦1, . . . , 𝑦𝑛⟩ ∈ 𝐴(𝑥1, . . . , 𝑥𝑛) (to be exact, one should write 2𝐶(𝑥1)+1, but all
our estimates have logarithmic precision anyway). For the same reasons we have

10.6. TYPIZATION TRICK 337

𝑚(2 |1) 6 2𝐶(𝑥2 |𝑥1) and so on: we conclude that the logarithm of the right hand
side does not exceed

𝐶(𝑥1) + 𝐶(𝑥2 |𝑥1) + 𝐶(𝑥3 |𝑥1, 𝑥2) + . . . + 𝐶(𝑥𝑛 |𝑥1, . . . , 𝑥𝑛−1) + 𝑂(1),

and this sum is equal to 𝐶(𝑥1, . . . , 𝑥𝑛) + 𝑂(log𝑁). But we know also that the
logarithm of the left hand side is at least 𝐶(𝑥1, . . . , 𝑥𝑛)−𝑂(log𝑁), so the difference
between logarithms is 𝑂(log𝑁) and both sides differ at most by a polynomial (in
𝑁) factor. As a byproduct we conclude that

𝐶(𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1) = log𝑚(𝑖 |1, . . . , 𝑖− 1) + 𝑂(log𝑁),

and a similar argument (with the permuted indices and grouped terms) shows that

𝐶(𝑥𝐽 |𝑥𝐼) = log𝑚(𝐽 |𝐼) + 𝑂(log𝑁)

for every disjoint 𝐼 and 𝐽 . �

The construction used in the proof may be called a “typization trick”: starting
from a tuple, we construct the set where this tuple is “typical”.

Now it is easy to finish the proof of the promised result:

Theorem 212 (A. Romashchenko). Every linear inequality∑︁
𝐼

𝜆𝐼𝐻(𝜉𝐼) 6 0,

that is true for arbitrary random variables 𝜉1, . . . , 𝜉𝑛, is also true for strings of
complexity at most 𝑁 with 𝑂(log𝑁)-precision:∑︁

𝐼

𝜆𝐼𝐾(𝜉𝐼) 6 𝑂(log𝑁).

Here the constant hidden in 𝑂(log𝑁) depends on 𝑛 (and grows exponentially
as 𝑛 increases) but not on the strings 𝑥1, . . . , 𝑥𝑛.

Proof. The reverse implication (every inequality that is true for complexities,
is also true for entropies) was proven in Section 10.1.

Now we are ready to go in the other direction. Assume that this linear
inequality is true for entropies. Consider arbitrary strings 𝑥1, . . . , 𝑥𝑛 and the
set 𝐴 = 𝐴(𝑥1, . . . , 𝑥𝑛) from the previous theorem. Consider a random variable
⟨𝜉1, . . . , 𝜉𝑛⟩ that is uniformly distributed in 𝐴. Since the set 𝐴 is 𝑁 𝑐-uniform, the
entropies are 𝑂(log𝑁)-close to the sizes of the corresponding sections, as Theo-
rem 210 says. On the other hands, the logsizes log𝑚(𝐼 |𝐽) (even for conditional
case, though we need this only for 𝐽 = ∅) coincide with corresponding complexities
with 𝑂(log𝑁)-precision (Theorem 211). �

The linear inequalities (of the type considered) are universal formuli of some
language, so a natural question arises: is a similar result true for more complicated
statements, say, for ∀∃-formulas of the same language (defined in some natural
way)? The answer turns out to be negative, as shown in [140].

338 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

10.7. Combinatorial interpretation: examples

Let us recall the main idea of the combinatorial interpretation: the statement
“𝑥 has complexity at most 𝑛” is translated as “𝑥 belongs to the set of at most 2𝑛

elements”.1 (Since the complexity is defined up to 𝑂(1), we do not specify whether
we consider strict or non-strict inequalities.) In this way we get a combinatorial
translation of a binary relation 𝐶(𝑥) < 𝑛, so all statements should be reformulated
in terms of this binary relation. Here are some examples:

∙ The ineuqality 𝐶(𝑥) 6 𝐶(𝑦) means that for every 𝑛 the statement 𝐶(𝑦) <
𝑛 implies 𝐶(𝑥) < 𝑛.

∙ The inequality 𝐶(𝑥) 6 2𝐶(𝑦) can be rephrased as follows: for every 𝑛 the
inequality 𝐶(𝑦) < 𝑛 implies 𝐶(𝑥) < 2𝑛.

∙ For the inequality 𝐶(𝑧) 6 𝐶(𝑥) + 𝐶(𝑦) the following translation can be
used: for every 𝑢 and 𝑣, if 𝐶(𝑥) < 𝑢 and 𝐶(𝑦) < 𝑣, then 𝐶(𝑧) < 𝑢 + 𝑣.

Using the last example as a guideline, let us try to invent a combinatorial translation
of the inequality 𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦). As we have said, it means that 𝐶(𝑥) < 𝑢
and 𝐶(𝑦) < 𝑣 imply 𝐶(𝑥, 𝑦) < 𝑢+𝑣. So we want to say something like “if 𝑥 belongs
to some set of size at most 2𝑢, and 𝑦 belongs to some set of size at most 2𝑣, then
we can construct a set of size at most 2𝑢+𝑣 that is guaranteed to contain ⟨𝑥, 𝑦⟩.
Indeed, we can consider the Cartesian product of given two sets, and its size is
indeed bounded by 2𝑢+𝑣, so we get a true (though trivial) statment.

To get a combinatorial version of the inequality 𝐶(𝑥, 𝑦) 6 𝐶(𝑥) + 𝐶(𝑦 |𝑥), we
need to translate the statement 𝐶(𝑦 |𝑥) < 𝑣. It can be done as follows: ⟨𝑥, 𝑦⟩
belongs to some set whose sections (for every fixed 𝑥) have size at most 2𝑣. In this
way we again get a true (but trivial) combinatorial statement.

We get a much more interesting situation when we consider the reverse inequal-
ity. We can try to rewrite 𝐶(𝑧) > 𝐶(𝑥)+𝐶(𝑦) as follows: if 𝐶(𝑥) > 𝑢 and 𝐶(𝑦) > 𝑣,
then 𝐶(𝑧) > 𝑢 + 𝑣. But our approach is asymmetric: we know what it means in
combinatorial terms when 𝐶 is small, not large (the reason for this asymmentry is
that we can enumerate strings of small complexity, but not of large complexity).
So we need to consider a dual reformulation: if it is not true that 𝐶(𝑥) < 𝑢 and it
is not true that 𝐶(𝑦) < 𝑣, then it is not true that 𝐶(𝑧) < 𝑢 + 𝑣. In other terms: if
𝐶(𝑧) < 𝑢 + 𝑣, then 𝐶(𝑥) < 𝑢 or 𝐶(𝑦) < 𝑣.

Let us now try to invent a combinatorial translation of the inequality

𝐶(𝑥, 𝑦) > 𝐶(𝑥) + 𝐶(𝑦 |𝑥),

Using the trick described, we get the following statement: if a pair ⟨𝑥, 𝑦⟩ belongs
to a given set of size at most 2𝑢+𝑣, then either 𝑥 belongs to some set of size at
most 2𝑢, or ⟨𝑥, 𝑦⟩ belongs to some set of pairs whose sections (for every fixed first
coordinate) are of size at most 2𝑣.

More precise formulation of the statement: for every 𝑢, 𝑣 and for every set 𝐴
of pairs that has at most 2𝑢+𝑣 elements there exist:

∙ a set 𝐵 of size at most 2𝑢;
∙ a set 𝐶 of pairs that contains at most 2𝑣 pairs with the same first com-

ponent

such that for every ⟨𝑥, 𝑦⟩ ∈ 𝐴 either 𝑥 ∈ 𝐵 or ⟨𝑥, 𝑦⟩ ∈ 𝐶 (or both).

1Of course this should not be understood literally: every 𝑥 belongs to a singleton. We will

see how this is interpreted in the examples below.

10.7. COMBINATORIAL INTERPRETATION: EXAMPLES 339

In fact the proof of the formula for the complexity of a pair used exactly these
approach: for a given 𝑥 and 𝑦 we looked how many pairs with the same 𝑥 have
small complexity. If there are only few of them, then 𝐶(𝑦 |𝑥) was small (now we
say that the pair (𝑥, 𝑦) belongs to 𝐶); if there are many of those pairs, then 𝐶(𝑥)
is small (because this can happen only for few values of 𝑥). (Now we say that 𝑥
belongs to 𝐵.)

288 Translate the arguments used to prove the formula for the complexity of
a pair to give a formal proof of the combinatorial statement in question.

Now consider an inequality were both sides have more than one term:

𝐶(𝑥1) + 𝐶(𝑥1, 𝑥2, 𝑥3) 6 𝐶(𝑥1, 𝑥2) + 𝐶(𝑥2, 𝑥3)

(we called it a basic inequality; it is true with 𝑂(log𝑁) error term for strings of
complexity at most 𝑁).

In terms of a binary relation 𝐶(𝑥) < 𝑛 this inequality can be restated as follows:

if 𝐶(𝑥1, 𝑥2) < 𝑎, 𝐶(𝑥1, 𝑥3) < 𝑏 and 𝑎 + 𝑏 = 𝑝 + 𝑞, then at least
one of the inequalities 𝐶(𝑥1) < 𝑝 and 𝐶(𝑥1, 𝑥2, 𝑥3) < 𝑞 holds.

(For the sake of brevity, we omit all the details about 𝑂(log𝑁)-precision.)
The natural combinatorial translation of this statement looks as follows:

if 𝐴 ⊂ 𝑋1 ×𝑋2 ×𝑋3, 𝑚𝐴(1, 2) 6 2𝑎, 𝑚𝐴(1, 3) 6 2𝑏 and 𝑎 + 𝑏 =
𝑝+ 𝑞, then there exist 𝐵,𝐶 ⊂ 𝑋1×𝑋2×𝑋3 such that 𝐴 ⊂ 𝐵∪𝐶,
𝑚𝐵(1) 6 2𝑝 and 𝑚𝐶(1, 2, 3) 6 2𝑞.

Eliminating the variables 𝑎 and 𝑏, we can rewrite this statement (in a multi-
plicative version):

if 𝐴 ⊂ 𝑋1×𝑋2×𝑋3 and 𝑚𝐴(1, 2)·𝑚𝐴(1, 3) = 𝑙·𝑉 for some 𝑙, 𝑉 >
0, then the set 𝐴 can be covered by two sets 𝐵 and 𝐶 such that
𝑚𝐵(1) 6 𝑙 and 𝑚𝐶(1, 2, 3) 6 𝑉 .

In geometric terms: if some set 𝐴 has small projections on the planes 1, 2 and
1, 3, its length in the direction 1 (the size of the projection on the first coordinate)
and its volume (the cardinality of 𝐴) can both be large. But we can split 𝐴 into
two parts 𝐵 and 𝐶 in such a way that 𝐵 has small length and 𝐶 has small volume.

(Recalling the example with two parallelepipeds, we see that in this example
𝐵 could be the large one and 𝐶 can be the small one.)

Of course, this heuristical arguments are not proofs. But in fact the last state-
ment is indeed true (though not completely trivial). Here is its proof.

Consider the projection of the set 𝐴 onto 1, 2-plane; this projection is a subset
of 𝑋1 × 𝑋2; we denote it by 𝐴12. For every 𝑥 ∈ 𝑋1 consider the section of this
projection (pairs with first component 𝑥). Let 𝑛(𝑥) be the cardinality of this section.
Then

𝑚(1, 2) = |𝐴12| =
∑︁
𝑥

𝑛2(𝑥)

(the size of the set is the sum of sizes of all its sections). Simiilarly,

𝑚(1, 3) = |𝐴13| =
∑︁
𝑥

𝑛3(𝑥).

340 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

The length 𝑚𝐴(1) is the number of non-zero terms in these sums, and 𝑚(1, 2, 3)
has an upper bound:

𝑚(1, 2, 3) = |𝐴| 6
∑︁
𝑥

𝑛2(𝑥)𝑛3(𝑥).

One can assume without loss of generality that this inequality is an equality: we
can add missing elements to 𝐴 leaving 𝐴’s projections unchanged.

Now we need to split 𝐴 into two parts 𝐵 and 𝐶, and we need to care about the
length of 𝐵 (its 1-projection) and the size of 𝐶. For a given length of 𝐵 we need
to cover maximal number of points, so we consider 𝑙 maximal sections (that make
𝑛2(𝑥)𝑛3(𝑥) maximal) and put all their elements in 𝐵. The rest is 𝐶.

It remains to prove that the cardinality of 𝐶 does not exceed |𝐴12| · |𝐴13|/𝑙.
How can we do this? We have bounds for the sizes of two 2D-projections of 𝐶:
they do not exceed |𝐴12| and |𝐴13|. We know also that all sections of 𝐶 (for every
𝑥 ∈ 𝑋1) have area at most 𝑆𝑙, where 𝑆𝑙 is the size of the 𝑙-th section of 𝐴 (in the
decreasing order). Consider the inequality

2𝐶(𝑥1, 𝑥2, 𝑥3) 6 𝐶(𝑥1, 𝑥2) + 𝐶(𝑥1, 𝑥3) + 𝐶(𝑥2, 𝑥3 |𝑥1).

It is easy to prove: rewrite all terms of the form 𝐶(𝑥1, . . .) as 𝐶(𝑥1) + 𝐶(. . . |𝑥1).
The left hand side contains only one term, so we already know that it implies the
following combinatorial statement:

𝑚(1, 2, 3)2 6 𝑚(1, 2) ·𝑚(1, 3) ·𝑚(2, 3 |1).

Therefore
|𝐶|2 6 |𝐴12| · |𝐴13| · 𝑆𝑙.

It remains to show that

𝑆𝑙 6
|𝐴12| · |𝐴13|

𝑙2
.

Recall that 𝐵 consists of 𝑙 rectangles, and each of them has size at least 𝑆𝑙. The
sum of “widths” 𝑛2(𝑥) of these rectangles is at most |𝐴12|, and the sum of their
“heights” 𝑛3(𝑥) is at most |𝐴13|. The average width is then bounded by |𝐴12|/𝑙,
and the average height is bounded by |𝐴13|/𝑙. To finish the proof, note that if
𝑆 6 𝑎𝑖𝑏𝑖 for all 𝑖 = 1, 2, . . . , 𝑙, then

𝑆 6
𝑎1 + . . . + 𝑎𝑙

𝑙
· 𝑏1 + . . . + 𝑏𝑙

𝑙

(the logarithm function is concave).
So our guess (the combinatorial statement that is similar to the basic inequality

about complexities) turns out to be true.

10.8. Combinatorial interpretation: the general case

After all these examples let us consider the general case. Assume that an arbi-
trary inequality for complexities is given. Split the negative and positive coefficients
and get the inequality with positive coefficients in both sides∑︁

𝜆𝐼𝐶(𝑥𝐼) 6
∑︁

𝜇𝐽𝐶(𝑥𝐽)

(the sums in the left hand side and the right hand side are disjoint: all 𝐼’s are
different from all 𝐽 ’s, and the coefficients 𝜆𝐼 and 𝜇𝐽 are positive).

How can we translate this inequality into a combinatorial statement? The
examples above suggest the following translation:

10.8. COMBINATORIAL INTERPRETATION: THE GENERAL CASE 341

Consider a set 𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛. Let 𝑛𝐼 be arbitrary positive
numbers such that∏︁

𝐼

(𝑛𝐼)𝜆𝐼 =
∏︁
𝐽

𝑚𝐴(𝐽)𝜇𝐽 .

The 𝐴 can be covered by some 𝐵𝐼 such that

𝑚𝐵𝐼
(𝐼) 6 𝑛𝐼 .

Unfortunately, we can prove this statement only with logarithmic factors (though
one can hope that the stronger statement, say with 𝑂(1)-factors, is also true). Here
is this weaker version:

For some constant 𝑑, for every 𝑋1, . . . , 𝑋𝑛, for every finite
𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛 and for every positive numbers 𝑛𝐼 such that∏︁

𝐼

(𝑛𝐼)𝜆𝐼 =
∏︁
𝐽

𝑚𝐴(𝐽)𝜇𝐽 ,

there is a cover of 𝐴 by sets 𝐵𝑖 such that

𝑚𝐵𝐼
(𝐼) 6 𝑛𝐼 · (log |𝐴|)𝑑.

Theorem 213. This statement is true for some coefficients 𝜆𝐼 and 𝜇𝐽 if and
only if ∑︁

𝜆𝐼𝐶(𝑥𝐼) 6
∑︁

𝜇𝐽𝐶(𝑥𝐽) + 𝑂(log𝑁)

for all 𝑁 and for all strings 𝑥1, . . . , 𝑥𝑛 of complexity at most 𝑁 .

Proof. Assume that the inequality for complexities is true. Let us show how
a given set 𝐴 can be split into parts of the required size. First of all, we may assume
without generality that the elements of 𝐴 are tuple of strings ⟨𝑥1, . . . , 𝑥𝑛⟩, and the
length of all strings is bounded by 𝑁 = log |𝐴| (we have enough strings for that).

Let us assume for now that the set 𝐴 is simple (has complexity 𝑂(log𝑁)).
Then all its projections are simple, so the complexities of every element of some
projection is bounded by the logarithm of its size (with 𝑂(log𝑁) precision). Then
for every element ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝐴 we have

𝐾(𝑥𝐽) 6 log𝑚𝐴(𝐽) + 𝑂(log𝑁)

for all 𝐽 ; adding all these inequalities with coefficients 𝜇𝐽 , we conclude that∑︁
𝐽

𝜇𝐽𝐾(𝑥𝐽) 6 log

(︂∏︁
𝐽

𝑚𝐴(𝐽)𝜇𝐽

)︂
+ 𝑂(log𝑁).

Now we use the inequality for complexity (which we assume to be true), and the
condition for 𝑛𝐼 , and conclude that∑︁

𝐼

𝜆𝐼𝐾(𝑥𝐼) 6 log

(︂∏︁
𝐼

𝑛𝜆𝐼

𝐼

)︂
+ 𝑂(log𝑁) =

∑︁
𝐼

𝜆𝐼 log 𝑛𝐼 + 𝑂(log𝑁)

for ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝐴. Therefore for each element of 𝐴 at least one term in the left
hand side is upperbounded by the corresponding term is the right hand side: for
every ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝐴 there exists 𝐼 such that

𝐶(𝑥𝐼) 6 𝑛𝐼 + 𝑂(log𝑁),

i.e., 𝑥𝐼 belongs to the set of all objects of complexity at most 𝑛𝐼 + 𝑂(log𝑁). This
set (its intersection with 𝐴) can be now used as 𝐵𝐼 .

342 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

This ends the proof for the case when 𝐴 is simple. The result can be extended
to arbitrary 𝐴 by a standard trick: for each 𝑁 consider all possible subsets 𝐴 ⊂
𝑋1 × . . .×𝑋𝑛 where all 𝑋𝑖 consist of strings of length at most 𝑁 . Among all these
𝐴 we consider the “worst” one (for given coefficients 𝜆𝐼 and 𝜇𝐽), i.e., the set that
has the worst ratio of the sizes of the left and right hand sides for optimal 𝐵𝐼 .
This set can be found by an exhaustive search (for given 𝑁 and given coefficients
𝜆𝐼 , 𝜇𝐽), so it is simple, and we can apply the argument above. Since it was the
most difficult set, the same statement is true for all other sets.

Infact, this argument has some flow: we do not assume that the coefficients
𝜆𝐼 and 𝜇𝐽 are rational (they may be even non-computable reals). However, it is
enough to know them with precision 1/𝑁 , since all logarithms of cardinalities are
bounded by 𝑁 , and this brings only 𝑂(1) total error. And we need only 𝑂(log𝑁)
bits to specify the coefficients with that precision.

So we have proven one direction of the statement of the theorem. It remains
to show that if the statement about the cover is true, then the inequalities for the
complexities is also true. This can be done with the same typization trick.

Consider an arbitrary tuple 𝑥1, . . . , 𝑥𝑛 of strings; each has complexity at most
𝑁 . Assume that the inequality for complexities is false and the left-hand side
significantly (more than by 𝑂(log𝑁)) exceeds the right-hand side. Typization trick
gives us an almost uniform set 𝐴 = 𝐴(𝑥1, . . . , 𝑥𝑛). Let us define 𝑛𝐼 : decrease all
𝐶(𝑥𝐼) by the same quantity in such a way that the left-hand side becomes equal
to the right-hand side. Since log𝑚𝐴(𝐽) does not exceed 𝐶(𝑥𝐽), we can apply our
assumption. In this way we get a cover of 𝐴 by sets 𝐵𝐼 whose 𝐼-projections have
at most 2𝑛𝐼+𝑂(log𝑁) elements. This is significanly smaller than the corresponding
projection of the sets 𝐴; it contains about 2𝐶(𝑥𝐼) elements. (Recall that we have
decreased 𝑛𝐼 significantly.) Since 𝐴 is almost uniform, every its part that generates
a small fraction in one of its projections, is a small part of 𝐴 itself, so the sets 𝐵𝐼

(the number of these sets is fixed) cannot cover 𝐴 entirely. �

289 Make all the estimates in this argument precise (instead of speaking
about “significant increase”, “small fraction” and so on).

290 Show that the theorem 213 and its proof can be generalized to the in-
equalities that contain conditional entropies (not only unconditional ones).

10.9. One more combinatorial interpretation

The last argument in the previous section suggest another combinatorial inter-
pretation for inequalities. It looks somewhat less natural, but it is easy to formulate
since now we do not need to separate the positive and negative coefficients in the
inequaility and treat them differently.

Let us consider an arbitrary (positive or negative) coefficients 𝜆𝐼 and the fol-
lowing combinatorial statement:

For some constant 𝑑, for every finite sets 𝑋1, . . . , 𝑋𝑛 and for
every 𝐴 ⊂ 𝑋1 × . . .×𝑋𝑛 one can represent 𝐴 as a union of at
most (log |𝐴|)𝑑 sets, and for each of these sets the inequality∏︁

𝑚(𝐼)𝜆𝐼 6 (log |𝐴|)𝑑

is true for the projections of the set. (The sets may have
non-empty intersections.)

10.9. ONE MORE COMBINATORIAL INTERPRETATION 343

Theorem 214. Consider a tuple of coefficients 𝜆𝐼 . The combinatorial state-
ment above is true for these 𝜆𝐼 if and only if∑︁

𝜆𝐼𝐶(𝑥𝐼) 6 𝑂(log𝑁)

for every 𝑁 and for every strings 𝑥1, . . . , 𝑥𝑛 of complexity at most 𝑁 .

Proof. Assume first that the combinatorial statement is true, and let us prove
the inequality for complexities. Consider arbitrary strings 𝑥𝑖 of complexity at most
𝑁 . Using typization trick, we find a set𝐴 = 𝐴(𝑥1, . . . , 𝑥𝑛) of “similar” objects; its
log-size log |𝐴| is polynomial in 𝑁 .

We apply the assumption to 𝐴 and conclude that it can be represented as a
union of a polynomial (in 𝑙𝑜𝑔|𝐴|, therefore, also in 𝑁) number of sets with required
properties (inequality for the projections’ sizes). Let 𝐵 be the biggest of these sets.
The set 𝐵 is a polynomial fraction of 𝐴, and 𝐴 is 𝑐-uniform for a polynomially large
𝑐, therefore 𝐵 itself is 𝑐-uniform for some larger (but still polynomially large) value
of 𝑐. The log-sizes of 𝐴- and 𝐵-projections differ at most by 𝑂(log𝑁). Therefore,
the inequality for 𝐵 implies the same inequality for 𝐴 (with 𝑂(log𝑁)-precision);
we know that in this case the inequality for complexities of 𝑥𝑖 holds.

To prove the reverse implication, we need the following Lemma.

Lemma. Every set 𝐴 ⊂ 𝑋1 × . . . ×𝑋𝑛 can be represented as a union of poly-
nomially (in 𝑁 = log |𝐴|) many parts where each part is a 𝑐-uniform set for some
polynomially (in 𝑁) large value of 𝑐. (The parts do not need to be disjoint.)

Note that this lemma mentions neither Kolmogorov complexity nor inequalities.
Still it implies the result we want. Indeed, the inequality for complexities is also true
for Shannon entropies of arbitrary tuple of random variables. In particular, this
inequality is true for a random variable uniformly distributed in one of the parts.
Since the parts are uniform, for each of them the entropy of each projection of this
variable is equal to the log-size of this projection of the set (with 𝑂(log 𝑐) = 𝑂(log 𝑛)
precision), so we get the desired inequality for the sizes of the projections.

It remains to prove the lemma. There are several proofs; interestingly, the
simplest proof uses Kolmogorov complexity and proceeds as follows. Without loss
of generality we may assume that the elements ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝐴 are tuples of binary
strings. For each 𝑥 ∈ 𝐴 consider the set of all ⟨𝑦1, . . . , 𝑦𝑛⟩ ∈ 𝐴 whose complexity
vector (the list of all conditional complexities) relative to 𝐴 (i.e., 𝐴 is added as
a condition to all the complexities) is bounded coordinate-wise by the complexity
vector for 𝑥 (also with 𝐴 as a condition).

Note the following two changes: (1) before we considered all tuples 𝑦 while now
we consider only the elements of 𝐴; (2) now we add 𝐴 as a condition everywhere.

Each of the subsets constructed in this way is determined by the complexity
vector of 𝑥, so we get only polynomially many sets. It remains to show that each
of these sets is 𝑐-uniform for some polynomially (in 𝑁) large value of 𝑐.

This can be done as before: the number of elements in such a set is not sig-
nificantly smaller than 2𝐶(𝑥1,...,𝑥𝑛 |𝐴), and the log-sizes of the sections are upper-
bounded by conditional complexities, so we can use the same argument. �

It is interesting to find a purely combinatorial proof of this lemma that does
not use Kolmogorov complexity (recall that the statement does not mention Kol-
mogorov complexity). This is not straightforward even for two-dimensional case

344 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

(when 𝐴 is a set of pairs). Assume that some finite set 𝐴 ⊂ N2 is given. We said
that 𝐴 is “almost uniform” if

𝑚(1, 2) ≈ 𝑚(1)𝑚(2 |1), 𝑚(1, 2) ≈ 𝑚(2)𝑚(1 |2).

In other hand, the average size of a (non-empty) vertical section, i.e., 𝑚(1, 2)/𝑚(1),
should be not much less than the maximal size 𝑚(2 |1), and the same should be
true for the horizontal sections.

How can we try to achieve this? We can split the set 𝐴 into parts classifying
the vertical sections according to their size (say, up to factor 2). Each part then has
maximal size not greater than 2 times the average size (or even minimal size). In
this way we take care of vertical sections, but if we apply then the classification with
respect to the horizontal sections, we lose the property in the vertical direction.

So what could we do? Let us first note that it is enough to find an almost
uniform subset of 𝐴 that is not too small, i.e., contains at least some polynomial
fraction of the original set. If we know who to do this, we can then apply the
same argument to the rest of 𝐴, and so on. If at each step we separate at least
𝜀-fraction, then after 1/𝜀 steps we decrease the cardinality of 𝐴 approximately by
factor 𝑒 = 2.71828 . . ., so after polynomial number of steps we have less than 1
element (i.e., nothing remains).

So how can we get a (not very small) part that is uniform in both directions?
Let us make a vertical classification, and then take the biggest part. We forget
about the other parts, split this biggest part in the horizontal direction, and again
take the biggest part. It remains to note that this biggest part is still vertically
uniform, see the proof of Theorem 210, (c).

This argument can be generalized for arbitrary dimension; its advantage (com-
pare to the complexity argument above) is that we get parts where the non-
uniformity is bounded by a polynom in the log-size of the part (and not of the
entire set).

We can improve the statement even more and guarantee that non-uniformity
of all the parts is bounded by some constant that depends on the dimension 𝑛 but
not on the size of the set. It is done in [3] in the following way.

For every partition (into disjoint parts) let us define its weight in such a way
that a minimal weight partition (it exists because the number of possible partitions
is finite) would satisfy all the requirements.

The weight of the partition is the sum of the weights of its elements, and the
weight of an element 𝑥 that belongs to some part 𝑋 is defined as∑︁

𝐴,𝐵

log𝑚𝑋(𝐵 |𝐴) − 𝑑 log |𝑋|,

where the sum is taken over all pairs of disjoint subsets 𝐴,𝐵 ⊂ {1, 2, . . . , 𝑛}, and 𝑑
is some constant factor to be chosen later. Note that the sum also includes log |𝑋|
(obtained for 𝐴 = ∅, 𝐵 = {1, 2, . . . , 𝑛}). All the elements of some part have equal
weights.

Let us show that for large enough 𝑑 the number of parts in the minimal weight
partition is small. Namely, we show that the total weight decreases when we com-
bine two parts with almost equal parameters into one part. “Almost equal” means
that the values of log𝑚𝑋(𝐵 |𝐴) for the two part differ at most by 1 (for every 𝐴 and
𝐵). Indeed, the value of 𝑚𝑋(𝐵 |𝐴) for the combined part is at most three times
bigger than the same value for each of the parts, and the value of |𝑋| is multiplied

10.10. THE INEQUALITIES FOR TWO AND THREE STRINGS 345

at least by factor 1.5. For large enough 𝑑 the increase in |𝑋| will overweight the
possible decrease in all the 𝑚𝑋(𝐵 |𝐴). Note that the suitable value of 𝑑 depends
only on the number of terms in the sum (and the latter is determined by 𝑛 and
does not depend on the size of the set).

So let us assume that 𝑑 is chosen in this way. Now we classify the parts
according to the integer parts of log𝑚𝑋(𝐵 |𝐴) for all 𝐴 and 𝐵. As we have seen,
for every tuple of integerers there is at most one part, and the number of possible
tuples is bounded by the polynomial in log |𝑋|, and the latter is bounded by the
log-size of the set to be partitioned, so we get the desired bound for the number of
parts.

It remains to show that in a minimal weight partitions all the parts are almost
uniform. To achieve this, we show that a non-uniform part can be split in such a
way that the total weight decreases. While splitting some part, we do not change
the weights of the elements of the other parts, so we can concentrate on the weights
inside the non-uniform part. Consider the formula that defines the weight, i.e.,∑︁

𝐴,𝐵

log𝑚𝑋(𝐵 |𝐴) − 𝑑 log |𝑋|.

When the part is split, for each its point all the terms in this expression (both
with plus and minus signs) decrease. We need that the decrease in the plus-part is
bigger that in the minus-part. The latter can be computed easily: if a part contains
𝑚 elements and is split into two part of size 𝑝𝑚 and 𝑞𝑚 (where 𝑝 + 𝑞 = 1), then
the subtracted term (for all 𝑚 elements altogether) decreases by 𝑑𝑚ℎ(𝑝, 𝑞), where
ℎ(𝑝, 𝑞) = 𝑝(− log 𝑝) + 𝑞(− log 𝑞) is the Shannon entropy of a random variable with
probabilities 𝑝 and 𝑞, and does not exceed 1. So the decrease (per element) in the
negative part is at most 𝑑.

If the part (that we try to split) is very non-uniform, there exist sets 𝐴 and 𝐵
such that 𝑚(𝐴∪𝐵) significantly exceeds 𝑚(𝐴) ·𝑚(𝐵 |𝐴). This means that 𝐴∪𝐵-
projection has 𝐵-sections of very different sizes, and the maximal one exceeds the
average one by some large factor 𝑙. We then split this projection (and therefore
the entire part) into two pieces, using the geometric mean between the average
and maximal size as a threshold. For the piece with small sections the maximal
size is now

√
𝑙 times smaller. On the other hand, the large sections form at most

1/
√
𝑙-fraction of all the sections (Chebyshev inequality), so for the other piece the

size of 𝐴-projection also decreases at least by factor
√
𝑙.

So the splitting reduces at least one positive term (for both pieces) at least

by log
√
𝑙 (and other positive terms do not increase, as we have mentioned). So if

𝑙 is large enough (log
√
𝑙 > 𝑑), the total weight decreases. We conclude that the

partition of minimal weight has 𝑐-uniform parts for some constant 𝑐 that is (as well
as 𝑑 and 𝑙) determined by 𝑛 (though 𝑐 increases fast as a function of 𝑛). This
finishes the alternative proof of the lemma that uses weights instead of Kolmogorov
complexities.

10.10. The inequalities for two and three strings

As we have seen, there exists some class of linear inequalities that can be
defined in many equivalent ways, using entropies, complexities, size of projections
of uniform sets, sizes of subgroups, etc. This is indeed remarkable, but what is
this class? Can we give some explicit description of it? Unfortunately it remains a

346 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

widely open problem, and this class is known only for the simple case 𝑛 6 3. Let
us describe the answer.

For 𝑛 = 1 the situation is trivial. For 𝑛 = 2 we have the inequalities

0 6 𝐻(𝜉1) 6 𝐻(𝜉1, 𝜉2), 0 6 𝐻(𝜉2) 6 𝐻(𝜉1, 𝜉2), 𝐻(𝜉1, 𝜉2) 6 𝐻(𝜉1) + 𝐻(𝜉2),

which (in other terms) say that all three quantities

𝐻(𝜉2 |𝜉1), 𝐻(𝜉1 |𝜉2), 𝐼(𝜉1 :𝜉2)

are non-negative. On the other hand, it is easy to see that these three quantities may
be arbitrary non-negative real numbers: take three independent variables 𝛼, 𝛽, 𝛾
with arbitrary non-negative entropies and let

𝜉1 = ⟨𝛼, 𝛽⟩, 𝜉2 = ⟨𝛽, 𝛾⟩.
Then we have 𝐻(𝜉1 |𝜉2) = 𝐻(𝛼), 𝐼(𝜉1 :𝜉2) = 𝐻(𝛽), and 𝐻(𝜉2 |𝜉1) = 𝐻(𝛾). So
the three inequalities listed above are necessary and sufficient for a triple of real
numbers to be equal to

𝐻(𝜉1), 𝐻(𝜉2), 𝐻(𝜉1, 𝜉2),

for some random variables 𝜉1 and 𝜉2. So we do not need other inequalities (any other
inequality is a consequence of these three; note also that the linear programming
guarantees that every consequence is a non-negative linear combination of these
three inequalities).

In fact, this statement is not just the description of all true linear inequalitites
for entropies (complexities, etc.) in the case 𝑛 = 2: we have shown also that every
triple of reals that satisfies our inequalities can appear as entropy triple. Let us
repeat this statement in a geometric language.

Each 𝑛-tuple of random variables determines a point that is a tuple of 2𝑛 − 1
values of entropies (for 𝑛 = 2 we get points in three-dimensional space). Consider
all these points (for all 𝑛-tuples of random variables). We get some set ℰ in the
corresponding vector space. The linear inequalities for entropies are closed half-
spaces that contain ℰ . In the case 𝑛 = 2, as we have seen, the set ℰ is exactly the
intersection of half-spaces corresponding to the inequalities listed above.

In general case the intersection of all the half-spaces containing some set can
be bigger than the set itself. For example, this happens if the set is not convex
or not closed. So even if we know all the inequalities for entropies, we have only
some partial information about ℰ . On the other hand, the inequalities is the most
interesting part, since the equivalence is proven only for inequalities. The sets itself
are different (i.e., the sizes of projections are logarithms of integers, for Kolmogorov
complexity everything is defined only up to some 𝑂(1)-term, etc.)

Now let us consider the case 𝑛 = 3. Here we have a subset in R7; the coordinates
correspond to 7 non-empty subsets of the 3-element set. It is convenient to perform
a linear transformation of this space and consider another coordinates 𝑎1, . . . , 𝑎7,
as described on p. 63 (Figure 4) for the case of Kolmogorov complexities. In this
coordinates our inequalities just mean that all 𝑎𝑖, except for the central part 𝑎5
(that we denoted by 𝐼(𝜉1 :𝜉2 :𝜉3)) are non-negative2, and this central part is non-
negative if we add 𝑎2, 𝑎4 or 𝑎6 to it. We can say that ℰ ⊂ R7 is a subset of a set
ℱ defined by these inequalities.

2In fact we used the notation 𝐼(𝑥1 :𝑥2 :𝑥3) for strings 𝑥1, 𝑥2, 𝑥3 and not for random variables,

but the definition for variables is the same.

10.11. DIMENSIONS AND INGLETON’S INEQUALITY 347

It is easy to see that ℱ is a set of non-negative linear combinations of finitely
many generators. These generators can be chosen in the following way: first, we
let some 𝑎𝑖 to be 1 while all others are zeros. In this way we get seven vectors.
This is not enough: we add one more where 𝑎5 = −1, 𝑎2 = 𝑎4 = 𝑎6 = 1 and all the
other 𝑎𝑖 are zeros. All these vectors belong to ℱ ; let us check that they generate
the entire ℱ . Indeed, take some point in ℱ ; the value of 𝑎5 may be negative, but
its absolute value does not exceed 𝑎2, 𝑎4 and 𝑎6, so we take our special vector with
coefficient |𝑎5| and then adjust all the other coordinates as needed.

Now it is clear that there are no other inequalities for entropies. Indeed, all
the generating vectors belong to ℰ (can be implemented as entropies); the last
vector corresponds to independent 𝜉1 and 𝜉2 uniformly distributed in {0, 1} and
𝜉3 = 𝜉1 + 𝜉2 (mod 2). Every true inequality is true for the generators, so it is true
for the entire ℱ (and is a consequence of basic ineuqalities).

291 Show that the set ℰ (for 𝑛 = 3) is not convex. For example, for the
last generator 𝑒 the vector𝜆𝑒 belongs to ℰ if and only if 𝜆 is the logarithm of some
positive integer.

292 Show that (for arbitrary 𝑛) the set ℰ is closed under addition: if two

vectors 𝑒, 𝑒′ ∈ R2𝑛−1 belong to ℰ , then their sum 𝑒 + 𝑒′ also belongs to ℰ . [Hint:
consider two tuples that give 𝑒 and 𝑒′, and combine independent copies of them.]

293 Prove that the closure of the set ℰ is convex (for arbitrary 𝑛). [Hint. If
𝑒 and 𝑒′ belong to ℰ , then 𝑘𝑒+ 𝑙𝑒′ belongs to 𝐸 for arbitrary non-negative integers
𝑘 and 𝑙. So it is enough to multiply a vector in ℰ by a positive real. We know
how to multiply it by a integer factor; we can also (approximately) multiply it by
a small positive real using the following trick: take our variables with some small
probability 𝜀, otherwise use fixed dummy values.]

10.11. Dimensions and Ingleton’s inequality

In the previous section we described all true linear inequalities for the entropies
of two and three linear variables. (Moreover, for 𝑛 = 2 we described the set ℰ itself,
not only the dual set of linear inequalities that are true for all elements of ℰ .) For
𝑛 = 4 we do not have such a description; let us tell what is known.

Recall the we consider a 𝑛-tuple of random variables 𝜉 = 𝜉1, . . . , 𝜉𝑛; by 𝜉𝐼 (for
some set 𝐼 ⊂ {1, . . . , 𝑛} of indices) we denote the tuple of variables 𝜉𝑖 with 𝑖 ∈ 𝐼.
We consider the entropies 𝐻(𝜉𝐼) of these sub-tuples. The conditional entropies
𝐻(𝜉𝐼 |𝜉𝐽) are linear combinations of unconditional ones, so we do not need to
consider them.

Each tuple 𝜉 corresponds to a point in R2𝑛−1; the coordinates of this point
are 𝐻(𝜉𝐼) for all non-empty 𝐼. These points (taken for all tuples 𝜉) form a set
that we have denoted by ℰ . As we noted (Problems 291, 292, and 293), this set
is not necessarily convex, but its closure is a convex cone (for each two points in
the closure, all their non-negative linear combinations also belong to the closure).
Then we switched from ℰ to its dual set, the set of all linear inequalities that are
true for all points in ℰ . Geometrically speaking, we consider all half-spaces that
contain ℰ . If we take the intersection of all these half-spaces, we get the minimal
closed convex cone containing ℰ (standard result in linear programming theory).

348 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

The following basic inequailities are guaranteed to be true for all points in ℰ :

𝐻(𝜉𝐼) > 0 for every 𝐼,

𝐻(𝜉𝐼) 6 𝐻(𝜉𝐽) for every 𝐼 ⊂ 𝐽,

𝐻(𝜉𝐼∩𝐽) + 𝐻(𝜉𝐼∪𝐽) 6 𝐻(𝜉𝐼) + 𝐻(𝜉𝐽) fore every 𝐼, 𝐽.

We have already used the name “basic inequality” for the inequality

𝐻(𝜉1) + 𝐻(𝜉1, 𝜉2, 𝜉3) 6 𝐻(𝜉1, 𝜉2) + 𝐻(𝜉1, 𝜉3),

that correspond to the case 𝐼 = {1, 2}, 𝐽 = {1, 3} (the case of arbitrary 𝐼 and 𝐽 can
be reduced to this special case by grouping). Now for convenience the inequalities
of the first two types are also called basic inequalities.

To summarize: the set ℰ is contained in the polyhedral cone defined by basic
inequalities. For 𝑛 = 2 the set ℰ coincides with this cone; for 𝑛 = 3 this is not true,
but at least ℰ is dense in this cone. For 𝑛 = 4 even this weaker statement becomes
false.

How can we describe the convex cone defined by basic inequalities? Each set
defined by finite family of linear inequalities is generated by its extreme half-lines,
and there are finitely many extreme half-lines. If all of those half-lines intersect
ℰ (as it was earlier), we could conclude that all the inequalities for entropies are
consequences of basic inequalities.

For 𝑛 = 4 it is not the case, but it is still instructive to look at the extreme
half-lines. They can be found (see [64]); most of them correspond to points in ℰ ,
but there are some others, “special” half-lines. All special half-lines are the same
up to the renaming of variables, so we show here only one:

𝐻(𝜉1) = 𝐻(𝜉2) = 𝐻(𝜉3) = 𝐻(𝜉4) = 2𝑛,

𝐻(𝜉1, 𝜉2) = 4𝑛,

𝐻(𝜉1, 𝜉3) = 𝐻(𝜉1, 𝜉4) = 𝐻(𝜉2, 𝜉3) = 𝐻(𝜉2, 𝜉4) = 𝐻(𝜉3, 𝜉4) = 3𝑛,

𝐻(𝜉1, 𝜉2, 𝜉3) = 𝐻(𝜉1, 𝜉2, 𝜉4) = 𝐻(𝜉1, 𝜉3, 𝜉4) = 𝐻(𝜉2, 𝜉3, 𝜉4) = 4𝑛,

𝐻(𝜉1, 𝜉2, 𝜉3, 𝜉4) = 4𝑛.

In words: each string has complexity 2𝑛, all the strings alltogether, as well as all
triples, have complexity 4𝑛, and all pairs have complexity 3𝑛, except for one special
pair that has complexity 4𝑛. (Here 𝑛 is a non-negative factor that parametrizes the
half-line.)

It is not easy to understand the informal meaning of these conditions; one can
draw a picture, but the picture for 4 strings is rather complicated. One may note
that 𝜉1 and 𝜉2 can be exchanged, as well as 𝜉3 and 𝜉4. One can also draw the
pictures for triples (Figure 4). Trying to construct random variables or strings that
correspond to this picture, we come to the following problem: the right picture
hints that 𝜉3 and 𝜉4 have 𝑛 bits of common information that is also included in
𝜉1 and 𝜉2. On the other hand, the left picture shows that 𝜉1 and 𝜉2 do not have
common information (have zero in the intersection part). Of course, it is not a
formal contradiction, since we have not specified what do we mean by “common in-
formation”. But indeed we will show later that 𝜉1, 𝜉2, 𝜉3, 𝜉4 with these complexities
do not exist.

If some extremal rays to not intersect ℰ , it may happen that some other in-
equalities (except for the basic ones) are true for complexities. How can one find

10.11. DIMENSIONS AND INGLETON’S INEQUALITY 349

𝑛
0 𝑛

𝑛
0 𝑛

0

𝜉1 𝜉2

𝜉3 [𝜉4]

𝑛
0𝑛

0
𝑛0

𝑛

𝜉4𝜉3

𝜉1 [𝜉2]

Figure 4. Complexity pictures for triples.

them? May be we know all the extreme half-lines of our cone, and it remains to find
the faces of these cone to get these new inequalities? One can indeed find the faces
of the cone generated by all non-special half-lines. In addition to basic inequalities
we get one more (up to renaming of the variables):

𝐼(𝜉3 :𝜉4) 6 𝐼(𝜉3 :𝜉4 |𝜉1) + 𝐼(𝜉3 :𝜉4 |𝜉2) + 𝐼(𝜉1 :𝜉2)

We have rewritten this inequality in terms of conditional entropies to make it more
understandable. In terms of unconditional complexities we get the inequality

12 + 3 + 4 + 134 + 234 6 13 + 23 + 14 + 24 + 34

(we write only the indices to make it short; for example, 134 stand here for
𝐻(𝜉1, 𝜉3, 𝜉4)), which looks even more misterious.

It turns out that this inequality is well known in the matroid theory; it is called
Ingleton’s inequality for the dimensions of subspaces of vector spaces:

Theorem 215. Let 𝐻1, 𝐻2, 𝐻3, 𝐻4 be finite-dimensional subspaces of some
vector space. Then

dim(𝐻1+𝐻2) + dim𝐻3 + dim𝐻4 + dim(𝐻1+𝐻3+𝐻4) + dim(𝐻2+𝐻3+𝐻4) 6

6 dim(𝐻1+𝐻3)+dim(𝐻2+𝐻3)+dim(𝐻1+𝐻4)+dim(𝐻2+𝐻4)+dim(𝐻3+𝐻4).

Before proving this theorem, let us elaborate the connection between entropies
and dimensions. Let F be a finite field and let 𝑋 be a finite-dimensional space over
F. For each subspace 𝑌 ⊂ 𝑋 we consider a random variable. The probability space
is the space of all linear functionals 𝑋 → F; the random variable 𝜉𝑌 (corresponding
to the subspace 𝑌) maps every functional in the probability space to its restriction
on 𝑌 . (Less formally, for each subspace 𝑌 we consider a random variable that is
a restriction of a random functional on 𝑌 .) The values of 𝜉𝑌 are elements of the
space 𝑌 * (dual to 𝑌), they all have the same probability, so the entropy of 𝜉𝑌
equals dim𝑌 · log |F|.

Note that all the random variables 𝜉𝑌 are defined on the same probability
space, so we may consider the joint distribition of a pair ⟨𝜉𝑌 , 𝜉𝑍⟩ for two subspaces
𝑌 and 𝑍. What is the entropy of this pair? The restrictions of a functional on 𝑌
and 𝑍 determine its restriction on 𝑌 + 𝑍 = {𝑦 + 𝑧 |𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍} and vice versa.
So the entropy of the pair equals dim(𝑌 + 𝑍) · log |F|.

This observation immediatly given the following corollary:

Theorem 216. Every inequality that is true for entropies of random variables
and their tuples, is also true for the dimensions of finite-dimensional subspaces

350 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

of a vector space over a finite field, if the entropy of the tuple is replaced by the
dimension of the sum of corresponding subspaces.

294 Show that a similar statement is also true for finite-dimensional vector
spaces over R and over C. [Hint. Since the R-dimension of a space over C is
twice bigger than its R-dimension, it is enough to consider R. We assume that a
scalar product is defined and consider the random variables that are projections
of a random point in the unit ball on the subspaces; the projections are rounded
up to 𝜀-precision for some small 𝜀. The resulting variables do not have entropies
exactly proportional to the dimensions, since the projection of the random point of
the ball is not uniformly distributed, and the projections on 𝑋 and 𝑌 determine
the projection onto 𝑋 + 𝑌 only up to some precision, so we have finitely many
possibilities, etc.; still the main terms are proportional to dimensions as 𝜀 → 0.]

If we want to generalize this result to arbitrary infinite fields, a more com-
plicated argument is needed. First of all, the statement about the existence of a
tuple of subspaces with prescribed dimensions (and the dimensions of their sums)
can be translated into the language of matrices: it says that there exists a matrix
of certain size where some minors are zeros while some other minors are not. So
if some tuple of dimensions is possible for a field F, it is also possible for all its
extensions. So we may consider only algebraically closed fields. The algebraically
closed fields of some characteristic are elementary equivalent to each other, so we
can choose an appropriate field: C for characteristic zero was already discussed, and
we can choose the algebraic closure of Z/𝑝Z for prime characteristic 𝑝. If for this
field a tuple of dimensions can be implemented, it can be implemented by matrices
with algebraic elements, so there exist a finite extension that contains all needed
elements, and we again reduce the statement to the case of finite fields (already
considered).

295 Provide the details for this argument.

Note that the conversion of subspaces into random variable is a rather general
way of constructing tuples of variables with required entropies (and therefore points
in ℰ): all the points in ℰ that we have seen are constructed in this way. Only in
the next section, speaking about conditionally independent variables, we will see
examples of essentially different type.

Proof. Now we finally prove the Ingleton’s inequality for dimensions. It can-
not be derived directly from Theorem 216, since it is not true for entropies of
arbitrary random variables. So we need to prepare ourselves by establishing more
connections between entropies and dimensions.

Recall that in the inequalities for entropies the conditional entropy 𝐻(𝛼 |𝛽)
appeared as a shortcut for 𝐻(𝛼, 𝛽)−𝐻(𝛽). This expression translates into dimen-
sions as dim(𝐴 + 𝐵) − dim𝐵. In other words, it is the dimension of the image
of the subspace 𝐴 under the linear mapping with kernel 𝐵, and this dimension
equals dim𝐴 − dim(𝐴 ∩ 𝐵). Similarly, 𝐼(𝛼 :𝛽) means 𝐻(𝛼) + 𝐻(𝛽) − 𝐻(𝛼, 𝛽),
corresponds to dim𝐴 + dim𝐵 − dim(𝐴 + 𝐵) and is equal to dim(𝐴 ∩ 𝐵). Fi-
nally, 𝐼(𝛼 :𝛽 |𝛾) is equal to 𝐻(𝛼 |𝛾) + 𝐻(𝛽 |𝛾) − 𝐻(𝛼, 𝛽 |𝛾), and corresponds to
dim𝐴/𝐶 + dim𝐵/𝐶 −dim(𝐴+𝐵)/𝐶, where 𝑋/𝐶 is the image of 𝑋 under the lin-
ear mapping that has kernel 𝐶. Note that the latter expression cannot be rewritten
as dim(𝐴 ∩ 𝐵)/𝐶: the image of 𝐴 ∩ 𝐵 under the mapping with kernel 𝐶 can be
smaller than the intersection of images of 𝐴 and 𝐵 under the same mapping. (This

10.11. DIMENSIONS AND INGLETON’S INEQUALITY 351

happens, for example, if 𝐴,𝐵,𝐶 are three different one-dimensional subspaces of a
two-dimensional space.)

The Ingleton’s inequality for the dimension of subspaces can be now rewritten
as

dim(𝐴 ∩𝐵) 6 𝐼(𝐴 :𝐵 |𝐶) + 𝐼(𝐴 :𝐵 |𝐷) + dim(𝐶 ∩𝐷),

where 𝐼(𝐴 :𝐵 |𝐶) stands for the dimension of the intersection of the images of 𝐴
and 𝐵 under the mapping with kernel 𝐶. Denote 𝐴 ∩ 𝐵 by 𝑋; we need to show
that

dim𝑋 6 dim𝑋/𝐶 + dim𝑋/𝐷 + dim(𝐶 ∩𝐷),

since dim𝑋/𝐶 6 𝐼(𝐴 :𝐵 |𝐶) (the image of the intersection is contained in the
intersection of the images, and can be even smaller). And the latter inequality
corresponds to an easy inequality for entropies

𝐻(𝜉) 6 𝐻(𝜉 |𝛾) + 𝐻(𝜉 |𝛿) + 𝐼(𝛾 :𝛿)

and it remains to use Theorem 216. �

296 Prove the inequality 𝐻(𝜉) 6 𝐻(𝜉 |𝛾) + 𝐻(𝜉 |𝛿) + 𝐼(𝛾 :𝛿) that we used.
[Hint. Using the picture (or a simple computation), we note that

𝐻(𝜉) + 𝐻(𝜉 |𝛾, 𝛿) + 𝐼(𝛾 :𝛿 |𝜉) = 𝐻(𝜉 |𝛾) + 𝐻(𝜉 |𝛿) + 𝐼(𝛾 :𝛿),

so this inequality is the sum of basic inequalities.]

297 A careful reader would note that our proof of Ingleton’s inequality works
only for the vector spaces over some finite field, unless we use some rather obscure
tricks for the case of infinite field (see the discussion above). How can we avoid
these tricks? [Hint. The choice of the field was important to convert the inequality
for entropies into an inequality for dimensions. But this inequality for entropies
was a combination of basic inequalities, and basic inequalities for dimensions are
true for arbitrary field.]

298 We know that the inequalities for entropies can be translated into in-
equalities for the sizes of subgroups. Show that Ingleton’s inequality under this
translation becomes true for subgroups of an abelian group. [Hint: Follow the
proof of Ingleton’s inequality using the sum of subgroups instead of the intersection
of subspaces (in the abelian case the sum of subgroups is a subgroup itself).]

As a byproduct of our arguments we obtain the following interesting observa-
tion:

299 Every true linear inequality for dimensions that involves only four sub-
spaces, is a consequence of the basic inequalities and Ingleton’s inequality. [Hint.
As we have mentioned, all the extreme half-lines for the cone defined by basic in-
equalities, except for the special cases mentioned, can be implemented by subspaces,
not only by random variables. Consider the convex cone generated by these (non-
special) half-lines. One can check by a (long) computation that the faces of this
cone are given by basic inequalities and Ingleton’s inequality (for different orderings
of variables).]

300 Formulate and prove a similar statement for four finite subgroups of an
abelian group.

352 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

10.12. Conditionally independent random variables

We have mentioned several times that Ingleton’s inequality may be false for
random variables. Moreover, we show an example when the right hand side of this
equality is zero while its left hand side is positive. A useful tool here is the notion
of conditional independence; see [152, 111] for more advanced applications of this
tool.

Let 𝛼, 𝛽, 𝛾 be three variables defined on the same probability space. We say
that 𝛼 and 𝛽 are independent given 𝛾 if 𝐼(𝛼 :𝛽 |𝛾) = 0. It is easy to check that this
condition is equivalent to the following statement: for every value 𝛾0 of 𝛾 that has
non-zero probability, the conditional distributions of 𝛼 and 𝛽 under the condition
𝛾 = 𝛾0 are independent.

301 Prove this statement. [Hint: 𝐼(𝛼 :𝛽 |𝛾) is an average (taken over all 𝛾0
with corresponding probabilities) of the mutual information between corresponding
conditional distributions.]

Abusing slightly the terminology, we say that two random variables 𝛼 and 𝛽
defined on the same probability space are conditionally independent if one can find
two other random variables 𝛾 and 𝛿 defined on the same probability space or on
its more fine-grained version (where elementary events are split into smaller ones)
such that

∙ 𝛾 and 𝛿 are independent;
∙ 𝛼 and 𝛽 are independent given 𝛾;
∙ 𝛼 and 𝛽 are independent given 𝛿.

We allowed to split the elementary events in the probability space, so the
conditional independence property is now a property of the joint distribution of 𝛼
and 𝛽 and does not depend on the space where 𝛼 and 𝛽 are defined. (As usual, we
consider random variables with finitely many values.)

Three conditions in this definition mean that three terms in the right hand side
of the Ingleton’s inequality are zeros. It remains to construct an example where
the left hand side is positive nevertheless:

Theorem 217. There exist conditionally independent random variables that
are not independent.

Proof. We need to show a quadruple of random variables 𝛼, 𝛽, 𝛾, 𝛿 that
satisfy the requirements stated in the definition of conditional independence, but
with dependent 𝛼 and 𝛽. The following example was suggest by A. Romashchenko.
Each of the four variables has values 0 and 1. The variables 𝛾 and 𝛿 are independent
and uniformly distributed, so each of 4 possible combinations has probability 1/4.

It remains to define 𝛼 and 𝛽. It is done as follows: if 𝛾 = 𝛿, then the common
value of 𝛾 and 𝛿 is at the same time the value of 𝛼 and 𝛽 (so they are equal). If
𝛾 ̸= 𝛿, the joint distribution of 𝛼 and 𝛽 (for two cases 𝛾 = 1, 𝛿 = 0 and 𝛾 = 0, 𝛿 = 1)
is defined as follows:

0 1

0 1/8 3/8
1 3/8 1/8

10.13. NON-SHANNON INEQUALITIES 353

For a fixed value (say) 𝛾 = 0 the conditional distribution of 𝛼 and 𝛽 is the average
of this matrix and the matrix

0 1

0 1 0
1 0 0

The average is
0 1

0 9/16 3/16
1 3/16 1/16

and we get the joint distribution of two independent variables; each is equal to zero
with probability 3/4. On the other hand, the joint distribution of 𝛼 and 𝛽 is the
average of all the four matrices (for four possible conditions) and is equal to

0 1

0 5/16 3/16
1 3/16 5/16

so 𝛼 and 𝛽 are dependent. �

Let us summarize what we know about ℰ for the case 𝑛 = 4 at this moment. We
started with a polyhedral cone defined by basic inequalities. It is an upper bound
for ℰ . We stated (without providing details of the corresponding computation) that
the extreme half-lines of this cone are of two types: “non-special” ones and “special”
ones. For non-special ones it is easy to show that they belong to E, and we get
a lower bound for ℰ : the cone generated by these non-special half-lines. One can
check (again a computation is needed) that this cone can be equivalently defined as
the set of points that satisfy the basic inequalities plus Ingleton’s inequalities. The
last theorem provides an example of a point in ℰ that does not satisfy Ingleton’s
inequality, so this lower bound is not exact (for 𝑛 = 4).

In the next section we will see that the upper bound is not exact either (for
𝑛 = 4).

10.13. Non-Shannon inequalities

The inequalities that are not linear combinations of basic inequalities, were
founded in [220, 221], see [112] for more details. They are called non-Shannon
inequalities. Currently many such inequalities are known; however, their nature is
not well undestood yet. We consider only one example, the inequality from [112];
it is probably the most intuitive among them.

Theorem 218. For every random variables 𝛼, 𝛽, 𝛾, 𝛿, 𝜀 the following inequality
holds:

𝐼(𝛼 :𝛽) 6 𝐼(𝛼 :𝛽 |𝛾) + 𝐼(𝛼 :𝛽 |𝛿) + 𝐼(𝛾 :𝛿) + 𝐼(𝛼 :𝛽 |𝜀) + 𝐼(𝛼 :𝜀 |𝛽) + 𝐼(𝛽 :𝜀 |𝛼).

This inequality looks frightening; nevertheless, some comments could be useful
(at least, for memorizing this inequality). The right hand side consists of two
parts. The first three terms, without 𝜀, are exactly the same as in the Ingleton’s
inequality. If there were no other terms in the right hand side, we would get
exactly the Ingleton’s inequality, which is false, so we add other terms to make the
inequality weaker. Namely, we add

𝑊 (𝛼, 𝛽, 𝜀) = 𝐼(𝛼 :𝛽 |𝜀) + 𝐼(𝛼 :𝜀 |𝛽) + 𝐼(𝛽 :𝜀 |𝛼).

354 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

𝛼 𝛽

𝜀

Figure 5. The additional term 𝑊 (𝛼, 𝛽, 𝜀).

This additional term (see Figure 5) contains 𝜀 while the rest of the inequality
does not. One can say that Ingleton’s inequality may be false, but the error is
bounded by inf𝜀𝑊 (𝛼, 𝛽, 𝜀); this (misterious) quantity depends only on 𝛼 and 𝛽.

One more observation: we can use the same variable, let us call it 𝜉, as 𝛼,
𝛽 and 𝜀 (we really mean here the same variable, not the identically distributed
variable). Then 𝑊 (𝛼, 𝛽, 𝜀) = 0, and we get the inequality

𝐻(𝜉) 6 𝐻(𝜉 |𝛾) + 𝐻(𝜉 |𝛿) + 𝐼(𝛾 :𝛿), (*)

that we have seen while proving Ingleton’s inequality for the dimensions of vector
spaces.

We can also derive the following “conditional inequality” from Theorem 218:
if 𝑊 (𝛼, 𝛽, 𝜀) = 0 for some 𝜀, then

𝐼(𝛼 :𝛽) 6 𝐼(𝛼 :𝛽 |𝛾) + 𝐼(𝛼 :𝛽 |𝛿) + 𝐼(𝛾 :𝛿)

for all 𝛾 and 𝛿. Using this conditional inequality, we see that the special half-
line from Section 10.11 does not belong to ℰ (let 𝛼 = 𝜉3, 𝛽 = 𝜉4, 𝛾 = 𝜀 = 𝜉1,
𝛿 = 𝜉2). However, this half-line satisfies all basic inequalities, so the inequality of
Theorem 218 cannot be derived from basic inequalities.

The conditional inequality can be proven directly, by applying the inequality
(*) to the random variable 𝜉 provided by the next theorem (applied to 𝛼, 𝛽 and 𝜀).

Theorem 219. If 𝑊 (𝛼, 𝛽, 𝛾) = 0, the random variables 𝛼, 𝛽, 𝛾 have “fully
extractable common information” in the following sense: there exists a random
variable 𝜉 such that

𝐻(𝜉 |𝛼) = 𝐻(𝜉 |𝛽) = 𝐻(𝜉 |𝛾) = 0,

𝐼(𝛼 :𝛽 |𝜉) = 𝐼(𝛽 :𝛾 |𝜉) = 𝐼(𝛼 :𝛾 |𝜉) = 0.

Proof. Consider a 3D table for the joint probability distribution of 𝛼, 𝛽, 𝛾.
Our assumption says that every 2D section of this table (some coordinate is fixed)
has rank 1 (if it has rank 0, then the corresponding value appears with probability
zero and can be eliminated).

First let us assume that all the elements in the 3D table are positive; it this case
three variables 𝛼, 𝛽, 𝛾 are independent. Indeed, consider all 1D sections that are
parallel to the first coordinate, and fill a 2D table (indexed by other coordinates) by
this vectors. All the vectors are non-zeros (and even have all non-zero coordinates),
and the assumption guarantees that they are proportional in each row and each
column of this 2D table. So all the vectors are proportional, therefore all the
orthogonal 2𝐷-sections are proportional. By the assumption, these section have
rank 1, and this finishes the proof for the case of everywhere positive table.

10.13. NON-SHANNON INEQUALITIES 355

Now consider the general case. In this case we will show that the table has
a “block diagonal” structure, i.e., may be split into blocks, where each block is
a combinatorial parallelepiped (product of three sets of indices), projections of
different blocks onto the coordinate axes are disjoint, and the table has zeros outside
the blocks (and positive values inside all blocks).

We can apply the abovementioned argument to each block to get independence
inside each block. This finishes the prove, since we can use the block number as
𝜉; the variable 𝜉 is a function of each of the variables 𝛼, 𝛽, 𝛾, and when 𝜉 is given
(=the block is fixed), variables 𝛼, 𝛽, 𝛾 become independent.

So it remains to prove the block diagonal property. Consider the set of positions
that contain strictly positive elements. This set has the following property: if two
opposite corners of a rectangle (parallel to the axes) contain positive elements, then
two other corners contain positive elements. (Otherwise the determinant of the
corresponding 2× 2 matrix is not zero, and the rank is greater than 1.) Now, using
this property, let us find an increasing block in the table. We start with an one-
element block. At each step we look whether there exists a positive element in a
place that falls into the block along at least one coordinate. If yes, it is easy to see
(using the property above) that the block can be extended into a bigger one with
all non-zero elements. In such a way we get a maximal block that is separated from
other non-zero element along each coordinate, and then apply the same argument
to the rest of the table. �

302 Provide the missing details for this argument.

303 (a) Prove the following statement (it is called sometimes double Markov
property lemma): if 𝐼(𝛽 :𝛾 |𝛼) = 0 and 𝐼(𝛼 :𝛾 |𝛽) = 0, there exists a random vari-
able 𝜉 such that 𝐻(𝜉 |𝛼) = 0, 𝐻(𝜉 |𝛽) = 0 and 𝐼(⟨𝛼, 𝛽⟩ :𝛾 |𝜉) = 0. (b) Derive
Theorem 219 from this statement. [Hint for (b). For Theorem 219 one can use the
same variable 𝜉 as in (a). One can prove that he 𝛼 and 𝛾 are independent when 𝜉
is known using the independence of the pair 𝛼𝛽 and 𝛾. (Similar argument showa
that 𝛽 and 𝛾 are independent when 𝜉 is known). In addition, we know that 𝛼 and
𝛽 are independent when 𝜉 is known. One can derice from this that 𝛼 and 𝛽 are
independent when 𝜉 is known and that 𝜉 is a function of 𝛾. How can we do this? For
the first claim, draw a diagram with three variables 𝛼𝛽, 𝛾, and 𝜉 and look at the re-
gions that contain zeros. This diagram shows that the mutual information between
𝜉 and 𝛼𝛽 is not less than the mutual information between 𝛾 and 𝛼𝛽. On the other
hand, the condition 𝑊 (𝛼, 𝛽, 𝛾) = 0 implies that the mutual information betweeb
𝛼𝛽 and 𝛾 equals 𝐼(𝛼 :𝛽 :𝛾) = 𝐼(𝛼 :𝛽). Also, the conditions 𝐻(𝜉 |𝛼) = 𝐻(𝜉 |𝛽) = 0
imply that the mutual information between 𝛼𝛽 and 𝜉 equals 𝐼(𝛼 :𝛽 :𝜉) (see again
the diagram). Therefore, 𝐼(𝛼 :𝛽) > 𝐼(𝛼 :𝛽 :𝜉) > 𝐼(𝛼 :𝛽 :𝛾) = 𝐼(𝛼 :𝛽), and all in-
equalities here become equalities. The equality between two first terms means that
𝛼 and 𝛽 are independent when 𝜉 is given. Finally, the entropy 𝐻(𝜉 |𝛾) is bounded
by 𝐻(𝜉 |𝛼, 𝛾)+𝐻(𝜉 |𝛽, 𝛾)+𝐼(𝛼 :𝛽 |𝛾) and all three terms in the last sum are zeros.]

In [153] a Kolmogorov complexity version of Theorem 219 is proven. Assume
that 𝑎, 𝑏, 𝑐 are strings, and three quantities 𝐼(𝑎 :𝑏 |𝑐), 𝐼(𝑎 :𝑐 |𝑏), and 𝐼(𝑏 :𝑐 |𝑎) are
small, e.g., are bounded by 𝑂(log(|𝑎| + |𝑏| + |𝑐|)). Then there exists a string 𝑑
such that the conditional complexities 𝐶(𝑑 |𝑎), 𝐶(𝑑 |𝑏), 𝐶(𝑐 |𝑎), as well as the mu-
tual informations 𝐼(𝑎 :𝑏 |𝑑), 𝐼(𝑏 :𝑐 |𝑑), and 𝐼(𝑎 :𝑐 |𝑑) are also small (bounded by
𝑂(log(|𝑎| + |𝑏| + |𝑐|))).

356 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

Artificial independence. We considered some special cases of Theorem 218.
Now we will prove it in the general case using some trick (by making some variables
independent).

Proof. Let us split the variables in the inequality into three groups:

(1) 𝛼, 𝛽; (2) 𝛾, 𝛿; (3) 𝜀.

Note that in our inequality (2)-variables never appear in the same tuple with (3)-
variables, though variables of both groups are used together with (1)-variables. So
without loss of generality we may assume that the pair ⟨𝛾, 𝛿⟩ and 𝜀 are independent
given ⟨𝛼, 𝛽⟩. Indeed, consider a different joint distribution for all the variables,
obtained in the following way: first we generate values of ⟨𝛼, 𝛽⟩ according to the
existing distribution, and then we independently generate values of ⟨𝛾, 𝛿⟩ and 𝜀
accoriding to their (existing) conditional distributions given ⟨𝛼, 𝛽⟩. Indeed, for
(1)+(2)-variables the distribution remains the same, so the entropies do not change;
the same is true for (1) + (3)-variables.

Knowing this, we see that it is enough to prove a weaker inequality (with
additionals term in the right hand side):

𝐼(𝛼 :𝛽) 6 𝐼(𝛼 :𝛽 |𝛾) + 𝐼(𝛼 :𝛽 |𝛿) + 𝐼(𝛾 :𝛿) + 𝑊 (𝛼, 𝛽, 𝜀) +

+ 𝐼(⟨𝛾, 𝛿⟩ :𝜀 | ⟨𝛼, 𝛽⟩) +

+ 𝐼(𝛾 :𝜀 | ⟨𝛼, 𝛽⟩) +

+ 𝐼(𝛿 :𝜀 | ⟨𝛼, 𝛽⟩).
Indeed, if the pair ⟨𝛾, 𝛿⟩ is independent with 𝜀 given ⟨𝛼, 𝛽⟩, then the same in true
for its components 𝛾 and 𝛿, so the last three terms vanish after making the groups
artificially independend (and the other terms remain the same).

The latter inequality is in fact the sum of eight basic inequalities:

𝐼(⟨𝛼, 𝛽⟩ :𝜀 |𝛾, 𝛿) > 0,

𝐼(𝛼 :𝛽 |𝜀, 𝛾) > 0,

𝐼(𝛼 :𝛽 |𝜀, 𝛿) > 0,

𝐼(𝛾 :𝛿 |𝜀) > 0,

𝐼(𝛾 :𝜀 |𝛼) > 0,

𝐼(𝛾 :𝜀 |𝛽) > 0,

𝐼(𝛿 :𝜀 |𝛼) > 0,

𝐼(𝛿 :𝜀 |𝛽) > 0.

There is no problem to check this: one needs just express all the mutual informations
in terms of entropies of tuples, and we get the same inequalities after canceling the
opposite terms. Still it remains unclear why this happens and how one can invent
such a trick. �

One may say that our non-Shannon inequality, while not being a positive linear
combination of basic inequalities, still follows from them in a more general sense.
In fact, we have discovered a general “deduction rule” for entropy inequalities: if
we manage to split the variables in some inequality into three groups in such a way
that the second and third group never meet, then this inequality can be derived
from a (generally) weaker inequality where the mutual information between the

10.13. NON-SHANNON INEQUALITIES 357

variables of the second and third group (conditional to all the variables of the first
group) is added.

This rule can be use to prove many other non-Shannon inequalities for entropies
(it is known that one can get in this way infinitely many ineuqalities for four
variables, and each of them is not a positive linear combination of others).

Deleting the unique information. There is one more tool that can be used
to derive new inequalities for entropies. It is based on the following Ahlswede–
Körner theorem [2] that we state here without proof. (See [112, Lemma 5] for the
proof.)

Theorem 220. Let 𝛼, 𝛽, 𝜀 be random variables with some joint distribution.
Consider 𝑛 independent copies of this triple; denote them by 𝛼𝑖, 𝛽𝑖, 𝜀𝑖 (𝑖 = 1, . . . , 𝑛).
Let

𝐴 = (𝛼1, . . . , 𝛼𝑛), 𝐵 = (𝛽1, . . . , 𝛽𝑛), 𝐸 = (𝜀1, . . . , 𝜀𝑛).

Then there exist a random variable 𝐸′, defined on the same space as 𝐴,𝐵,𝐸 such
that all seven entropies on the diagram for the triple 𝐴,𝐵,𝐸′ are the same (up to
𝑜(𝑛)) as for the triple 𝐴,𝐵,𝐸, except for one, 𝐻(𝐸′ |𝐴,𝐵), that is now 𝑜(𝑛) instead
of 𝐻(𝐸 |𝐴,𝐵).

Informally speaking, 𝐸′ is like 𝐸 but does not contain any information that
is missing in 𝐴,𝐵. A similar statement is true for arbitrary number of random
variables 𝛼1, . . . , 𝛼𝑘 (with some joint distribution). Let us take 𝑛 independent
samples from this distribution and denote the resulting variables by 𝐴1, . . . , 𝐴𝑘.
One can “delete” the information that is unique for 𝐴𝑘 (is missing in 𝐴1, . . . , 𝐴𝑘−1)
and get some other 𝐴′

𝑘 where all the other regions on the diagram are the same as
before (with 𝑜(𝑛)-precision) while the conditional entropy 𝐻(𝐴′

𝑘 |𝐴1, . . . , 𝐴𝑘−1) is
now 𝑜(𝑛).

304 Prove this statement for the case 𝑘 = 2.

Note that it is important here that we deal with 𝑛 independent copies and
allow 𝑜(𝑛) errors. It is not possible to get such a result without that: if 𝛼 and 𝜀
are dependent uniformly distributed binary variables, one can not construct 𝜀′ that
has 𝐻(𝜀′ |𝛼) = 0 (i.e., is a function of 𝛼) and has required entropy.

Now let us explain how Ahlswede–Körner theorem can be used to prove The-
orem 218. Let 𝛼, 𝛽, 𝛾, 𝛿, 𝜀 be some random variables (on the same probability
space). First of all, let us prove the inequality of Theorem 218 with additional
term 3𝐻(𝜀 |𝛼, 𝛽) in the right hand side. It can be obtained by adding the inequal-
ities

𝐻(𝜀 |𝛾) 6 𝐻(𝜀 |𝛼) + 𝐻(𝜀 |𝛽) + 𝐼(𝛼 :𝛽 |𝛾),

𝐻(𝜀 |𝛿) 6 𝐻(𝜀 |𝛼) + 𝐻(𝜀 |𝛽) + 𝐼(𝛼 :𝛽 |𝛿),

𝐻(𝜀) 6 𝐻(𝜀 |𝛾) + 𝐻(𝜀 |𝛿) + 𝐼(𝛾 :𝛿)

and the equality

𝐼(𝛼 :𝛽) + 2𝐻(𝜀 |𝛼) + 2𝐻(𝜀 |𝛽) = 𝐻(𝜀) + 𝑊 (𝛼, 𝛽, 𝜀) + 3𝐻(𝜀 |𝛼, 𝛽).

We have already seen the third inequality (Problem 296, p. 351). The first two
inequalities follow from its conditional version. All three inequalities are combi-
nations of basic inequalities. The equality is easy to check using the diagram for
𝛼, 𝛽, 𝜀.

358 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

Now the Ahlswede–Körner theorem allows us to get rid of the undesirable
term 3𝐻(𝜀 |𝛼, 𝛽). Consider 𝑛 independent tuples 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖, 𝜀𝑖 (for 𝑖 = 1, . . . , 𝑛) of
variables with the same distribution, and random variables 𝐴 = (𝛼1, . . . , 𝛼𝑛), 𝐵 =
(𝛽1, . . . , 𝛽𝑛), 𝐶 = (𝛾1, . . . , 𝛾𝑛), 𝐷 = (𝛿1, . . . , 𝛿𝑛) 𝐸 = (𝜀1, . . . , 𝜀𝑛). The entropies of
variables 𝐴,𝐵,𝐶,𝐷,𝐸 and their combinations are 𝑛 times bigger than the entropies
of original variables and their combinations. Now we can apply Ahlswede–Körner
theorem to random variables 𝛼, 𝛽, 𝜀 and get a random variable 𝐸′ defined on the
same space as the variales 𝐴,𝐵,𝐶,𝐷,𝐸. For 𝐴,𝐵,𝐶,𝐷,𝐸′ we write the inequality
with additional term 3𝐻(𝐸′ |𝐴,𝐵) in the right hand side (that we have just proven).
This additional term is 𝑜(𝑛) as stated by Ahlswede–Körner theorem. Then we
replace 𝐸′ by 𝐸 in all other terms. We claim that all the terms change then only
by 𝑜(𝑛). Indeed, for the terms that contain 𝐶 or 𝐷 nothing changes, these terms do
not contain 𝐸′ (here we use the same property of our inequality as in the other proof
of Theorem 218). And terms that do not contain 𝐶 or 𝐷 can be represented as
sums of regions on the diagram for 𝐴,𝐵,𝐸′ different from 𝐻(𝐸′ |𝐴,𝐵). Therefore
the inequality remains true with 𝑜(𝑛)-precision after the replacement. It remains
to divide by 𝑛 and note that we get the desired inequality as 𝑛 → ∞.

It is instructive to compare these two tricks (making variables artificially inde-
pendent and applying Ahlswede–Körner theorem). In both cases we have modified
the joint distribution of the variables 𝐴,𝐵,𝐶,𝐷,𝐸 (we can apply artificial inde-
pendence to the 𝑛 times sampled variables, it does not make any difference). In the
first case we kept that joint distributions for 𝐴,𝐵,𝐸 and for 𝐴,𝐵,𝐶,𝐷 unchanged.
In the second case we kept unchanged only the joint distribution for 𝐴,𝐵,𝐶,𝐷.
Then we killed the term 𝐼(𝐶𝐷 :𝐸 |𝐴𝐵) in the first case, and the term 𝐻(𝐸 |𝐴𝐵)
in the second case, while keeping the other terms (almost) unchanged.

CHAPTER 11

Common information

11.1. Incompressible representations of strings

Is “the information in a string” material? Though this question sounds quite
informal, the following example gives an idea of what we are asking. Assume that
we are given a string 𝑥 whose Kolmogorov complexity is 𝑛 and thus 𝑥 “has 𝑛 bits of
information”. Can we divide that information into two equal parts, as if those bits
were pebbles? This question may be formulated quite formally: are there strings
𝑥1 and 𝑥2, each of complexity 𝑛/2, such that 𝐶(𝑥1 |𝑥) ≈ 0 and 𝐶(𝑥2 |𝑥) ≈ 0 (i.e.,
𝑥1, 𝑥2 do not have any new information compared with 𝑥) and 𝐶(𝑥 |𝑥1, 𝑥2) ≈ 0 (i.e.,
no information is lost)? It is natural to understand the approximate equalities as
equalities holding with accuracy 𝑂(log 𝑛). We will see soon such 𝑥1 and 𝑥2 indeed
exist.

It is convenient to use the following notion in this context. We say that strings
𝑥 and 𝑦 are equivalent with accuracy 𝑐, or just 𝑐-equivalent, if 𝐶(𝑥 |𝑦) 6 𝑐 and
𝐶(𝑦 |𝑥) 6 𝑐. Of course this relation is not an equivalence relation. If 𝑥 is equivalent
to 𝑦, and 𝑦 is equivalent to 𝑧, both with accuracy 𝑐, then we can prove only that 𝑥
is equivalent to 𝑧 with accuracy 2𝑐 + 𝑂(log 𝑐). (An alternative approach would be
to consider sequences 𝑥0, 𝑥1, . . . , 𝑥𝑖, . . . of strings where the length of 𝑥𝑖 is bounded
by a polynomial in 𝑖, instead of individual strings; then we may call sequences
𝑥0, 𝑥1, . . . and 𝑦0, 𝑦1, . . . , equivalent if 𝐶(𝑥𝑖 |𝑦𝑖) = 𝑂(log 𝑖) and 𝐶(𝑦𝑖 |𝑥𝑖) = 𝑂(log 𝑖).
In this way we get a true equivalence relation on sequences of strings.)

The complexities of 𝑐-equivalent strings are almost the same: they differ by at
most 𝑂(𝑐) and even 𝑐 + 𝑂(log 𝑐). More generally, if we replace a string by another
string that is 𝑐-equivalent to the original one, then all the complexities involving
that string change by at most 𝑂(𝑐): for example 𝐼(𝑥 :𝑦 |𝑧) changes by at most 𝑂(𝑐)
after replacing each of the strings 𝑥, 𝑦, 𝑧 (and even all of them at the same time)
by a 𝑐-equivalent string.

Using this notion, we can now formulate our first observation:

Theorem 221. For every string 𝑥 there is a string 𝑥′ of length 𝐶(𝑥) that is
𝑂(log𝐶(𝑥))-equivalent to 𝑥. The string 𝑥′ is “incompressible”, that is, its complex-
ity differs from its length by at most 𝑂(log𝐶(𝑥)).

Proof. Let 𝑥′ be (some) shortest description of 𝑥. Then its length is 𝐶(𝑥) and
its complexity differs from 𝐶(𝑥) by at most a constant. As we can algorithmically
transform 𝑥′ into 𝑥, we have 𝐶(𝑥 |𝑥′) = 𝑂(1). On the other hand, the following
inequalities

𝐶(𝑥) 6 𝐶(𝑥, 𝑥′) 6 𝐶(𝑥′) 6 𝑙(𝑥′) = 𝐶(𝑥)

hold up to a constant additive term. As the leftmost and the rightmost terms in
these inequalities coincide, they are equalities. In particular, 𝐶(𝑥, 𝑥′) ≈ 𝐶(𝑥). The

359

360 11. COMMON INFORMATION

theorem on the complexity of the pair implies that 𝐶(𝑥′ |𝑥) ≈ 0 with accuracy
𝑂(log𝐶(𝑥)). �

As a corollary we obtain a positive answer to the above question: replace the
given string by its shortest description 𝑥′ and let 𝑥1 and 𝑥2 be two halves of 𝑥′.

305 Verify that all the requirements are fulfilled.

306 Assume that 𝐶(𝑦 |𝑥) = 𝑛. Show that there is an (“intermediate”) 𝑧 such
that 𝐶(𝑧 |𝑥) ≈ 𝑛/2 and 𝐶(𝑦 |𝑧) ≈ 𝑛/2 with accuracy 𝑂(log𝐶(𝑥, 𝑦)).

In these examples information bits behave as something material. Similar thing
happens when we deal with information in a string and some part of this informa-
tion. Let us explain what is meant here.

Assume that some strings 𝑥 and 𝑦 are given such that 𝐶(𝑦 |𝑥) ≈ 0 (“all the
information in 𝑦 is a part of the information from 𝑥”). Then there is a string 𝑥′ that
is equivalent to 𝑥, and some prefix 𝑦′ of 𝑥′ that is equivalent to 𝑦. (This implies
that 𝑦′ is an incompressible string of length about 𝐶(𝑦).) More specifically, the
following holds:

Theorem 222. For every two strings 𝑥 and 𝑦 there exist strings 𝑥′ and 𝑦′

that are equivalent to 𝑥 and 𝑦 (respectively) with accuracy 𝑂(𝐶(𝑦 |𝑥) + log𝐶(𝑥, 𝑦)),
such that 𝑦′ is a prefix of 𝑥′ and both 𝑥′ and 𝑦′ are incompressible (with the same
accuracy).

Proof. Let 𝑦′ be a shortest description of 𝑦. Then 𝑦′ is an incompressible
string of length 𝐶(𝑦) and 𝑦′ is equivalent to 𝑦.

Let 𝑧′ be a shortest description of 𝑥 conditional to 𝑦. Then 𝑧′ is an incompress-
ible string of length 𝐶(𝑥 |𝑦). Knowing 𝑦′ and 𝑧′, we can find 𝑦 and then find 𝑥.
Therefore the complexity of the pair 𝑦′, 𝑧′ is at least 𝐶(𝑥, 𝑦). On the other hand,
the total length of strings 𝑦′ and 𝑧′ equals 𝐶(𝑦) + 𝐶(𝑥 |𝑦) ≈ 𝐶(𝑥, 𝑦). Hence the
string 𝑥′ = 𝑦′𝑧′ is incompressible.

As we have seen, 𝐶(𝑥 |𝑥′) ≈ 0. It remains to show that 𝐶(𝑥′ |𝑥) ≈ 0. Since
𝐶(𝑥 |𝑥′) ≈ 0, we have 𝐶(𝑥, 𝑥′) ≈ 𝐶(𝑥′) ≈ 𝐶(𝑥, 𝑦). On the other hand, we have
𝐶(𝑥, 𝑦) ≈ 𝐶(𝑥) with accuracy 𝑂(𝐶(𝑦 |𝑥)). Hence 𝐶(𝑥, 𝑥′) ≈ 𝐶(𝑥) and Kolmogo-
rov–Levin theorem implies that 𝐶(𝑥′ |𝑥) ≈ 0. �

By this theorem we can think of every two strings 𝑥, 𝑦 with 𝐶(𝑦 |𝑥) ≈ 0 as of
a string consisting of 𝐶(𝑥) almost material bits and its prefix of length 𝐶(𝑦).

11.2. Representing mutual information as a string

Is there an analog of Theorem 222 for arbitrary two strings 𝑥, 𝑦? Recall that
any two strings 𝑥, 𝑦 can be characterized by its complexities 𝐶(𝑥), 𝐶(𝑦) and the
complexity 𝐶(𝑥, 𝑦) of the pair. These values determine both conditional complexi-
ties (with logarithmic accuracy) and the mutual information:

𝐶(𝑥 |𝑦) = 𝐶(𝑥, 𝑦) − 𝐶(𝑦),

𝐶(𝑦 |𝑥) = 𝐶(𝑥, 𝑦) − 𝐶(𝑥),

𝐼(𝑥 :𝑦) = 𝐶(𝑥) + 𝐶(𝑦) − 𝐶(𝑥, 𝑦)

(cf. Fig. 2 on page 59). We have seen that sometimes Fig. 2 can be understood
almost literally: this happens when 𝑥 and 𝑦 are overlapping substrings of a random
string. One can conjecture that this holds in the general case.

11.2. REPRESENTING MUTUAL INFORMATION AS A STRING 361

Conjecture: for every two strings 𝑥 and 𝑦 there is an incompress-
ible string 𝑢 of lentgh 𝐶(𝑥, 𝑦) that is equivalent (with logarith-
mic accuracy) to the pair ⟨𝑥, 𝑦⟩, such that 𝐶(𝑥)-bit prefix of 𝑢 is
equivalent to 𝑥 and 𝐶(𝑦)-bit suffix of 𝑢 is equivalent to 𝑦 (with
the same accuracy).

However this conjecture is wrong. To see this, notice that the conjecture implies
that for every two strings 𝑥 and 𝑦 there exists a string 𝑧 (the common part of the
said prefix and suffix) such that

𝐶(𝑧 |𝑥) = 0,

𝐶(𝑧 |𝑦) = 0,

𝐶(𝑧) = 𝐼(𝑥 :𝑦)

(up to a logartithmic error term). Informally, these equalities mean that the string
𝑧 represents the common information in 𝑥 and 𝑦. We will show that for some pair
𝑥, 𝑦 there is no such 𝑧.

307 Show that if for some strings 𝑥 and 𝑦 such a 𝑧 exists, then the conjecture
is true for these 𝑥 and 𝑦.

There are several counterexamples to the conjecture. The simplest counterex-
ample (from An. Muchnik’s paper [133]) is the following one. We will construct
two strings 𝑥 and 𝑦 of complexity 2𝑛 that have 𝑛 bits of mutual information (with
logarithmic precision). Thus the complexity of the pair ⟨𝑥, 𝑦⟩ will be close to 3𝑛.
Additionally, there will be no string 𝑧 of complexity 𝑛 such that 𝐶(𝑧 |𝑥) and 𝐶(𝑧 |𝑦)
are negligible (with accuracy 𝑂(log 𝑛)).

How can we do this? Let us first rewrite the latter two conditions for 𝑧 as
𝐶(𝑥 |𝑧) = 𝑛 and 𝐶(𝑦 |𝑧) = 𝑛. Thus we are looking for strings 𝑥 and 𝑦 both of
complexity 2𝑛 that have 𝑛 bits of mutual information and for which there is no
string 𝑧 such that 𝐶(𝑧) ≈ 𝑛, 𝐶(𝑥 |𝑧) ≈ 𝑛 and 𝐶(𝑦 |𝑧) ≈ 𝑛. The following theorem
guarantees the existence of strings 𝑥 and 𝑦 with these properties and even with a
stronger property: there is no 𝑧 such that 𝐶(𝑧), 𝐶(𝑥 |𝑧) and 𝐶(𝑦 |𝑧) are less than
1.1𝑛.

Theorem 223. For every 𝑛 there are strings 𝑥 and 𝑦 such that

𝐶(𝑥) = 2𝑛 + 𝑂(log 𝑛), 𝐶(𝑦) = 2𝑛 + 𝑂(log 𝑛), 𝐼(𝑥 :𝑦) = 𝑛 + 𝑂(log 𝑛)

and such that there is no 𝑧 of complexity less than 1.1𝑛 with 𝐶(𝑥 |𝑧) < 1.1𝑛 and
𝐶(𝑦 |𝑧) < 1.1𝑛.

Proof. Let us show that there exists a pair 𝑥, 𝑦 of strings, each of length
2𝑛 + 2, such that

∙ 𝐶(𝑥) > 2𝑛,
∙ 𝐶(𝑦) > 2𝑛,
∙ 𝐶(𝑥, 𝑦) > 3𝑛 and
∙ there is no 𝑧 with 𝐶(𝑧) < 1.1𝑛, 𝐶(𝑥 |𝑧) < 1.1𝑛, 𝐶(𝑦 |𝑧) < 1.1𝑛.

Indeed, the first condition is violated by less than quarter of all pairs (the total
number of 𝑥’s is 22𝑛+2, and only 22𝑛 of them have complexity less than 2𝑛). Sim-
ilarly, the second condition is violated by less than quarter of all pairs. The third
condition is violated by less than 23𝑛 pairs, which is a negligible quantity compared
to the total number 24𝑛+4 of all pairs. Finally, the fourth condition is violated by
less than 21.1𝑛 × 21.1𝑛 pairs for every fixed 𝑧. As there are less than 21.1𝑛 different

362 11. COMMON INFORMATION

strings 𝑧, the total number of such pairs is less than 3.3𝑛, which is again negligible
compared to the total number of all pairs.

So there are many pairs satisfying all the conditions. Let 𝑥, 𝑦 be the first pair.
To specify this pair we need to know 𝑛 and the following three lists:

∙ the list of all strings of complexiity less than 2𝑛,
∙ the list of all pairs of strings of complexiity less than 3𝑛 and
∙ the list of all pairs of strings ⟨𝑢,𝑣⟩ with 𝐶(𝑢) < 1.1𝑛 and 𝐶(𝑣 |𝑢) < 1.1𝑛.

Recall that the complexity of the list of all strings of complexity less than 𝑘 is
at most 𝑘 + 𝑂(log 𝑘) (the list can be specified by the number 𝑘 and the size of the
list, which is less than 2𝑘 and thus can be identified by 𝑘 bits).

Therefore, the list of all strings of complexity less than 2𝑛 has complexity at
most 2𝑛 + 𝑂(log 𝑛). For the same reasons the complexity of the second list is less
than 3𝑛 + 𝑂(log 𝑛).

A similar argument can be applied to the list of all pairs of strings ⟨𝑢,𝑣⟩ such
that 𝐶(𝑢) < 1.1𝑛 and 𝐶(𝑣 |𝑢) < 1.1𝑛. The complexity of this list is at most 2.2𝑛+
𝑂(log 𝑛). Indeed, we can find this list from 𝑛 and the number of such pairs, which
is less than 22.2𝑛.

What is the joint complexity of three lists, i.e. the complexity of the triple
made of these three lists? Is is much less than the sum of their complexities and
is bounded by maximal of our bounds, i.e., 3𝑛 (with accuracy 𝑂(log 𝑛)). Indeed,
given 𝑛, each list can be specified by its size. Moreover, we only need to know the
sum of the sizes. Indeed, we can generate elements from all three lists in parallel
until we obtain the specified total number of elements. Once we get that many
elements, we know all the three lists. It remains to notice that the sum of any
three binary numbers is at most 2 bits longer than the maximal of the numbers.
Therefore the joint complexity of the three lists is at most 3𝑛 + 𝑂(log 𝑛).

Thus, the complexity of the pair 𝑥, 𝑦 is at most 3𝑛 + 𝑂(log 𝑛). On the other
hand, its complexity is at least 3𝑛 by construction. Again by construction, the
complexity of each of 𝑥, 𝑦 is at least 2𝑛. As the length of both 𝑥, 𝑦 is 2𝑛 + 2, the
complexity of each of them is at most 2𝑛 + 𝑂(1). Finally, by construction there is
no 𝑧 with 𝐶(𝑧) < 1.1𝑛, 𝐶(𝑥 |𝑧) < 1.1𝑛, 𝐶(𝑦 |𝑧) < 1.1𝑛. �

It is clear that there are some reserves in this argument; let us make more
precise estimates. Assume that we want to construct strings 𝑥 and 𝑦 of complexity
2𝑛 (both), with mutual information 𝑛, but there should be no string 𝑧 such that

𝐶(𝑧) < 𝛼, 𝐶(𝑥 |𝑧) < 𝛽 and 𝐶(𝑦 |𝑧) < 𝛾.

What are the conditions on 𝛼, 𝛽, and 𝛾 that make our construction possible? The
list of all pairs 𝑢, 𝑣 such that 𝐶(𝑢) < 𝛼 and 𝐶(𝑣 |𝑢) < 𝛽, has complexity 𝛼 + 𝛽,
so we need the condition 𝛼 + 𝛽 < 3𝑛. In the same way the condition 𝛼 + 𝛾 < 3𝑛
appears. Finally, to prove the existencence of a pair we need to know that less than
24𝑛 pairs are prohibited, so we add the condition 𝛼+𝛽 + 𝛾 < 4𝑛. These conditions
are sufficient to construct a pair with required properties.

Moreover, we can prohibit simultaneously all the pairs for different triples
𝛼, 𝛽, 𝛾 that satisfy these inequalities. There are 𝑂(𝑛3) triples, so if we require
the inequalities to be true with 𝑂(log 𝑛) margin, we still have pairs that are not
prohibited; the complexity overhead needed to merge polynomially many enumer-
ations, is also 𝑂(log 𝑛). So we get the following statement:

11.2. REPRESENTING MUTUAL INFORMATION AS A STRING 363

Theorem 224. For every 𝑛 there exist strings 𝑥, 𝑦 of complexity 2𝑛+𝑂(log 𝑛)
such that 𝐶(𝑥, 𝑦) = 3𝑛+𝑂(log 𝑛), and for every 𝑧 at least one of the following three
inequalities is true:

(a) 𝐶(𝑧) + 𝐶(𝑥 |𝑧) > 3𝑛−𝑂(log 𝑛);
(b) 𝐶(𝑧) + 𝐶(𝑦 |𝑧) > 3𝑛−𝑂(log 𝑛);
(c) 𝐶(𝑧) + 𝐶(𝑥 |𝑧) + 𝐶(𝑦 |𝑧) > 4𝑛−𝑂(log 𝑛).

To be completely formal: for some 𝑐 and for all 𝑛 there exist strings 𝑥 and 𝑦
whose complexities deviate from 2𝑛 at most by 𝑐 log 𝑛, the complexity of the pair
deviates from 3𝑛 at most by 𝑐 log 𝑛, and for every string 𝑧 one of the inequalities
(a)–(c) is true with 𝑐 log 𝑛 in the right hand side in place of 𝑂(log 𝑛).

The pair constructed in this theorem is the “worst-case” pair from the viewpoint
of common information. This vague statement can be made precise in the following
way. For each pair 𝑥, 𝑦 let us consider the set 𝐶(𝑥, 𝑦) ⊂ N3 of triples ⟨𝛼, 𝛽, 𝛾⟩ such
that there exist a string 𝑧 that makes three conditions

𝐶(𝑧) < 𝛼, 𝐶(𝑥 |𝑧) < 𝛽, and 𝐶(𝑦 |𝑧) < 𝛾

true. The set 𝐶(𝑥, 𝑦) is upwards closed (obviously); note that 𝐶(𝑥, 𝑦) is not deter-
mined by complexities of 𝑥, 𝑦, and the pair 𝑥, 𝑦: we have seen two pairs that that
both have 𝐶(𝑥) = 𝐶(𝑦) = 2𝑛 and 𝐶(𝑥, 𝑦) = 3𝑛, but have different 𝐶(𝑥, 𝑦). As we
will see, these examples are “extreme points”: we get maximal 𝐶(𝑥, 𝑦) for 𝑥 and
𝑦 being overlapping 2𝑛-bit prefix and suffix of a random 3𝑛-bit string, and we get
minimal 𝐶(𝑥, 𝑦) for the pair provided by Theorem 224.

Let us explain why it happens. Assume that 𝑥 and 𝑦 are strings of complexity
2𝑛 with mutual information 𝑛 (as usual, we allow the deviation of order 𝑂(log 𝑛)
without saying this explicitly). Every triple ⟨𝛼, 𝛽, 𝛾⟩ ∈ 𝐶(𝑥, 𝑦) should satisfy the
obvious inequalities

𝛼 + 𝛽 > 2𝑛, 𝛼 + 𝛾 > 2𝑛, 𝛼 + 𝛽 + 𝛾 > 3𝑛

(since 𝐶(𝑥) 6 𝐶(𝑧) + 𝐶(𝑥 |𝑧) and so on). This means that 𝐶(𝑥, 𝑦) is a subset of
the set 𝐶𝑀 of all triples ⟨𝛼, 𝛽, 𝛾⟩ satisfying these three inequalities. (Again we omit
𝑂(log 𝑛) terms that are needed for the exact statement.)

How can we represent this set of triples in an intuitive way? For each 𝛽 and
𝛾 there is some threshold 𝛼0(𝛽, 𝛾): the triples with 𝛼 > 𝛼0 belong to 𝐶𝑀 and the
triples with 𝛼 < 𝛼0 do not belong to 𝐶𝑀 . The graph of the function ⟨𝛽, 𝛾⟩ ↦→
𝛼0(𝛽, 𝛾) is the boundary of 𝐶𝑀 . It has three faces (corresponding to the three
inequalities), and can be represented on the plane by drawing for every 𝛼 the set
of points where 𝛼0(𝛽, 𝛾) = 𝛼. This line is a boundary of the horizontal (fixed 𝛼)
section of 𝐶𝑀 . See Figure 1. how to say “liniya

urovnya” in English?Using this picture, it is easy to check that for our first example (overlapping
factors of a random string) the set 𝐶(𝑥, 𝑦) achieves its upper bound 𝐶𝑀 . How
should we choose 𝑧 for given 𝛼, 𝛽, 𝛾 in 𝐶𝑀? When 𝛼 < 𝑛, we let 𝑧 be a part of
the overlap; adding 𝑧 as the condition then decreases the complexities of both 𝑥
and 𝑦 by 𝛼. If 𝛼 > 𝑛, we let 𝑧 be the overlap plus some parts of 𝑥 and 𝑦 (in some
proportion; the change in the proportion gives different points on a line with slope
−1 on the picture.

Theorem 224 provides an example of a pair (𝑥, 𝑦) with smaller 𝐶(𝑥, 𝑦). Indeed,
it gives a pair where 𝐶(𝑥, 𝑦) is contained in the union of the sets

𝛼 + 𝛽 > 3𝑛, 𝛼 + 𝛾 > 3𝑛, 𝛼 + 𝛽 + 𝛾 > 4𝑛

364 11. COMMON INFORMATION

𝑛 2𝑛 3𝑛

𝑛

2𝑛

3𝑛

𝛼 = 0

𝛼 = 𝑛

𝛼 = 2𝑛

Figure 1. The set 𝐶𝑀 .

𝑛 2𝑛 3𝑛

𝑛

2𝑛

3𝑛

𝛼 = 0

𝛼 = 𝑛

𝛼 = 2𝑛

Figure 2. The set 𝐶𝑚.

that correspond to inequalities (a)–(c). Intersecting 𝐶𝑀 with this union, we get a
smaller set that is called 𝐶𝑚 in the sequel; it is shown in Figure 2.

In fact, 𝐶𝑚 coincides with 𝐶(𝑥, 𝑦) for this pair, and 𝐶𝑚 ⊂ 𝐶(𝑥, 𝑦) for every
pair 𝑥, 𝑦 (where 𝑥 and 𝑦 have complexity 2𝑛 and the pair has complexity 3𝑛.

To check this, we need to find a suitable 𝑧 for every point ⟨𝛼, 𝛽, 𝛾⟩ ∈ 𝐶𝑚. It is
enough to do this for all minimal triples in 𝐶𝑚 (since 𝐶(𝑥, 𝑦) is upwards closed).
The points on the lines with slope −1 (Figure 2) correspond to string 𝑧 that combine
part of 𝑥 with part of 𝑦 in some proportion. For example, the point (1.5𝑛, 1.5𝑛)
corresponds to 𝑧 that combines 𝑛/2 bits from the shortest description of 𝑥 and 𝑛/2
bits from the shortest description of 𝑦. The point (𝑛, 𝑛) corresponds to a string 𝑧
of length 2𝑛 that combine 𝑛 bits from each of the two shortest descriptions. The
point (𝑛 + ℎ, ℎ) (where 0 6 ℎ 6 𝑛) corresponds to a string 𝑧 of length 2𝑛 − ℎ
that is a prefix of the shortest description of 𝑦. Then 𝐶(𝑦 |𝑧) is the number of the
remaining bits, i.e., ℎ. On the other hand, 𝐶(𝑥 |𝑧) is bounded by 𝐶(𝑥 |𝑦) (i.e., 𝑛)
plus 𝐶(𝑦 |𝑧) (i.e., ℎ). Finally, the points (ℎ, 0) (where 0 6 ℎ 6 𝑛) correspond to
strings 𝑧 of complexity at most 3𝑛 − ℎ that contain all 𝑦 and 𝑛 − ℎ bits of the
shortest description of 𝑥 given 𝑦. So we get the following statement:

Theorem 225. For every pair (𝑥, 𝑦) of strings that have complexity 2𝑛 and
mutual information 𝑛, the set 𝐶(𝑥, 𝑦) is (with logarithmic precision) between lower
bound 𝐶𝑚 and upper bound 𝐶𝑀 ; both bounds are achieved for some pairs.

As soon as the set 𝐶(𝑥, 𝑦) is known for a pair (𝑥, 𝑦), we can formally derive
some properties of this pair. Here is one example:

Theorem 226. Assume that 𝐶(𝑥, 𝑦) = 𝐶𝑚 (as it happens for the pair con-
structed in Theorem 224). Then for every 𝑧 the inequality

𝐶(𝑧) 6 2𝐶(𝑧 |𝑥) + 2𝐶(𝑧 |𝑦).

holds.

Before proving this inequality, let us comment on its meaning. It says that only
strings 𝑧 of small complexity can be simple relative to 𝑥 and 𝑦 at the same time.
Note that if one can extract common information from 𝑥 and 𝑦, then this common
information 𝑧 is simple relative to 𝑥 and 𝑦, so this inequality is a quantitative
statement that says that common information cannot be extracted.

Proof. We may assume without loss of generality that 𝐶(𝑧) = 𝑂(𝑛) (if the
complexity of 𝑧 is big, then 𝐶(𝑧 |𝑥) and 𝐶(𝑧 |𝑦) are greater than 𝐶(𝑧)/2.

11.3. THE COMBINATORIAL MEANING OF COMMON INFORMATION 365

Let us rewrite the inequality in terms of the quantities that appear in the
definition of 𝐶(𝑥, 𝑦): it may be rewritten as

𝐶(𝑧) 6 2𝐶(𝑥, 𝑧) − 2𝐶(𝑥) + 2𝐶(𝑦, 𝑧) − 2𝐶(𝑦)

and then

𝐶(𝑧) 6 2𝐶(𝑧) + 2𝐶(𝑥 |𝑧) − 2𝐶(𝑥) + 2𝐶(𝑧) + 2𝐶(𝑦 |𝑧) − 2𝐶(𝑦),

i.e.,
2𝐶(𝑥) + 2𝐶(𝑦) 6 3𝐶(𝑧) + 2𝐶(𝑥 |𝑧) + 2𝐶(𝑦 |𝑧).

The left hand side equals 8𝑛; to check that the right hand side cannot be less, we
consider each line on Figure 2 (and it is enough to consider points with minimal
sum of coordinates). �

308 Prove that for small values of 𝐶(𝑧) one can get a better bound

𝐶(𝑧) 6 𝐶(𝑧 |𝑥) + 𝐶(𝑧 |𝑦),

but in general the constant 2 cannot be improved.

11.3. The combinatorial meaning of common information

Theorem 224 gives us an example of a pair of strings that do not have (ex-
tractable) common information in the strongest possible sense. Still is does not
explains why it happens, what properties of 𝑥 and 𝑦 make mutual information non-
extractable. This is a rather informal question, and we do not know any statement
that answers it completely; still some observations can be made.

What does it mean that for given 𝑥 and 𝑦 there exists a string 𝑧 such that
𝐶(𝑧) < 𝛼, 𝐶(𝑥 |𝑧) < 𝛽 and 𝐶(𝑦 |𝑧) < 𝛾? Let us denote by 𝑈𝑚(𝑧) the set of all
strings whose conditional complexity given 𝑧 is less than 𝑚. The size of this set is
about 2𝑚. Our condition means that the pair ⟨𝑥, 𝑦⟩ is covered by one of the sets
𝑈𝛽(𝑧) × 𝑈𝛾(𝑧); there is at most 𝑂(2𝛼) sets of this type (one for each 𝑧).

Therefore, the condition ⟨𝛼, 𝛽, 𝛾⟩ ∈ 𝐶(𝑥, 𝑦) means that the pair ⟨𝑥, 𝑦⟩ is cov-
ered by a union of 2𝛼 combinatorial rectangles of size 2𝛽 × 2𝛾 . (A combinatorial
rectangle is a product of two arbitrary sets.) On the other hand, if ⟨𝑥, 𝑦⟩ is covered
by an enumerable family of 2𝛼 combinatorial rectangles of size 2𝛽 × 2𝛾 , then the
triple ⟨𝛼, 𝛽, 𝛾⟩ (plus the complexity of the enumeration algorithm and logarithmic
overhead) belongs to 𝐶(𝑥, 𝑦): let 𝑧 be the ordinal number of the rectangle that
covers ⟨𝑥, 𝑦⟩. So one can say that the set 𝐶(𝑥, 𝑦) is determined if we know which
(simple enumerable) families of combinatorial rectangles cover the pair ⟨𝑥, 𝑦⟩.

Now it is clear how one can construct an example of a pair without common
information: find a set that is difficult to cover by combinatorial rectangles, and take
a random element of this set. (This approach also was suggested by An. Muchnik).

It is convenient to identify the sets of pairs with binary relations, or bipartite
graphs: a pair ⟨𝑥, 𝑦⟩ is then an edge that connects vertex 𝑥 in the left part with
vertex 𝑦 in the right part. The combinatorial rectangle is then the set of all edges
that connect some subset of the left part and some subset of the right part.

There is a simple property of a bipartite graph that guarantees that it is hard to
cover this graph by combinatorial rectangles: the graph should not contain cycles
of length 4 (there are no vertices 𝑎, 𝑏 in one part and 𝑐, 𝑑 in other part such that
all four edges 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 are in the graph). The following combinatorial lemma
shows that such a graph is difficult to cover:

366 11. COMMON INFORMATION

Lemma. Consider a bipartite graph with 𝑙 vertices in the left part and 𝐿
vertices in the right part ; assume that 𝑙 6 𝐿. If this graph does not have cycles
of length 4, then the density of edges in it (the number of edges divided by 𝑙𝐿) is

bounded by 𝑂(max(1/
√
𝐿, 1/𝑙)).

In other words, if we place stars in a rectangular table in such a way that no
four stars form a rectangle with horizontal and vertical sides, then the density of
stars is bounded either by 𝑂(1/smaller side), or by 𝑂(1/

√
larger side).

Proof. For each of 𝑙 left vertices consider the set of its right neighbors. The
condition about cycles says that every two sets of this type (for different two left
vertices) have at most one common element. The inclusion-exclusion formula then
allows us to give a lower bound for the size of the union of all these neighbor sets:
the sum of sizes of all sets (i.e., the total number of edges in the graph) minus the
number of all possible pairs, at most 𝑙2. On the other hand, this union contains at
most 𝐿 elements (the size of the right part).

So we conclude that the total number of edges is bounded by 𝐿 + 𝑙2, and the
density is bounded by 1/𝑙 + 𝑙/𝐿. This gives the required bound if the first term

dominates the second one, i.e., for 𝑙 6
√
𝐿. But for 𝑙 >

√
𝐿 we get the bound

𝑂(𝑙/𝐿) which is not enough (we want 𝑂(1/
√
𝐿)); this is OK if 𝑙 = 𝑂(

√
𝐿), but 𝑙

can be bigger.
To get the required bound, let us consider a part of the graph by choosing

√
𝐿

vertices in the left part (among 𝑙) with maximal number of neighbors. Deleting
all other left vertices, we only increase the density, and for the reduced graph the
density is bounded by 1/

√
𝐿. Lemma is proven.

Now we need to find a graph without 4-cycles. (Then the Lemma guarantees
that it is difficult to cover by rectangles, and a random edge in this graph gives
us a pair without common information; see below.) Here is a simple geometric
construction.

Consider some finite field F and a plane (two-dimensional vector space) over F.
The left vertices are points in this plane; the right vertices are lines. Edges connect
incindent points and lines. We do not have 4-cycles thanks to Euclid’s axiom: for
given two points there is at most one line that goes through them.

How many vertices and edges to we get? If the field contains about 2𝑛 elements,
then we have about 22𝑛 vertices and each side and about 23𝑛 edges (each line
contains about 2𝑛 points, and for each point there is about 2𝑛 lines going through
it). So for most edges in the graph the complexities 𝐶(𝑥) and 𝐶(𝑦) are close to 2𝑛,
the complexity of the pair is close to 2𝑛, and mutual information 𝐼(𝑥 :𝑦) is close to
𝑛.

309 Show that 𝐼(𝑥 :𝑦) = 𝑛 + 𝑂(log 𝑛) for all edges 𝑥𝑦 in this graph whose
complexity exceeds 3𝑛−𝑂(log 𝑛).

To finish the alternative proof of Theorem 223, let us see what fraction of the
edges (in this graph) can be covered by 21.1𝑛 rectangles of size 21.1𝑛 × 21.1𝑛. (We
again use 1.1 as 𝛼, 𝛽, and 𝛾.) We can apply the Lemma above to each rectangle
and conclude that the density of edges is bounded by 2−0.55𝑛, so the total number
of edges covered by all the rectangles, is at most

21.1𝑛 × 21.1𝑛 × 21.1𝑛 × 2−0.55𝑛 = 22.75𝑛 ≪ 23𝑛.

11.3. THE COMBINATORIAL MEANING OF COMMON INFORMATION 367

So most of the edges remain uncovered (and most of the edges have required com-
plexities and mutual information), so a random edge in this graph with high prob-
ability provides an example required by Theorem 223.

310 Show that every edge 𝑥𝑦 whose complexity is close to 3𝑛 can be used as
an example for Theorem 223). [Hint: the set of covered edges can be enumerated
by a simple algorithm.]

This construction gives a nice alternative proof of Theorem 223, but there is
one subtle point in it: we need to know that there exists a field of size close to
2𝑛. (Knowing the such a field exist, we can find it by a brute-force search, so we
may assume that the field is simple given 𝑛.) It is a classical (but not completely
trivial) result in algebra and number theory. The field of size 2𝑛 can be constructed
by a degree 𝑛 extension of a field with two elements consisting of all roots of the
polynomial 𝑥2𝑛 − 𝑥. Also we can use Bertrand postulate that guarantees that for
every 𝑁 there is a prime number 𝑝 between 𝑁 and 2𝑁 , and use residues modulo 𝑝
where 𝑝 is a prime number close to 2𝑛.

Now we have a “concrete” example of two strings with non-extractable mutual
information: a random pair of incident point and line on a plane over a finite field.
To make this example more symmetric, we may consider projective plane instead
of the affine one (the complexity does not change much since infinite points form a
negligible fraction of all points). We may also choose a random pair of orthogonal
1-dimensional subspaces in a 3-dimensional space over a finite field (with scalar
product𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3).

It would be nice to construct a similar example using spaces over R (points on
the sphere in R3). Probably one can take some discrete subset of the sphere with
reasonable contant density, but there are some problems: if 𝑥 and 𝑦 are close, then
there are many points that are almost orthogonal to both.

Of course, the coefficient 1.1 is not optimal. The same argument can be tried
for arbitrary 𝛼, 𝛽, 𝛾 and is successful (the number of covered edges is less than 3𝑛)
if they are not too large. Using our Lemma (exactly in the form it is stated), one
can get the following result: the set 𝐶(𝑥, 𝑦) for a random pair (incident point and
line) is contained up to 𝑂(log 𝑛) precision in the set 𝑆 shown in Figure 3. (The
value 𝛼 = 3𝑛 corresponds to the origin.) For 𝛽 6 𝛾 the set 𝑆 is defined by the

𝑛 2𝑛 3𝑛

𝑛

2𝑛

3𝑛

𝛼 = 0
𝛼 = 𝑛

𝛼 = 2𝑛

Figure 3. The set 𝑆.

inequality
𝛼 + 𝛾/2 + max{𝛾/2, 𝛽} > 3𝑛,

368 11. COMMON INFORMATION

and for 𝛾 6 𝛽 it is defined by the symmetric inequality

𝛼 + 𝛽/2 + max{𝛽/2, 𝛾} > 3𝑛.

We can also intersect this set with 𝐶𝑀 (since 𝐶(𝑥, 𝑦) ⊂ 𝐶𝑀), in this way we get
even more complicated picture (not shown here).

Unlike our previous examples, we have here only an upper bound for the set
𝐶(𝑥, 𝑦); the set itself remains unknown. It may happen that 𝐶(𝑥, 𝑦) for this example
depends on the choice of the finite field F. This looks weird, but the following
problem shows that it is not so unbelievable as it could seem at first.

311 Assume that F is a field of cardinality 𝑞2 (then 𝑞 = 𝑝𝑘 for some prime
𝑝). Let (𝑥, 𝑦) be a random pair of incident point and line on a plane over F. Prove
that 𝐶(𝑥, 𝑦) contains the triple ⟨1.5𝑛, 𝑛, 𝑛⟩ where 𝑛 = log |F| = 2 log 𝑞. As usual,
we ignore logarithmic terms. (This point is on the boundary of the set 𝑆, Figure 3.
We do not know whether the same is true for arbitrary field.)

[Hint. The field F contains a subfield G of size 𝑞. Every element in 𝐹 has the
form 𝑡 + 𝑠𝛼, where 𝑡, 𝑠 ∈ G, and 𝛼 is some fixed element in F. Then we can split
the pairs of incident point and line into 𝑞3 classes, each class contains at most 𝑞3

pairs and involves at most 𝑞2 points and 𝑞2 lines. To get this classification, we
consider lines of the form 𝑦 = 𝑘𝑥 + 𝑏 (vertical lines are non-random) and represent
the coefficients in this equation as 𝑘 = 𝑓 +𝑟𝛼 and 𝑏 = ℎ+𝑠𝛼, where 𝑓, 𝑟, ℎ, 𝑠 ∈ G. If
a point (𝑥, 𝑦) is on this line, let us represent 𝑥 as 𝑥 = 𝑔+𝑡𝛼; then 𝑦 = 𝑓𝑔+ℎ+(𝑓𝑡+
𝑔𝑟 + 𝑠)𝛼 + 𝑟𝑡𝛼2. We may fix 𝑟, 𝑡, 𝑠 in 𝑞3 different ways; each way corresponds to a
class of pairs. Each class involves 𝑞2 lines (and this is OK) and 𝑞3 points (which is
not OK). To decrease the number of involved points, we can use the following trick.
Let us represent the coefficients of each line as 𝑘 = 𝑓 + 𝑟𝛼, 𝑏 = ℎ + (𝑠− 𝑓𝑡)𝛼, and
its points as (𝑔 + 𝑡𝛼, 𝑓𝑔 + ℎ + (𝑔𝑟 + 𝑠)𝛼 + 𝑟𝑡𝛼2), where all coefficients 𝑓, 𝑔, ℎ, 𝑠, 𝑟, 𝑡
are from G. Now, fixing 𝑟, 𝑡, 𝑠, we get a set that involves 𝑞2 lines (parametrized by
𝑓, ℎ) and 𝑞2 points (parametrised by 𝑔, 𝑓𝑔 + ℎ).]

312 Prove that we get the same set 𝐶(𝑥, 𝑦) for all randomly chosen pairs (𝑥, 𝑦)
in the line–point graph, up to 𝑂(log 𝑛) precision: to decide whether a triple ⟨𝛼, 𝛽, 𝛾⟩
belongs to this set, we need to know only the maximal possible number of edges
in a combinatorial rectangle of size 2𝛽 × 2𝛾 . Namely, it is necessary and sufficient
that this number times 2𝛼 exceeds the total number of edges (up to a polynomial
factor).

[Hint (I. Razenshteyn [150]). For every two edges there exists an affine bijection
of the plane that maps the first edge into the second one. If there is a rectangle
with large number of edges, we may cover the graph by several random images of
this rectangle; we need an additional factor of polynomial size to cover all the edges
with positive probability. If all the rectangles are small, there is not enough edges
to cover the entire graph (or a significant part of it) by small number of them.]

As in the previous section, the upper bound for 𝐶(𝑥, 𝑦) implies an inequality
that bounds the unconditional complexity of 𝑧 in terms of conditional complexities
(given 𝑥 and 𝑦):

Theorem 227. Let 𝑥, 𝑦 be a random pair of incident line and point in a plane
over a finite field of size about 2𝑛. Then for every string 𝑧 the following inequality
holds:

𝐶(𝑧) 6 2𝐶(𝑧 |𝑥) + 2𝐶(𝑧 |𝑦) + 𝑂(log 𝑛).

11.3. THE COMBINATORIAL MEANING OF COMMON INFORMATION 369

Proof. As before, we need to prove that

8𝑛 6 3𝛼 + 2𝛽 + 2𝛾

for all ⟨𝛼, 𝛽, 𝛾⟩ ∈ 𝐶(𝑥, 𝑦). It is enough to check this inequality for all points in
𝑆 ∩ 𝐶𝑀 . We may assume without loss of generality that 𝛽 6 𝛾. If 𝛽 exceeds
𝛾/2, then the required inequality is obtained as follows: multiply the inequality
𝛼+𝛾/2 +𝛽 > 3𝑛 (from the definition of 𝑆) by 2 and add the inequality 𝛼+𝛾 > 2𝑛
(from the definition of 𝐶𝑀). Otherwise (if 𝛽 6 𝛾/2) we sum up the inequalitis
𝛼+ 𝛾 > 3𝑛 (definition of 𝑆), 𝛼+ 𝛽 > 2𝑛, and 𝛼+ 𝛽 + 𝛾 > 3𝑛 (both taken from the
definition of 𝐶𝑀). �

So now we have two constructions of a pair without (extractable) common
information. The first construction gives betted bounds for the set 𝐶(𝑥, 𝑦). So
what are the advantages of the second one? The most important (though informal)
advantage is that we have found a combinatorial reason (a graph that is difficult to
cover by rectangles) and a simple sufficient condition for this (no cycles of length
4).

More formal advantage is that in the second construction we get a “stochastic”
example: our pair is an element of maximal complexity in a simple set. Probably
the first construction does not give us a stochastic example. However, we may prove
the existence of stochastic pairs with minimal 𝐶(𝑥, 𝑦): a probabilistic method can
be used to prove the existence of a graph that is maximally hard to cover by
combinatorial rectangles (see [150]).

Another advantage of the second construction: it can be used to prove a bit
stronger statement using oracle complexity. In fact we have shown that for every
oracle 𝐴 there exist two strings 𝑥 and 𝑦 of compexilty (without oracle) 2𝑛 and
mutual information (also without oracle) 𝑛 such that there is no string 𝑧 with
𝐶𝐴(𝑧) < 1.1𝑛, 𝐶𝐴(𝑥 |𝑧) < 1.1𝑛 and 𝐶𝐴(𝑦 |𝑧) < 1.1𝑛. Indeed, even a very powerful
oracle still defines some combinatorial rectangles, they cover only a negligible frac-
tion of the edges, and it remains to select an uncovered (and non-simple) edge. (Of
course, the resulting pair depends on the oracle, since every pair is simple relative
to some oracle.)

313 State and prove a similar result with additional condition 𝑢 (a string of
unlimited complexity) instead of the oracle.

What happens with common (extractable) information in two strings if we add
some oracle? Some results in this directions are obtained in [137]; it is assumed
there that the oracle is independent with pair 𝑥, 𝑦 (so the complexities and mutual
information remain unchanged). Evidently, if some 𝑧 is the common information,
then adding the oracle does not destroys this. It can be shown that the reverse
statement is true (however, the existing proof gives not our usual 𝑂(log 𝑛) precision,
but much weaker result).

We can apply similar combinatorial techniques to other algebraic constructions.
For example, we may consider a pair of orthogonal 1-dimensional subspaces in a
4-dimensional space or, almost equivalently (if we ignore infinitely far points), a
random pair (point in a 3-dimensional space, 2-dimensional affine plane that goes
through this point). One cannot apply the lemma about 4-cycles anymore (there
are 4-cycles: for any two 1-dimensional subspaces one can find a 2-dimensional
space orthogonal to both, and two 1-dimensional subspaces in it). Still there are

370 11. COMMON INFORMATION

only few 1-dimensional subspaces in a 2-dimensional space, so we still can apply
a similar argument based on the inclusion-exclusion formula. (See the proof of
Theorem 5 in [39] for details).

There are other similar examples. One can consider a pair of two affine lines
in a 3-dimensional space that have a common point. Another series of examples
can be obtained in the following way. Fix some integer 𝑛 > 3 and some integers
𝑘, 𝑙 such that 0 < 𝑘 < 𝑙 < 𝑛. Then in the 𝑛-dimensional space over a finite field
consider a random pair (𝑘-dimensional subspace, 𝑙-dimensional subspace) where the
first subspace is contained in the second one. A.Romashchenko has shown [152],
that one cannot extract common information from this pair. The proof uses the
following remark: making a short random walk in the resulting bipartite graph, we
get an almost uniform distribution.

11.4. Conditional independence and common information

In this section we consider one more (and quite misterious) way to obtain strings
that have mutual information but no extractable common information [111, 152].
Let us start by recalling the inequality of Problem 296 (p. 351):

𝐻(𝜉) 6 𝐻(𝜉 |𝛼) + 𝐻(𝜉 |𝛽) + 𝐼(𝛼 :𝛽),

or, better to say, the corresponding inequality for complexities:

𝐶(𝑧) 6 𝐶(𝑧 |𝑥) + 𝐶(𝑧 |𝑦) + 𝐼(𝑥 :𝑦)

(as usual, we omit the logarithmic terms). If 𝐼(𝑥 :𝑦) = 0, this inequality implies an
upper bound for unconditional complexity in terms of conditional ones:

𝐶(𝑧) 6 𝐶(𝑧 |𝑥) + 𝐶(𝑧 |𝑦),

There is no surprise here: if there is no mutual information, there is no common
information to extract. It seems that we are not getting anywhere. But a similar
bound can be obtained for the case when 𝑥 and 𝑦 are conditionally independent
relative to two independent strings, i.e., if there exist strings 𝑢 and 𝑣 such that
𝐼(𝑥 :𝑦 |𝑢) = 0, 𝐼(𝑥 :𝑦 |𝑣) = 0 and 𝐼(𝑢 :𝑣) = 0. Namely, the following inequality
holds:

Theorem 228.

𝐶(𝑧) 6 2𝐶(𝑧 |𝑥) + 2𝐶(𝑧 |𝑦) + 𝐼(𝑥 :𝑦 |𝑢) + 𝐼(𝑥 :𝑦 |𝑣) + 𝐼(𝑢 :𝑣)

for arbitrary strings 𝑥, 𝑦, 𝑧, 𝑢, 𝑣 (with 𝑂(log𝐶(𝑥, 𝑦, 𝑢, 𝑧, 𝑣))-precision).

This inequality is a consequence of the previous one and the Ingleton inequality

𝐼(𝑥 :𝑦) 6 𝐼(𝑥 :𝑦 |𝑢) + 𝐼(𝑥 :𝑦 |𝑣) + 𝐼(𝑢 :𝑣),

but, of course, the Ingleton inequality is not always true. So we need to proceed in
a different order.

Proof. Let us consider again the inequality

𝐶(𝑧) 6 𝐶(𝑧 |𝑢) + 𝐶(𝑧 |𝑣) + 𝐼(𝑢 :𝑣)

and then bound 𝐶(𝑧 |𝑢) and 𝐶(𝑧 |𝑣) using the relativized versions of the same
inequality:

𝐶(𝑧 |𝑢) 6 𝐶(𝑧 |𝑥, 𝑢) + 𝐶(𝑧 |𝑦, 𝑢) + 𝐼(𝑥 :𝑦 |𝑢),

𝐶(𝑧 |𝑣) 6 𝐶(𝑧 |𝑥, 𝑣) + 𝐶(𝑧 |𝑦, 𝑣) + 𝐼(𝑥 :𝑦 |𝑣).

11.4. CONDITIONAL INDEPENDENCE AND COMMON INFORMATION 371

After that it remains to note that we decrease the complexity when adding another
condition: 𝐶(𝑧 |𝑥, 𝑢) 6 𝐶(𝑧 |𝑥). �

This theorem can be used to construct strings with non-extractable mutual
information. Consider a conditionally independent variables that are not indepen-
dent (Theorem 217, p. 352): there exist 𝛼 and 𝛽 that are independent given 𝛾 and
also independent given 𝛿, where 𝛾 and 𝛿 are independent variables, while 𝛼 and 𝛽
are not independent.

Now we may consider 𝑁 independent trials of this quadruple and collect the
outcomes of 𝛼 into string 𝑥, and outcomes of 𝛽 into 𝑦. These strings 𝑥 and 𝑦 with
high ptobability will have significant mutual information that cannot be extracted.
To see this, let us collect the outcomes of 𝛾 and 𝛿 into 𝑢 and 𝑣, and apply the last
inequality to these four strings. (Note that to construct 𝑥 and 𝑦 we need to make
𝑁 samples of 𝛼 and 𝛽 alone; the variables 𝛾 and 𝛿 are needed only for the proof of
non-extractability.)

For technical reasons, to get a better error term (our usual logarithmic term
instead of a square root that appear when we compare the frequency and the
probability), one should consider not the independent trials, but trials with fixed
frequencies. Let us explain what does it mean.

Consider a quadruple of strings 𝑥, 𝑦, 𝑢, 𝑣 of length 𝑁 where the frequencies of all
quadruples of letters are equal to the probabilities for the outcomes of ⟨𝛼, 𝛽, 𝛾, 𝛿⟩.
This means that 𝑥 is a string in the alphabet that is the range of 𝛼, 𝑦 is a string
whose alphabet is the range of 𝛽, etc., and the number of positions 𝑖 = 1, . . . , 𝑁 ,
where strings 𝑥, 𝑦, 𝑢, 𝑣 have letters 𝑎, 𝑏, 𝑐, 𝑑 respectively, is equal to

Pr[𝛼 = 𝑎, 𝛽 = 𝑏, 𝛾 = 𝑐, 𝛿 = 𝑑] ·𝑁 + 𝑂(1)

(we need to add 𝑂(1) for rounding: the product of 𝑁 and the probability is not
always an integer).

As we know from Section 7.3 (Theorem 146), for most quadruples of strings with
these frequencies the complexities of these strings and their combination deviate
from 𝑁 times the corresponding entropies only by 𝑂(log𝑁).1 In this way we get a
quadruple of strings 𝑥, 𝑦, 𝑢, 𝑣 such that

𝐼(𝑥 :𝑦 |𝑢) = 𝑂(log𝑁), 𝐼(𝑥 :𝑦 |𝑣) = 𝑂(log𝑁), 𝐼(𝑢 :𝑣) = 𝑂(log𝑁),

and at the same time

𝐼(𝑥 :𝑦) = 𝑁𝐼(𝛼 :𝛽) + 𝑂(log𝑁),

while (according to our assumption) 𝐼(𝛼 :𝛽) ̸= 0. It remains to use Theorem 228
to conclude that for every 𝑧 the inequality

𝐶(𝑧) 6 2𝐶(𝑧 |𝑥) + 2𝐶(𝑧 |𝑦)

holds with 𝑂(log𝑁)-precision, while the complexities of 𝑥 and 𝑦 and their mutual
information is proportional to 𝑁 (with the same precision) with non-zero coeffi-
cients.

In this way we get one more construction of strings with non-extractable mutual
information. They are stochastic (like in the geometric construction), and we (a
bit misteriously) avoided any combinatorial considerations.

1To see this we should recall the proof of the theorem where we estimated how many strings

with given frequencies exist.

372 11. COMMON INFORMATION

314 We have already seen (Theorem 217, p. 352) that there exist conditionally
independent random variables 𝛼 and 𝛽, both having the uniform distribution in
{0, 1}, such that Pr[𝛼 = 𝛽] = 5/8. Prove that this statement remains true if we
replace 5/8 by arbitrary 𝑐 ∈ [3/8, 5/8].

However, if 𝑐 is close to 0 or 1, a similar statement is not true: one cannot add
𝛾 and 𝛿 to make these two variables conditionally independent. Nevertheless, for
every 𝑐 ∈ (0, 1) we can still prove that the common information is not extractable
(for most of the strings obtained by 𝑁 trials for these 𝛼 and 𝛽). We split this result
into the following two problems.

315 Consider an arbitrary 𝑐 ∈ (0, 1). Prove that there exist finite chains of
random variables 𝛼0, 𝛼1, . . . , 𝛼𝑘 and 𝛽0, 𝛽1, . . . , 𝛽𝑘 defined on some common prob-
ability space such that

∙ 𝛼0 and 𝛽0 are uniformly distributed in {0, 1};
∙ Pr[𝛼0 = 𝛽0] = 𝑐;
∙ 𝛼0 and 𝛽0 are independent given 𝛼1;
∙ 𝛼0 and 𝛽0 are independent given 𝛽1;
∙ 𝛼1 and 𝛽1 are independent given 𝛼2;
∙ 𝛼1 and 𝛽1 are independent given 𝛽2;

. . .
∙ 𝛼𝑘−1 and 𝛽𝑘−1 are independent given 𝛼𝑘;
∙ 𝛼𝑘−1 and 𝛽𝑘−1 are independent given 𝛽𝑘;
∙ 𝛼𝑘 and 𝛽𝑘 are independent.

[Hint. If this statement is true for some 𝑐, it is also true for 𝑐′ = (𝑐2 + 1)/2. To
show this, we may apply the construction used to prove Theorem 217, using the
𝑐-construction for 𝛾 and 𝛿. One should correct the distributions of the pair 𝛼, 𝛽
under the conditions 𝛾 = 0, 𝛿 = 1 and 𝛾 = 1, 𝛿 = 0 in such a way that 𝛼 and
𝛽 become independent given 𝛾 and given 𝛿. Finally, one should check that every
number between 1/2 and 1 can be obtained from some number in (1/2, 5/8) by
several iterations of the function 𝑐 ↦→ (𝑐2 + 1)/2; to prove the statement for 𝑐 < 1/2
we invert one of the variables (say, 𝛼).]

316 Assume that 𝛼 and 𝛽 satisfy the statement of the previous problem.
Consider the set of pairs of binary strings 𝑥, 𝑦 of length 𝑛 where the frequencies
of all pairs follow the distribution for ⟨𝛼, 𝛽⟩. Prove that a random (maximally
complex) pair in this set has significant (proportional to 𝑛) mutual information
but no extractable common information. More precisely, for every 𝑧 the inequality
𝐾(𝑧) 6 𝑂(𝐾(𝑧 |𝑥)+𝐾(𝑧 |𝑦)+log 𝑛) holds (the constant in 𝑂-notation may depend
on the length 𝑘 of the chain).

The solution of Problem 315 can be generalized for non-binary alphabets and
non-uniform distributions. There is a simple criterion to decide whether the random
variables 𝛼, 𝛽 (their common distribution) satisfy the statement of Problem 315.
This happens if and only if one cannot permute the rows and columns of the matrix
(that defines the common distribution) in such a way that a matrix of the form(︃

𝐴 0
0 𝐵

)︃
appears (here the two zeros stand for zero blocks). In this case the strings obtained
by 𝑛 trials of 𝛼 and 𝛽 have no extractable common information. On the other hand,

11.4. CONDITIONAL INDEPENDENCE AND COMMON INFORMATION 373

if such a permutation (that produces a matrix of this form) exists, some part of the
mutual information is extractable (indeed, both variables determine the number of
block they are in). This argument (see [111] for the details) gives an alternative
proof of a criterion first obtained by Gács and Körner [59].

CHAPTER 12

Multisource algorithmic information theory

12.1. Information transmission requests

Multisource information theory deals with information transmission in a net-
work. Such a network includes information sources (one or many), the destinations
(one or many) where information should be delivered, and channels that are used
for transmission; some (or all) channels may have limited capacity. Classical Shan-
non approach considers sources as random variables and is well developed. It tries
to find conditions that make some information transmission request feasible.

Similar questions could (and should) be asked for algorithmic information the-
ory. Let us explain this setting more formally, following [178]. Consider a directed
graph whose edges are “channels” and nodes are “processors”. Some nodes (cal-
lled input nodes) get outside information; this information should be processed (in
the nodes) and transmitted (via the edges) into some other nodes, finally reaching
output nodes.

More formally, an information transmission request consists of the following
parts:

∙ A finite acyclic directed graph.
∙ A set of input nodes.
∙ An input string for each input node.
∙ A set of output nodes.
∙ A (desired) output string for each output node.
∙ A non-negative integer capacity for each edge (the value +∞ is also al-

lowed and means unlimited capacity).

To fulfill this request, one should write on each edge 𝑒 some string whose length
does not exceed the capacity of edge 𝑒, in such a way that

𝐶(𝑋 |𝑌1, . . . , 𝑌𝑘) ≈ 0

for every node 𝑧 that has incoming strings 𝑌1, . . . , 𝑌𝑘 and for every outgoing string
𝑋 in this node. Here by incoming strings for a node we mean the strings written on
incoming edges and the input string for the node (if it is an input node); similarly,
outgoing strings are strings written on outgoing edges, and the output string for
this node (if it is an output node).

Informally speaking, this condition means that the nodes can only process the
incoming information and cannot create (non-negligible amount of) new informa-
tion. As usual, the approximate equality sign (≈) means that the complexity in
question is 𝑂(log𝑁), where 𝑁 is the total length of all input and output strings in
the request. So in fact we consider not one request but a sequence of requests with
increasing values of 𝑁 .

375

376 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

We are interested in the conditions that make a request (actually, a sequence
of requests) fulfillable.

Consider a network that has two nodes and one edge (Fig. 1). Let us agree
that all edges are directed top-down, so the direction arrows are omitted. The top
node is an input node and has input string 𝐴; the bottom node is an output node
and has output string 𝐵. The channel has capacity 𝑘.

𝐴

𝐵

𝑘

Figure 1. The simplest information transmission request.

In other words, for given strings 𝐴 and 𝐵 we are looking for a string 𝑋 (trans-
mitted message) such that

𝐶(𝑋 |𝐴) ≈ 0, 𝐶(𝐵 |𝑋) ≈ 0, 𝑙(𝑋) 6 𝑘.

Obviously, it is possible only if 𝐶(𝐵 |𝐴) ≈ 0 and 𝐶(𝐵) 6 𝑘 (the latter inequality
is understood also with logarithmic precision); on the other hand, these conditions
are also sufficient, because we may use the shortest description for 𝐵 as 𝑋.

To express this evident idea formally, we (unfortunately) need a rather obscure
statement. Let 𝐴𝑛 and 𝐵𝑛 are sequences of strings and 𝑘𝑛 be a sequence of integers.
Assume that the lengths of 𝐴𝑛 and 𝐵𝑛 as well as the integer 𝑘𝑛 are bounded by a
polynomial in 𝑛. Then the following two properties are equivalent:

(1) there exists a sequence of strings 𝑋𝑛 such that 𝑙(𝑋𝑛) 6 𝑘𝑛 + 𝑂(log 𝑛),
𝐶(𝑋𝑛 |𝐴𝑛) = 𝑂(log 𝑛), and 𝐶(𝐵𝑛 |𝑋𝑛) = 𝑂(log 𝑛);

(2) 𝐶(𝐵𝑛 |𝐴𝑛) = 𝑂(log 𝑛) and 𝐶(𝐵𝑛) 6 𝑘𝑛 + 𝑂(log 𝑛).

This equivalence follows from two (rather trivial) remarks. First,

𝐶(𝐵 |𝐴) 6 𝐶(𝐵 |𝑋) + 𝐶(𝑋 |𝐴) + 𝑂(log𝐶(𝐴,𝐵,𝑋)),

𝐶(𝐵) 6 𝑙(𝑋) + 𝐶(𝐵 |𝑋) + 𝑂(log𝐶(𝐵 |𝑋))

for all strings 𝐴,𝐵,𝑋 (so (1) implies (2)). On the other hand,

for every 𝐴, 𝐵 and 𝑘 there exists a string 𝑋 such that 𝑙(𝑋) 6
𝐶(𝐵), 𝐶(𝑋 |𝐴) 6 𝐶(𝐵 |𝐴) +𝑂(log𝐶(𝐵)), and 𝐶(𝐵 |𝑋) = 𝑂(1)

(let 𝑋 be the shortest program for 𝐵) and implies that(1) follows from (2).
For the case 𝐴 = 𝐵 the statement has clear intuitive meaning: a string 𝐴 can

be transmitted through a communication channel if and only if its complexity does
not exceed the capacity of the channel.

Let us now switch to more interesting examples.

12.2. Conditional encoding

In the following request we want to transmit some string 𝐴 assuming that both
the sender and the receiver know some string 𝐵 (Figure 2). We need to encode
𝐴 by a 𝑘-bit string, send this string down and then decode 𝐴 back; both encoder
and decoder have access to 𝐵 (the capacity of the edges shown as solid lines is

12.3. CONDITIONAL CODES: MUCHNIK’S THEOREM 377

unlimited, so we may assume without loss of generality that these edge carry the
entire string 𝐵).

𝐴

𝐴

𝐵

𝑘

Figure 2. Encoding and decoding 𝐴 when 𝐵 is known.

This request can be fulfilled if and only if 𝐶(𝐴 |𝐵) 6 𝑘. Indeed, the decoder
knows 𝐵 (or some derivative of 𝐵) and 𝑘 additional bits, so it can generate 𝐴 only
if 𝐶(𝐴 |𝐵) 6 𝑘. On the other hand, if 𝐶(𝐴 |𝐵) 6 𝑘, then the shortest description
of 𝐴 given 𝐵 has at most 𝑘 bits and can be sent over a restricted channel, while
two other unrestricted channels transmit 𝐵. Note that the complexity of this
shortest description relative to the pair ⟨𝐴,𝐵⟩ is bounded by a logarithm of the
total complexity of 𝐴 and 𝐵, since knowing the length of this description we can
try all strings of this length in parallel until we find some description.

317 The last argument shows only (but this is enough for us) that some
shortest description has logarithmic complexity given 𝐴 and 𝐵. Prove that each of
them has logarithmic complexity since there is only 𝑂(1) of them. [Hint: It can be
proven in the same way as in Problem 40 on p. 54.]

318 Give the exact statement of the last criterion (for network of Figure 2)
in terms of sequences 𝐴𝑘 and 𝐵𝑘, and prove this statement.

12.3. Conditional codes: Muchnik’s theorem

This section is devoted to a remarkable result of An. Muchnik [134]. It can
be considered as an algorithmic counterpart of a well-known Slepian–Wolf theorem
in Shannon information theory. In the language of the previous section Muchnik’s
result says that one does not need to use 𝐵 while encoding 𝐴 (Figure 2) and this
edge may be deleted (Figure 3), and still the condition when the request can be
fulfilled, remains the same.

This condition is 𝐶(𝐴 |𝐵) 6 𝑘 and it remains necessary for obvious reasons
(graph is smaller). It remains sufficient too; here is the exact statement.

Theorem 229. Let 𝐴 and 𝐵 be arbitrary strings of complexity at most 𝑛. Then
there exists a string 𝑋 of length at most 𝐶(𝐴 |𝐵) + 𝑂(log 𝑛) such that 𝐶(𝑋 |𝐴) =
𝑂(log 𝑛) and 𝐶(𝐴 |𝐵,𝑋) = 𝑂(log 𝑛).

The hidden constant in 𝑂(log 𝑛) does not depend on 𝑛, 𝐴, 𝐵.
This statement can be reformulated: for every 𝐴 and 𝐵 there exists a program

that transforms 𝐵 to 𝐴, has logarithmic complexity given 𝐴, and has unconditional
complexity 𝐶(𝐴 |𝐵) (up to logarithmic precision). In other words, the additional re-
striction saying that the program should be simple relative to 𝐴, increases the min-
imal possible (unconditional) complexity of the program only by 𝑂(log𝐶(𝐴,𝐵)).

378 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

𝐴

𝐴

𝐵

𝑘

Figure 3. Sending 𝐴 when decoder knows 𝐵: Muchnik’s theorem

Proof. Assume that the string 𝐴 has complexity 𝑎. Replace 𝐴 by its (shortest)
description of length 𝑎. This replacement changes the values of 𝐶(𝐴 |𝐵), 𝐶(𝑋 |𝐴)
and 𝐶(𝐴 |𝐵,𝑋) only by 𝑂(log 𝑛). So we may assume without loss of generality
that 𝐴 has length 𝑎. (Complexity of 𝐴 remains close to 𝑎, but this does not matter
for us.)

Assume that the conditional complexity 𝐶(𝐴 |𝐵) equals 𝑚. The idea of the
proof can be explained as follows. Consider some hash function 𝜒 : B𝑎 → B𝑚 that
computes 𝑚-bit hash value (fingerprint) for every 𝑎-bit string.

For a given string 𝐵 we have about about 2𝑚 strings 𝑍 of length 𝑎 such that
𝐶(𝑍 |𝐵) 6 𝑚. Let 𝑆𝐵 ⊂ B𝑎 be the set of these strings. According to our assump-
tion, 𝐴 is one of the elements of 𝑆𝐵 .

Imagine that we are extremely lucky and all the strings in 𝑆𝐵 have different
hash values. Then every string 𝑃 ∈ 𝑆𝐵 can be uniquely reconstructed if we known
𝜒(𝑃) and 𝐵 (the function 𝜒 is assumed to be fixed). So we can use 𝜒(𝐴) as 𝑋
in the statement of the theorem: it has correct length, is simple relative to 𝐴 (we
assume that 𝜒 is simple), and, together with 𝐵, allows us to reconstruct 𝐴: we
have to enumerate 𝑆𝐵 until we find a string with correct hash value.

Of course it is too good to be true. For every hash function 𝜒, if 𝑎 > 𝑚, there
are at least 2𝑎−𝑚 strings that have the same hash value (and for simple 𝜒 we can
find many simple strings with the same hash values, and they will be in 𝑆𝐵 for
every 𝐵), so we cannot hope to be so lucky.

So we need to modify our plan and consider for every 𝑍 ∈ B𝑎 several (poly(𝑛))
hash values instead of one. Instead of a hash function, we consider now a bipartite
graph 𝐸 ⊂ B𝑎 × B𝑚 where each left vertex 𝑍 has at most poly(𝑛) right neighbors.
These neighbors are called fingerprints of 𝑍.

Proving the theorem, we look for 𝑋 among the fingerprints of 𝐴. This guar-
antees that 𝐶(𝑋 |𝐴) = 𝑂(log 𝑛), assuming that graph 𝐸 is simple (has 𝑂(log 𝑛)
complexity). Indeed, to specify 𝑋 when 𝐴 is known it is enough to specify the
ordinal number of 𝑋 among the fingerprints of 𝐴.

If for a given 𝐴 ∈ 𝑆𝐵 one of its fingerprints 𝑋 determines 𝐴 inside 𝑆𝐵 uniquely
(no other strings in 𝑆𝐵 have 𝑋 among their fingerprints), then we can reconstruct
𝐴 by enumerating 𝑆𝐵 and waiting for a string that has 𝑋 among its fingerprints.
In this case 𝐶(𝐴 |𝐵,𝑋) = 𝑂(log 𝑛); we assume here that 𝐸 is simple, i.e., has
complexity 𝑂(log 𝑛).

Moreover, the same complexity bound holds if there are polynomially many
(in 𝑛) strings in 𝑆𝐵 that have 𝑋 among their fingerprints: we need to specify
additionally the ordinal number of 𝐴 among these strings (in the order of the
enumeration of 𝑆𝐵), and this requires additionally 𝑂(log 𝑛) bits.

12.3. CONDITIONAL CODES: MUCHNIK’S THEOREM 379

So our goal is: 𝐴 has a right neighbor that has few (polynomially many) left
neighbors. Here, speaking about neighbors, we consider the restriction of 𝐸 onto 𝑆𝐵

as a bipartite graph with left part 𝑆𝐵 and right part B𝑚. Note that this restricted
graph has about 2𝑚 vertices both in the left and in the right parts.

In other words: a vertex in the right part is bad if it has many neighbors on
the left; a vertex in the left part is bad if all its right neighbors are bad. We need
𝐴 to be not bad. How can we achieve this?

The fraction of bad right vertices is small: the number of edges is bounded by
the size of the left part times the maximal degree of left vertices, and each bad right
vertex creates a lot of edges. More precisely, we can ensure that this fraction is at
most 1/𝑝(𝑛) for a given polynomial 𝑝 (the threshold for the number of neighbors
for bad vertices is determined by 𝑝 and increases as 𝑝 increases).

We want to prove than that the fraction of bad left vertices is also small. To
achieve this, we assume that 𝐸 has the following expander-like property: for every
subset 𝑇 in the left part the set of all right neighbors of 𝑇 -vertices is at least as
big as 𝑇 inself. Having this property, we consider the set 𝑇 of bad vertices in
the left part; all their right neigbors are bad by definition, so the number of left
bad vertices is bounded by the number of the right bad vertices. (Note that this
expander property of 𝐸 remains valid if 𝐸 is restricted on 𝑆𝐵 .)

It remains to explain where we get a (simple) graph 𝐸 with this property and
what we do if 𝐴 falls into a (small) set of bad vertices.

It is well known that the existence of expander-like graphs can be usually proved
by a rather simple probabilistic arguments. To construct them explicitly is quite
a different story; it is a very interesting and complicated business where a great
progress has been made during the last decades. However, we can avoid these
complications using the following simple trick: after the existence of a graph with
some property is proven, we can generate all the graphs until we find some with
this property. We assume that the property is decidable, so this is an algorithmic
procedure (which takes a long time, but we have no time bounds). The first suitable
graph has logarithmic complexity, since to organize the search we need to know only
the sizes of sets (we may assume the sizes are powers of 2). In this way we convert
the pure existence proof into a simple object with property we need.

The last bit of the proof: why 𝐴 cannot be bad. Note that bad right strings can
be enumerated effectively when 𝐵 (as well as 𝐸) is known: as we find new elements
in 𝑆𝐵 , we generate new left vertices in the restricted graph and new bad strings in
the right part. Since 𝐸 is known, we can enumerate also left bad strings. So every
bad string can be specified (given 𝐵) by its ordinal number in the enumeration of
bad left strings, and the number of these strings is significantly less than 2𝑚. And
we assumed that the complexity of 𝐴 given 𝐵 is 𝑚, this was our definition of 𝑚.
So 𝐴 cannnot be bad. (Also we need 𝑂(log 𝑛) bits to specify 𝑚, 𝑎 and 𝐸, but, as
we will see, the gap is enough to get a contradiction).

So we have described the proof in the top-down mode. Now let us describe the
details of the argument in the bottom-up direction. First, we need an existence
proof for expander-like graphs.

Lemma. Let 𝑎 and 𝑚 be positive integers, and 𝑎 > 𝑚. Then there exists a
bipartite graph 𝐸 ⊂ B𝑎 × B𝑚 where each vertex in the left side has degree at most
𝑎 + 𝑚 + 2, with the following property: for every set 𝑇 ⊂ B𝑎 with at most 2𝑚−1

380 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

elements the set 𝐸(𝑇) of all neighbors of all elements in 𝑇 has more elements that
𝑇 itself.

Proof. Let us prove that a random graph has this property with positive
probability. Speaking about random graph, we mean that for every left vertex we
randomly select 𝑎+𝑚+2 neighbors on the right. This choice is made independently
(for diferent points and for different neighbors, so some neighbors of a given vertex
may coincide and we actually get less than 𝑎 + 𝑚 + 2 neighbors).

What does it mean that the property stated in the lemma is false? In this case
we have some non-empty subset 𝑇 of the left part and some subset 𝑈 of the right
part, such that |𝑈 | = |𝑇 |, but all neighbors of 𝑇 -elements belong to 𝑈 . We compute
the probability of this event for fixed 𝑇 and 𝑈 and then show that the sum of these
probabilities over all 𝑇 and 𝑈 is less than 1.

Assume that 𝑇 and 𝑈 are fixed, and let 𝑡 be their cardinality. By assumption
𝑡 6 2𝑚−1, so the probability for a random right vertex to get inside 𝑈 is at most
1/2. The probability that this happens 𝑡(𝑎 + 𝑚 + 2) times for 𝑡 elements of 𝑇 (we
make 𝑎 + 𝑚 + 2 trials for each vertex in 𝑇) is at most 2−𝑡(𝑎+𝑚+2).

Let us sum these probabilities first over all pairs of 𝑇 and 𝑈 of given size 𝑡.
The number of different 𝑇 is at most (2𝑎)𝑡 (we select one of 2𝑎 elements 𝑡 times;
possible coincidence and permutations make the number of set even smaller); the
number of different 𝑈 is at most (2𝑚)𝑡. So the sum over sets of size 𝑇 does not
exceed

2𝑚𝑡 · 2𝑎𝑡 · 2−𝑡(𝑚+𝑎+2) = (1/4)𝑡.

It remains to note the the sum
∑︀

(1/4)𝑡 (over all 𝑡 > 1) is less than 1 (it is equal
to 1/3). Lemma is proven.

Denote by 𝐸𝑚,𝑎 the first (in some natural order) graph that satisfies the re-
quirements of this Lemma. Its complexity is at most 2 log 𝑎+𝑂(1) (it is enough to
specify 𝑎 and 𝑚 using two halves of a 2 log 𝑎-bit string).

For a given string 𝐵 and for given 𝑚 and 𝑎 consider the set 𝑆𝐵 of 𝑎-bit strings
that have complexity at most 𝑚 with condition 𝐵. Consider the restriction of the
graph 𝐸𝑚,𝑎 to 𝑆𝐵 . We get a graph with at most 2𝑚+1 · (𝑎+𝑚+ 2) 6 𝑎2𝑚+3 edges
(each of at most 2𝑚+1 left vertices has at most 𝑎 + 𝑚 + 2 neighbors). Call a right
vertex bad if it has at least 𝑎4 neighbors. Then the number of bad right vertices is
at most 𝑘 = 2𝑚+3/𝑎3.

A left vertex (a string in 𝑆𝐵) is now called bad if all its right neighbors are bad.
The properties of 𝐸𝑚,𝑎 guarantee that number of bad left vertices also is bounded
by 𝑘 = 2𝑚+3/𝑎3. Indeed, we may assume that 𝑎 is large enough and 𝑘 < 2𝑚−1. If
there 𝑘 + 1 bad left vertices, then the expander property of the graph guarantees
that the number of their neighbors is at least 𝑘 + 1. All they are bad (due to the
definition of bad left vertex).

The bad left vertices can be enumerated (given 𝑚, 𝑎 and 𝐵), so every bad
string can be specified by giving its ordinal number in the enumeration, i.e., by
𝑚− 3 log 𝑎 + 𝑂(1) bits, so

𝐶(𝑃 |𝐵,𝑚, 𝑎) 6 𝑚− 3 log 𝑎 + 𝑂(1)

for every bad string 𝑃 . We see that the gap is larger than 2 log 𝑎 needed to specify
𝑚 and 𝑎, so all the bad strings have conditional complexity (relative to 𝐵) less than
𝑚 and 𝐴 cannot appear among them.

12.4. COMBINATORIAL INTERPRETAION OF MUCHNIK’S THEOREM 381

Therefore, 𝐴 has a good (not bad) right neighbor 𝑋. Then

𝐶(𝑋 |𝐴) 6 (3 + 𝜀) log 𝑎 + 𝑂(1)

(to specify 𝑋 we provide 𝑚, 𝑎, and the ordinal number of 𝑋 among the neighbors
of 𝐴; we need some 𝜀 > 0 to take care of pair encoding). The length of 𝑋 is 𝑚,
i.e., 𝐶(𝐴 |𝐵). Finally, 𝐶(𝐴 |𝐵,𝑋) does not exceed (6 + 𝜀) log 𝑎 (we need 4 log 𝑎 to
specify the ordinal number of 𝑋 among 𝑎4 left neighbors of 𝑋, and 2 log 𝑎 is needed
to specify 𝑚 and 𝑎; again we use some 𝜀 to cover pair encoding).

Muchnik theorem is proven. �

319 Show that we have proven a bit stronger property that we claimed:
we assumed that the complexity of 𝐵 is bounded by 𝑛, but we never used this
assumption.

Let us recall that all the inequalities in Muchnik’s theorem are true with
𝑂(log 𝑛)-precision, where 𝑚 is the maximal complexity of 𝐴 and 𝐵. Can we
strengthen the claim by requiring 𝑂(log𝑚)-precision for 𝑚 equal to maximal con-
ditional complexities 𝐶(𝐴 |𝐵) and 𝐶(𝐵 |𝐴)? It turns out that this is not possible,
see [203, Section 5] (we do not reproduce the proof here).

12.4. Combinatorial interpretaion of Muchnik’s theorem

Many results about Kolmogorov complexity have some combinatorial counter-
part, an equivalent statement of purely combinatorial nature that does not men-
tion Kolmogorov complexity. In many cases this statement is about existence of a
winning strategy in some game. (See [131] about this effect in the general com-
putability theory; [135] considers the special case of Kolmogorov complexity.)

Theorem 229 proven in the previous section also has some combinatorial coun-
terpart. For given values of 𝑎, 𝑏, 𝑚 (we assume that 𝑚 6 𝑎) we consider a two-player
game. The players are called Mathematician (M) and Adversary (A). The game
also has some parameter 𝑐 (that corresponds to the constant in 𝑂(log 𝑛)-notation,
see below).

Mathematician may select for every 𝑎-bit string 𝐴 at most 𝑐(𝑎 + 𝑏)𝑐 strings of
length 𝑚; she declares these strings as “simple relative to 𝐴”. Also for each pair of
strings 𝐵 (of length 𝑏) and 𝑋 (of length 𝑚) she may select at most 𝑐(𝑎+ 𝑏)𝑐 strings
of length 𝑎 and declare them as “simple relative to 𝐵,𝑋”.

Adversary may select for each 𝑏-bit string 𝐵 at most 2𝑚 strings of length 𝑎 and
declare them as “simple relative to 𝐵”.

Each player may make the next move (i.e., declare more strings as simple) at
any moment (whatever the opponent does), seeing the moves of the opponent made
earlier. We get a game that is essentially finite: the declared strings cannot be taken
back, so the game reaches some limit position. However, watching the game, we
may not know whether this limit position is reached, the players keep right to make
moves even if they do not exercise this right.

The limit position of the game determines the winner as follows:

M wins if for every string 𝐵 of length 𝑏 and for every string 𝐴
of length 𝑎 declared (by A) simple relative to 𝐵, there exists a
string 𝑋 of length 𝑚 that is declared (by M) simple relative to
𝐴, such that 𝐴 is declared (again by M) simple relative to 𝐵
and 𝑋.

382 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

Now we can formulate a combinatorial equivalent of Theorem 229.

Theorem 230. There exists a constant 𝑐 such that for every positive integers
𝑎, 𝑏,𝑚 with 𝑚 6 𝑎 the described game with parameters 𝑎, 𝑏, 𝑚, and 𝑐 has a winning
strategy for M.

Let us show that this combinatorial statement is indeed equivalent to Theo-
rem 229. Assume that it is true for some 𝑐. Consider a blind adversary that does
not look at M’s moves and for each 𝐵 declares as simple all strings of length 𝑎 that
have conditional complexity (given 𝐵) less than 𝑚. This behavior is algorithmic,
and the algorithm is determined by 𝑎, 𝑏, 𝑚. The winning strategy for M can be
found by a brute-force search (the game is essentially finite, and we assume that
such a strategy exists), so we may assume that the winning strategy is simple.
So the strings declared by M as simple are indeed simple, i.e., they have small
(conditional) complexity. Indeed, to specify such a string, one may specify its or-
dinal number in the list of strings declared simple (for a given condition), using
log 𝑐 + 𝑐 log(𝑎 + 𝑏) bits, and also specify 𝑎, 𝑏, 𝑚 (additional 𝑂(log(𝑎 + 𝑏)) bits).
So we get the statement of Theorem 229. (A technical comment: the factor 𝑐 in
𝑐(𝑎 + 𝑏)𝑐 is needed for small values of 𝑐 and corresponds to the 𝑂(1)-term in the
complexity bounds that should be added to 𝑂(log 𝑛) for the case when 𝑛 = 1 and
log 𝑛 = 0.)

In the other direction: assume that the statement of Theorem 229 is true with
some constant 𝑐′ in 𝑂(log 𝑛). We want to prove that for sufficiently large 𝑐 the
combinatorial statement is true. Assume it is not the case and for every 𝑐 there
exist 𝑎, 𝑏,𝑚 for which A can win the game. This strategy (together with 𝑎, 𝑏, 𝑐)
can be found by search. So if this strategy declares some 𝐴 as simple with respect
to 𝐵, then indeed the conditional complexity 𝐶(𝐴 |𝐵) is small: it is bounded by
𝑚+𝑂(𝐶(𝑐)). We get a contradiction if A plays this strategy against the following
blind strategy for M: declare 𝑋 as simple for 𝐴 if 𝐶(𝑋 |𝐴) < 𝑐 log(𝑎 + 𝑏) + log 𝑐,
and declare 𝐴 simple for 𝐵,𝑋 if 𝐶(𝐴 |𝐵,𝑋) < 𝑐 log(𝑎 + 𝑏) + log 𝑐.

Playing this strategy, M does not violate the quantitative restrictions (on the
number of simple strings). To get the desired contradiction, it remains to show
that M wins the game. Let 𝐴, 𝐵 be strings of lengths 𝑎, 𝑏, and assume that
𝐴 is declared simple for 𝐵 (by A). Theorem 229 says that there exists a string
𝑋 ′ of length 𝐶(𝐴 |𝐵) + 𝑐′ log(𝑎 + 𝑏) for which the statement of that theorem is
true. Since 𝐶(𝐴 |𝐵) is bounded by 𝑚 + 𝑂(𝐶(𝑐)), the string 𝑋 ′ is only slightly
longer that 𝑚. Let 𝑋 be the first 𝑚 bits of 𝑋 ′. The complexities 𝐶(𝑋 ′ |𝐴) and
𝐶(𝐴 |𝐵,𝑋 ′) are small as Theorem 229 says, and the number of discarded bits is
also small. Therefore the complexites 𝐶(𝑋 |𝐴) and 𝐶(𝐴 |𝐵,𝑋) are also small, and
for the right choice of 𝑐 they are less than 𝑐 log(𝑎 + 𝑏) + log 𝑐, so M wins.

Let is provide the necessary bounds. The conditional complexity 𝐶(𝑋 |𝐴) is at
most

𝑐′ log(𝑎 + 𝑏) + 𝑂(log𝑚)

(the complexity of 𝑋 ′ given 𝐴 plus the length of the prefix-free encoding of 𝑚).
The conditional complexity 𝐶(𝐴 |𝐵,𝑋) does not exceed the sum

𝑐′ log(𝑎 + 𝑏) + 𝑂(𝐶(𝑐))

(the complexity of 𝐴 given 𝐵,𝑋 plus the length of the discarded suffix of 𝑋 ′). Now
we see that one can choose 𝑐 of the form 2𝑖 in such a way that both sums do not

12.5. A DIGRESSION: ON-LINE MATCHING 383

exceed 𝑐 log(𝑎+ 𝑏) + log 𝑐 (since 𝑐 is a power of 2, the complexity of 𝑐 that appears
in the upper bound for 𝐶(𝐴 |𝐵,𝑋), is much smaller than log 𝑐).

So we have shown that the combinatorial statement of Theorem 230 is indeed
equivalent to its complexity counterpart, Theorem 229 (and is true, since we proved
the latter).

In fact, the combinatorial translation is possible not only the statement of
Theorem 229, but also for its proof. During the game M does not exercise her right
to declare new 𝐴-simple strings during the game; she declares all the neighbors of
𝐴 (according to the expander graph) at once. Then a string 𝐴 is declared simple
given 𝑋, 𝐵 if (1) 𝐴 is a neighbor of 𝑋; (2) 𝐴 has been declared simple given 𝐵
by A; (3) at the moment of this declaration there are few neighbors of 𝑋 among
the strings are already declared simple given 𝐵. In this way M is able to serve,
for each 𝐵, most of the strings that are declared simple for this 𝐵. The remaining
strings (a small fraction of all strings declared simple for 𝐵) are forwarded to the
next level of service where the same strategy is used, but for 𝑚 that is smaller by
1, and so on. Finally the number of strings declared simple for 𝐴 is bounded be a
sum of a sequence where each term is twice smaller than the previous one, so the
number of simple strings is multiplied by 2 (not a problem).

The ability to declare all the strings at once has also some algorithmic conse-
quences:

320 Prove that for every string 𝐴 of length 𝑛 there exists a string 𝑋 of length
𝐶(𝐴) such that 𝐶(𝐴 |𝑋) = 𝑂(log 𝑛) and total conditional complexity of 𝑋 given
𝐴 (i.e., the minimal complexity of a total program that maps 𝐴 to 𝑋) is 𝑂(log 𝑛).
Show that one cannot replace both the complexities 𝐶(𝐴 |𝑋) and 𝐶(𝑋 |𝐴) by total
conditional complexities. [Hint. To prove the second part one may use the existence
of non-stochastic strings, see Chapter 14 about algorithmic statistics.]

This problem shows that Muchnik’s argument gives us something non-trivial
even for empty 𝐵. For non-empty 𝐵 we can get a version of Muchnik’s theorem
where 𝐶(𝑋 |𝐴) is replaced by total conditional complexity (and other conditional
complexities are understood in the usual way); one need to asssume additionally
that the length of 𝐴 (not only its complexity) does not exceed 𝑛.

12.5. A digression: on-line matching

In this section we modify the combinatorial proof of Theorem 229 to get a
stronger (and simpler) combinatorial statement.

Consider some bipartite graph 𝐸 ⊂ 𝐴 × 𝐵 with left part 𝐴 and right part 𝐵.
Given a subset 𝐴′ ⊂ 𝐴, one can look for a matching that selects for each vertex
𝑎 ∈ 𝐴′ some its 𝐵-neighbor in such a way that no vertices in 𝐵 are selected twice. In
other terms, one can try to find a bijection defined on 𝐴′, and this bijection should
be a subset of 𝐸. One can consider an “on-line” version of the same task. Assume
that the vertices in 𝐴 are given one by one, and we need to select a neighbor for
the next vertex not knowing which vertices follow.

More formally, we say that the graph 𝐸 ⊂ 𝐴 × 𝐵 allows on-line matching
of size 𝑘 if there is a strategy that selects distinct neighbors for 𝑘 vertices in 𝐴
provided sequentially by the adversary. (The game consists of 𝑘 moves: at each
move adversary select a vertex in 𝐴 not used before; in response, we have to select
some 𝐵-neighbor of this vertex. We win if all the selected neighbors are different.)

384 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

Note that this definition is non-symmetric: the adversary selects 𝐴-vertices and
we have to select 𝐵-vertices. It is clear from the definition that the property of the
graph “to allow one-line matching of size 𝑘” is in PSPACE. (It would be interesting
to get better upper bounds for complexity or some lower bounds.)

Here is the result about on-line matching that somehow explains the combina-
torial root for Muchnik’s theorem.

Theorem 231. For some constant 𝑐 and for all 𝑎 and 𝑚 such that 𝑎 > 𝑚 there
exists a bipartite graph with 2𝑎 vertices in the left part and 2𝑚𝑎𝑐 vertices in the right
part, and degree at most 𝑎𝑐 for every left vertex, that allows on-line matching of
size 2𝑚.

In other terms, one can find a graph with arbitrary sizes of left and right
parts that has small (polynomial) left degree and allows on-line matching of almost
maximal size (close to the size of the right part, up to a polynomial factor).

Before proving Theorem 231 let us explain how it implies Theorem 229. As
before, let us replace 𝐴 by its shortest description of length 𝑎. Let 𝑚 be equal to
𝐶(𝐴 |𝐵) + 1; Theorem 231 then guarantees that existence of a bipartite graph with
2𝑎 left vertices and 𝑎𝑐2𝑚 right vertices and left degree at most 𝑎𝑐 that allows on-line
matching of size 2𝑚. This is a computable property, so the first graph (in some
order) with this property has small complexity (logarithmic in 𝑎). Fix this graph
and some computable strategy that wins the on-line matching game. For a given 𝐵
let us enumerate 𝑎-bit strings that have conditional complexity less than 𝑚 given
𝐵. There are at most 2𝑚 of them and 𝐴 is among them. Applying the matching
strategy, we find some right neighbor for each of these strings, including 𝐴. Now
let 𝑋 be the selected neighbor of 𝐴. This is the string we looked for. Indeed, 𝑋
(as well as all right neighbors of 𝐴) has small complexity given 𝐴, since 𝐴 has only
few neighbors. On the other hand, knowing 𝐵 and 𝑋 (as well as 𝑎 and 𝑚 that
determine the graph and the strategy) we can find 𝐴: start the process described
above and wait until 𝑋 is assigned to some vertex.

Proof. Now let us prove Theorem 231. It is enough to prove a weaker state-
ment that allows the matching strategy to skip some elements (whichever it wants),
but not more than half of them (at most 2𝑚−1 elements). Indeed, if such a weak
matching strategy exists, we can start a similar process for skipped elements for-
warding them to another mathching strategy (with 𝑚 decreased by 1 and corre-
sponding graph); the elements skipped by this strategy are forwarded to the third
one, etc. In this way we get a full matching in the graph whose left part is the
same as before, and the right part is a disjoint union of the right parts of all used
graphs (for 𝑚,𝑚− 1,𝑚− 2, . . . up to zero, where the matching task is trivial).

It remains to note that this weaker property is guaranteed if the graph has
expansion property used in the proof of Muchnik’s theorem. The matching algo-
rithm is straightforward: if a vertex has neighbors not used before, select one of
them, if not, skip the vertex. Let us show that this strategy serves at least half of
the vertices (at least 2𝑚−1 ones). If it serves less, then at the right part we have
used less than 2𝑚−1 vertices. On the other hand, for each skipped vertex all its
neighbors are used (this was the reason to skip it). So we get more than 2𝑚−1 left
vertices (skipped ones) whose neighbors are all in the set of used right vertices of
size less than 2𝑚−1. This is impossible due to the expansion property. �

12.6. INFORMATION DISTANCE AND SIMULTANEOUS ENCODING 385

𝐴

𝐵

𝐵

𝐴

𝑘

Figure 4. Bennett–Gács–Li–Vitányi–Zurek information request.

It would be interesting to compare this argument with the proof of Slepian–
Wolf theorem and find some “common denominator”, a combinatorial fact that
implies both Muchnik and Slepian–Wolf theorems. It would be also interesting to
find another proofs of Theorem 231 (e.g., a direct probabilistic argument, or, even
better, some explicit construction of the graph).

One can also prove Muchnik’s theorem using other famous combinatorial tool,
randomness extractors. This idea was suggested (in a different context and be-
fore Muchnik’s paper) in [23], and was applied to Muchnik’s theorem in [144].
The advantage of this approach is that one can use known explicit randomness
extractors and other known techniques (e.g., pseudorandomness generators, as sug-
gested by A. Romashchenko) to prove the space-bounded version of Muchnik’s
theorem [142, 143]. (Let us mention that resource-bounded Kolmogorov complex-
ity and its relations with computational complexity theory is an important topic
that is outside the scope of our book.)

12.6. Information distance and simultaneous encoding

Now we consider a request (Figure 4) where the capacity of the dotted line
is bounded by 𝑘 and the 𝑘-bit string transmitted along this channel must contain
enough infomation to transform 𝐴 to 𝐵 and vice versa.

Obviously, it is possible only if 𝐶(𝐴 |𝐵) 6 𝑘 and 𝐶(𝐵 |𝐴) 6 𝑘 (with logarithmic
precision, as in all our considerations). Indeed, the left output node receives 𝐴 (or
some string derived from 𝐴) and 𝑋 (or some string derived from 𝑋) and produces
𝐵, so 𝐶(𝐵 |𝐴) 6 𝑘. Symmetric argument shows that 𝐶(𝐴 |𝐵) 6 𝑘.

So we get a necessary condition for the feasibility of this request:

max(𝐶(𝐴 |𝐵), 𝐶(𝐵 |𝐴)) 6 𝑘

(as usual, logarithmic terms are omitted). It was shown by Bennett, Gács, Li,
Vitányi, and Zurek [9] that this necessary condition is at the same time sufficient.
Here is the exact statement of their result:

Theorem 232. Let 𝐴,𝐵 be strings such that 𝐶(𝐴 |𝐵) < 𝑘 and 𝐶(𝐵 |𝐴) < 𝑘.
Then there exists a string 𝑋 of length 𝑘 such that

𝐶(𝐴 |𝐵,𝑋) = 𝑂(log 𝑘), 𝐶(𝐵 |𝐴,𝑋) = 𝑂(log 𝑘), and 𝐶(𝑋 |𝐴,𝐵) = 𝑂(log 𝑘).

Proof. Consider all pairs ⟨𝐴,𝐵⟩ of strings such that 𝐶(𝐴 |𝐵) < 𝑘 and 𝐶(𝐵 |𝐴) <
𝑘 at the same time. We get an enumerable binary relation on strings; all its “verti-
cal” (𝐴 is fixed) and “horizontal” (𝐵 is fixed) sections contain at most 2𝑘 elements.

386 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

In other terms, we get an (infinite) bipartite graph, and the degree of all vertices
(in both parts) is bounded by 2𝑘.

Now we want to split all the pairs into 2𝑘+1 (or less) classes in such a way
that each class is a one-to-one correspondence (does not have pairs on the same
vertical or the same horizontal line). In graph terms: we color all the edges using
2𝑘+1 colors in such a way that every two edges that have a common endpoint, have
different colors.

This is easy: each new edge is colored by a first (in some order) color that
was not used for other edges with common endpoints. Since less than 2𝑘 edges
may share each of the endpoints, we always have a free color. (In other terms, we
number the classes by 0 . . . 2𝑘+1 − 1, and each new pair is put in a class that is
allowed, i.e., does not contain pairs with the same first or second coordinates.)

We described an infinite process that depends on 𝑘 but not on 𝐴,𝐵. At some
moment it assign some color (class number) to the pair ⟨𝐴,𝐵⟩ (edge 𝐴–𝐵). Let 𝑋
be this color (=its number in binary). It has at most 𝑘 + 1 bits instead of 𝑘 but
one additional bit does not matter with our precision. Knowing 𝐴, 𝑘, and 𝑋, we
can find 𝐵: run the process described and wait for an edge starting at 𝐴 that is
colored by 𝑋; its other endpoint is 𝐵. For the same reason, knowing 𝐵, 𝑘, and 𝑋,
we can compute 𝐴. Finally, 𝐶(𝑋 |𝐴,𝐵, 𝑘) = 𝑂(1): knowing 𝑘, 𝐴, and 𝐵, we wait
until the edge 𝐴–𝐵 gets some color; this color is 𝑋. �

321 Prove a stronger statement about bipartite graphs. Assume the a fi-
nite bipartite graph is given, and all vertices (in both parts) have degree at most
𝑁 . Prove that one can color its edges in such a way that the edges with com-
mon endpoint have different colors. Why cannot we use this fact in the proof of
Theorem 232 (and need to prove a weaker version from scratch)? [Hint. We may
assume that the degree is exactly 𝑁 , and then apply the Ford–Fulkerson argument
(max-flow=min-cut) or the Hall theorem. However, all this does not help us since
we obtain the graph edges sequentially and have to assign colors on-line.]

One may also note that the color in the last proof can be encoded by (𝑘 + 1)-
bit string, so it determines 𝑘 and we do not need to specify 𝑘 separately. So the
complexities 𝐶(𝐴 |𝐵,𝑋) and 𝐶(𝐵 |𝐴,𝑋) are in fact 𝑂(1), not 𝑂(log 𝑘). The same
observation in programming terms: for every two strings 𝐴 and 𝐵 there exists a
program of complexity max(𝐶(𝐴 |𝐵), 𝐶(𝐵 |𝐴)) +𝑂(1) that maps 𝐴 to 𝐵 and 𝐵 to
𝐴. Indeed, consider a program that knows the color of the edge 𝐴–𝐵 (it is used
as a constant in the program) and waits for an edge having this color and being
incident to the input vertex.

322 Let 𝐴 and 𝐵 be two independent random 𝑛-bit strings (i.e., 𝐶(𝐴) ≈ 𝑛,
𝐶(𝐵) ≈ 𝑛, and 𝐶(⟨𝐴,𝐵⟩) ≈ 2𝑛. Give an explicit example of a string 𝑋 that
satisfies the requirements of Theorem 232. [Answer: Take the bit-wise XOR of 𝐴
and 𝐵.]

For the case when the complexity 𝐶(𝐴 |𝐵) and 𝐶(𝐵 |𝐴) are different, the fol-
lowing refinement of Theorem 232 is possible. Assume, for example, that 𝐶(𝐴 |𝐵)
is bigger. Then the string 𝑋 can be split into two parts: the first part is the infor-
mation needed to transform 𝐴 into 𝐵, it has length 𝐶(𝐵 |𝐴); the rest has length
𝐶(𝐴 |𝐵) − 𝐶(𝐵 |𝐴) and together with the first part makes possible the reverse
transformation.

Here is the formal statement:

12.7. CONDITIONAL CODES FOR TWO CONDITIONS 387

Theorem 233. Assume that 𝐶(𝐴 |𝐵) < 𝑘, 𝐶(𝐵 |𝐴) < 𝑙 and 𝑘 > 𝑙. Then there
exists a 𝑘-bit string 𝑋 such that 𝐶(𝑋 |𝐴,𝐵) = 𝑂(log 𝑘), 𝐶(𝐴 |𝐵,𝑋) = 𝑂(log 𝑘),
and 𝐶(𝐵 |𝐴,𝑋 ′) = 𝑂(log 𝑘) where 𝑋 ′ is a 𝑙-bit prefix of 𝑋.

Proof. Let us use the same trick with 2𝑙+1 colors, still requiring that each
left vertex has different colors of adjacent edges, but on the right side up to 2𝑘−𝑙

adjacent edges of the same color are allowed. Then the color 𝑋 of edge 𝐴–𝐵 allows
us to find 𝐵 given 𝐴, and in the other direction we need the color plus the number of
𝐴–𝐵 edge in the enumeration of all 𝐵-edges of color 𝑋 (as they are generated). �

323 Prove the statement of Theorem 233 in the form used in [9]: under the
assumptions of Theorem 233 there exist a string 𝑌 of length 𝑘 − 𝑙 and a string 𝑋
of length 𝑙 such that 𝐶(𝐵, 𝑌 |𝐴,𝑋) = 𝑂(log 𝑘) and 𝐶(𝐴 |𝐵, 𝑌,𝑋) = 𝑂(log 𝑘).

12.7. Conditional codes for two conditions

Let us now consider an information request that in some sense generalizes two
last examples (Figure 5).

𝐴

𝐶

𝐵

𝐶

𝐶

𝑘

Figure 5. Restoring 𝐶 when 𝐴 or 𝐵 are given.

For the case 𝐴 = 𝐵 we get the request from Section 12.3 (in two symmetric
copies). If we let 𝐶 = ⟨𝐴,𝐵⟩, we get essentially the same request as in Section 12.6
(in each of the output vertices one string is known, and to restore the pair means
to restore the other one).

It is easy to state the necessary conditions for this request to be fulfillable:

𝐶(𝐶 |𝐴) 6 𝑘, 𝐶(𝐶 |𝐵) 6 𝑘.

An. Muchnik [134] has shown that these conditions in fact are also sufficient. Here
is the exact statement:

Theorem 234. Let 𝐴, 𝐵, and 𝐶 be arbitrary strings of complexity at most 𝑛,
and let 𝑘 be a positive integer such that 𝐶(𝐶 |𝐴) 6 𝑘 and 𝐶(𝐶 |𝐵) 6 𝑘. Then there
exists a string 𝑋 of length at most 𝑘 + 𝑂(log 𝑛) such that 𝐶(𝑋 |𝐶) = 𝑂(log 𝑛),
𝐶(𝐶 |𝐴,𝑋) = 𝑂(log 𝑛) and 𝐶(𝐶 |𝐵,𝑋) = 𝑂(log 𝑛).

In programming terms this statement can be rephrased as follows: for every
three strings 𝐴, 𝐵, 𝐶 there exists a program of complexity at most

max(𝐶(𝐶 |𝐴), 𝐶(𝐶 |𝐵)) + 𝑂(log 𝑛)

that is (logarithmically) simple given 𝐶, and maps each of the two strings 𝐴 and
𝐵 to 𝐶. (As before, program has some additional part that distinguishes 𝐴 from
𝐵; this part has logarithmic complexity.)

388 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

𝐴

𝐶

𝐵

𝐶

𝐶

𝑘

Figure 6. Additional edges that do not help much.

Note that this statement remains non-trivial even if we do not require the
program be simple given 𝐶: no other proof even of this weak version is known. In
other words, the problem does not look simpler if we add two additional edges as
shown in Figure 6.

As before, we can also refine the statement of Theorem 234 for the case when
conditional complexities are different:

Theorem 235. Let 𝐴, 𝐵, and 𝐶 be strings of complexity at most 𝑛, and let
𝑘 > 𝑙 be positive integers such that 𝐶(𝐶 |𝐴) 6 𝑘 and 𝐶(𝐶 |𝐵) 6 𝑙. Then there exists
a string 𝑋 of length 𝑘 such that 𝐶(𝑋 |𝐶) = 𝑂(log 𝑛), 𝐶(𝐶 |𝐴,𝑋) = 𝑂(log 𝑛), and
𝐶(𝐶 |𝐵,𝑋 ′) = 𝑂(log 𝑛) where 𝑋 ′ is the 𝑙-bit prefix of 𝑋.

324 How can one formulate this statement in terms of some information
request? [Hint: 𝑋 is send along an edge of capacity 𝑘, and another edge of capacity
𝑙 extends the first edge.]

All these statements are proven by An. Muchnik [134]. We reproduce the proof
of Theorem 235 given in his paper.

Proof. We use the same idea: the string 𝑋 is one of (few) “fingerprints” of
𝐶. However, the argument needs to be changed. Even for the simple case 𝑘 = 𝑙 we
have a problem: one can find fingerprint 𝑋 such that 𝐶(𝐶 |𝐴,𝑋) is small, as well
as some other fingerprint 𝑋 ′ such that 𝐶(𝐶 |𝐵,𝑋 ′) is small, but we need the same
𝑋 for both cases. How can we achieve this?

We may consider fingerprints 𝑋 that generate only few collisions both in 𝑆𝐴

and 𝑆𝐵 (here 𝑆𝐴 and 𝑆𝐵 stand for the set of strings that are simple relative to
𝐴 and 𝐵 respectively). Indeed those “universal” fingerprints exist (most of the
right vertices have this property, since 𝑆𝐴 ∪ 𝑆𝐵 is only twice bigger than each of
𝑆𝐴 and 𝑆𝐵). The expansion property now guarantees that for most strings in 𝑆𝐴

and for most strings in 𝑆𝐵 there exists a universal fingerprint. But then we run
into a problem: we would like to say that remaining strings have small complexity
since there is only a few of them and we can generate them—but to generate them
we need to know both 𝐴 and 𝐵, and we have only one of these two strings as a
condition. . .

What can we do? Let us consider 𝐴 and 𝐵 separately, but let us require that
𝐶 has not only one good fingerprint (neighbor) but that most of the neighbors of
𝐶 are good. If this can be achieved for 𝐴 and 𝐵 separately, then some fingerprint
will be good simultaneously for 𝐴 and 𝐵.

So we need to change many things, starting from the expander-type property
we use. Let 𝐸 ⊂ 𝑃 × 𝑄 be a bipartite graph with left part 𝑃 and right part 𝑄.

12.7. CONDITIONAL CODES FOR TWO CONDITIONS 389

Now we require that for every small enough 𝑈 ⊂ 𝑄 the set of 𝑥 ∈ 𝑃 such that
most neighbors of 𝑥 are in 𝑈 , is small. In other words, in our previous argument
a vertex in 𝑃 was bad for us if all its neighbors are bad in 𝑄; now it is enough if
most neighbors are bad in 𝑄.

Moreover, to adapt our argument to the case when 𝐶(𝐶 |𝐴) and 𝐶(𝐶 |𝐵) are
different, we consider not only fingerprints but also their prefixes. So the statement
about the existence of expander-like graph is now as follows (by [𝑢]𝑚 we denote
𝑚-bit prefix of 𝑢):

Lemma. Let 𝑛 and 𝑁 be positive integers, and 𝜀 > 0 be a real number. Assume
that

𝑛2𝑁+2𝑛+1𝜀𝑁/2 < 1.

Then there exists a family of 𝑁 mappings

𝜒1, . . . , 𝜒𝑁 : B𝑛 → B𝑛

with the following property: for every 𝑚 ∈ {1, . . . , 𝑛} and for every non-empty
subset 𝑈 ⊂ B𝑚 of size at most 𝜀2𝑚, the number of 𝑥 ∈ B𝑛 such that

[𝜒𝑖(𝑥)]𝑚 ∈ 𝑈 for at least half of 𝑖 ∈ {1, . . . , 𝑁},
is less than |𝑈 | (the cardinality of 𝑈).

[Some comments: instead of a graph with left-degree 𝑁 we consider a family
of 𝑁 mappings, so we allow multiple edges (𝜒𝑖(𝑥) = 𝜒𝑗(𝑥) for 𝑖 ̸= 𝑗). Now both
arguments and values of 𝜒𝑖 have the same size 𝑛, but the statement speaks about
𝑚-bit prefixes for all 𝑚 6 𝑛.]

Proof. As usual, let us consider randomly chosen 𝜒1, . . . , 𝜒𝑁 (for all 𝑖 and
𝑥 the values 𝜒𝑖(𝑥) are independent and uniformly distributed) and show that the
probability of violating the statement is less than 1. Let us get an upper bound
for this probability. For each 𝑚 6 𝑛, for each 𝑡 6 𝜀2𝑚 and for each pair of sets
𝑇 ⊂ B𝑛 of 𝑈 ⊂ B𝑚, both having cardinality 𝑡, we consider the following event: for
each 𝑥 ∈ 𝑇 at least half of the values [𝜒𝑖(𝑥)]𝑚 (for 𝑖 = 1, . . . , 𝑛) are in 𝑈 ; we need
an upper bound for the probability of this event.

For a fixed 𝑥 ∈ 𝑇 the probability of the event “at least half of 𝑥-neighbors is in
𝑈” is at most 2𝑁𝜀𝑁/2: there are at most 2𝑁 subsets 𝑇 ⊂ {1, 2, . . . , 𝑁} that contain
at least 𝑁/2 elements, and for each 𝑇 the probability that all 𝜒𝑖(𝑥) are in 𝑈 (for
all 𝑖 ∈ 𝑇) is at most 𝜀𝑁/2. (Recall that [𝜒𝑖(𝑥)]𝑚 is uniformly distributed in B𝑚 and
𝑈 occupies only 𝜀-fraction of B𝑚.) This event should happen for all 𝑥 ∈ 𝑇 (this
gives exponent 𝑡). In this way we get the following bound for the total probability
(that should be less than 1):

𝑛∑︁
𝑚=1

𝜀2𝑚∑︁
𝑡=1

∑︁
𝑇⊂B𝑛,|𝑇 |=𝑡

∑︁
𝑈⊂B𝑚,|𝑈 |=𝑡

(2𝑁𝜀𝑁/2)𝑡.

The number of different 𝑇 is bounded by 2𝑛𝑡 (the number of sequences of 𝑡 elements
of B𝑛); for the same reason the number of different 𝑈 is bounded by 2𝑚𝑡. For the
entire sum we get an upper bound

𝑛∑︁
𝑚=1

𝜀2𝑚∑︁
𝑡=1

2𝑡𝑛2𝑡𝑚2𝑡𝑁𝜀𝑁𝑡/2

390 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

or
𝑛∑︁

𝑚=1

𝜀2𝑚∑︁
𝑡=1

(2𝑛2𝑚2𝑁𝜀𝑁/2)𝑡.

The internal sum is a geometric sequence; our assumptions guarantee that its com-
mon ratio is less than 1/2, so the sum is bounded by 2 times the first term, and
this term does not depend on 𝑡, So we get the upper bound

2𝑛 · (2𝑁+𝑛+𝑚𝜀𝑁/2) 6 𝑛2𝑁+2𝑛+1𝜀𝑁/2,

and it is less than 1 according to our assumption. Lemma is proven.
We will use this lemma for 𝜀 = 1/8. In this case the condition can be rewritten

as
𝑛2𝑁+2𝑛+1 < 8𝑁/2

or
log 𝑛 + 𝑁 + 2𝑛 + 1 < 3𝑁/2.

We can let 𝑁 = 6𝑛, and this guarantees that the condition of the Lemma is true
for all sufficiently large 𝑛.

Now we are ready to continue the proof of Theorem 235. As before, we replace
𝐶 by its shortest (unconditional) description, so we assume that 𝐶 is a 𝑛-bit string.
(The complexity of 𝐴 and 𝐵 is irrelevant; in particular, these complexities may
exceed 𝑛.) Let us apply the Lemma with 𝑁 = 6𝑛 and 𝜀 = 1/8; it provides 6𝑛
mappings 𝜒1, . . . , 𝜒6𝑛 : B𝑛 → B𝑛 with specified properties. As usual, we can take
the first (in some natural ordering) family with these properties (for a given value
of 𝑛), so we may assume that the complexity of the family 𝜒𝑖 is 𝑂(log 𝑛).

Assume that 𝐶(𝐶 |𝐴) = 𝑘 and 𝐶(𝐶 |𝐵) = 𝑙. (The assumption says only about
inequalities, but we can decrease 𝑘 and 𝑙 if needed, the statement becomes only
stronger.) Taking 𝑘 (or 𝑙) first bits of the hash values, we get 𝑁 (= 6𝑛) mappings
B𝑛 → B𝑘 (the same for 𝑙). These families define bipartite graphs in B𝑛 × B𝑘 and
B𝑛 × B𝑙 where each left vertex has degree 𝑁 (including multiple edges). Then we
restrict these graphs on 𝑆𝐴 and 𝑆𝐵 , where 𝑆𝐴 consists of 𝑛-bit strings that have
complexity at most 𝑘 given 𝐴, and 𝑆𝐵 consists of 𝑛-bit strings that have complexity
at most 𝑙 given 𝐵. In B𝑘 we note bad vertices that have more than 𝑛𝑐 neighbors
in 𝑆𝐴; in B𝑙 we note bad vertices that have more than 𝑛𝑐 neighbors in 𝑆𝐵 . (The
value of sufficiently large constant 𝑐 will be chosen later.)

In both cases the number of bad vertices in bounded by

2𝑁 · 2𝑘/𝑛𝑐 (for B𝑘) and 2𝑁 · 2𝑙/𝑛𝑐(for B𝑙),

since the degree of a bad vertex exceeds 𝑛𝑐, the total number of edges in the
restricted graph is bounded by |𝑆𝐴| ·𝑁 and |𝑆𝐵 | ·𝑁 respectively, |𝑆𝐴| < 2 · 2𝑘, and
|𝑆𝐵 | < 2 · 2𝑙.

Now, implementing our plan, we say that a vertex in 𝑆𝐴 is bad if at least half
of its neighbors in the graph in 𝑆𝐴 ×B𝑘 (multiple edges are counted several times)
are bad. The Lemma guarantees that the number of bad vertices in 𝑆𝐴 is less than
2𝑁 · 2𝑘/𝑛𝑐 (we assume that 𝑐 is large enough, so the bound for the number of bad
vertices is less than 𝜀2𝑘, where 𝜀 = 1/8; recall than 𝑁 = 6𝑛). Since the bad vertices
in 𝑆𝐴 can be enumerated (given 𝑛, 𝑘, and 𝐴), the conditional complexity of each
of them given 𝐴 is at most

log(2𝑁 · 2𝑘/𝑛𝑐) + 𝑂(log 𝑛) 6 𝑘 − 𝑐 log 𝑛 + 𝑂(log 𝑛).

12.8. INFORMATION FLOW AND NETWORK CUTS 391

Therefore, for large enough 𝑐 all bad vertices have conditional complexity (with
condition 𝐴) less than 𝑘, and 𝐶 is not bad (its complexity is exactly 𝑘). This
means that most values [𝜒𝑖(𝐶)]𝑘 (more than 𝑁/2) are good in B𝑘.

Similar argument for the other graph shows that most of the values [𝜒𝑖(𝐶)]𝑙
are good in B𝑙. Therefore there exists 𝑖 which leads to good vertices in both cases.
Then 𝑋 = [𝜒𝑖(𝐶)]𝑘 and 𝑋 ′ = [𝜒𝑖(𝐶)]𝑙 have the required properties. �

325 State and prove a similar result for three conditions (or polynomially
many conditions).

After these remarkable results are proven, one may want to go farther and
ask: is it possible to find for a given 𝐴 one string of length 𝑘 that can be used to
reconstruct 𝐴 starting from arbitrary 𝐵 such that 𝐶(𝐴 |𝐵) < 𝑘? It is easy to see,
however, that it is too good to be true.

Let 𝑘 = 𝑛/2 and let 𝑋 be a string of length 𝑛/2 that satisfies this property
(i.e., 𝐶(𝐴 |𝑋,𝐵) ≈ 0 for every 𝐵 such that 𝐶(𝐴 |𝐵) 6 𝑛/2). Then 𝐶(𝐴 |𝑋) should
be at most 𝑛/2, since we can take the half of the 𝑛-bit description of 𝐴 for 𝐵. Now
we can take 𝑋 for 𝐵; then the complexity of the pair ⟨𝑋,𝐵⟩ is at most 𝑛/2 and 𝐴
cannot be reconstructed.

326 Show that not only one fingerprint is not enough, but any fixed number
of fingerprints is not enough, too. [Hint. Assume that 𝑑 strings are enough. We
can assume without loss of generality that all these strings are incompressible. For
some 𝑖, let us concatenate 𝑖-bit prefixes of all fingerprints and denote this string by
𝐵𝑖. For some 𝑖 = 𝑖0 the conditional complexity 𝐶(𝐴 |𝐵𝑖) is close to 𝑛/2 since it
decreases continuously from 𝑛 to some value not exceeding 𝑛/2 (the latter because
it is true even for one fingerprint). This 𝑖0 is at least 𝑛/2𝑘; none of the fingerprints
can serve 𝐵𝑖0 , since each of them has some common information and the total
amount of information is not enough.]

12.8. Information flow and network cuts

We have considered several types of information requests; for each type we have
found necessary and sufficient conditions for the request to be fulfillable. In all our
examples these conditions can be obtained in some uniform way using network
cuts. Let us describe this technique explicitly. Consider an information request (a
directed acyclic graph with capacities, input and output vertices and strings). Let
us formulate a necessary condition for this request to be fulfillable.

Choose some cut of the request graph, i.e., some set 𝐼 of the graph nodes. We
are interested in the information flow that goes inside 𝐼. Consider all the graph
edges that cross 𝐼 in this direction (start outside 𝐼 and end in 𝐼). If there is some
unlimited capacity edge among them, we do not get any non-trivial condition for
our 𝐼. Assume that it is not the case and that all capacities 𝑢1, . . . , 𝑢𝑘 are finite.
Let 𝑉1, . . . , 𝑉𝑙 be the input strings for all input vertices in 𝐼, and let 𝑊1, . . . ,𝑊𝑚

be the output strings for all vertices in 𝐼. Then we following condition is necessary
for the request to be fulfillable:

𝐶(𝑊1, . . . ,𝑊𝑚 | 𝑉1, . . . , 𝑉𝑙) 6 𝑢1 + . . . + 𝑢𝑘.

(As always, all the inequalities are understood with a logarithmic precision). In-
deed, if we know all 𝑉1, . . . , 𝑉𝑙, and also all the messages along the edges going into

392 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

𝐼 from outside, we can reconstruct (with logarithmic advice) all the outgoing mes-
sages for all vertices in 𝐼, including 𝑊1, . . . ,𝑊𝑚. This can be done by considering
the vertices of 𝐼 in a topologically sorted ordering (the starting point of every edge
should be considered before its endpoint; recall that the graph is acyclic according
to our assumption).

In fact this is just the standard argument about flows and cuts, adapted to
“information flow”. Let us explain how this general scheme gives the necessary
conditions for the requests in one of our previous examples. Consider the request
from Section 12.6, and let 𝐼 be the set of three vertices inside the dotted line
(Figure 7).

The incoming information consists of 𝐴 and some string of length 𝑘 (along the
edge with capacity 𝑘); two other edges of the graph go in the opposite direction
(recall that all edges are assumed to be in the top-down direction). So we get
exactly the condition 𝐶(𝐵 |𝐴) 6 𝑘 that we used.

327 Show that for all our examples the conditions we considered can be
obtained as cut-flow conditions for suitable chosen cuts.

12.9. Networks with one source

In the previous section we explained a general method to obtain necessary
conditions for the information requests to be fulfillable. A natural question arises:
are they (taken for all possible cuts) sufficient? In all previous examples this was
indeed the case. In general, as we will see later in this chapter, this is not true. In
this section we show that it is true for the special case where there exists one input
node with input string 𝐴 and several output nodes with (the same) output strings
𝐴. In other words, if we want to transmit some information without change and
have only one source node, the cut-flow conditions are not only necessary but also
sufficient.

For the Shannon information theory this problem was studied in [1, 103]; our
argument follows the scheme used there (with some changes needed to adapt it to
the complexity framework).

Let us start with an example. Assume that we want to transmit a string 𝐴
of length 2𝑘 to three destination nodes (Figure 8); all the channels have unlimited
capacity except for the first three that have capacity 𝑘. Can we achieve this?

There is no problem to deliver 𝐴 into each destination separately. For example,
to deliver it into the left destination vertex, we split it into two halves 𝐴1 and 𝐴2,

𝐴

𝐵

𝐵

𝐴

𝑘

𝐼

Figure 7. A cut for Bennett–Gács–Li–Vitányi–Zurek theorem.

12.9. NETWORKS WITH ONE SOURCE 393

𝐴 𝐴 𝐴

𝐴

𝑘 𝑘
𝑘

Figure 8. Splitting information into pieces.

each contains 𝑘 bits, and send these halves using two left channels. They have
capacity 𝑘, so this is possible. (The third channel is useless for this destination.)

The same trick can be used for two other destinations. The problem appear
when we want to send 𝐴 to all three destinations at the same time: for this we
would like to cut 𝐴 into “three halves” in such a way that every two of them are
enough to reconstruct 𝐴. A standard secret sharing scheme can be used: we send
strings 𝐴1, 𝐴2 and 𝐴1 ⊕𝐴2 (bitwise XOR, or sum modulo 2) along three channels.

It turns out that one may do something similar in the general case and prove
the following result:

Theorem 236. Consider an information transmission request with one input
string 𝐴 of length 𝑛 and the same output strings 𝐴 in several places, with inte-
ger capacities. Assume that all the cut-flow conditions are true: for every 𝐽 that
does not contain input vertex and contains at least one output vertex, the sum of
capacities of all incoming edges (that start outside 𝐽 and arrive to 𝐽) is at least
𝑛. Then this request is fulfillable with 𝑂(log 𝑛) precision: one can find strings for
all edges in such a way that for every vertex the conditional complexity of outgoing
information given the incoming information is 𝑂(log 𝑛).

(The constant hidden in 𝑂(log 𝑛) depends on the graph but not on 𝑛, capacities
and 𝐴.)

Proof. Consider first the case when there is only one output node 𝑡. In this
case we need to send 𝑛 bits of information from source node 𝑠 to the destination
node 𝑡 along the edges. Let us imagine that each bit is packed into an envelope
(the position is also written inside the envelope). We get 𝑛 envelopes in the source
node. We want to bring them to the output node with the following restriction: if
an edge has capacity 𝑘, at most 𝑘 envelopes could be carried along this edge.

This envelope moving problem is solvable due to Ford–Fulkerson theorem (min-
cut equals max-flow, see, e.g., [45]; since all capacities are integers, an integer flow
exists).. Now we write on each edge the bits that were carried along this edge.More
precisely, Ford and Fulkerson provide for each edge a set of envelopes; consider the
numbers (positions) of bits sent in these envelopes, in non-decreasing order, and
write on the edge the subsequence of bits in these positions.

Let us show that bounds for conditional complexities are satisfied. Consider
some node and output and input strings for this node. The output strings are made
by combining the bits obtained from the input string. The scheme (which bits go
where) does not depend on 𝐴 and can be computed if 𝑛 is known, so this scheme

394 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

has complexity 𝑂(log 𝑛), and it is enough to know it to transform incoming strings
into outgoing strings.

This finishes the proof for the case of one output node.
To prove the same result in the general case, we use random linear codes. In the

previous argument we just moved bits from incoming strings to outgoing strings.
Now we use a more general tool: we apply some linear operator in each vertex.
Imagine for now that bits are elemets of the two-element field F2 (it consists of 0
and 1, and 1 + 1 = 0). Then 𝑙-bit strings are vectors in the 𝑙-dimensional vector
space over this field.

Consider a node that has incoming edges of capacities 𝑖1, . . . , 𝑖𝑝, and outgoing
edges of capacities 𝑗1, . . . , 𝑗𝑞. (We replace all infinite capacities by 𝑛: since we
send only 𝑛 bits, we never will need to send more than 𝑛 bits along an edge.)
Then the linear transformation in the node can be specified by a matrix of size
(𝑗1 + . . .+ 𝑗𝑞)× (𝑖1 + . . .+ 𝑖𝑝); we multiply the incoming bits vector by this matrix
to get the outgoing bits vector. Note that we send exactly 𝑘 bits along an edge of
capacity 𝑘 (even if this edge looks useless).

(It is easy to see that our solution for three outputs example has exactly this
form.)

Assume that for some vertex such a transformation matrix is chosen. Then we
get for each output some linear transformation (from input 𝑛-dimensional space to
output 𝑛-dimensional space) over the field F2. We want to make all these linear
operators invertible: this would guarantee that the output string contains full in-
formation (up to a fixed linear transformation) about the input string. So if we can
find some matrices in the nodes that make all the input-output transformations
invertible, we are done.

There is one subtle point here: the mere existence of good transformation
matrices for all nodes is not enough; we need these matrices to be simple. However,
a standard trick helps: if good matrices exist, we can use the first example in some
ordering, and it has complexity 𝑂(log 𝑛); recall that the graph is fixed.

More serious problem: in some cases it is not possible to make these matrices
invertible for each output.

328 Consider the information request from Figure 9; assume that input string
consists of 2 bits and the capacities of all edges are equal to 1. Show that no linear
transformations in the nodes make all six input-output mappings invertible. [Hint:
there are only three non-linear functionals on two-dimensional space, so two of the
intermediate vertices will carry the same information.]

Note that for each output it is possible to find transformations in the vertices
that make the transformation for this output invertible: indeed, we have seen that
we do not even need arbitrary linear transformations, repackaging the bits (from
envelopes to envelopes) is enough. The problem is that we cannot make the trans-
formation for all output nodes invertible simultaneously.

Let us change our setting and consider elements of an arbirary field 𝐹 instead
of bits (elements of F2). The input is now a vector from 𝐹𝑛; an edge of capacity
𝑘 carries an element of 𝐹 𝑘, and transformations in the nodes are 𝐹 -linear, i.e.,
determined by matrices with elements from 𝐹 .

Let us show that for large enough field 𝐹 one can find the transformations
in the nodes that make all the output mappings invertible at the same time. Let
us consider the matrix elements as 𝐹 -valued variables. Then the elements of the

12.9. NETWORKS WITH ONE SOURCE 395

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴

𝐴

Figure 9. Field F2 is not enough.

resulting input-output matrices are polynomials in these variables. The determi-
nants of these matrices are also polynomials. The degree of a determinant as a
polynomial in matrix elements is bounded by 𝑛𝐸, where 𝐸 is the number of edges
in the graph (going from input to output, we increase the degree of the polynomial
by 1, and by computing the determinant we multiply the degree at most by 𝑛). So
for each output we have a polynomial of a limited degree (the determinant of the
corresponding matrix), and we know that this polynomial is not equal to 0 (since
we can make the matrix invertible for each output separately). It remains to use
the following simple algebraic result:

Lemma. A polynomial of degree 𝑑 in 𝑚 variables over field 𝐹 is either equal
to 0 (has zero coefficients), or is equal to zero in a random point with probability
at most 𝑑/|𝐹 |.

Here by degree we mean total degree (exponents for all variable are added), |𝐹 |
stands for the cardinality of 𝐹 , and the probability is taken over uniform distribu-
tion in 𝐹𝑚.

Proof We use induction over 𝑚. For 𝑚 = 1 the claim says that the number of
roots of a univariate polynomial is bounded by its degree (factorization argument).
For 𝑚 > 1 we represent the given polynomial as a polynomial in one variable whose
coefficients are polynomials in the remaining variables. Let 𝑑1 be the degree of this
univariate polynomial (the maximal exponent for the selected variable), and let 𝑑2
be the degree of its leading coefficient (as a polynomial in the remaining variables).
This leading coefficient may be zero or not depending on the values of the remaining
variables. The probability for it to be zero is bounded by 𝑑2/|𝐹 | due to the induction
assumption, and if the leading coefficient is not zero, the probability to bump into
the root of the non-zero univariate polynomial of degree 𝑑1 is bounded by 𝑑1/|𝐹 |.
In total we get (𝑑2 + 𝑑1)/|𝐹 | 6 𝑑/|𝐹 |. Lemma is proven.

Now we note that if the probability to get a zero determinant at each given
output is less than 1/(number of output nodes), then there exists some values of
the variables that make all the determinants non-zero simultaneously. We have
the degree bounded by 𝑛𝐸, the number of outputs is also bounded by 𝐸, so the
condition 𝑛𝐸2 < |𝐹 | is enough to guarantee the existence of matrices that make
all input-output transformations invertible. (And these matrices can be found by
search, so they are simple matrices with this property.)

How can we use all this in the situation when we have 𝑛 bits (and not 𝑛 elements
of a big finite field)? As usual for coding theory, let us split the 𝑛-bit string into
blocks of some size 𝑘. We get (approximately) 𝑛/𝑘 blocks and interpret each block

396 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

as an element of a field of size 2𝑘 (such a field exists for all 𝑘, as explained in algebra
textbooks). If it turns out that the number 𝑛 and all capacities are multiples of 𝑘,
and that 2𝑘 > (𝑛/𝑘)𝐸2, then we are done.

In general, we need some adjustments. First we choose some value of 𝑘 such that
2𝑘 > 𝑛𝐸2 (we ignore 1/𝑘 factor, but it is in our favor). This gives us 𝑘 = 𝑂(log 𝑛).
Then we round 𝑛 and the capacities making them multiples of 𝑘 (𝑛 is rounded
downwards and capacities are rounded upwards, so the inequalities for cuts remain
true). The rounding error is 𝑂(log 𝑛), so it does not matter with our precision, and
it remains to use the statement we proved. �

329 Using random linear transformations, construct a probabilistic algorithm
that finds the maximal flow in a directed acyclic graph with integer capacities.
[Hint. For a given 𝑛 we may find whether a flow of size 𝑛 exists by assigning
random matrices to each vertex and checking whether the resulting 𝑛 × 𝑛 matrix
is invertible.]

In the rest of the chapter we consider examples of the opposite type, where
flow-cut conditions are only necessary, but not sufficient.

12.10. Common information as an information request

We have already considered one example where necessary cut-flow conditions
turn out to be insufficient: this was the common information problem from Chap-
ter 11. In Section 11.2 we asked (for given strings 𝑥, 𝑦 and for given integers 𝛼, 𝛽, 𝛾)
whether there exists a string 𝑧 such that

𝐶(𝑧) < 𝛼, 𝐶(𝑥 |𝑧) < 𝛽, 𝐶(𝑦 |𝑧) < 𝛾.

This problem considered up to logarithmic precision can be reformulated as an
information transmission request (Figure 10). Indeed, if a string 𝑧 with required

𝑥 𝑦

𝑧

𝛼𝛽 𝛾

𝑥 𝑦

Figure 10. Common information request.

properties exist, it can be sent along the middle edge (of capacity 𝛼); two other
edges should transmit conditional descriptions of 𝑥 and 𝑦 given 𝑧. (Both 𝑧 and these
conditional description can be found by search with logarithmic advice, if 𝑥 and 𝑦
are given, so there is no new information in the top vertex.) On the other hand, if
this information transmission request is fulfillable, then the string 𝑧 sent along the
midde edge, satisfies the required inequalities (with logarithmic precision).

12.12. MINIMAL SUFFICIENT STATISTICS 397

The cut-flow conditions give the inequalities

𝐶(𝑥) 6 𝛼 + 𝛽, 𝐶(𝑦) 6 𝛼 + 𝛾, 𝐶(𝑥, 𝑦) 6 𝛼 + 𝛽 + 𝛾,

and we have seen in Chapter 11 many different examples of strings 𝑥 and 𝑦 where
these inequalities turn out to be insufficient for the existence of string 𝑧 (“common
information”) with required properties.

12.11. Simplifying a program

In the previous section we have seen an example of an information request that
can be not fulfillable even if all the cut-flow conditions are satisfied. This request is
rather complicated, and it is interesting to find a simpler example. In this section
we mention one of these examples: it turns out that the statement of Theorem 229
is quite close to the boundary line, and just a bit more general setting makes the
cut-flow conditions insufficient.

Consider an information request suggested by M. Vyugin (Figure 11). The
difference with Muchnik’s theorem: now instead of reconstructing one of the input
strings (𝑃 in the current notation) we have to obtain some third string (𝐵). The cut-

𝑃

𝐵

𝐴

𝑘

Figure 11. Simplification of a program.

flow conditions for this problem are 𝐶(𝐵 |𝐴) 6 𝑘 and 𝐶(𝐵 |𝐴,𝑃) = 0 (considered
with logarithmic precision). They are (as always) necessary, but one can show that
they are not sufficient.

This request can be described informally as “simplification of a program”: since
𝐶(𝐵 |𝐴,𝑃) = 0, the string 𝑃 can be considered as a program (or information
sufficient for a program) that transforms 𝐴 into 𝐵; however, the complexity of 𝑃
is bigger that strictly necessary, i.e., it exceeds 𝑘 = 𝐶(𝐵 |𝐴). Can we find another
program, of minimal possible complexity 𝐶(𝐵 |𝐴), that transforms 𝐴 to 𝐵 and at
the same time is a “simplication” of the first one (i.e., has no new information
compared to 𝑃)?

The detailed explanation of the negative answer (even several explanations,
using game, probabilistic and combinatorial arguments) is given in [139].

12.12. Minimal sufficient statistics

In this section we consider another request where cut-flow conditions are not
sufficient (Figure 12). Here the output string is again (like in Muchnik’s theorem)
one of the input strings, but now both capacities are limited. In addition, we allow
to use the full information about 𝐵 when encoding 𝐴.

This problem is related to the notion of minimal sufficient statistics in probabil-
ity theory. Let us explain this connection (though it is not important for the proofs,
so one may skip these explanations). Consider a pair of two random variables 𝜃 and

398 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

𝐴

𝐴

𝐵

𝑝
𝑞

Figure 12. Two channels of bounded capacity.

𝑋 with some joint distribution. The variable 𝜃 is considered as a “parameter”, and
for each value of 𝜃 we consider the conditional distribution of 𝑋. For example, we
may first choose 𝜃 uniformly distributed in [0, 1], and then choose a 𝑛-bit string 𝑋
according to the Bernoulli distribution on 𝑛-bit strings with parameter 𝜃. In this
way we get a joint distribution of 𝜃 and 𝑋.

Assume that we observe 𝑋 in a pair ⟨𝜃,𝑋⟩ generated according to this distri-
bution, and want to guess 𝜃. (As usual, we assume that some a priori distribution
on the space [0, 1] of parameters is given.) Not all information in 𝑋 is really useful
for that: it is enough to know how many ones are among the outcomes, and it does
not matters what are their positions. More formally, the random variable 𝑁(𝑋),
the number of ones in 𝑋, extracts all information about 𝜃 that is in 𝑋:

𝐼(𝑁(𝑋) :𝜃) = 𝐼(𝑋 :𝜃).

For an arbitrary function 𝑁 the left hand side does not exceed the right hand side;
the functions 𝑁 that transform this inequality into an equality, are called sufficient
statistics. The same condition can be formulated in a different way: 𝜃 and 𝑋 and
independent given 𝑁(𝑋). One more reformulation: 𝐻(𝜃 |𝑁(𝑋)) = 𝐻(𝜃 |𝑋).

By definition, the random variable 𝑋 itself is a sufficient statistics; our example
shows that it may contain a lot of irrelevant information. A sufficient statistics
is called minimal sufficient statistics if it is a function of every other sufficient
statistics. For the random variables with finitely many values the minimal sufficient
statistics always exists (and is unique up to permutations): one should identify those
values of 𝑋 that lead to the same conditional distributions on 𝜃. The minimal
sufficient statistics has minimal entropy among all sufficient statistics.

330 Assume that all values of 𝜃 have positive probabilities. Prove that the
notion of sufficient statistics depends only on the value of conditional probabil-
ities 𝑃 [𝑋 = 𝑥 | 𝜃 = 𝑡] for all pairs 𝑥, 𝑡 (so the distribution for 𝜃 itself is not
important). [Hint. For each 𝑥 consider a vector containing all 𝑃 [𝑋 = 𝑥 | 𝜃 = 𝑡]
for all values 𝑡 of the random variable 𝜃. Then 𝑁 is a sufficient statistics if and
only if every two arguments with the same values of 𝑁 correspond to proportional
vectors.]

The search for the minimal sufficient statistics can be described as follows: we
consider random variables 𝑋 ′ such that 𝐻(𝑋 ′ |𝑋) = 0, i.e., functions of 𝑋, and
select those for which the value 𝐻(𝜃 |𝑋 ′) is minimal. Then we minimize 𝐻(𝑋 ′)
among the selected random variables.

Now we try to find an algorithmic information counterpart of this procedure.
Let us consider two strings 𝐴 (that corresponds to 𝜃) and 𝐵 (that corresponds to
𝑋). We want to select some part 𝐵′ of information in 𝐵 for which 𝐶(𝐴 |𝐵′) reaches

12.12. MINIMAL SUFFICIENT STATISTICS 399

the minimal possible value 𝐶(𝐴 |𝐵). Among those 𝐵′ we want then to select one
with minimal 𝐶(𝐵′), so it can be considered as an algorithmic version of minimal
sufficient statistics.

This setting can be explained in terms of information transmission using Fig-
ure 12. Here 𝐵′ (a function of 𝐵) is sent via channel of capacity 𝑞, and the con-
ditional description of 𝐴 given 𝐵′ is sent via channel of capacity 𝑝. The minimal
statistics problem can be now stated as follows: minimize 𝑞 for minimal possible
𝑝 ≈ 𝐶(𝐴 |𝐵).

Let us consider a more general questions: for which 𝑝 and 𝑞 the information
transmission request (for given 𝐴 and 𝐵) is fulfillable? The necessary cut-flow
conditions are (with logarithmic precision) 𝐶(𝐴) 6 𝑝 + 𝑞 and 𝐶(𝐴 |𝐵) 6 𝑝.

331 Find cuts that give these conditions.

For some pairs 𝐴,𝐵 these necessary conditions turn out to be sufficient.

332 Show that if 𝐴 and 𝐵 have extractable common information (e.g., 𝐴 and
𝐵 are overlapping substrings of some incompressible string), then these necessary
conditions are also sufficient. [Hint. The condition 𝐶(𝐴 |𝐵) 6 𝑝 guarantees that
we can send along the left channel the part of 𝐴 outside 𝐵, plus some other part
of 𝐴, and the rest can be sent along the right channel: the condition 𝐶(𝐴) 6 𝑝 + 𝑞
guarantees that there is enough capacity.]

However, as we will see, in the general case the necessary conditions are not
sufficient. To provide an example when this happens, let us fix the complexities and
conditional complexities of 𝐴 and 𝐵. We agree that 𝐴 and 𝐵 have complexity 2𝑛,
and the pair ⟨𝐴,𝐵⟩ has complexity 3𝑛. (So the conditional complexities 𝐶(𝐴 |𝐵)
and 𝐶(𝐵 |𝐴) are about 𝑛.) Figure 13 shows necessary conditions 𝑝 + 𝑞 > 2𝑛 and
𝑝 > 𝑛 for this case.

𝑝

𝑞

𝑛 2𝑛

2𝑛

Figure 13. Necessary (cut-flow) conditions.

Now let us try to find some values of 𝑝 and 𝑞 when the request is guaranteed
to be fulfillable (whatever 𝐴 and 𝐵 are, assuming they have complexities as we
agreed). We can send the string 𝐴 along the left channel, so the request is feasible
for 𝑝 = 2𝑛 and 𝑞 = 0 (and, of course, for all bigger 𝑝 and 𝑞). Another possibility is
to send 𝐵 completely along the right channel, so the request is feasible for 𝑝 = 𝑛,
𝑞 = 2𝑛 (and for bigger 𝑝 and 𝑞). In this way we get two quadrants with vertices
(2𝑛, 0) and (𝑛, 2𝑛). Moreover, if we delete (say, the last) 𝑘 bits from 𝐵 (which we
assume to be incompressible), then the conditional complexity 𝐶(𝐴 |𝐵) increases

400 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

𝑝

𝑞

𝑛 2𝑛

2𝑛 𝐺

Figure 14. Sufficient conditions.

at most by 𝑘, so the request is feasible for 𝑞 = 2𝑛 − 𝑘, 𝑝 = 𝑛 + 𝑘. So in the dark
grey region on Figure 14 (denoted there by 𝐺) the request is always feasible.

As in the case of common information (Chapter 11), we may say that the “pro-
file” of a pair ⟨𝐴,𝐵⟩ (the set of all pairs ⟨𝑝, 𝑞⟩ that make the request feasible) is not
determined by complexities and conditional complexities of 𝐴 and 𝐵: for different
pairs with the same complexities the profiles could be different. Problem 332 shows
that for some pairs the profile coincides with the upper bound provided by cut-flow
inequalities. The following theorem shows that for some pairs the profile coincides
with the lower bound (equals 𝐺, Figure 14).

However, we need to be careful to formulate the statement correctly. One would
like to claim that for every 𝐵′ that is simple relative to 𝐵, the pair ⟨𝐶(𝐴 |𝐵′), 𝑙(𝐵′)⟩
is in 𝑂(log 𝑛)-neighborhood of 𝐺, and the hidden constant in 𝑂(log 𝑛) does not
depend on 𝑛 and 𝐵′. However, the assumption “𝐵′ is simple relative to 𝐵” need to
be formulated in some exact way: we should choose some threshold 𝑟 and require
that 𝐶(𝐵′ |𝐵) < 𝑟. As 𝑟 increases, the distance between ⟨𝐶(𝐴 |𝐵′), 𝑙(𝐵′)⟩ may
increase, and we should make exact statement about it. In fact, the distance is
bounded by 𝑂(𝑟). Here is the exact statement:

Theorem 237. For every 𝑛 there exist strings 𝐴,𝐵 of complexity 2𝑛+𝑂(log 𝑛)
such that 𝐶(𝐴,𝐵) = 3𝑛 + 𝑂(log 𝑛) and for every 𝐵′ the pair ⟨𝐶(𝐴 |𝐵′), 𝑙(𝐵′)⟩
belongs to 𝑂(log 𝑛 + 𝐶(𝐵′ |𝐵))-neighborhood of the set 𝐺.

Proof. As in many other cases, we will prove this result using some game.1

First we describe the game, then show the winning strategy, and finally we explain
how this implies the statement of the theorem.

The game has parameter 𝑛. We (being one of the players) may, for each 2𝑛-bit
string 𝐵, choose at most 2𝑛 strings of length 2𝑛, calling them “simple given 𝐵”.
Our adversary, on the other hand, for each triple ⟨𝑝, 𝑞, 𝑟⟩ (taken from some set 𝑀
of admissible triples, see below) may do the following:

∙ for every string 𝐵 of length 2𝑛 choose at most 2𝑟 strings of length 𝑞 and
call them “𝑟-simple given 𝐵”;

∙ for every string 𝐵′ of length 𝑞 choose at most 2𝑝 strings of length 2𝑛 and
call them “𝑝-simple given 𝐵′”.

1We have already seen several game arguments; for a survey of game techniques for Kol-
mogorov complexity see [196, 135].

12.12. MINIMAL SUFFICIENT STATISTICS 401

This is done independently for each triple ⟨𝑝, 𝑞, 𝑟⟩ from 𝑀 ; we may imagine that
we play against a team. For each ⟨𝑝, 𝑞, 𝑟⟩ there is a team member who makes his
own announcements (obeying his own cardinality restrictions, as described), but
they play as a team against us.

The adversary team includes two more members. The first one may choose up
to 22𝑛−1 strings of length 2𝑛 (i.e., not more than half) and call them “bad”. The
second one may for every string 𝐵 of length 2𝑛 choose up to 2𝑛−2 strings of length
2𝑛 (in a different way for each 𝐵) and call then “bad for this 𝐵”.

Later we will play with the adversary who marks as “bad” all 2𝑛-bit strings of
complexity less than 2𝑛− 1, and for each 𝐵 marks as “bad for 𝐵” all 2𝑛-bit strings
𝐴 such that 𝐶(𝐴 |𝐵) < 𝑛 − 2. But the game rules do no say anything about this
specific choice of bad strings. Note that we use threshold 𝑛−2 (and not, say, 𝑛−1)
since we need some reserve, see below.

Both we and the adversary make the declarations gradually: at any moment
each player may extend the lists of simple/bad strings (if the cardinality restrictions
are not violated by this extension). The declarations cannot be retracted. Since the
total number of positions is finite, the game (though being formally infinite) has
some limit position, but the players do not declare whether they will make more
moves or not.

The winner in the game is determined by the limit position. The adversary
wins if for every pair of 2𝑛-bit strings 𝐴 and 𝐵, where 𝐴 is 𝑛-simple given 𝐵, and
𝐴 and 𝐵 are not bad, and 𝐴 is not bad for 𝐵, there exists an admissible triple
⟨𝑝, 𝑞, 𝑟⟩ and a 𝑞-bit string 𝐵′ such that

∙ 𝐵′ is 𝑟-simple given 𝐵;
∙ 𝐴 is 𝑝-simple given 𝐵′.

According to our plan, we first show a simple computable strategy that wins
this game (for some set of admissible triples ⟨𝑝, 𝑞, 𝑟⟩), and then derive the statement
of the theorem. This strategy replies to each move of the adversary (made by some
team member who declares new “bad” or new “simple” string) by one move. We
add (for some string 𝐵 of length 2𝑛) one 𝑛-simple string 𝐴 of length 2𝑛 that prevents
the adversary from winning, if no new moves are made. To achieve this, we need
that:

∙ the chosen strings 𝐴 and 𝐵 are not yet declared as bad;
∙ 𝐴 is not yet declared as bad for 𝐵;
∙ there is no admissible triple ⟨𝑝, 𝑞, 𝑟⟩ for which two things happen: (1) there

exists some 𝐵′ of length 𝑞 that was declared 𝑟-simple given 𝐵 by ⟨𝑝, 𝑞, 𝑟⟩-
player of the adversary’s team, and at the same time 𝐴 was declared
𝑝-simple given 𝐵′ by the same player.2

Why is this possible? At every step of the game there is at least 22𝑛−1 strings
not declared as bad. If we select one of them, we may declare every string as 𝑛-
simple given 𝐵 unless we exhausted the quota, i.e., already declared 2𝑛 string as
𝑛-simple given this 𝐵. But if this happens for all non-bad 𝐵, this means that we
have already made 22𝑛−1 · 2𝑛 = 23𝑛−1 moves. Recall that we make one move after

2Note that according to our agreement different players in the adversary team may make
different declarations, so the words “𝑟-simple” have different meaning for ⟨𝑝, 𝑞, 𝑟⟩-player and

⟨𝑝′, 𝑞′, 𝑟⟩-player even when 𝑟 is the same for both. (In fact, this freedom is not used by the

adversary with whom we really play to prove the theorem.)

402 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

each move of the adversary, and we will see that the adversary cannot make so
many moves. So we can choose some 𝐵.

After 𝐵 is chosen in such a way that we have not exhausted the quota for 𝑛-
simple strings given 𝐵, we start to select 𝐴. Let us consider some admissible triple
⟨𝑝, 𝑞, 𝑟⟩ and count the strings 𝐴 that do not make the position winning because of
this triple. There is at most 2𝑟 strings 𝐵′ of length 𝑞 declared as 𝑟-simple given 𝐵.
For each of these 𝐵′ there is at most 2𝑝 strings of length 2𝑛 declared as 𝑝-simple
given 𝐵′ (for the same triple = by the same team member). So we have to avoid
2𝑝+𝑟 strings for each triple ⟨𝑝, 𝑞, 𝑟⟩ from the set 𝑀 of admissible triples. In total
we have to avoid 2𝑝+𝑟 · |𝑀 | string. Also we have to avoid strings that are declared
as bad, at most 22𝑛−1, as well as strings declared bad for 𝐵, at most 2𝑛−2 of them.
So we can make the move we want, assuming that

2𝑝+𝑟 · |𝑀 | + 22𝑛−1 + 2𝑛−2 < 22𝑛. (*)

Now we need to count how many moves the adversary can make. Each of 𝑀
players of his team takes care of one admissible triple ⟨𝑝, 𝑞, 𝑟⟩ and makes at most
22𝑛+𝑟 moves, declaring 𝑟-simple strings, and 2𝑞+𝑝 moves, declaring 𝑝-simple strings.
So the total number of moves for all players is bounded by

|𝑀 | · (2max(2𝑛+𝑟) + 2max(𝑞+𝑝))

(maximal values of 2𝑛+𝑟 an 𝑞+𝑝 are taken over all elements in 𝑀). We should also
add 22𝑛−1 moves that adversary can make declaring bad strings and 22𝑛 · 2𝑛−2 =
23𝑛−2 moves he can make declaring bad strings for 22𝑛 strings of length 2𝑛. So we
can ensure the required upper bound for the number of adversary moves if

|𝑀 | · (2max(2𝑛+𝑟) + 2max(𝑞+𝑝)) + 22𝑛−1 + 23𝑛−2 < 23𝑛−1. (**)

Taking into account that 2𝑘 + 2𝑙 is close to 2max{𝑘,𝑙}, it is easy to see that the
conditions (*) and (**) are guaranteed to be true if all the triples ⟨𝑝, 𝑞, 𝑟⟩ ∈ 𝑀
satisfy the inequalities

𝑝 + 𝑟 < 2𝑛− 3 log 𝑛−𝑂(1),

2𝑛 + 𝑟 < 3𝑛− 3 log 𝑛−𝑂(1),

𝑝 + 𝑞 < 3𝑛− 3 log 𝑛−𝑂(1).

Note that there are 𝑂(𝑛3) triples satisfying these inequalities, and to compensate
for the factor |𝑀 | we subtracted 3 log 𝑛 + 𝑂(1), the upper bound for log |𝑀 |. In
this inequalities we write 𝑂(1), but some small value, like 10, will work. Now let 𝑀
be the set of all triples that satisfy these inequalities; we know then that a winning
strategy in our game exists. (Note that for small 𝑟 we get the conditions 𝑝 < 2𝑛
and 𝑝 + 𝑞 < 3𝑛 that are true for points in 𝐺.)

Now we apply this winning strategy against the following “blind” strategy for
the adversary (“blind” means that he does not look at our moves). He declares
2𝑛-bit string of complexity less than 2𝑛− 1 as bad; for each 2𝑛-bit string 𝐵 all the
strings that have condional complexity less than 𝑛−2 given 𝐵, are declared as bad
for 𝐵. Also for each triple ⟨𝑝, 𝑞, 𝑟⟩ the corresponding player from the adversary team
declares strings of small conditional complexity as 𝑟- or 𝑝-simple for corresponding
threshold 𝑟 or 𝑝.

Then both players follow some computable strategies, so the game is com-
putable, and we need only to know 𝑛 to start its simulation. We cannot effectively
find when the limit state is reached, but it will happen at some moment. In this

12.12. MINIMAL SUFFICIENT STATISTICS 403

state there is a pair ⟨𝐴,𝐵⟩ of strings guaranteed by the winning condition. Let us
show that these two strings satisfy the statement of the theorem.

The length of both string 𝐴 and 𝐵 is 2𝑛; the complexity is 2𝑛+𝑂(1) (it cannot
be less since otherwise the string would be declared as bad). Since we declare at
most 2𝑛 different strings 𝐴 as simple given 𝐵, we have 𝐶(𝐴 |𝐵) 6 𝑛+𝑂(log 𝑛). On
the other hand, the complexity 𝐶(𝐴 |𝐵) cannot be less than 𝑛−𝑂(1), otherwise 𝐴
would be declared bad for 𝐵.

Let 𝐵′ be a 𝑞-bit string such that 𝐶(𝐵′ |𝐵) < 𝑟. We may assume that 𝑟 is
much smaller than 𝑛, say, 𝑟 < 𝑛/2 (otherwise the term 𝑂(𝑟) in the right hand side
makes the statement of the theorem trivial). So the second inequality in (**) is
true. Therefore, for every 𝑝 that satisfies the first and the third inequalities, the
complexity 𝐶(𝐴 |𝐵′) exceeds 𝑝. So for every pair ⟨𝑝, 𝑞⟩ from the light-grey area
(Figure 14) that is 𝑂(𝑟 + log 𝑛)-far from 𝐺, there is no 𝐵′ of length 𝑞 such that
𝐶(𝐵′ |𝐵) < 𝑟 and 𝐶(𝐴 |𝐵′) < 𝑝. That is exactly what we needed to show.

Theorem 237 is proven. �

Let us now give another proof of the same statement using a probabilistic
argument. It follows almost the same scheme as the game proof above, but has
several important differences. First, we do not wait until our adversary makes his
moves, but make all our moves at the beginning of the game. Second, we do not
describe the winning moves explicitly—we just show that a random choice provides
a winning strategy with positive probability.

A technical remark: under these assumptions we may assume without loss of
generality that both players always fully use their quotas for bad/simple strings
(adding strings is always to the player’s advantage).

Now we can start the argument, explaining its relation to the game version in
square brackets. Our strategy is now represented by some mapping

𝑈 : B2𝑛 × B𝑛 → B2𝑛

[the values of 𝑈(𝐵,𝑋) for a given 𝐵 and all possible 𝑋 correspond to strings simple
for 𝐵 in the game argument]. Assume that some finite set 𝑀 of integer triples is
fixed and for each triple ⟨𝑝, 𝑞, 𝑟⟩ ∈ 𝑀 two mappings

𝑉𝑝,𝑞,𝑟 : B2𝑛 × B𝑟 → B𝑞

and
𝑊𝑝,𝑞,𝑟 : B𝑞 × B𝑝 → B2𝑛

are given. Moreover, assume that a mapping

𝑆 : B2𝑛−2 → B2𝑛,

and another mapping
𝑇 : B2𝑛 × B𝑛−2 log𝑛 → B2𝑛

are given. [The mappings 𝑉𝑝,𝑞,𝑟 and 𝑊𝑝,𝑞,𝑟 correspond to the moves of the ⟨𝑝, 𝑞, 𝑟⟩-
player in the adversary team. Namely, strings 𝑉𝑝,𝑞,𝑟(𝐵,𝑋) for all possible 𝑋 are
𝑟-simple for 𝐵; strings 𝑊𝑝,𝑞,𝑟(𝐵′, 𝑋) for all possible 𝑋 are 𝑝-simple for 𝐵′. The
mappings 𝑆 and 𝑇 correspond to the moves of two additional players. Namely,
𝑆(𝑋) are bad strings (there are 22𝑛−2 of them), and 𝑇 (𝐵,𝑋) are bad for 𝐵 (there
are 2𝑛−2 log𝑛 of them). The bounds for the number of bad strings are now more
strict than in the game argument; this is needed to obtain the bounds below.]

404 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

We say that a mapping 𝑈 is covered by a quadruple 𝑉,𝑊, 𝑆, 𝑇 (that consists
of two families of mappings and two mappings) if for every string 𝐵 ∈ B2𝑛 and for
every string 𝐴 that is equal to 𝑈(𝐵,𝑋) for some 𝑋 ∈ B𝑛 [for every string 𝐵 and
for every string 𝐴 that is declared by us as 𝑛-simple for 𝐵] the pair ⟨𝐴,𝐵⟩ satisfies
one of the four conditions:

(1) 𝐵 belongs to the range of 𝑆 (i.e., 𝐵 = 𝑆(𝑌) for some 𝑌 ∈ B2𝑛−2). [The
string 𝐵 is declared bad by the adversary.]

(2) 𝐴 belongs to the range of 𝑆 (i.e., 𝐴 = 𝑆(𝑌) for some 𝑌 ∈ B2𝑛−2). [The
string 𝐴 is declared bad by the adversary.]

(3) 𝐴 equals 𝑇 (𝐵, 𝑌) for some 𝑌 ∈ B𝑛−2 log𝑛. [The string 𝐴 is declared bad
for 𝐵 by the adversary.]

(4) There exists a triple ⟨𝑝, 𝑞, 𝑟⟩ ∈ 𝑀 and some 𝑞-bit string 𝐵′ such that the
following two conditions (a) and (b) are both true:

(a) 𝐵′ = 𝑉𝑝,𝑞,𝑟(𝐵, 𝑌) for some 𝑌 ∈ B𝑟 [⟨𝑝, 𝑞, 𝑟⟩-player declared 𝐵′ to be 𝑟-
simple given 𝐵];

(b) 𝐴 = 𝑊𝑝,𝑞,𝑟(𝐵′, 𝑍) for some 𝑍 ∈ B𝑝 [⟨𝑝, 𝑞, 𝑟⟩-player declared 𝐴 to be 𝑝-simple
given 𝐵′].

We will prove (under some conditions on the set 𝑀 , see below) that there exists
some mapping 𝑈 that is not covered by any quadruple 𝑉,𝑊, 𝑆, 𝑇 . This proof will
use probabilistic argument: for each quadruple we count how many mappings are
covered by it (i.e., compute the probability for a random mapping to be covered
by a given quadruple), then multiply this probability by the number of quadruples
and show that the product is less than 1.

The counting for one quadruple goes as follows. Assume that 𝑉,𝑊, 𝑆, 𝑇 are
fixed. There are at least 22𝑛−1 strings 𝐵 of length 2𝑛 that violate the condition
(1). For the set 𝑈 to be covered, it is needed that for each of these 𝐵 each of the 2𝑛

values 𝐴 = 𝑈(𝐵,𝑋) (for all 𝑛-bit 𝑋) is covered by one of the conditions (2)–(4).
We will show that for a given 𝐵 and 𝑋 the probability of this event is at most
1/2. Then, by independence, we conclude that for a random 𝑈 the probability to
be covered is at most

(1/2)2
2𝑛−1×2𝑛 = (1/2)2

3𝑛−1

.

Let us check the estimate for given 𝐵 and 𝑋. Unsuitable 𝐴 are:

∙ strings covered by (2), at most 22𝑛−2 of them;
∙ strings covered by (3), at most 2𝑛−2 log𝑛 of them;
∙ strings in 𝑊𝑝,𝑞,𝑟(𝑉𝑝,𝑞,𝑟(𝐵, 𝑌), 𝑍) covered by (4), at most 2𝑟 × 2𝑝 of them

for each triple ⟨𝑝, 𝑞, 𝑟⟩ ∈ 𝑀 .

In total we get
22𝑛−2 + 2𝑛−2 log𝑛 + 2𝑟+𝑝 · |𝑀 |

unsuitable strings, and this number is bounded by 22𝑛−1 (half of all strings) if

𝑟 + 𝑝 + log |𝑀 | < 2𝑛− 3 (*)

for all ⟨𝑝, 𝑞, 𝑟⟩ ∈ 𝑀 (this is our first requirement for 𝑀).
Now we estimate the number of all quadruples 𝑉,𝑊, 𝑆, 𝑇 . For given 𝑝, 𝑞, 𝑟 there

is at most
(2𝑞)2

2𝑛×2𝑟 = 2𝑞·2
2𝑛+𝑟

possibilities for 𝑉𝑝,𝑞,𝑟 and at most

(22𝑛)2
𝑞×2𝑝 = 22𝑛·2

𝑞+𝑝

12.12. MINIMAL SUFFICIENT STATISTICS 405

possibilities for 𝑊𝑝,𝑞,𝑟; there are at most

(22𝑛)2
2𝑛−2

= 22𝑛·2
2𝑛−2

possibilities for 𝑆 and at most

(22𝑛)2
2𝑛×2𝑛−2 log 𝑛

= 2(2
3𝑛/𝑛)+1

possibilities for 𝑇 . The first two bounds appear with exponent |𝑀 | (to get the
bound for the total number of possibilities for 𝑉 and 𝑊); in total we get the
following bound for the number of quadruples:

2𝑞·2
2𝑛+𝑟×|𝑀 | · 22𝑛·2

𝑞+𝑝×|𝑀 | · 22𝑛·2
2𝑛−2

· 2(2
3𝑛/𝑛)+1.

The binary logarithm of this number does not exceed

𝑞 · 22𝑛+𝑟 × |𝑀 | + 2𝑛 · 2𝑞+𝑝 × |𝑀 | + 2𝑛 · 22𝑛−2 + (23𝑛/𝑛) + 1,

and this is smaller 23𝑛 (as we need to finishe the proof) if

2𝑛 + 𝑟 + log 𝑞 + log |𝑀 | < 3𝑛−𝑂(1) (**)

and
𝑞 + 𝑝 + log 𝑛 + log |𝑀 | < 3𝑛−𝑂(1). (***)

(We use that 2𝑎 + 2𝑏 is equal to 2max(𝑎,𝑏) up to 𝑂(1)-factor; two other conditions
2𝑛− 2 + log 2𝑛 < 3𝑛−𝑂(1) and log(23𝑛/𝑛 + 1) < 3𝑛−𝑂(1) are guaranteed to be
true.)

All three conditions (*)–(***) are true for sure if

𝑝 + 𝑟 < 2𝑛− 3 log 𝑛−𝑂(1),

2𝑛 + 𝑟 < 3𝑛− 4 log 𝑛−𝑂(1),

𝑝 + 𝑞 < 3𝑛− 4 log 𝑛−𝑂(1)

for all ⟨𝑝, 𝑞, 𝑟⟩ ∈ 𝑀 , since |𝑀 | = 𝑂(𝑛3) in this case. Let us now define 𝑀 as the set
of triples saisfying these three inequalities; we know now that (for this 𝑀) there
exists a mapping 𝑈 not covered by any quadruple 𝑉,𝑊, 𝑆, 𝑇 . Now the standard
argument shows that there exists a mapping 𝑈 of logarithmic complexity (first in
some order) not covered by any quadruple.

Take this 𝑈 and consider the following quadruple 𝑉,𝑊, 𝑆, 𝑇 : let {𝑆(·)} (the
range of 𝑆) be the set of all 2𝑛-bit strings whose complexity is less than 2𝑛 − 2;
let for every 𝐵 ∈ B2𝑛 the set {𝑇 (𝐵, ·)} be the set of all 2𝑛-bit strings that have
conditional complexity given 𝐵 less than 𝑛 − 2 log 𝑛; let (for given 𝑝, 𝑞, 𝑟) the set
𝑉𝑝,𝑞,𝑟(𝐵, ·) be the set of all 𝑞-bit strings of conditional complexity (given 𝐵) less
than 𝑟, and let (for given 𝑝, 𝑞, 𝑟) the set 𝑊𝑝,𝑞,𝑟(𝐵′, ·) be the set of all 2𝑛-bit strings
of conditional complexity (given 𝐵′) less than 𝑝. (We specify only the range of
these mapping, the order can be arbitrary. Also, the number of strings with given
property may be less than the number of slots, so we fill the remaining slots in an
arbitrary way.)

We know that 𝑈 is not covered by this quadruple. This means that there exist
strings 𝐴 and 𝐵 of length 2𝑛 that do not satisfy any of the properties (1)–(4). Then
𝐶(𝐴) = 2𝑛 + 𝑂(1) (because 𝐴 has length 2𝑛 and cannot have smaller complexity,
otherwise it would be covered by 𝑆). For the same reasons 𝐶(𝐵) = 2𝑛 + 𝑂(1).
The conditional complexity 𝐶(𝐴 |𝐵) equals 𝑛+𝑂(log 𝑛): it cannot be bigger since
𝐴 = 𝑈(𝐵,𝑋) for some string 𝑋 of length 𝑛, and complexity of 𝑈 is 𝑂(log 𝑛), and
cannot be smaller, since otherwise the property (3) would be true. Finally, there is

406 12. MULTISOURCE ALGORITHMIC INFORMATION THEORY

no triple ⟨𝑝, 𝑞, 𝑟⟩ in the set 𝑀 such that 𝐶(𝐵′ |𝐵) < 𝑟 and 𝐶(𝐴 |𝐵′) < 𝑝, otherwise
(4) would be true.

The rest of the proof is the same as in the game argument, and this finishes
the probabilistic proof.

Finally, one can provide a “geometric” construction that gives strings 𝐴, 𝐵
with required property. (Unlike the case of common information, here the geometric
construction gives almost the same complexity bound, not weaker ones.)

Consider the field with 2𝑛 elements (or a field of approximately this size, if we
want to consider integers modulo 𝑝 for some prime 𝑝), and a two-dimensional plane
over this field. Let ⟨𝐴,𝐵⟩ be a random pair that consists of a point and a line going
through this point. Then we get complexities as required by Theorem 237. Let us
show that such a pair has the required properties.

Assume that a string 𝐵′ is given, and

𝐶(𝐵′ |𝐵) 6 𝑟, 𝐶(𝐵′) 6 𝑞, 𝐶(𝐴 |𝐵′) 6 𝑝. (*)

for some 𝑝, 𝑞, 𝑟. We want to prove that the pair ⟨𝑝, 𝑞⟩ is in 𝑂(𝑟) + 𝑂(log 𝑛) neigh-
borhood of the set 𝐺 by showing that otherwise the pair ⟨𝐴,𝐵⟩ would have smaller
complexity. Let us estimate the number of pairs ⟨𝐴,𝐵⟩ such that (*) is satisfied
for some 𝐵′. Each of the 2𝑞 strings 𝐵′ determines two sets:

∙ the set 𝑈𝐵′ of 2𝑛-bit strings 𝐴 such that 𝐶(𝐴 |𝐵′) 6 𝑝 ;
∙ the set 𝑉𝐵′ of 2𝑛-bit strings 𝐵 such that 𝐶(𝐵′ |𝐵) 6 𝑟.

The set 𝑈𝐵′ has cardinality 2𝑝 (in fact, Θ(2𝑝), but we ignore bounded factors). The
set 𝑉𝐵′ may have different sizes depending on the choice of 𝐵′, but we know that
the family 𝑉𝐵′ for all 𝐵′ covers the set B2𝑛 in at most 2𝑟 layers (for each 𝐵 there
is at most 2𝑟 strings 𝐵′ that are 𝑟-simple given 𝐵).

We want to show that the union of the combinatorial rectangles 𝑈𝐵′ × 𝑉𝐵′

over all 𝐵′ covers only a small fraction of all pairs of incident point and lines. To
bound the number of pairs covered by these rectangles we use the same technique
as before: the incidence graph does not have cycles of length 4, so we can apply
the combinatorial lemma on p. 366. Let us recall the statement of this Lemma: if
a rectangular table 𝑙 × 𝐿 has stars in some cells and one cannot find two rows and
two columns that have stars at all four intersections, then the total number of stars
is bounded by

∙ 𝑂(𝐿) for 𝑙 6
√
𝐿;

∙ 𝑂(𝑙
√
𝐿) for 𝑙 >

√
𝐿.

(this is the bound obtained in the proof). Now we have to consider separately the

case of “large” and “small” 𝑉𝐵′ . If 𝑉𝐵′ is large and contains more than
√︀
|𝑈𝐵′ | (i.e.,

more than 2𝑝/2) elements, then the number of covered pairs for this 𝐵′ is at most
2𝑝/2|𝑉𝐵′ |. The sum over all 𝐵′ of this type is bounded by 𝑂(2𝑝/222𝑛2𝑟) (since the
set of size 22𝑛 is covered by at most 2𝑟 layers). Now consider small 𝑉𝐵′ that contain

at most
√︀
|𝑈𝐵′ | elements. For them 𝑈𝐵′ × 𝑉𝐵′ covers at most 𝑂(2𝑝) elements, and

for 2𝑞 different 𝐵′ we have in total 𝑂(2𝑝+𝑞) pairs.
Therefore, if 𝑝 + 𝑞 < 3𝑛−𝑂(log 𝑛) and (𝑝/2) + 2𝑛 + 𝑟 < 3𝑛−𝑂(log 𝑛), then a

random pair ⟨𝐴,𝐵⟩ cannot be served by any of 𝐵′. (We should note also that the
set of pairs that are served can be enumerated if we know 𝑛, 𝑝, 𝑞, 𝑟, i.e., 𝑂(log 𝑛)
bits of advice.) The second inequality can be rewritten as 𝑝 + 2𝑟 < 2𝑛; it is a bit

12.12. MINIMAL SUFFICIENT STATISTICS 407

worse than the bound 𝑝 + 𝑟 < 2𝑛 that appeared in out first argument, but we still
get the bound 𝑂(𝑟), as the theorem claims.

This finishes the third proof of Theorem 237.

Remark. The geometric proof provides a simple set of pairs where most of the
pairs satisfy the statement of the theorem. So it gives a stochastic (in the sense of
Chapter 14.2) pair with required properties.

The same result can be achieved by some modification of the second (proba-
bilistic) proof. We have said that a mapping is covered if something is true for all
pairs (of certain type); let us weaken this restriction and say that 𝑈 is covered if
the same condition is true at least for the half of the pairs. To prove the existence
of 𝑈 that is not covered, we can use the following (trivial) probability bound: if
each of 2𝑘 independent events has probability less than 1/16, then more than 2𝑘−1

events happen with probability at most 22
𝑘 · (1/16)2

𝑘/2 = 2−𝑘. So we may replace
1/2 by 1/16 in the argument and continue the proof as before. In this way we get
a simple set 𝑈 where half of the elements have the required properties.

(Other approach is also possible: instead of considering 𝑆, 𝑇 , and all the admis-
sible triples in parallel, one can prove that for a random 𝑈 with high probability
the fraction of pairs when (4) is true, is small. These small fractions and small
probabilities are then added for all triples from 𝑀 .)

CHAPTER 13

Information and logic

13.1. Problems, operations, complexity

In this chapter we define a problem as an arbitrary (finite or infinite) set of
binary strings. The elements of this set are called solutions to that problem.

Why such a strange terminology? Generally speaking, having a problem, we
need to solve it, i.e., to find (some) its solution. We assume that a solution can
be represented by a text (written in some formal language), i.e., by a binary string
(assuming some natural encoding is used). We will measure the amount of infor-
mation in the solutions ignoring all other aspects, so we identify the problem with
the set of its solutions.

By complexity of a problem 𝑋 we mean the minimal complexity of its solutions:

𝐶(𝑋) = min{𝐶(𝑥) | 𝑥 ∈ 𝑋}.
As usual, the empty set, i.e., the unsolvable problem, has complexity +∞.

For example, the complexity of a singleton {𝑥} is just the complexity of the
string 𝑥. A less trivial example: in chapter 1.2, we considered (for a given 𝑛)
a problem “find a natural number 𝑘 > 𝑛”. The complexity of this problem was
denoted by 𝐶>(𝑛). Now we can say that we consider the problem “> 𝑛” whose
solutions are natural numbers 𝑘 > 𝑛, and its complexity. (Formally, we have to
speak about binary representations of those numbers.)

Let 𝑋 and 𝑌 be two problems. We can consider the problem “solve both
problems 𝑋 and 𝑌 ”, as well as the problem “choose one of the problems 𝑋 and
𝑌 and solve it”. The solutions for the first problem (“𝑋 and 𝑌 ”) are pairs ⟨𝑢, 𝑣⟩
where 𝑢 is a solution to 𝑋 and 𝑣 is a solution to 𝑌 . The solutions to the second
problem (“𝑋 or 𝑌 ”) are solutions to one of the problems 𝑋, 𝑌 plus a special tag
that says which of the two problems we are trying to solve. So we come to the
following formal definitions:

𝑋 ∧ 𝑌 = {[𝑥, 𝑦] | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 },
𝑋 ∨ 𝑌 = {[0, 𝑥] | 𝑥 ∈ 𝑋} ∪ {[1, 𝑦] | 𝑦 ∈ 𝑌 }.

Since we want the problems to be sets of strings, we use some (computable one-to-
one) encoding [𝑥, 𝑦] for the pair ⟨𝑥, 𝑦⟩.

At first glance, these definitions do not look interesting. Indeed, the complexity
of {𝑥}∧{𝑦} is just the complexity of the pair ⟨𝑥, 𝑦⟩, and the complexity of {𝑥}∨{𝑦}
equals min(𝐶(𝑥), 𝐶(𝑦)) + 𝑂(1). In general, the complexity 𝐶(𝑋 ∨ 𝑌) is equal to
min(𝐶(𝑋), 𝐶(𝑌))+𝑂(1) for every two problems 𝑋 and 𝑌 (not only for singletons).
More interesting examples will appear later.

The problem 𝑋 ∧ 𝑌 is called the conjunction of problems 𝑋 and 𝑌 while the
problem 𝑋 ∨ 𝑌 is called the disjunction of 𝑋 and 𝑌 .

409

410 13. INFORMATION AND LOGIC

One may define disjunction in a different way. Imagine a teacher who gives an
exam with two questions and says that for a passing grade it is enough to answer
one of them. Assume that the teachers gets a student paper where both questions
are answered, but only one answer is correct. Usually it is still enough to pass the
exam. This corresponds to the following formal definition:

𝑋∨̃𝑌 = {[𝑥, 𝑦] | 𝑥 ∈ 𝑋 or 𝑦 ∈ 𝑌 }.
We call this operation “pseudo-disjunction”. Its complexity is the same as for
disjunction (up to 𝑂(1), as usual), but these two problems are essentially different
(see below).

333 Prove that 𝐶(𝑋∨̃𝑌) = 𝐶(𝑋 ∨ 𝑌) + 𝑂(1).

Yet another (intermediate) interpretation of disjunction will be the union of 𝑋
and 𝑌 ; in this version we are required to give a correct answer but are not obliged
to specify which question we are trying to answer.

The conditional complexity 𝐶(𝑦|𝑥) can also be understood as the complexity
of some problem. Informally, we consider the problem “transform 𝑥 to 𝑦”. More
formally, this problem can be defined as {𝑥} → {𝑦}, where 𝑋 → 𝑌 (for any two
problems 𝑋 and 𝑌) is the set of all programs that convert every solution to 𝑋 into
some solution to 𝑌 .

Here we fix some programming language where programs (as well as their inputs
and outputs) are binary strings. Let us denote by [𝑝](𝑥) the output of program 𝑝 on
input 𝑥; if the computation of 𝑝 on 𝑥 does not terminate then [𝑝](𝑥) is undefined. We
assume that the programming language is universal (every computable function can
be represented as a program); moreover, we assume that it allows a computable
translation from any other programming language (this property is called Gödel
property , see [182]). Then we let

𝑋 → 𝑌 = {𝑝 | ∀𝑥 (𝑥 ∈ 𝑋 ⇒ [𝑝](𝑥) is defined and [𝑝](𝑥) ∈ 𝑌)}.
In fact we have already used this approach. In section 6.4 we defined 𝐶(𝑥 |> 𝑛)
as the minimal complexity of a program that produces 𝑥 on every input 𝑘 such
that 𝑘 > 𝑛. In our new notation, 𝐶(𝑥 |> 𝑛) = 𝐶({𝑚 ∈ N | 𝑚 > 𝑛} → {𝑥}). Our
initial example: the complexity of {𝑥} → {𝑦} is equal to the conditional complexity
𝐶(𝑦|𝑥) + 𝑂(1)

Some theorems of Chapter 12 can be now stated in terms of problems complex-
ity.

For example, the solutions to (𝑥 → 𝑦) ∧ (𝑦 → 𝑥) (we write {𝑥} as 𝑥 to sim-
plify notation) are pairs [𝑢, 𝑣] where program 𝑢 transforms 𝑥 to 𝑦 and program 𝑣
transforms 𝑦 to 𝑥. As we have seen, the complexity of this problem is equal to
max(𝐶(𝑥|𝑦), 𝐶(𝑦|𝑥)) + 𝑂(log𝐶(𝑥, 𝑦)).

Here is one more example. The solutions for the problem (𝑥 → 𝑧) ∧ (𝑦 → 𝑧)
are pairs of programs [𝑢, 𝑣] such that 𝑢 maps 𝑥 to 𝑧 and 𝑣 maps 𝑦 to 𝑧. We have
shown that the minimal possible complexity of such a pair is

max(𝐶(𝑧|𝑥), 𝐶(𝑧|𝑦)) + 𝑂(log𝐶(𝑥, 𝑦, 𝑧)).

334 Find the complexity of the problem 𝑎 → (𝑏 → 𝑐) where 𝑎, 𝑏, 𝑐 are strings
(singletons).

[Hint: This problem is equivalent to (𝑎 ∧ 𝑏) → 𝑐.]

13.2. PROBLEM COMPLEXITY AND INTUITIONISTIC LOGIC 411

335 Find the complexity of 𝑎∧(𝑏 → 𝑐) (with logarithmic precision). [Answer:
𝐶(𝑎) + 𝐶(𝑐|𝑎, 𝑏). Hint: given 𝑎 and a program that maps [𝑎, 𝑏] to 𝑐 we can convert
𝑏 to 𝑐. In the opposite direction: let us add to the (supposed) answer the value of
𝐶(𝑏|𝑎). Then we get 𝐶(𝑎, 𝑏, 𝑐). So it is enough to show that the triple 𝑎, 𝑏, 𝑐 can be
reconstructed from the set of the following objects: 𝑎, the program that converts 𝑎
to 𝑏, and the program that converts 𝑏 to 𝑐.]

336 Prove that the complexity of (𝑥 ∨ 𝑦) → (𝑥∨̃𝑦) is 𝑂(1), but the reverse
implication (𝑥∨̃𝑦) → (𝑥 ∨ 𝑦) has the same complexity as 𝑥 ∨ 𝑦, up to 𝑂(log 𝑛)
additive term, if 𝑥 and 𝑦 are strings of length at most 𝑛. [Hint: Let 𝑝 be a solution
to (𝑥∨̃𝑦) → (𝑥 ∨ 𝑦). We say that a pair (𝑢, 𝑣) is compatible with 𝑝 if 𝑢 and 𝑣 are
strings of length at most 𝑛 and for all strings 𝑤 of length at most 𝑛 both values
[𝑝]([𝑢,𝑤]) and [𝑝]([𝑤, 𝑣]) are solutions to 𝑢∨𝑣. Then for every pair (𝑢, 𝑣) compatible
with 𝑝 we have either 𝑢 = 𝑥 or 𝑣 = 𝑦.]

337 Show that the problem

((𝑥∨̃𝑦) → (𝑥 ∨ 𝑦)) → (𝑥∨̃𝑦)

has complexity 𝑂(log 𝑛) if 𝑥 and 𝑦 are strings of length at most 𝑛.

The last two problems show the difference between disjunction and pseudo-
disjunction. They show, in particular, that problems 𝑥∨̃𝑥 and 𝑥∨ 𝑥 differ substan-
tially (although their complexities are close). The latter problem 𝑥∨𝑥 is equivalent
to 𝑥. On the other hand, the problem 𝑥∨̃𝑥 is not equivalent to 𝑥, as the complexity
of the problem (𝑥∨̃𝑥) → 𝑥 is close to the complexity of 𝑥 itself and thus can be
arbitrary large. (In the next section, we will define formally what means that two
problems are equivalent.)

Historical remarks. The study of operations ∧,∨,→ on problems goes back to
Kolmogorov [75] and Kleene [74]. Complexity of problems obtained from singletons
by these operations was studied in [181] and [141]. The formula considered in
Problem 335 is from [141]. Problem 336, although inspired by [181], is presumably
new.

13.2. Problem complexity and intuitionistic logic

The problem 𝑋 → 𝑌 has the following property: if both problems 𝑋 and
𝑋 → 𝑌 are simple, then 𝑌 is simple, too. Moreover,

𝐶(𝑌) 6 𝐶(𝑋) + 𝐶(𝑋 → 𝑌).

This inequality is true with precision 𝑂(log𝐶(𝑋)) (or 𝑂(log𝐶(𝑋 → 𝑌))). It
generalizes the inequality

𝐶(𝑦) 6 𝐶(𝑥) + 𝐶(𝑦|𝑥),

(which is true for all strings 𝑥 and 𝑦, with logarithmic precision). Moreover, we
can add 𝑌 in the left-hand side:

𝐶(𝑋 ∧ 𝑌) 6 𝐶(𝑋) + 𝐶(𝑋 → 𝑌).

Note, however, that the reverse inequality is not true anymore (recall that reverse
inequality holds for singleton sets 𝑋,𝑌 , i.e., for strings).

338 Find problems (sets) 𝑋 and 𝑌 such that 𝐶(𝑋 ∧ 𝑌) is significantly less
than 𝐶(𝑋) + 𝐶(𝑋 → 𝑌). [Hint: Let 𝑋 be the set of all random (incompressible)
strings of length 𝑛, and let 𝑌 be the set of all random strings of length 2𝑛.]

412 13. INFORMATION AND LOGIC

The idea to consider ∧,∨,→ as operations on problems (instead of statements)
goes back to Kolmogorov [75] and Kleene [74]. They used it to construct an
interpretation for intuitionistic propositional calculus (IPC). (See, e.g., the text-
book [198] for more information about IPC.) In this chapter we consider the rela-
tion between provability of a formula in IPC and the maximal possible complexity
of problems generated by that formula.

Let Φ(𝑝, 𝑞, . . .) be a propositional formula with connectives ∧,∨,→ and with
variables 𝑝, 𝑞, Let 𝑋,𝑌, . . . be arbitrary problems (=sets of strings). Substitute
𝑋,𝑌, . . . for variables 𝑝, 𝑞, . . . and let Φ(𝑋,𝑌, . . .) denote the resulting problem.

There exists the following subtle problem regarding this definition. Actually,
operations on problems depend on the choice of a pairing function 𝑥, 𝑦 → [𝑥, 𝑦] (con-
junction and disjunction), on the choice of a programming language (implication),
and, finally, on the choice of the tags 0, 1 (disjunction). However, this dependence
is quite weak: different choices lead to the problems whose complexities differ only
by 𝑂(1).

More formally, let Φ(𝑝, 𝑞, . . .) be an arbitrary propositional formula, and let
𝑋,𝑌, . . . be arbitrary problems (sets). Let Φ′(𝑋,𝑌, . . .) and Φ′′(𝑋,𝑌, . . .) be two
problems obtained from Φ and 𝑋,𝑌, . . . by using different pairing functions ([𝑥, 𝑦]′,
[𝑥, 𝑦]′′), different programming languages (𝑈 ′(𝑝, 𝑥) = [𝑝]′(𝑥), 𝑈 ′′(𝑝, 𝑥) = [𝑝]′′(𝑥)),
and, finally, different tags (𝑎′, 𝑏′ and 𝑎′′, 𝑏′′) in the definition of disjunction. Then
the difference between the complexities of problems Φ′(𝑋,𝑌, . . .) and Φ′′(𝑋,𝑌, . . .)
is 𝑂(1). (Recall that we assume that pairing functions are computable bijections
and programming languages are universal and have Gödel property, in particular,
translation algorithms in both directions exist.)

This claim is easily proved by induction. More specifically, we construct by
induction for every formula Φ two computable functions: 𝑓Φ

12 that maps every
solution for the problem Φ′(𝑋,𝑌, . . .) to some solution for Φ′′(𝑋,𝑌, . . .), and 𝑓Φ

21

that maps every solution for Φ′′(𝑋,𝑌, . . .) to some solution for Φ′(𝑋,𝑌, . . .).
For propositional variable Φ both functions 𝑓Φ

12 and 𝑓Φ
21 are the identity func-

tions. If Φ is Ψ ∧ Θ, and for Ψ and Θ both functions are already constructed, we
define 𝑓Φ

12 as follows. The input string 𝑠 is represented as 𝑠 = [𝑢, 𝑣]′, then 𝑓Ψ
12 and

𝑓Θ
12 are applied to 𝑢 and 𝑣, respectively; finally, we apply the other pairing function

to the resulting strings. The function 𝑓Φ
21 is defined similarly.

The case of disjunction is entirely similar.
Now assume that Φ = Ψ → Θ. Then the function 𝑓Φ

12 can be defined as follows.
Consider a (computable) function 𝑉 (𝑠, 𝑏) = 𝑓Θ

12([𝑠]′(𝑓Ψ
21(𝑏))). If 𝑠 is a solution to

Ψ′(𝑋,𝑌, . . .) → Θ′(𝑋,𝑌, . . .), and 𝑏 is a solution to Ψ′′(𝑋,𝑌, . . .) then 𝑉 (𝑠, 𝑏) is a
solution to Θ′′(𝑋,𝑌, . . .). Consider 𝑉 as an interpreter of a programming language.
As 𝑈 ′′ has the Gödel property, there exists a translation algorithm that converts
𝑉 -programs to 𝑈 ′′-programs. Therefore there exists a total computable function
𝑡 : Ξ → Ξ such that [𝑡(𝑠)]′′(𝑏) = 𝑉 (𝑠, 𝑏) for all 𝑠, 𝑏. This function 𝑡 can be used as
𝑓Φ
12.

339 Provide the details to this argument.

Now we can relate the complexity of problems expressed by formulas to IPC:
if a formula Φ(𝑝, 𝑞 . . .) is provable in IPC, then the complexity of the problem
Φ(𝑋,𝑌, . . .) is bounded by a constant (depending on Φ but not on 𝑋,𝑌, . . .).
Moreover, there exist a string 𝑠 that is a solution to the problem Φ(𝑋,𝑌, . . .)
for all 𝑋,𝑌, This was shown essentially by Kleene by a simple induction on the

13.3. SOME FORMULAS AND THEIR COMPLEXITY 413

length of derivation of Φ(𝑝, 𝑞 . . .). For example, assume that Φ(𝑝, 𝑞 . . .) is the IPC
axiom 𝑝 → (𝑞 → 𝑝). Then 𝑠 is the following program: “transform a given string 𝑥
into a program that outputs 𝑥 for every input”.

340 Complete this argument and show that for each formula Φ(𝑝, 𝑞 . . .) prov-
able in IPC there exists a string 𝑠 that solves Φ(𝑋,𝑌, . . .) for every problems
𝑋,𝑌,

Surprisingly, a kind of reverse statement is also true: if a formula Φ(𝑝, 𝑞, . . .)
without negations is not provable in IPC, then the complexity of Φ(𝑋,𝑌, . . .) is not
bounded (and grows linearly, as the following theorem states):

Theorem 238. Let Φ(𝑡1, . . . , 𝑡𝑘) be a propositional formula with connectives
∧,∨,→ (no negations and no logical constant ⊥). Assume that Φ is not provable in
IPC. Then there exists 𝜀 > 0 and a sequence of finite nonempty sets 𝑋𝑛

1 , . . . , 𝑋
𝑛
𝑘 (for

𝑛 = 1, 2, . . .) that contain only strings of length at most 𝑛, such that the complexity
of Φ(𝑋1, . . . , 𝑋𝑘) is at least 𝜀𝑛 for all sufficiently large 𝑛.

This is the main result of this chapter. We will prove it modulo some result
about formulas that are not provable in IPC.

A historical remark. The first non-constant lower bound for Φ(𝑋𝑛
1 , . . . , 𝑋

𝑛
𝑘) for

formulas that are not derivable in IPC was shown in [42]. The linear lower bound,
as in Theorem 238, is due to A. Chernov [38].

13.3. Some formulas and their complexity

In the proof of Theorem 238, we use as a tool some bounds for complexities
of problems obtained by substituting singletons in non-provable formulas. Some of
these bounds are of independent interest (e.g., the bounds we already mentioned).
Let us start with more examples of this type.

First, let us consider Peirce’s law,

((𝑝 → 𝑞) → 𝑝) → 𝑝.

Peirce’s law is provable in classical propositional logic (is true for all Boolean values
of its variables), but cannot be proved in IPC. Thus, by Theorem 238, for all 𝑛 we
can find non-empty sets 𝑋,𝑌 of strings of length at most 𝑛 such that the complexity
of the problem ((𝑋 → 𝑌) → 𝑋) → 𝑋 is higher than 𝜀𝑛. However, it turns out
that the complexity of the problem ((𝑥 → 𝑦) → 𝑥) → 𝑥 (as usual, we write just
𝑥 for singleton {𝑥}) is 𝑂(log 𝑛) for every single strings 𝑥, 𝑦 of length at most 𝑛
(Theorem 239 below).

There is no contradiction here: the complexity of ((𝑋 → 𝑌) → 𝑋) → 𝑋 is
small for all singletons 𝑋 and 𝑌 . However, it may be large for arbitrary finite
non-empty sets 𝑋 and 𝑌 .

Theorem 239. The complexity of the problem ((𝑥 → 𝑦) → 𝑥) → 𝑥 is 𝑂(log 𝑛)
for every strings 𝑥, 𝑦 of length at most 𝑛.

Proof. It is enough to provide an algorithm that gets 𝑛 and a solution to
(𝑥 → 𝑦) → 𝑥 and outputs 𝑥. This algorithm works as follows. Let 𝑝 be a solution
to (𝑥 → 𝑦) → 𝑥. Let 𝑆 denote the set of all strings of length at most 𝑛. For
every total function 𝜏 : 𝑆 → 𝑆 (there are finitely many of them) let us fix some
program 𝑙𝜏 that computes 𝜏 . We say that a pair (𝑢, 𝑣) ∈ 𝑆 × 𝑆 is compatible with
𝑝 if [𝑝](𝑙𝜏) = 𝑢 for all 𝜏 : 𝑆 → 𝑆 such that 𝜏(𝑢) = 𝑣. By assumption, the pair (𝑥, 𝑦)

414 13. INFORMATION AND LOGIC

is compatible with 𝑝. Given 𝑝 and 𝑛, we can enumerate all pairs compatible with
𝑝. We claim that the first component 𝑢 of the first (in fact, every) compatible pair
(𝑢, 𝑣) is equal to 𝑥. (So we can find 𝑥 given 𝑝 and 𝑛, as we promised.) Indeed,
assume that 𝑢 ̸= 𝑥. There exists a function 𝜏 such that 𝜏(𝑥) = 𝑦 and 𝜏(𝑢) = 𝑣.
Then 𝑝 should produce both 𝑢 and 𝑥 for the input 𝑙𝜏 , a contradiction. �

A careful reader might notice that this argument is not entirely complete. We
have used implicitly that for any given finite function 𝜏 (presented as the table
of its values) one may effectively find its program 𝑙𝜏 . This is a corollary of our
assumption about programming language (the list of values can be considered as a
program in some other language, that program can be effectively translated to our
language).

Note also that we could restrict ourselves to a smaller class of functions (e.g.,
linear functions 𝑎𝑥+ 𝑏 if 𝑆 is enriched with a field structure); we only need that for
every two different points and every two prescribed values in these points there is
a function in the class that has required values in those points.

341 Prove that in the statement of the previous theorem we can replace
𝑂(log 𝑛) by 𝑂(log 𝑘), where 𝑘 = max(𝐶(𝑥), 𝐶(𝑦)). [Hint: Consider shortest pro-
grams for 𝑥 and 𝑦 instead of 𝑥 and 𝑦 themselves. Then 𝑆 can be replaced by the
set of all strings of length at most 𝑘. The program 𝑙𝜏 works as follows: for input 𝑢
it searches for the first program 𝑝 of length at most 𝑘 that produces 𝑢, applies 𝜏 to
𝑝 and then decompresses the result.]

This theorem, together with the inequality

𝐶(𝑌) 6 𝐶(𝑋) + 𝐶(𝑋 → 𝑌) + 𝑂(log𝐶(𝑋)),

implies that 𝐶(𝑥) 6 𝐶((𝑥 → 𝑦) → 𝑥) +𝑂(log 𝑛) for all strings 𝑥 and 𝑦 of length at
most 𝑛 (and hence, 𝐶((𝑥 → 𝑦) → 𝑥) = 𝐶(𝑥) + 𝑂(log 𝑛), as the reverse inequality
is trivial).

It is worth noting that there exist formulas 𝐴(𝑝, 𝑞) and 𝐵(𝑝, 𝑞) such that the
complexity of 𝐵(𝑥, 𝑦) never exceeds significantly the complexity of 𝐴(𝑥, 𝑦) (for all
strings 𝑥 and 𝑦), but the implication 𝐴(𝑥, 𝑦) → 𝐵(𝑥, 𝑦) has rather high complexity.

Here is an example of this kind: formulas (𝑥 → 𝑦) → 𝑦 and 𝑥 ∨ 𝑦. (By
the way, they are classically equivalent.) As we will show, their complexities can
differ at most by 𝑂(log 𝑛), for 𝑛-bit strings, but the complexity of the problem
((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦) could be as high as 𝑛.

To show this consider first the problem (𝑥 → 𝑦) → 𝑦.

Theorem 240. The complexity of the problem (𝑥 → 𝑦) → 𝑦 is equal to the
complexity of the problem 𝑥 ∨ 𝑦 (up to 𝑂(log 𝑛) additive term, for strings 𝑥 and 𝑦
of length at most 𝑛).

(Recall that the complexity of 𝑥 ∨ 𝑦 is min(𝐶(𝑥), 𝐶(𝑦)) + 𝑂(1).)

Proof. To prove this, we present (1) an algorithm that transforms every so-
lution to 𝑥∨ 𝑦 into some solution to (𝑥 → 𝑦) → 𝑦 and (2) an algorithm that gets a
solution to (𝑥 → 𝑦) → 𝑦 and 𝑂(log 𝑛) bits of additional information and produces
some solution to 𝑥 ∨ 𝑦.

The first algorithm gets [0, 𝑥] or [1, 𝑦] and should produce a program that maps
every solution to (𝑥 → 𝑦) to 𝑦. If the input is [1, 𝑦], we generate the program that
outputs 𝑦 (without even reading its input). If the input is [0, 𝑥], we produce the

13.3. SOME FORMULAS AND THEIR COMPLEXITY 415

following program: apply the solution to (𝑥 → 𝑦) (given as input) to 𝑥, and output
the result 𝑦.

The second algorithm is more interesting. Given a solution to (𝑥 → 𝑦) → 𝑦,
a number 𝑛 (an upper bound for lengths of 𝑥 and 𝑦) and one additional bit of
information (see below) the algorithm outputs some solution to 𝑥 ∨ 𝑦.

Let 𝑝 be a given solution to (𝑥 → 𝑦) → 𝑦. Let 𝑆 stand for the set of all strings
of length at most 𝑛. For every function 𝜏 : 𝑆 → 𝑆 we can effectively find a program
𝑙𝜏 that computes 𝜏 . This time we say that a pair (𝑢, 𝑣) ∈ 𝑆 × 𝑆 is compatible with
𝑝 if [𝑝](𝑙𝜏) = 𝑣 for all 𝜏 such that 𝜏(𝑢) = 𝑣.

By definition, the pair (𝑥, 𝑦) is compatible with 𝑝. However, other pairs could
be compatible with 𝑝, too. The main point is that for every two compatible pairs
(𝑢′, 𝑣′) and (𝑢′′, 𝑣′′) we have either 𝑢′ = 𝑢′′ or 𝑣′ = 𝑣′′. Indeed, assume that 𝑢′ ̸= 𝑢′′.
Then there exists a function 𝜏 such that 𝜏(𝑢′) = 𝑣′ and 𝜏(𝑢′′) = 𝑣′′. By definition
𝑝(𝑙𝜏) should be equal both to 𝑣′ and 𝑣′′. So 𝑣′ = 𝑣′′ unless 𝑢′ = 𝑢′′.

Knowing 𝑝 and 𝑛, we can enumerate all pairs compatible with 𝑝. Consider the
first pair in this enumeration. As we have shown, either 𝑢 = 𝑥 or 𝑣 = 𝑦, but we do
not know which of this two cases happens. This is why we need an additional bit:
we output 𝑢 or 𝑣 depending on the value of that bit. �

This argument can be generalized to prove the following statement:

Theorem 241. The complexity of the problem (𝑥 → 𝑦) → 𝑧 (with 𝑂(log 𝑛)
precision for strings 𝑥, 𝑦, 𝑧 of length at most 𝑛) coincides with the complexity of the
problem 𝑧 ∨ (𝑥 ∧ (𝑦 → 𝑧)).

As we have seen in problem 335, the complexity of the latter problem is equal
to min(𝐶(𝑧), 𝐶(𝑥) + 𝐶(𝑧|𝑥, 𝑦)).

Proof. It is enough to provide two algorithms. The first one converts every
solution for the second problem into a solution for the first problem. The sec-
ond algorithm gets a solution to the first problem and additional 𝑂(log 𝑛) bits of
information and produces a solution to the second problem.

We start with the first algorithm. By definition a solution to the first problem
is a program that maps every solution for 𝑥 → 𝑦 to 𝑧. And a solution for the
second problem, which is given to the algorithm, is either 𝑧 or a pair (𝑥, program
that converts 𝑦 to 𝑧). If it is 𝑧, we produce a program that maps everything to 𝑧.
And if it is 𝑥 and a program 𝑝 that converts 𝑦 to 𝑧, then we output the following
program that is a solution to the first problem: apply the given solution for 𝑥 → 𝑦
to 𝑥 and get 𝑦; then apply 𝑝 to 𝑦 and get 𝑧; output 𝑧.

The second algorithm gets a solution to the first problem, the number 𝑛 and
one auxiliary bit of advice, and produces a solution to the second problem.

Let 𝑝 denote the given solution to (𝑥 → 𝑦) → 𝑧. Let 𝑆 stand for the set of
strings of length at most 𝑛. For every function 𝜏 : 𝑆 → 𝑆 we fix some program 𝑙𝜏
that computes that function. We say that a triple (𝑢, 𝑣, 𝑤) ∈ 𝑆×𝑆×𝑆 is compatible
with 𝑝 if [𝑝](𝑙𝜏) = 𝑤 for all 𝜏 such that 𝜏(𝑢) = 𝑣.

By definition the triple (𝑥, 𝑦, 𝑧) is compatible with 𝑝. Given 𝑝 and 𝑛, we can
enumerate all compatible triples; let (𝑢, 𝑣, 𝑤) be the first triple in the order of this
enumeration.

It may happen that 𝑤 = 𝑧. In this case we know 𝑧 (if we get an advice bit that
says that this indeed the case).

416 13. INFORMATION AND LOGIC

If 𝑤 ̸= 𝑧 then we can find both 𝑥 and a solution to 𝑦 → 𝑧 as follows. First,
let us show that 𝑥 = 𝑢. Indeed, if it were not the case, then there would exist a
function 𝜏 that maps both 𝑥 to 𝑦 and 𝑢 to 𝑣. Both triples (𝑥, 𝑦, 𝑧) and (𝑢, 𝑣, 𝑤) are
compatible with 𝑝, therefore 𝑝(𝑙𝜏) would be equal to both 𝑤 and 𝑧, contradicting
to the assumption 𝑤 ̸= 𝑧.

It remains to show how to find 𝑧 given 𝑦 in the second case (𝑤 ̸= 𝑧). This is
easy: in general, the problem 𝑦 → 𝑧 is easier than (𝑥 → 𝑦) → 𝑧, since every 𝑦 can
be considered as a (constant) function that is a solution to 𝑥 → 𝑦. �

A historical remark. All the examples in this section are taken from [181]
except for Theorem 241 taken from [141].

13.4. More examples and the proof of Theorem 238

Theorem 242. The complexity of the problem ((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦) is
equal to min(𝐶(𝑥|𝑦), 𝐶(𝑦|𝑥)) + 𝑂(log 𝑛) for strings 𝑥 and 𝑦 of length at most 𝑛.

In particular, if 𝑥, 𝑦 are independent random strings of length 𝑛, the complexity
of this problem is close to 𝑛.

Proof. First, it is easy to see that the complexity of ((𝑥 → 𝑦) → 𝑦) → (𝑥∨ 𝑦)
does not exceed 𝐶(𝑦|𝑥) + 𝑂(1). Indeed, if 𝑝 maps 𝑥 to 𝑦 and 𝑞 is a solution to
(𝑥 → 𝑦) → 𝑦, then 𝑦 equals [𝑝](𝑞).

Now let us prove that the complexity of ((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦) is also
bounded by 𝐶(𝑥|𝑦) + 𝑂(log 𝑛). It is enough to show that given a program 𝑝 that
maps 𝑦 to 𝑥, a solution 𝑞 to (𝑥 → 𝑦) → 𝑦 and the number 𝑛, we can find 𝑥 or 𝑦.
Consider again the set 𝑆 of all strings of length at most 𝑛. Call a pair (𝑢, 𝑣) ∈ 𝑆×𝑆
compatible with 𝑞 if 𝑞(𝑙𝜏) = 𝑣 for all 𝜏 : 𝑆 → 𝑆 such that 𝜏(𝑢) = 𝑣. Obviously, the
pair (𝑥, 𝑦) is compatible with 𝑞.

We have seen that any two pairs compatible with 𝑞 have either the same first
components or the same second components. This implies that either all compatible
pairs have first component 𝑥 or all compatible pairs have second component 𝑦 (or
both). Indeed, assume that there is a pair whose first component 𝑥′ is different
from 𝑥. Then its second component is 𝑦, so the pair is (𝑥′, 𝑦). For the sake of
contradiction, assume that there is a pair whose second component 𝑦′ is different
from 𝑦, and thus that pair is (𝑥, 𝑦′). Now the pairs (𝑥, 𝑦′) and (𝑥′, 𝑦) violate the
requirement mentioned above.

So let us assume that 𝑛, 𝑝, and 𝑞 are given. We search for pairs compatible
with 𝑞 until first such a pair (𝑢, 𝑣) is found. Then we do two things in parallel:
we (1) look for other pairs compatible with 𝑞 and (2) run 𝑝 on 𝑣 and verify the
equality 𝑝(𝑣) = 𝑢. One of these two things will happen for sure: if 𝑝(𝑣) is undefined
or 𝑝(𝑣) ̸= 𝑢, then (𝑢, 𝑣) ̸= (𝑥, 𝑦) so another pair will appear. If we find another
pair (𝑢′, 𝑣′) compatible with 𝑞, then we know either 𝑥 (if 𝑣 ̸= 𝑣′, then 𝑢 = 𝑥) or 𝑦
(if 𝑢 ̸= 𝑢′, then 𝑣 = 𝑦). And if we know that 𝑝(𝑣) = 𝑢, we can be sure that 𝑢 = 𝑥
(if 𝑢 ̸= 𝑥, then 𝑣 = 𝑦 hence 𝑢 = 𝑝(𝑣) = 𝑝(𝑦) = 𝑥).

It remains to show that the complexity of ((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦) cannot be
much less than min{𝐶(𝑦|𝑥), 𝐶(𝑥|𝑦)}. We do this in the following way. We present
a way to convert any program 𝑝 that solves ((𝑥 → 𝑦) → 𝑦) → (𝑥∨ 𝑦) into a pair of
programs (𝑟1, 𝑟2) such that either 𝑟1 maps 𝑥 to 𝑦 or 𝑟2 maps 𝑦 to 𝑥. However, there
is no indication which of two possibilities happens, so in fact we exhibit a solution

13.4. EXAMPLES AND THE PROOF OF THEOREM 238 417

to the problem

(((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦)) → ((𝑥 → 𝑦)∨̃(𝑦 → 𝑥))

This is enough to get the required bound for the complexity.
Here is the idea. Let 𝑝 be a solution to ((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦). We need to

convert either 𝑥 to 𝑦 or 𝑦 to 𝑥. Both 𝑥 and 𝑦 can be used to construct a solution
for (𝑥 → 𝑦) → 𝑦: indeed, 𝑦 can be converted into a program that maps everything
to 𝑦, and 𝑥 can be used to convert (𝑥 → 𝑦) to 𝑦. Then we can apply 𝑝 to this
solution and get a solution to 𝑥∨ 𝑦, i.e., 𝑥 or 𝑦. If it happens that we get the other
string (not the one we started with), we succeed in transformation of 𝑥 to 𝑦 or vice
verse. But why may we hope to be so lucky?

We apply a tool from computability theory. Fix a pair of disjoint computably
enumerable sets 𝐴,𝐵 ⊂ N that cannot be separated by a decidable (=computable)
set. The latter means that every decidable set that contains 𝐴 has a non-empty
intersection with 𝐵 (and vice verse).

For every natural 𝑖 and for every two strings 𝑢, 𝑣 we consider the program
𝑞𝑖(𝑢, 𝑣) that works as follows (its input 𝑠 is considered as a program):

𝑞𝑖(𝑢, 𝑣) on input 𝑠:
𝑖 ∈ 𝐴: output 𝑣;
𝑖 ∈ 𝐵: output [𝑠](𝑢);
[𝑠](𝑢) = 𝑣: output 𝑣 = [𝑠](𝑢).

This means that 𝑞𝑖(𝑢, 𝑣) enumerates 𝐴, 𝐵 and applies 𝑠 to 𝑢 in parallel waiting
until one of the three events (listed before the colons) happens and then performs
the described action. Note that the first and second conditions are disjoint (since
𝐴 and 𝐵 are disjoint); the third condition is not disjoint with the first two, but the
action is the same anyway.

The construction guarantees the following properties:
(1) if 𝑖 ∈ 𝐴 then for every 𝑢 the program 𝑞𝑖(𝑢, 𝑦) is a solution to (𝑥 → 𝑦) → 𝑦;
(2) if 𝑖 ∈ 𝐵 then for every 𝑣 the program 𝑞𝑖(𝑥, 𝑣) is a solution to (𝑥 → 𝑦) → 𝑦;
(3) for every 𝑖 the program 𝑞𝑖(𝑥, 𝑦) is a solution to (𝑥 → 𝑦) → 𝑦.
Therefore, in all three cases [𝑝](𝑞𝑖(𝑢, 𝑣)) is a solution to 𝑥∨𝑦 (by our assumption

on 𝑝).
Now we can present programs 𝑟1 and 𝑟2 and prove that either 𝑟1 maps 𝑥 to

𝑦 or 𝑟2 maps 𝑦 to 𝑥. The program 𝑟1 applies 𝑝 to 𝑞𝑖(𝑥, 𝑣) for all 𝑖 ∈ 𝐵 and for
all strings 𝑣 in parallel, and waits until 𝑝 produces an output of the form [1, 𝑧] for
some 𝑧; then 𝑟1 outputs 𝑧. Similarly, 𝑟2 applies 𝑝 to 𝑞𝑖(𝑢, 𝑦) for all 𝑖 ∈ 𝐴 and for
all 𝑢, and waits until 𝑝 gives output [0, 𝑧] for some 𝑧; then 𝑟2 outputs 𝑧.

The properties of 𝑞𝑖 mentioned above guarantee the correctness of the output;
it remains to show that at least one of the events will happen. Assume that it is
not the case and [𝑝](𝑞𝑖(𝑥, 𝑣)) always starts with 0 (for all 𝑖 ∈ 𝐵 and for all 𝑣) and
[𝑝](𝑞𝑖(𝑢, 𝑦)) always starts with 1 (for all 𝑖 ∈ 𝐴 and for all 𝑢). In particular, this
happens for 𝑣 = 𝑦 and 𝑢 = 𝑥. Recall that [𝑝](𝑞𝑖(𝑥, 𝑦)) is defined for all 𝑖, and in
this way we can compute a separator for 𝐴 and 𝐵, a contradiction. �

The formula used in this theorem looks already quite complicated. However,
for theorem 238 we need to go even farther and consider some generalizations of
the problem ((𝑥 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦).

418 13. INFORMATION AND LOGIC

Consider arbitrary strings 𝑢1, . . . , 𝑢𝑘, where 𝑘 > 2, and two arbitrary non-
empty disjoint sets 𝐼, 𝐽 ⊂ {1, . . . , 𝑘}. Then consider the problem

((𝑋 → 𝑌) → 𝑌) → 𝑍,

where 𝑋 is the conjunction of singletons {𝑢𝑖} for 𝑖 ∈ 𝐼 (i.e., the 𝑘-tuple), 𝑌 is the
disjunction of all 𝑢𝑗 for 𝑖 ∈ 𝐽 , and 𝑍 is the disjunction of all singletons 𝑢1, . . . , 𝑢𝑘.
For example, for 𝑘 = 2, 𝐼 = {1}, 𝐽 = {2} we get the problem ((𝑢1 → 𝑢2) → 𝑢2) →
(𝑢1∨𝑢2) considered above. Another example (where we use different letters for the
sake of readability):

((𝑥1 ∧ 𝑥2 → 𝑦1 ∨ 𝑦2) → 𝑦1 ∨ 𝑦2) → 𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∨ 𝑦2 ∨ 𝑧.

Theorem 243. The complexity of the problem ((𝑋 → 𝑌) → 𝑌) → 𝑍 is lower-
bounded (with 𝑂(1)-precision) by the minimal conditional complexity of 𝑢𝑖 given
all other strings 𝑢1, . . . , 𝑢𝑘.

Proof. This theorem generalizes Theorem 242 and its proof is also similar. We
construct a tuple of 𝑘 algorithms that has the following property. For every program
𝑝 that solves ((𝑋 → 𝑌) → 𝑌) → 𝑍 there exists 𝑚 such that 𝑚th algorithm, given
𝑝, reconstructs 𝑢𝑚 from all other 𝑢𝑡.

As before, 𝑚th algorithm uses all other 𝑢𝑡 (with 𝑡 ̸= 𝑚) to construct solutions
to (𝑋 → 𝑌) → 𝑌 ; then 𝑝 is applied to these solutions. Note that if we know all
𝑢𝑡 except 𝑢𝑚, we either know all strings in 𝑋 (and can construct a solution to
𝑋) or all strings in 𝑌 (and can construct a solution to 𝑌 ; in fact, we get several
solutions for 𝑌 , since 𝑌 is a disjunction of singletons, but this is not important). It
may even happen that we can find solutions to both 𝑋 and 𝑌 (e.g., if the missing
string appears neither in 𝑋 nor in 𝑌). Having a solution to 𝑋 or 𝑌 , we may (as
before) construct a solution to (𝑋 → 𝑌) → 𝑌 and apply 𝑝 to it. If we are lucky
enough to get pair [𝑡, 𝑢𝑡] with 𝑡 = 𝑚 as output of 𝑝 (recall that 𝑚 is the number
of missing string we want to reconstruct), we know 𝑢𝑚. (A technical note: we
assume that solutions to 𝑌 and 𝑍 are pairs of the form [𝑡, 𝑢𝑡]; it is not exactly the
case since we have not defined disjunction of many problems and should consider
(𝑢1 ∨ (𝑢2 ∨ (. . . (𝑢𝑘−1 ∨ 𝑢𝑘) . . .))) instead, but this is inessential.)

The only problem is to ensure that (for some 𝑚) this will indeed work, i.e., that
we will obtain a pair [𝑡, 𝑢𝑡] with 𝑡 = 𝑚. This is done again using Computability
Theory. Instead of enumerable inseparable sets, we now use a more general con-
struction, a computable diagonal function 𝑑. A function 𝑑 from the set of natural
numbers to its subset 𝑆 is called diagonal if for every partial computable function 𝑢
of the same type there exists 𝑖 such that 𝑑(𝑖) ≃ 𝑢(𝑖). (Here 𝑎 ≃ 𝑏 means that either
both 𝑎 and 𝑏 are undefined or both are defined and 𝑎 = 𝑏.) A computable diagonal
function can be constructed as follows: let 𝑑(𝑖) be the value of 𝑖th computable
function on 𝑖.

For 𝑆 = {0, 1}, i.e. for Boolean-valued functions, such a function is determined
by two disjoint enumerable sets (preimages of 0 and 1); the diagonal property
implies that no total Boolean function can be different from 𝑑 everywhere, so these
enumerable sets are inseparable.

In the proof, we will use a computable diagonal function from the set of natural
numbers to the set 𝑆 = {1, . . . , 𝑘}. More specifically, for every 𝑘 strings 𝑣1, . . . , 𝑣𝑘
and for every natural number 𝑖 we will construct a program 𝑞𝑖(𝑣1, . . . , 𝑣𝑘) that has
the following properties:

13.4. EXAMPLES AND THE PROOF OF THEOREM 238 419

(1) for original strings 𝑢1, . . . , 𝑢𝑘 and every 𝑖 the program 𝑞𝑖(𝑢1, . . . , 𝑢𝑘) solves
(𝑋 → 𝑌) → 𝑌 ;

(2) if 𝑑(𝑖) = 𝑚 then 𝑞𝑖(𝑢1, . . . , 𝑢𝑘) remains a solution to (𝑋 → 𝑌) → 𝑌 even
after we replace 𝑢𝑚 by any other string 𝑣𝑚 (i.e., 𝑞𝑖(𝑢1, . . . , 𝑢𝑚−1, 𝑣𝑚, 𝑢𝑚+1, . . . , 𝑢𝑘)
is a solution to (𝑋 → 𝑌) → 𝑌 for every 𝑣𝑚).

Let us finish the argument assuming that we can construct such a program
𝑞𝑖(𝑣1, . . . , 𝑣𝑘). The algorithm that reconstructs 𝑢𝑚 from the rest of 𝑢𝑡’s works as
follows. We start (in parallel) the computations of 𝑑(𝑖) for all inputs 𝑖. As soon
as an 𝑖 with 𝑑(𝑖) = 𝑚 is found, we apply the given program 𝑝 to all the solutions
to (𝑋 → 𝑌) → 𝑌 of the form 𝑞𝑖(𝑢1, . . . , 𝑢𝑚−1, *, 𝑢𝑚+1, . . . , 𝑢𝑘) where * stands for
arbitrary strings (all these programs are solutions due to (2)). As soon as one of
𝑝’s outputs is of type [𝑚, *], we halt: the second component of the resulting pair is
𝑢𝑚.

As we said, the property (2) implies the correctness of this algorithm (assuming
it terminates). However we still need to show is that this algorithm terminates for
some 𝑚 (we do not wait forever). To this end we use the diagonal property of 𝑑.
Assume that for all 𝑚 the computation does not terminate. This means, in par-
ticular, that this happens for 𝑞𝑖(𝑢1, . . . , 𝑢𝑘) for all 𝑖. The property (1) guarantees,
however, that in this case we apply 𝑝 to a solution for (𝑋 → 𝑌) → 𝑌 . Therefore,
[𝑝](𝑞𝑖(𝑢1, . . . , 𝑢𝑘) is defined and is a solution to 𝑍 for all 𝑖. Thus the computations
do not terminate because the first component 𝑡 of the output pairs never coincides
with 𝑑(𝑖) (for all 𝑖 such that 𝑑(𝑖) is defined). But this first component is a total
computable function of 𝑖, so we get the contradiction with the diagonal property.

It remains to construct the program 𝑞𝑖(𝑣1, . . . , 𝑣𝑘) (for arbitrary 𝑖 and for arbi-
trary strings 𝑣1, . . . , 𝑣𝑘). Given 𝑠 as input, this program does two things in parallel:

(1) runs the computation of 𝑑(𝑖);
(2) uses 𝑣𝑡 for 𝑡 ∈ 𝐼 to construct a potential solution to 𝑋, applies 𝑠 to that

solution and checks whether the output of 𝑠 equals [𝑡, 𝑣𝑡] for some 𝑡 ∈ 𝐽 (the second
coordinate coincides with the the 𝑡th element of the original tuple 𝑣1, . . . , 𝑣𝑘).

As soon as one of these events happens (including the coincidence in (2)), the
program performs the following actions:

∙ in the case (1), when 𝑑(𝑖) is defined and equals some 𝑚:
– if 𝑚 /∈ 𝐼, we use 𝑣𝑡 (with 𝑡 ∈ 𝐼) to construct a tentative solution to

𝑋, apply 𝑠 to this solution; the output of 𝑠 is returned as the output
of 𝑞𝑖(𝑣1, . . . , 𝑣𝑘) on input 𝑠;

– if 𝑚 ∈ 𝐼 (and therefore 𝑚 /∈ 𝐽), we return the pair [𝑡, 𝑣𝑡] for some
𝑡 ∈ 𝐽 (to be precise, let us agree that we use minimal 𝑡 ∈ 𝐽). Note
that in this case output does not depend on 𝑠.

∙ in the case (2): the program outputs the pair [𝑡, 𝑣𝑡] produced by 𝑠.

Why does this work? If 𝑣1, . . . , 𝑣𝑘 coincide with 𝑢1, . . . , 𝑢𝑘, and 𝑠 is a solution
to (𝑋 → 𝑌) → 𝑌 , then the second event always happens unless the first event
happens earlier; in both cases the output of 𝑞𝑖(𝑢1, . . . , 𝑢𝑘) is a solution to 𝑍. So in
this case the program 𝑞𝑖(𝑢1, . . . , 𝑢𝑘) is a solution for ((𝑋 → 𝑌) → 𝑌) → 𝑍.

Now assume that 𝑑(𝑖) = 𝑚, that each 𝑣𝑡, except for (may be) 𝑣𝑚, coincides
with 𝑢𝑡, and that 𝑠 is a solution to (𝑋 → 𝑌) → 𝑌 . In this case we do not know
which of the two parallel computations will stop first. But in both cases the output
of 𝑞𝑖(𝑣1, . . . , 𝑣𝑘) is guaranteed to be a solution to 𝑍. Indeed, in case (1) we do not
use the value of 𝑣𝑚 at all. In case (2) we do use 𝑣𝑚, but we have two reasons to

420 13. INFORMATION AND LOGIC

believe that the answer is correct (since the output of 𝑠 coincides with [𝑡, 𝑣𝑡]), and
one of these two reasons still works. �

To prove theorem 238 we need to make one more step and consider slightly
more general formulas. Let again 𝑢1, . . . , 𝑢𝑘 be a tuple of strings. Consider several
(𝑁) pairs of disjoint set of indices:

𝐼𝑙 ∩ 𝐽𝑙 = ∅, 𝐼𝑙, 𝐽𝑙 ⊂ {1, . . . , 𝑘}, 𝑙 = 1, . . . , 𝑁.

For each 𝑙 we define problems 𝑋𝑙 and 𝑌𝑙 as before, i.e., let 𝑋𝑙 be the conjunction of
singletons 𝑢𝑡 for 𝑡 ∈ 𝐼𝑙, while 𝑌𝑙 is the disjunction of singletons 𝑦𝑡 for 𝑡 ∈ 𝐽𝑙. Finally,
let 𝑍 be the disjunction of all singletons 𝑢1, . . . , 𝑢𝑘. Now consider the problem(︀

((𝑋1 → 𝑌1) → 𝑌1) ∧ . . . ∧ ((𝑋𝑁 → 𝑌𝑁) → 𝑌𝑁)
)︀
→ 𝑍.

Theorem 244. The complexity of this problem is not less than the minimal
conditional complexity of some 𝑢𝑡 relative to the tuple of all other 𝑢1, . . . , 𝑢𝑘 (with
𝑂(1)-precision).

Proof. The proof mainly repeats the previous argument. For each 𝑙, for each
natural number 𝑖 and for each tuple 𝑣 = (𝑣1, . . . , 𝑣𝑘) that coincides with 𝑢1, . . . , 𝑢𝑘

except for one component, we construct a program 𝑞𝑙𝑖(𝑣) that solves the problem

(𝑋𝑙 → 𝑌𝑙) → 𝑌𝑙,

if 𝑑(𝑖) is defined and is equal to the coordinate where 𝑢 and 𝑣 differ, or if 𝑣 = 𝑢 (in
the latter case it is not important whether 𝑑(𝑖) is defined or not and what is the
value of 𝑑(𝑖)).

For every 𝑚 we consider the following algorithm that tries to reconstruct 𝑢𝑚

given any solution 𝑝 to the problem(︀
((𝑋1 → 𝑌1) → 𝑌1) ∧ . . . ∧ ((𝑋𝑁 → 𝑌𝑁) → 𝑌𝑁)

)︀
→ 𝑍.

and given all the other components of 𝑢. We apply 𝑝 to tuples (𝑞1𝑖(𝑣), . . . , 𝑞𝑁𝑖(𝑣))
for all the tuples 𝑣 that differ from 𝑢 only in 𝑚-th coordinate and all the 𝑖 such that
𝑑(𝑖) = 𝑚. If we are lucky and for some 𝑣, 𝑖 the program 𝑝 terminates and outputs
a pair [𝑚, *] with the first component 𝑚, then the second component is 𝑢𝑚 (as we
wanted).

As before, the diagonal property of 𝑑 is needed to show that such a lucky
coincidence will indeed happen for some 𝑚. More specifically, it will happen for 𝑣 =
𝑢 and for 𝑖 such that 𝑑(𝑖) coincides with the first component of [𝑝](𝑞1𝑖(𝑣), . . . , 𝑞𝑁𝑖(𝑣))
(by diagonal property such an 𝑖 does exist). �

The propositional formulas used in this theorem are called critical implications.
Namely, a critical implication is as formula of the type(︀

((𝑃1 → 𝑄1) → 𝑄1) ∧ · · · ∧ ((𝑃𝑁 → 𝑄𝑁) → 𝑄𝑁)
)︀
→ 𝑅,

where 𝑅 is the disjunction of certain variables 𝑠1, . . . , 𝑠𝑘, for each 𝑙 formula 𝑃𝑙 is a
conjunction of some of these variable and 𝑄𝑙 is a disjunction of some other variables
(𝑃𝑙 and 𝑄𝑙 have no common variables and are not empty). Critical implications are
not provable in IPC; this can be easily shown using Kripke models, and also follows
from the previous theorem (recall that provable formulas have low complexity).
It turns out that critical implications are universal non-provable formulas. More
precisely, the following statement is true:

13.5. PROOF OF A SIMILAR RESULT VIA KRIPKE MODELS 421

Theorem 245. Let Φ(𝑡1, . . . , 𝑡𝑚) be a propositional formula with connectives
∧,∨,→ that is not provable in IPC. Then there exists a number 𝑘, propositional
formulas 𝑇1, . . . , 𝑇𝑚 using new variables 𝑠1, . . . , 𝑠𝑘 with connectives ∧ and ∨, and
a critical implication 𝐽(𝑠1, . . . , 𝑠𝑘) such that the formula

Φ(𝑇1, . . . , 𝑇𝑚) → 𝐽

is provable in IPC.

Note that formulas 𝑇𝑖 do not use implication.
This result (due to Yu.T. Medvedev) belongs to logic and proof theory, so we do

not include its proof in our book. The interested readers may refer to the paper [42],
where the proof is given. This statement will be used to prove Theorem 238.

Proof. Let Φ(𝑡1, . . . , 𝑡𝑚) be a formula which is not provable in IPC. The-
orem 245 guarantees that there exist a number 𝑘 and formulas 𝑇1, . . . , 𝑇𝑚 with
variables 𝑠1, . . . , 𝑠𝑘 and a critical implication 𝐽(𝑠1, . . . , 𝑠𝑘) such that the formula

Φ(𝑇1, . . . , 𝑇𝑚) → 𝐽

is provable in IPC.
Let us take 𝑘 independent random strings 𝑢1, . . . , 𝑢𝑘 of length 𝑛/𝑐 (the constant

𝑐 will be chosen later). Let us substitute corresponding 𝑘 singletons for variables
in 𝑇1, . . . , 𝑇𝑚 and denote the resulting non-empty sets by 𝑋1, . . . , 𝑋𝑚. Those sets
are finite, since formulas 𝑇𝑖 in Theorem 245 do not contain implication. As the
implication Φ(𝑇1, . . . , 𝑇𝑚) → 𝐽 is provable in IPC, the complexity of the problem

Φ(𝑋1, . . . , 𝑋𝑚) → 𝐽(𝑢1, . . . , 𝑢𝑘)

is 𝑂(1). By Theorem 244 the complexity of the problem 𝐽(𝑢1, . . . , 𝑢𝑘) is at least
𝑛/𝑐 − 𝑂(1). Therefore, the complexity of the problem Φ(𝑋1, . . . , 𝑋𝑚) is at least
𝑛/𝑐−𝑂(1), too. This bound exceeds 𝑛/(2𝑐) for all sufficiently large 𝑛.

Now we need to choose 𝑐 in such a way that all the elements in 𝑋1, . . . , 𝑋𝑚 are
strings of length at most 𝑛. Recall that every element of 𝑋1, . . . , 𝑋𝑚 is obtained
from singletons 𝑢1, . . . , 𝑢𝑘 by a fixed number of conjunctions and disjunctions. This
means that we use pairing operations 𝑂(1) times (starting from variables and tags
0, 1). If we choose pairing function in a natural way, it does not increase the
size of strings more than linearly, so 𝑂(1) iteration of pairing operations will give
only linear increase in size, and for suitable 𝑐 we get strings of length at most 𝑛. It
remains to note that the statement of the theorem is invariant and does not depend
on the choice of the pairing function. �

A historical remark. Theorem 242 is taken from [181]. Theorem 244 is due to
A. Chernov [38].

13.5. Proof of a result similar to Theorem 238 using Kripke models

In the proof of Theorem 238, we used the statement of Theorem 245 (without
proof). An.A. Muchnik showed that a similar statement can be proved directly
using only the completeness theorem for Kripke models and IPC.

Theorem 246. Let Φ(𝑡1, . . . , 𝑡𝑘) be a propositional formula with connectives
∧,∨,→ not provable in IPC. Then for every 𝑛 there exist problems 𝑋𝑛

1 , . . . , 𝑋
𝑛
𝑘

of complexity 𝑂(𝑛) such that the complexity of Φ(𝑋𝑛
1 , . . . , 𝑋

𝑛
𝑘) is at least 𝑛 for all

sufficiently large 𝑛.

422 13. INFORMATION AND LOGIC

This statement is weaker than Theorem 238 because now the sets 𝑋𝑖 may be
(and actually will be) infinite, and only their complexity (not the length of the
elements) is 𝑂(𝑛). It would be nice to find a direct proof of the full version of
Theorem 238.

Proof. Let a finite Kripke model be given such that Φ(𝑡1, . . . , 𝑡𝑘) is false (in
the root). For every integer 𝑛, using this model, we construct sets 𝑋1, . . . , 𝑋𝑘.
(We omit the superscript 𝑛 since 𝑛 is fixed in the sequel.) Let ⟨𝐾,6⟩ denote the
underlying Kripke structure (a finite partially ordered set having the least element,
called the root ; the elements of 𝐾 are called worlds).

Let us fix some set 𝐿 of non-negative integers including zero; we assume that
every two different elements of 𝐿 differ significantly (say, at least ten times). We
also assume that all non-zero elements of 𝐿 are much bigger than 𝑛. The elements
of 𝐿 are called lengths is the sequel (we will consider strings whose lengths are in
𝐿). The elements of 𝐿 are split between worlds in such a way that every world 𝑢
gets infinitely many lengths and this subset of 𝐿 is decidable. We assume also that
zero length is assigned to the root world. The lengths assigned to a world 𝑢 are
called 𝑢-lengths and all strings of such lengths are said to belong to the world 𝑢,

It is easy to see that all these requirements can be satisfied (in many ways). Now
we can explain the construction of the set 𝑋𝑖 that corresponds to the variable 𝑡𝑖.
This set is a (disjoint) union of two parts. The first part contains all random strings
from worlds where 𝑡𝑖 is true (in the Kripke model). The second part (denoted by
𝐶 in the sequel) consists of all pairs ⟨𝑥, 𝑦⟩ where 𝑥 and 𝑦 are random strings from
incomparable (in 𝐾) worlds. The second part is the same for all variables.

A technical clarification: a string is called random in this argument if its com-
plexity is not too small comparable to its length. Let us choose some threshold
and say that a string is random if its complexity is not less that length/10. To be
technically correct, we should replace pairs ⟨𝑥, 𝑦⟩ by their encodings [𝑥, 𝑦], and use
tags to distinguish between elements of different types:

𝐶 = {[𝑥, 𝑦] | 𝑥, 𝑦 are random strings from incomparable worlds},
𝑋𝑖 = {0𝑥 | 𝑡𝑖 is true at some world 𝑣, and 𝑥 is a random string from 𝑣} ∪

∪ {1𝑦 | 𝑦 ∈ 𝐶}.
Note that strings from different worlds have different lengths, so for every element
of 𝑋𝑖 we can reconstruct where it came from.

Now we prove by induction on the length of the formula Ψ(𝑡1, . . . , 𝑡𝑘) the prop-
erties of the problem Ψ(𝑋1, . . . , 𝑋𝑘). Essentially, we prove that this problem can
be described in the same way as it was done for variables. More precisely, let us
consider the set 𝑋Ψ defined as follows: it is the set of all random strings from worlds
where Ψ is true (in the model), plus all elements of 𝐶 (added with the same precau-
tions as before, with tags, pairs, etc.). We prove that the problem Ψ(𝑋1, . . . , 𝑋𝑘)
is algorithmically equivalent to the set 𝑋Ψ. This means that for every formula Ψ
there exist two computable functions 𝑓, 𝑔 such that 𝑓 transforms every solution to
Ψ(𝑋1, . . . , 𝑋𝑘) into some element of 𝑋Ψ and 𝑔 transforms every element of 𝑋Ψ into
some solution to Ψ(𝑋1, . . . , 𝑋𝑘).

The base of induction (Ψ is a variable 𝑡𝑖) is trivial: by definition 𝑋Ψ coincides
with 𝑋𝑖, so we let 𝑓 and 𝑔 be the identity function. For the induction step, we need
to prove the following equivalences:

13.5. PROOF OF A SIMILAR RESULT VIA KRIPKE MODELS 423

(A) the set 𝑋Ψ ∨𝑋Θ is algorithmically equivalent to the set 𝑋Ψ∨Θ;
(B) the set 𝑋Ψ ∧𝑋Θ is algorithmically equivalent to the set 𝑋Ψ∧Θ;
(C) the set 𝑋Ψ → 𝑋Θ is algorithmically equivalent to the set 𝑋Ψ→Θ.

We also use that the operations on problems are stable with respect to algo-
rithmic equivalence. This means that if 𝑈 and 𝑉 are algorithmically equivalent to
𝑈 ′ and 𝑉 ′, respectively, then the set 𝑈 ∨ 𝑉 (𝑈 ∧ 𝑉 , 𝑈 → 𝑉) is algorithmically
equivalent to the set 𝑈 ′ ∨ 𝑉 ′ (resp. 𝑈 ′ ∧ 𝑉 ′, 𝑈 ′ → 𝑉 ′). This is a straightforward
consequence of the definition.

(A) By definition 𝑋Ψ∨Θ is the union of the sets 𝑋Ψ and 𝑋Θ. So, given an
element of 𝑋Ψ or 𝑋Θ, it is easy to produce an element of 𝑋Ψ∨Θ. On the other
hand, if we get an element in the union of 𝑋Ψ and 𝑋Θ, we can find out which
world it comes from (because the lengths are different) and construct a solution to
𝑋Ψ ∨𝑋Θ.

(B) By definition 𝑋Ψ∧Θ is the intersection of the sets 𝑋Ψ and 𝑋Θ, and 𝑋Ψ∧𝑋Θ

is their Cartesian product. Having some element 𝑥 in the intersection, we can easily
produce an element of the Cartesian product, namely, [𝑥, 𝑥]. On the other hand,
assume that we get some element [𝑥, 𝑦] of the Cartesian product of 𝑋Ψ and 𝑋Θ. If
at least one of 𝑥, 𝑦 belongs to 𝐶 (which can be decided looking at the structure of 𝑥
and 𝑦), then this element belongs to the intersection of 𝑋Ψ and 𝑋Θ (both contain
𝐶). If not, then 𝑥 and 𝑦 are random strings from the worlds where Ψ and Θ are
true (in the model). Looking at the lengths, we can find these two worlds, say, 𝑢
and 𝑣. Now distinguish two cases:

(1) The worlds 𝑢 and 𝑣 are not comparable in 𝐾. Then we produce the pair
[𝑥, 𝑦] which belongs to 𝐶 by definition (and therefore belongs to the intersection of
𝑋Ψ and 𝑋Θ).

(2) The worlds 𝑢 and 𝑣 are comparable, e.g., 𝑢 precedes 𝑣. Then (due to
monotonicity) the formula Ψ is true also in 𝑣, so the element 𝑦 belongs to the
intersection of 𝑋Ψ and 𝑋Θ.

(C) This is the central part of the proof. We have to show that, given some
element of 𝑋Ψ→Θ, we can find an element of 𝑋Ψ → 𝑋Θ and vice verse. We start
with the first claim.

Assume that a string 𝑥 ∈ 𝑋Ψ→Θ is given. We need to find some solution to
𝑋Ψ → 𝑋Θ. In other terms, given 𝑥 and some element 𝑦 ∈ 𝑋Ψ, we need to find an
element of 𝑋Θ. If either 𝑥 or 𝑦 belong to 𝐶, we output this element of 𝐶 (recall
that 𝐶 is a part of 𝑋Θ). Now assume that both 𝑥 and 𝑦 do not belong to 𝐶. Then
𝑥 is a random string from some world 𝑢 where Ψ → Θ is true, and 𝑦 is a random
string from some world 𝑣 where Ψ is true (and both worlds can be reconstructed
from the lengths of 𝑥 and 𝑦). Then three cases are possible:

(1) If 𝑣 precedes 𝑢, then Ψ is true in 𝑢, too. Therefore, Θ is true in 𝑢 (since
the implication Ψ → Θ is true in 𝑢). So 𝑥 belongs to 𝑋Θ (and we may output 𝑥).

(2) If 𝑢 precedes 𝑣, then Θ is true in 𝑣, since both Ψ is true in 𝑣 and Ψ → Θ
is true in 𝑣 (monotonicity). Therefore 𝑦 belongs to 𝑋Θ (and we may output 𝑦).

(3) If 𝑢 and 𝑣 are incomparable, then the pair [𝑥, 𝑦] belongs to 𝐶 (and, therefore,
𝑋Θ), so we output [𝑢, 𝑣].

It remains to show that, given an element 𝑟 of 𝑋Ψ → 𝑋Θ, we can construct
some element of 𝑋Ψ→Θ. So we assume that a program 𝑟 is given that transforms
every string in 𝑋Ψ into some string in 𝑋Θ.

424 13. INFORMATION AND LOGIC

If the formula Ψ → Θ is true in the root world, the empty string Λ belongs to
𝑋Ψ→Θ and we output Λ.

Now let us assume that Ψ → Θ is false in the root world. Then (by definition
of implication in Kripke models) there exists some world 𝑢 where Ψ is true and Θ is
false. Let us choose some big length 𝑙 (much bigger than the length of 𝑟) assigned
to 𝑢. We know that program 𝑟 on every random string of length 𝑙 terminates and
produces some element of 𝑋Θ. However, we do not know which strings of length 𝑙
are random and which are not. So we apply 𝑟 (concurrently) to all strings of length
𝑙. If some string 𝑠 appears more that 2𝑙/2 times as 𝑟’s output, then we can be sure
that 𝑠 belongs to 𝑋Θ. Indeed, the number of non-random strings of length 𝑙 is
much smaller than 2𝑙/2, so 𝑠 should be also an output of 𝑟 for some random input.
Therefore, 𝑠 belongs to 𝑋Θ ⊂ 𝑋Ψ→Θ.

Let us try to prove that there is a string 𝑠 that has many (more than 2𝑙/2)
preimages. Let 𝑥 be a random string of length 𝑙 and 𝑠 the output of 𝑟 on input 𝑥.
The complexity of 𝑠 does not exceed (up to a logarithmic term) the sum of lengths
of 𝑥 and 𝑟, so it is significantly less than 2𝑙. Moreover, 𝑠 belongs to 𝑋Θ, so 𝑠 equals
either 0𝑡 or 1[𝑦, 𝑧] where 𝑡, 𝑦, 𝑧 are randoms strings of allowed lengths. Therefore,
the lengths of 𝑡, 𝑦, 𝑧 cannot exceed 𝑙. (If these strings are longer than 𝑙, they should
be much longer due to the choice of lengths, and being random, they should have
large complexity compared to 𝑙.) For 𝑡 (if the output has form 0𝑡) we know more:
the length of 𝑡 should be strictly less than 𝑙, since 𝑡 comes from a world where Θ
is true, and this world differs from 𝑢 (recall that Θ is false in 𝑢). So the length
of 𝑡 does not exceed 𝑙/10. For 𝑦 and 𝑧 (if the output has form 1[𝑦, 𝑧]) we also
have additional information: 𝑦 and 𝑧 come from incomparable worlds, so they have
different lengths. Therefore, at most one of them can have length 𝑙, and the other
one should be short: either the length of 𝑦 or the length of 𝑧 does not exceed 𝑙/10.
If we knew that both 𝑦 and 𝑧 always have lengths at most 𝑙/10, we could conclude
that the set of all outputs of 𝑝 on random inputs of length 𝑙 has cardinality much
less than 2𝑙/2, so some element has a lot of preimages (more than 2𝑙/2).

Since we cannot guarantee this (one of strings 𝑦 and 𝑧 can have length 𝑙), this
argument does not work. Still we can save something from our reasoning. There
are two possibilities: either (1) some 𝑠 has more that 2𝑙/2 preimages, or (2) there
exists 𝑦 such that for more than 2𝑙/2 inputs 𝑥 of length 𝑙 the program 𝑟 outputs an
element of the form 1[𝑦, 𝑧] or 1[𝑧, 𝑦] for that 𝑦 and some 𝑧 of length 𝑙. (The values
of 𝑧 can be different for different inputs.) In the second case the string 𝑦 must be
a random string from some world incomparable with 𝑢. Indeed, at least one of the
inputs that are transformed by 𝑟 into 1[𝑦, 𝑧] or 1[𝑧, 𝑦], is random, so the output
should belong to 𝑋Θ. That is, 𝑦 and 𝑧 are random and belong to incomparable
worlds. The string 𝑧 comes from world 𝑢 (because 𝑧 has length 𝑙); therefore 𝑦 comes
from some world incomparable with 𝑢.

Let us summarize our findings. We apply 𝑟 to all strings of length 𝑙 and find
either 𝑠 or 𝑦 with the properties described. In the first case (some 𝑠 has lot of
preimages) we know what to do: 𝑠 belongs to 𝑋Θ ⊂ 𝑋Ψ→Θ. In the second case we
obtain a random string 𝑦 from some world 𝑣 that is incomparable with 𝑢. It may
happen that Ψ → Θ is true in 𝑣; then we are done. If not, there exists a world
𝑢1 above 𝑣 where Ψ is true and Θ is false. We can repeat our argument for 𝑢1

and get either some element of 𝑋Θ or a random string from some worlds 𝑣1 that is
incomparable with 𝑢1. Note that 𝑣1 cannot be below 𝑣, since in this case it would

13.6. COMPLEXITY NOT REDUCIBLE TO COMPLEXITIES OF TUPLES 425

be below 𝑢1. Therefore, either 𝑣1 is incomparable with 𝑣 (and we have a pair of
random strings from incomparable worlds), or is strictly above 𝑣. In the latter case
either Ψ → Θ is true in 𝑣1, or we can repeat our arguments for 𝑣1 and so on. This
process cannot be infinite since model 𝐾 is finite and cannot contain an infinite
increasing sequence of worlds.

We have finished our induction argument showing that the set Φ(𝑋1, . . . , 𝑋𝑘) is
algorithmically equivalent to 𝑋Φ. By assumption Φ is false in the root world, so all
strings in 𝑋Φ have length much bigger than 𝑛, and the complexity of Φ(𝑋1, . . . , 𝑋𝑘)
exceeds 𝑛. However, we need to guarantee also that complexities of all 𝑋𝑖 are 𝑂(𝑛).
To achieve this, we need to adjust our argument: we may assume without loss of
generality that 𝐾 has maximal element where all variables are true (this does not
change the truth values in other worlds). Also we may assume that length 2𝑛 is
assigned to this maximal world. Then every random string of length 2𝑛 belongs to
all 𝑋𝑖. �

A historical remark. The proof of Theorem 246 (due to An.A. Muchnik) is
published here for the first time.

13.6. A problem whose complexity is not expressible in terms of the
complexities of tuples

We have found (with logarithmic accuracy) complexities of several problems
that can be obtained from singletons using the operations ∧,∨,→. The reader
can wrongly deduce that complexity of every problem obtained from singletons
{𝑥}, {𝑦}, . . . using these three operations can be expressed through complexities
of 𝑥, 𝑦, . . . , their pairs, triples etc. (with some decent, say logarithmic, accuracy).
This is not the case. The problem (𝑥 → 𝑧) ∧ (𝑦 → 𝑧) (whose complexity equals
the maximum of 𝐶(𝑧|𝑥) and 𝐶(𝑧|𝑦), with logarithmic accuracy) is already close to
the border of the area where this is possible. It turns our that the complexity of a
slightly general problem (𝑎 → 𝑐)∧(𝑏 → 𝑑) cannot be expressed through complexities
of 𝑎, 𝑏, 𝑐, 𝑑, their pairs, triples etc. This is stated in Theorem 247 below.

We start with several simple observations on the complexity of this problem.

342 Prove that for all strings 𝑎, 𝑏, 𝑐, 𝑑 the following inequalities hold (with
logarithmic accuracy):

𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑑)) 6 𝐶(𝑐|𝑎) + 𝐶(𝑑|𝑏),
𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑑)) 6 𝐶(𝑑|𝑏, 𝑐) + 𝐶(𝑐),

𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑑)) 6 𝐶(𝑐|𝑎, 𝑑) + 𝐶(𝑑),

𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑑)) > 𝐶(𝑏, 𝑐, 𝑑|𝑎) − 𝐶(𝑏|𝑎, 𝑐),
𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑑)) > 𝐶(𝑎, 𝑐, 𝑑|𝑏) − 𝐶(𝑎|𝑏, 𝑑).

343 Problem 342 establishes three upper bounds and two lower bounds for
complexity of the problem (𝑎 → 𝑐)∧ (𝑏 → 𝑑). Prove that there exists a sequence of
quadruples (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛) of strings of lengths 𝑂(𝑛) such that for all 𝑛 each of the
upper bounds is larger than each of the above lower bounds by 𝑛 − 𝑂(1). [Hint.
Let 𝑎 = 𝑑 and 𝑏 = 𝑐 where 𝑎, 𝑏 are independent random strings of length 𝑛.]

Theorem 247. For some positive 𝛿 there exist two sequences of quadruples
�̃�𝑛, �̃�𝑛, 𝑐𝑛, 𝑑𝑛 and �̄�𝑛, �̄�𝑛, 𝑐𝑛, 𝑑𝑛 of strings of lengths 𝑂(𝑛) such that the complexity of

the problem (�̃�𝑛 → 𝑐𝑛)∧(�̃�𝑛 → 𝑑𝑛) exceeds the complexity of the problem (�̄�𝑛 → 𝑐𝑛)∧

426 13. INFORMATION AND LOGIC

(�̄�𝑛 → 𝑑𝑛) by at least 𝛿𝑛. On the other hand, the difference between complexities of

strings �̃�𝑛, �̃�𝑛, 𝑐𝑛, 𝑑𝑛 and complexities of strings �̄�𝑛, �̄�𝑛, 𝑐𝑛, 𝑑𝑛 is at most 𝑂(log 𝑛),
and the same thing holds not only for strings themselves but also for all their pairs,
triples and the quadruple.

Proof. Geometric version. We start with the following observation. For the
quadruple �̃�𝑛, �̃�𝑛, 𝑐𝑛, 𝑑𝑛 (from the statement of the theorem) both lower bounds
from Problem 342 for complexity of (𝑎 → 𝑐)∧ (𝑏 → 𝑑) must be strict: the difference

between complexity of (�̃�𝑛 → 𝑐𝑛) ∧ (�̃�𝑛 → 𝑑𝑛) and both lower bounds must be
more than 𝛿𝑛. We will first exhibit such a quadruple. Then we will find another
quadruple with the same complexities (of its components, their pairs etc.), for which
this difference is 𝑜(𝑛).

We use the same geometric arguments as in the construction of words whose
mutual information cannot be represented as a string (see page 365). Consider the
3-dimensional affine linear space over the field of cardinality 2𝑛. We will consider
lines and planes in that space. The number of points in the space is 23𝑛, the number
of lines is about 24𝑛: every line can be identified by its arbitrary two different points,
there are about 26𝑛 of pairs of different points and every line can be represented
in about 22𝑛 different ways by a pair of its points. The number of planes is about
23𝑛: every plane can be identified by three different points, the number of triples of
different points is about 29𝑛, and every plane has 22𝑛 points and hence has about
26𝑛 triples of different points. Let ⟨�̃�, �̃�⟩ be any random pair of intersecting lines, 𝑐

their common point and 𝑑 the (unique) plane containing both lines �̃�, �̃�.

Then 𝐶(�̃�, �̃�) = 7𝑛 (with logarithmic accuracy). It is not hard to calculate that

for the quadruple �̃�, �̃�, 𝑐, 𝑑 both lower bounds from Problem 342 are equal to 𝑛 (with
accuracy 𝑂(log 𝑛)).

Let us show that
𝐶((�̃� → 𝑐) ∧ (�̃� → 𝑑)) > 1.5𝑛

(with precision 𝑂(log 𝑛)).

Let 𝛾 be a solution to the problem (�̃� → 𝑐) ∧ (�̃� → 𝑑). Then 𝛾 is a pair of

programs ⟨𝛼, 𝛽⟩ such that 𝛼 transforms �̃� into 𝑐 and 𝛽 transforms �̃� into 𝑑. Let 𝑆
stand for the set of all pairs of different intersecting lines 𝑎, 𝑏 such that the program
𝛼 transforms 𝑎 into the common point of 𝑎 and 𝑏 and the program 𝛽 transforms 𝑏
into the plane containing both 𝑎 and 𝑏. For any given triple (𝛼, 𝛽, 𝑛) we are able

to generate all elements of 𝑆. Since the pair ⟨�̃�, �̃�⟩ is in 𝑆, we can deduce that

7𝑛 6 𝐶(�̃�, �̃�) 6 𝐶(𝛾) + log |𝑆|
(with accuracy 𝑂(log 𝑛)). Thus it suffices to show the upper bound 𝑂(25.5𝑛) for
the cardinality of 𝑆. This bound is a direct corollary from the following lemma.

Lemma. Assume that we are given a pair of functions ⟨𝑓, 𝑔⟩ such that the first
function maps every line to a point on that line and the second function maps every
line to a plane containing that line. Let the set 𝑆 consist of all pairs of lines ⟨𝑎, 𝑏⟩
such that the point 𝑓(𝑎) belongs also to 𝑏, and the plane 𝑔(𝑏) contains also 𝑎. Then
𝑆 contains at most 𝑂(25.5𝑛) pairs.

Proof. Directly from the definition we can derive the upper bound |𝑆| =
𝑂(26𝑛). Indeed, for every line 𝑏 there are about 22𝑛 lines 𝑎 in the plane 𝑔(𝑏), thus
the cardinality of 𝑆 exceeds the number of lines (24𝑛) at most 22𝑛 times. This
bound can be also derived by counting, for every line 𝑎, the number of lines 𝑏

13.6. COMPLEXITY NOT REDUCIBLE TO COMPLEXITIES OF TUPLES 427

passing through the point 𝑓(𝑎). Notice that in the first argument we did not take
into account that 𝑏 should pass through the point 𝑓(𝑎), and in the second argument
we did not take into account that the line 𝑎 should lie on the plane 𝑔(𝑏).

We will modify the first argument as follows. We used the fact that for every
line 𝑏 there are at most 22𝑛 lines 𝑎 such that the pair (𝑎, 𝑏) is in 𝑆. Now we will show
that on average for every line 𝑏 there are 𝑂(21.5𝑛) lines 𝑎 such that the pair (𝑎, 𝑏) is
in 𝑆. To prove this we will certainly take into account the condition 𝑓(𝑎) ∈ 𝑏. (We
could also modify the second argument and show that on average for every line 𝑎
the set 𝑆 has 𝑂(21.5𝑛) pairs of the form (𝑎, *).)

To this end we partition 𝑆 into slices. Each slice is identified by a plane 𝑑 and
consists of all pairs ⟨𝑎, 𝑏⟩ with 𝑔(𝑏) = 𝑑. Thus both lines from all pairs from the
same slice lie on the same plane. We will upperbound the cardinality of each slice
and then we will sum up the obtained bounds.

Let us fix a plane 𝑑 and bound the number of pairs in the slice corresponding
to 𝑑. To this end fix a point 𝑐 on the plane 𝑑 and let 𝐴𝑐 denote the set of all lines 𝑎
on the plane 𝑑 with 𝑓(𝑎) = 𝑐. Similarly, let 𝐵𝑐 stand for the set of all lines 𝑏 passing
through 𝑐 with 𝑔(𝑏) = 𝑑 (the conditions imply that the line 𝑎 passes through 𝑐 and
the line 𝑏 lies on 𝑑). It is clear that the cardinality of the slice is at most∑︁

𝑐

|𝐴𝑐||𝐵𝑐| 6
√︃∑︁

𝑐

|𝐴𝑐|2
∑︁
𝑐

|𝐵𝑐|2

(we have applied the Cauchy–Schwarz inequality). It is easy to bound both sums
in the right hand side of the displayed inequality, as each of them has a clear mean-
ing. More specifically, the sum

∑︀
𝑐 |𝐴𝑐|2 is proportional to the probability of the

following event: for a randomly chosen (w.r.t. the uniform probability distribution)
pair of lines ⟨𝑎′, 𝑎′′⟩ on the plane 𝑑 it holds 𝑓(𝑎′) = 𝑓(𝑎′′). Indeed, this probability
equals the sum over all 𝑐 of the probability of the intersection of independent events
𝑓(𝑎′) = 𝑐 and 𝑓(𝑎′′) = 𝑐. The probability of each of these two events is equal to
the ratio of |𝐴𝑐| and the total number of lines on 𝑑, which is about 22𝑛. On the
other hand, the probability of event 𝑓(𝑎′) = 𝑓(𝑎′′) is at most 2−𝑛 (for every fixed
𝑎′ the probability of event 𝑓(𝑎′) = 𝑓(𝑎′′) does not exceed the probability that 𝑎′′

passes through the point 𝑓(𝑎′), which is about 2−𝑛). Hence the sum
∑︀

𝑐 |𝐴𝑐|2 does
not exceed

(22𝑛)2 · 2−𝑛 = 23𝑛.

This inequality holds up to a constant factor.
The second sum

∑︀
𝑐 |𝐵𝑐|2 is related to the average number of points shared by

independent lines 𝑏′, 𝑏′′ chosen at random (w.r.t. uniform distribution) from the
set 𝑀𝑑 which consists of all lines 𝑏 with 𝑔(𝑏) = 𝑑 (thus all lines from 𝑀𝑑 lie on the
plane 𝑑). Indeed, the average cardinality of intersection of 𝑏′ and 𝑏′′ is equal to the
sum, over all points 𝑐 ∈ 𝑑, of probability of the event 𝑐 ∈ 𝑏′ ∩ 𝑏′′. This event is
the intersection of independent events 𝑐 ∈ 𝑏′ and 𝑐 ∈ 𝑏′′. The probability of each
of these events equals the ratio of |𝐵𝑐| and |𝑀𝑑|. Hence the average number of
common points in 𝑏′ and 𝑏′′ is equal to the ratio of the sum

∑︀
𝑐 |𝐵𝑐|2 to the square

of |𝑀𝑑|. On the other hand, any two different lines have at most 1 common point,
and two coinciding lines have 2𝑛 common points. The lines 𝑏′ and 𝑏′′ coincide with
probability 1/|𝑀𝑑|, thus the average number of common points in 𝑏′ and 𝑏′′ does

428 13. INFORMATION AND LOGIC

not exceed 1 + 2𝑛/|𝑀𝑑|. Hence∑︁
𝑐

|𝐵𝑐|2 6 |𝑀𝑑|2(1 + 2𝑛/|𝑀𝑑|) = |𝑀𝑑|2 + |𝑀𝑑|2𝑛 6 (|𝑀𝑑| + 2𝑛)2.

Recall that the number of pairs (𝑎, 𝑏) in the slice identified by the plane 𝑑 is at

most
√︀∑︀

𝑐 |𝐴𝑐|2
∑︀

𝑐 |𝐵𝑐|2. Therefore it does not exceed√︀
23𝑛(|𝑀𝑑| + 2𝑛)2 = 21.5𝑛(|𝑀𝑑| + 2𝑛)

(up to a constant factor).
It remains to sum up the resulting upper bounds of slice’s cardinalities over

all 𝑑:

|𝑆| 6 21.5𝑛
∑︁
𝑑

(|𝑀𝑑| + 2𝑛) = 21.5𝑛

(︃∑︁
𝑑

|𝑀𝑑| +
∑︁
𝑑

2𝑛

)︃
.

The families 𝑀𝑑 are disjoint and hence the sum of their cardinalities is equal to the
total number lines (about 24𝑛). The number of planes is about 23𝑛 and therefore
the second sum is also about 24𝑛. This completes the proofs of both the lemma
and of the lower bound for the complexity of the problem (�̃� → 𝑐) ∧ (�̃� → 𝑑).

To complete the proof of the theorem it remains to find another quadruple
⟨�̄�, �̄�, 𝑐, 𝑑⟩ that has the same complexities as ⟨�̃�, �̃�, 𝑐, 𝑑⟩ and such that the complexity
of the problem (�̄� → 𝑐) ∧ (�̄� → 𝑑) is close to 𝑛.

To achieve this, we pick a random word of length 7𝑛 and chop it into 7 pieces
𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝑠, each of length 𝑛. Then let �̄� = 𝑢𝑣𝑤𝑠, �̄� = 𝑝𝑞𝑟𝑠, 𝑐 = 𝑢𝑝𝑠, 𝑑 = 𝑣𝑞𝑠.
A simple counting reveals that the complexities of words from both quadruples,
their pairs etc. are equal to:

𝐶(𝑎) = 𝐶(𝑏) = 4𝑛, 𝐶(𝑐) = 𝐶(𝑑) = 3𝑛,

𝐶(𝑎, 𝑏) = 7𝑛,

𝐶(𝑎, 𝑐) = 𝐶(𝑎, 𝑑) = 𝐶(𝑏, 𝑐) = 𝐶(𝑏, 𝑑) = 𝐶(𝑐, 𝑑) = 5𝑛,

𝐶(𝑎, 𝑐, 𝑑) = 𝐶(𝑏, 𝑐, 𝑑) = 6𝑛,

𝐶(𝑎, 𝑏, 𝑐) = 𝐶(𝑎, 𝑏, 𝑑) = 𝐶(𝑎, 𝑏, 𝑐, 𝑑) = 7𝑛.

The complexity of the problem (�̄� → 𝑐) ∧ (�̄� → 𝑑) is close to 𝑛, since given bitwise
XOR of 𝑝 and 𝑣 we can transform �̄� to 𝑐, and �̄� to 𝑑.

Probabilistic version. Again we start with exhibiting a quadruple �̃�𝑛, �̃�𝑛, 𝑐𝑛, 𝑑𝑛
such that the difference between complexity of (�̃�𝑛 → 𝑐𝑛) ∧ (�̃�𝑛 → 𝑑𝑛) and both
lower bounds from Problem 342 is linear in 𝑛.

Fix a natural 𝑛. We will find a quadruple of strings ⟨�̃�, �̃�, 𝑐, 𝑑⟩, each of length
𝑛 and complexity close to 𝑛, such that complexities of all pairs of those strings are
close to 2𝑛 and complexities of all triples and of the quadruple itself are close to
3𝑛. This implies that both lower bounds from Problem 342 for that quadruple are
close to 𝑛. Besides, the complexity of the problem (�̃� → 𝑐) ∧ (�̃� → 𝑑) will be close
to 2𝑛.

On the top level the construction is the following. Consider functions 𝑄 that
map triples of words of length 𝑛 to words of length 𝑛.

Lemma. For all sufficiently large 𝑛 there is a function 𝑄 of complexity at most
log 𝑛 + 𝑂(1) such that for at least half of triples ⟨𝑎, 𝑏, 𝑐⟩ of words of length 𝑛 the
complexity of the problem (𝑎 → 𝑐) ∧ (𝑏 → 𝑄(𝑎, 𝑏, 𝑐)) is at least 2𝑛−𝑂(log 𝑛).

13.6. COMPLEXITY NOT REDUCIBLE TO COMPLEXITIES OF TUPLES 429

Before proving the lemma, let us explain how it implies Theorem 247. Let 𝑄
be a function satisfying the lemma. The number of triples ⟨𝑎, 𝑏, 𝑐⟩ that satisfy the
inequality 𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑄(𝑎, 𝑏, 𝑐))) > 2𝑛 − 𝑂(log 𝑛) is at least 23𝑛−1. Hence

there is such a triple with complexity at least 3𝑛 − 1. Let ⟨�̃�, �̃�, 𝑐⟩ be any such

triple and let 𝑑 = 𝑄(�̃�, �̃�, 𝑐). Then the complexity of the quadruple ⟨�̃�, �̃�, 𝑐, 𝑑⟩ and

the complexity of the triple ⟨�̃�, �̃�, 𝑐⟩ are close to 3𝑛, as claimed before. This implies

that all the pairs of strings �̃�, �̃�, 𝑐, and the strings �̃�, �̃�, 𝑐 themselves have claimed
complexities.

Moreover, the triple ⟨�̃�, 𝑐, 𝑑⟩ is also random. Indeed, the complexity of the

problem (�̃� → 𝑐) ∧ (�̃� → 𝑑) is at least 2𝑛 and at the same time it is bounded from

above by the sum 𝐶(𝑐)+𝐶(𝑑 | �̃�, 𝑐) 6 2𝑛. Therefore both terms in the sum should be

close to 𝑛. Thus the word 𝑑 is independent from the pair ⟨�̃�, 𝑐⟩. Since the pair ⟨�̃�, 𝑐⟩
is random, so is the triple ⟨�̃�, 𝑐, 𝑑⟩. The only requirements that are not guaranteed

by the lemma are the randomness of the triple ⟨�̃�, �̃�, 𝑑⟩ and the randomness of the

triple ⟨�̃�, 𝑐, 𝑑⟩. We will explain later how we will guarantee them.
Proof. To prove the lemma, we define a decidable property of functions 𝑄

that guarantees the statement of the lemma. Then we will show that for all large
enough 𝑛 a randomly chosen function has that property with positive probability
(hence the property is not empty). By an exhaustive search, for any given 𝑛 we
are able to find a function 𝑄 with that property. Hence the graph of the first
found such function 𝑄 can be computed from 𝑛 and thus its complexity is less than
log 𝑛 + 𝑂(1).

Let 𝑆 denote the set of all words of length 𝑛. Let 𝑀 be a set of (total) functions
from 𝑆 to 𝑆. We say that the set 𝑀 serves a quadruple ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ ∈ 𝑆4, if 𝑓(𝑎) = 𝑐
and 𝑔(𝑏) = 𝑑 for some pair ⟨𝑓, 𝑔⟩ ∈ 𝑀 . The property of a function 𝑄 we spoke
above is the following:

every set 𝑀 consisting of less than 2𝑘 pairs of functions (from 𝑆
to 𝑆) serves less than 1/8 of quadruples of the form ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩.

We will specify the parameter 𝑘 later, it will be a little less than 2𝑛. The property
guarantees that for at least 7/8 of triples ⟨𝑎, 𝑏, 𝑐⟩ the complexity of the problem
(𝑎 → 𝑐) ∧ (𝑏 → 𝑄(𝑎, 𝑏, 𝑐)) is larger than 𝑘. Indeed, every solution to the problem
(𝑎 → 𝑐) ∧ (𝑏 → 𝑑) is a pair of programs ⟨𝑝, 𝑞⟩ with [𝑝](𝑎) = 𝑐 and [𝑞](𝑏) = 𝑑. For
every pair ⟨𝑝, 𝑞⟩ of programs of complexity less than 𝑘 we can extend in an arbitrary
way the mappings 𝑎 ↦→ [𝑝](𝑎) and 𝑏 ↦→ [𝑞](𝑏) onto the entire set 𝑆. We get a set 𝑀
of pairs of functions of cardinality less than 2𝑘. Hence 𝑀 serves less than 23𝑛−3

quadruples ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩. On the other hand 𝑀 serves all quadruples ⟨𝑎, 𝑏, 𝑐, 𝑑⟩
such that the complexity of the problem (𝑎 → 𝑐) ∧ (𝑏 → 𝑑) is less than 𝑘. (The
reader certainly noticed that to prove the lemma we need the property with the
threshold 1/2 in place of 1/8. It will become clear later why we have chosen 1/8 as
the threshold.)

Let 𝑄 be chosen with uniform probability distribution among all functions
from 𝑆3 to 𝑆. In other words, the values 𝑄(𝑎, 𝑏, 𝑐) are independent (for different
triples ⟨𝑎, 𝑏, 𝑐⟩) and uniformly distributed in 𝑆. We have to choose the parameter
𝑘 = 𝑛 − 𝑂(log 𝑛) so that with positive probability a random function 𝑄 has the
property specified above.

We fix first a set 𝑀 consisting of 2𝑘 pairs of functions from 𝑆 to 𝑆 and bound
from above the probability that it serves more than 23𝑛−3 quadruples of the form

430 13. INFORMATION AND LOGIC

⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩. To this end let us divide triples ⟨𝑎, 𝑏, 𝑐⟩ into “bad” and “good”
ones. The number of bad triples will be less than 23𝑛−4. And for good triples
⟨𝑎, 𝑏, 𝑐⟩ only a fraction of at most 1/32 of quadruples ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ will be served by
𝑀 . By Chernoff inequality with high probability the number of served quadruples
⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩ with good ⟨𝑎, 𝑏, 𝑐⟩ will be also less than 23𝑛−4.

More specifically, a triple ⟨𝑎, 𝑏, 𝑐⟩ (and also the quadruple ⟨𝑎, 𝑏, 𝑐, 𝑑⟩) is bad if
the number of ⟨𝑓, 𝑔⟩ from 𝑀 with 𝑓(𝑎) = 𝑐 is more than |𝑀 |2−𝑛+4 (this property
depends on 𝑎 and 𝑐 only). Since for each pair ⟨𝑓, 𝑔⟩ there are only 22𝑛 triples of
the form ⟨𝑎, 𝑏, 𝑓(𝑎)⟩, the number of bad triples is less than |𝑀 | · 22𝑛/(|𝑀 |2−𝑛+4) =
23𝑛−4; the remaining triples are good.

We claim that if 𝑘 6 2𝑛− 9 then for every good triple ⟨𝑎, 𝑏, 𝑐⟩ the probability
of event “𝑀 serves the quadruple ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩” is less than 1/32. Indeed, if 𝑀
serves the quadruple ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ then 𝑑 falls into the set that consists of all strings
𝑔(𝑏) such that for some 𝑓 the pair ⟨𝑓, 𝑔⟩ belongs to 𝑀 and 𝑓(𝑎) = 𝑐. As ⟨𝑎, 𝑏, 𝑐⟩ is
good, this set at most |𝑀 |2−𝑛+4 = 2𝑘−𝑛+4 strings. If 𝑘 is chosen to be less than
2𝑛− 9 then this set contains a fraction at most 1/32 of all strings of length 𝑛.

We will use now Chernoff inequality in the following form. Assume that we are
given 𝑁 independent events, and the probability of each event equals 𝑝. Then for

any 𝜀 with probability at least 1−𝑒−2𝜀2𝑁 the number of occurred events is less than
(𝑝 + 𝜀)𝑁 . In particular, this holds for 𝜀 = 𝑝: the number of occurred events is less

than 2𝑝𝑁 with probability at least 1 − 𝑒−2𝑝2𝑁 . Obviously, the same bound holds
in the case when probability of each event is at most 𝑝 (may be less than 𝑝). In our
case each event is specified by a good triple ⟨𝑎, 𝑏, 𝑐⟩ and thus (15/16)23𝑛 6 𝑁 6 23𝑛:
the event occurs if 𝑀 serves the triple ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩. The probability of each

event is at most 𝑝 = 1/32. By Chernoff bound with probability at least 1−𝑒−Ω(23𝑛)

the number of good triples ⟨𝑎, 𝑏, 𝑐⟩ such that 𝑀 serves ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩ is at most
𝑁/16 6 23𝑛−4.

If at most 1/16 of good quadruples are served by 𝑀 then (even if all bad quadru-
ples are served) the fraction of served quadruples is at most 1/16 + 1/16 = 1/8.
Hence 𝑀 serves more than 1/8 of quadruples ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩ with probability at

most 𝑒−Ω(23𝑛).
It remains to verify that the probability 𝑒−Ω(23𝑛) is less than 1 even after being

multiplied by the number of sets 𝑀 of cardinality 2𝑘. The number of such sets is
less than the square of the number of functions from 𝑆 to 𝑆 (that number equals
2𝑛2

𝑛

) raised to the power of 2𝑘:

22𝑛2
𝑛2𝑘 = 22

𝑛+𝑘+log 𝑛+1

.

Let us compare this value to the probability

2−Ω(23𝑛)

of the event “𝑀 serves more than 1/8 of quadruples of the form ⟨𝑎, 𝑏, 𝑐,𝑄(𝑎, 𝑏, 𝑐)⟩”.
The product of displayed numbers equals to 2 raised to the power which is the
difference two numbers: 2𝑛+𝑘+log𝑛+1 and Ω(23𝑛). We need that the latter number
be bigger than the former one. This happens when 𝑘 = 2𝑛− log 𝑛−𝑂(1). (Recall
that the number of bad triples is small under the condition 𝑘 6 2𝑛− 9 thus all our
calculations remain valid.) The lemma is proven.

It remains to explain how to guarantee the randomness of the remaining triples
⟨�̃�, �̃�, 𝑑⟩ and ⟨�̃�, 𝑐, 𝑑⟩. The simplest solution is to guarantee that in exactly the

13.6. COMPLEXITY NOT REDUCIBLE TO COMPLEXITIES OF TUPLES 431

same way as we guaranteed the randomness of the triple ⟨�̃�, 𝑐, 𝑑⟩. That is, we will
modify the lemma by requiring that for half of triples ⟨𝑎, 𝑏, 𝑐⟩ not only the problem
(𝑎 → 𝑐)∧(𝑏 → 𝑄(𝑎, 𝑏, 𝑐)) have large complexity but also that so have the symmetric
problems (𝑐 → 𝑏) ∧ (𝑎 → 𝑄(𝑎, 𝑏, 𝑐)) and (𝑏 → 𝑎) ∧ (𝑐 → 𝑄(𝑎, 𝑏, 𝑐)).

Lemma. For all sufficiently large 𝑛 there is a function 𝑄 of complexity at most
log 𝑛+𝑂(1) such that for more than half of triples ⟨𝑎, 𝑏, 𝑐⟩ of words of length 𝑛 the
complexity of each of the problems

(𝑎→𝑐) ∧ (𝑏→𝑄(𝑎, 𝑏, 𝑐)), (𝑐→𝑏) ∧ (𝑎→𝑄(𝑎, 𝑏, 𝑐)) and (𝑏→𝑎) ∧ (𝑐→𝑄(𝑎, 𝑏, 𝑐))

is at least 2𝑛−𝑂(log 𝑛).
Proof. Recall that the previous lemma was proven by the probabilistic method:

we have exhibited a property of a function and have shown that a randomly chosen
function does not have that property with exponentially small probability. Now,
instead of one property of a function 𝑄 we have three symmetric properties. Each
of the three properties does not hold with exponentially small probability. Thus
for all large enough 𝑛 there is a function 𝑄 that has all the three properties. For
such a function the number of triples served in at least one of the three ways is at
most 1/8 + 1/8 + 1/8 < 1/2. The lemma is proven.

It remains to exhibit another quadruple ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ of strings that have the same

complexities (as well as their pairs, triples and the quadruple) as ⟨�̃�, �̃�, 𝑐, 𝑑⟩ and
such that the complexity of the problem 𝐶((𝑎 → 𝑐)∧ (𝑏 → 𝑑)) is much less than 2𝑛.
To this end pick a random string of length 3𝑛 and chop it into three parts 𝑎, 𝑏, 𝑐,
each of length 𝑛. Then let 𝑑 = 𝑎⊕ 𝑏⊕ 𝑐. Given 𝑎⊕ 𝑐 we can transform 𝑎 to 𝑐 and
𝑏 to 𝑑. Hence 𝐶((𝑎 → 𝑐) ∧ (𝑏 → 𝑑)) 6 𝑛 (up to an additive constant). �

344 Show that the complexity of the problem (𝑝∨ 𝑞) → (𝑟∨𝑠) also cannot be
expressed through complexities of 𝑝, 𝑞, 𝑟, 𝑠, their pairs, triples and the quadruple.
[Hint. Let 𝑝 = 𝑎, 𝑞 = 𝑏, 𝑟 = 𝑎𝑐, 𝑠 = 𝑏𝑑 where ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ is either of the two
quadruples used in the above proof (say, in the first one). The complexity of the
resulting problem depends on which of the two quadruples we have chosen. On the
other hand, the complexities of 𝑝, 𝑞, 𝑟, 𝑠, their pairs, triples and the quadruple does
not depend on this choice.]

It is instructive to compare the geometric proof with the probabilistic one. The
geometric proof is more constructive than the probabilistic one: the first quadruple
is identified more explicitly in the geometric proof than in the probabilistic one.
On the other hand, in the probabilistic proof, the complexity of the problem (�̃� →
𝑐)∧ (�̃� → 𝑑) equals the upper bounds from Problem 342, which all are equal to 2𝑛.

For the quadruple (�̃� → 𝑐) ∧ (�̃� → 𝑑) from the geometric proof, the upper bounds
from Problem 342 are still equal to 2𝑛, however we were able to show only the lower
bound of 1.5𝑛 for the complexity of the problem (�̃� → 𝑐) ∧ (�̃� → 𝑑). We do not
know whether a better lower bound holds.

A historical remark. Theorem 247 was established in [141].

CHAPTER 14

Algorithmic statistics

14.1. The framework and randomness deficiency.

Generally speaking, mathematical statistics deals with the following problem:
there are some experimental data; we look for a reasonable theory that explains
these data (is consistent with these data). How can the notion of complexity help
here? This is a topic of algorithmic statistics.1

Consider the following (simplified) example. A “black box”, switched on, has
produced a sequence of bits, say, of length 106. (This sequence could be considered
also as a number between 0 and 21,000,000−1.) What information about the internal
structure of the black box we could get by analyzing this sequence? Or, at least,
what conjectures about this internal structure look compatible with these data?

A classical statistics is not well suited to this situation. If we had information
from several independent copies of our device, or if we could switch on the device
many times (and have good reasons to believe that the results are independent), or
if we had some probabilistic distribution that depends on a parameter and needed
to choose the most suitable value of this parameter—in all these cases the statistic
would know what to do. But if our experiment cannot be repeated (which is not
that uncommon in practice, by the way), and we have no a priori information about
the family of possible distributions, statistics does not tell us what to do. Indeed,
we have a set of all 21,000,000 possible outcomes, and no structure on this set, so
what can we say about one specific outcome?

Nevertheless common sense supports some conclusions even in this case. For
example, if our device produced 106 zeros, then many people would think that the
device is indeed very simple and can produce only zeros. Similarly, if the sequence
was 010101 . . . (zeros and ones alternate), people would probably believe that black
box is a simple mechanism of a flip-flop type. And if the sequence had no visible
regularities, people would probably think that the device is some kind of random bit
generator. So the conclusions could be quite different, and it would be interesting
to give some more formal support for our common sense reasoning.

In the first example (zero string) the “explanation” (hypothesis) is a singleton:
we think that may be the device can produce only this string. In the second
example (and in all similar situations when the device produces a binary string 𝑥 of
a very small complexity) the same explanation looks reasonable: we believe that the
device is made just for producing this specific string 𝑥. So the set of possibilities is a
singleton {𝑥}. On the other hand, in the third example (random-looking sequence)
the “explanation set” is the set of all strings.

1An alternative short introduction to this topic can be found in [199] (without proofs). More
detailed exposition that contains some material of this chapter but puts it in a different perspective

can be found in a recent survey paper [200].

433

434 14. ALGORITHMIC STATISTICS

There are some intermediate examples. Imagine that our device produced a
sequence of length 106 where first 500, 000 bits are zeros and the second half is a
random-looking sequence of length 500, 000 without any visible regularities. Then
we may guess that the device first produces 500, 000 zeros and then switches to
another mode and produces 500, 000 random bits. Here the explanation set has
cardinality 2500,000 and consists of all strings of length 1, 000, 000 that start with
500, 000 zeros.

The general framework that cover all our examples, can be explained as follows:
given a string 𝑥, we suggest some finite set 𝐴 that contains 𝑥 and can be considered
as a reasonable explanation for 𝑥. What do we mean by “reasonable”? Here are
two natural requirements:

∙ the set 𝐴 should be simple (its Kolmogorov complexity 𝐶(𝐴) should be
small);

∙ the string 𝑥 should be a “typical” element of 𝐴.

More specifically, Kolmogorov complexity 𝐶(𝐴) of a finite set 𝐴 is the complex-
ity of the list of its elements (written in some fixed order, e.g, sorted in alphabetic
order, and encoded by a binary string). It does not depend on the specific ordering
(lexicographical or any other computable total ordering) and on the encoding (up
to a constant).

The notion of a “typical representative of a set” also can be made more precise
using Kolmogorov complexity. Recall that if a set 𝐴 consists of 𝑁 elements, then
the conditional complexity 𝐶(𝑥 |𝐴) of every 𝑥 in 𝐴 does not exceed log𝑁 + 𝑂(1)
(each element can be described by its ordinal number in 𝐴—assuming 𝐴 that is
known). For most 𝑥 in 𝐴 the complexity 𝐶(𝑥 |𝐴) is close to log𝑁 , since only very
few elements have smaller complexity. So it is natural to call element 𝑥 ∈ 𝐴 a
“typical” element of the set 𝐴 of size 𝑁 if 𝐶(𝑥 |𝐴) is close to log𝑁 .

Let us reformulate this in the following way. Consider a finite set 𝐴, an element
𝑥 ∈ 𝐴 and the difference

𝑑(𝑥 |𝐴) = log |𝐴| − 𝐶(𝑥 |𝐴).

As we have seen, this difference is non-negative (up to 𝑂(1)). We call it the ran-
domness deficiency of 𝑥 as an element of 𝐴. Note that we do not use this formula
to define 𝑑(𝑥 |𝐴) if 𝑥 is not in 𝐴; in this case 𝑑(𝑥 |𝐴) is undefined. (It is also natural
to let 𝑑(𝑥 |𝐴) be +∞ when 𝑥 /∈ 𝐴, since in this case the explanation 𝐴 is completely
unsuitable for 𝑥.)

An element 𝑥 is “typical” in 𝐴 if 𝑑(𝑥 |𝐴) is negligible.

345 Prove that the for a given 𝐴 the probability of the event “randomly

chosen element 𝑥 ∈ 𝐴 has deficiency greater than 𝑘” does not exceed 2−𝑘.

(Here the probability means just the fraction of elements with given property
in 𝐴.) In fact, to make this statement true, we need to replace log |𝐴| by ⌊log𝐴⌋;
since complexity is defined up to a constant anyway, we are not that pedantic.

Let us note also that the function 𝑑 (with two arguments 𝑥 and 𝐴) is lower
semicomputable (enumerable from below): we can effectively provide more and
more precise lower bounds for it but cannot say when we achieved its value. (Indeed,
function 𝐶 is upper semicomputable.)

346 Assume that a function 𝛿(𝑥 |𝐴) is given, where 𝑥 is a string and 𝐴 is
a set containing that string and 𝛿 has the following properties: (a) 𝛿 is lower

14.1. THE FRAMEWORK AND RANDOMNESS DEFICIENCY. 435

semicomputable; (b) for every finite set 𝐴 and for every natural number 𝑘 the
fraction of strings in 𝐴 with 𝛿(𝑥 |𝐴) > 𝑘 is less than 2−𝑘. Then 𝛿(𝑥 |𝐴) 6 𝑑(𝑥 |𝐴)+
𝑂(1).

This statement is a direct corollary of a similar statement for conditional Kol-
mogorov complexity (see Theorem 19 on p. 50). Its meaning is the following. There
are different opinions which elements of a given set are typical and which are not.
That is, there exist different methods to measure non-typicality. Assume that we
normalize each method so that, after normalization, in each set the fraction of 𝑘-
non-typical elements be less than 2−𝑘. And so that we can reveal non-typicality of
a given string in a given set provided we have enough time for that (that time can
be quite long and not bounded by any total computable function). Then there is
the best such method in the sense that the deficiency it reveals is not less than the
deficiency revealed by any other method (up to an additive constant).

Randomness deficiency in a finite set is similar to randomness deficiency of a
infinite sequence with respect to a probability measure (see Section 3.5). More
specifically, it is similar to the maximal probability bounded randomness test. One
can also define an analogue of an expectationally bounded randomness test.

347 Let the prefix randomness deficiency of a string 𝑥 in a finite set 𝐴 be
defined as 𝑑𝑃 (𝑥 |𝐴) = log2 |𝐴| −𝐾(𝑥 |𝐴). Show that 𝑑𝑃 (𝑥 |𝐴) is a maximal lower
semicomputable function 𝛿 of 𝑥 and 𝐴 such that (1/|𝐴|)

∑︀
𝑥∈𝐴 2𝛿(𝑥 |𝐴) is at most 1

for all finite sets 𝐴. [Hint: recall that prefix complexity coincides with the negative
logarithm of the a priori probability.]

Thus a finite set 𝐴 is considered as a good explanation for 𝑥 if it is simple and
the randomness deficiency 𝑑(𝑥 |𝐴) of 𝑥 in 𝐴 is small. Those strings having such
explanation are called stochastic. Are there non-stochastic strings? This question
will be answered in the next section.

Notice that we consider only statistical hypotheses that are uniform distribu-
tions over finite sets. In a more general framework one can consider also arbitrary
probability distributions over strings (say, with finite supports and rational values
to avoid technical problems). For such distributions the randomness deficiency of
a string 𝑥 with respect to a distribution 𝑃 is defined as − log2 𝑃 (𝑥) − 𝐶(𝑥 |𝑃) (if
𝑃 (𝑥) = 0 then the deficiency is infinite: for such strings 𝑥 the hypothesis 𝑃 is
completely unsatisfactory).

For uniform distributions (all elements of a finite set 𝐴 have probability 1/|𝐴|)
the generalized definition of randomness deficiency coincides with the previous one.
Notice that the general case is not very different from the case of uniform distribu-
tions:

348 Assume that 𝑥 is a string of length 𝑛 and 𝑃 is a probability distribution
(not necessarily uniform) of complexity 𝑘 such that the randomness deficiency of
𝑥 with respect to 𝑃 is at most 𝑙. Then there is a set 𝐴 of complexity at most 𝑘 +
𝑂(log(𝑙 + 𝑛)) containing 𝑥 such that the randomness deficiency of 𝑥 in 𝐴 is at
most 𝑙 + 𝑂(log(𝑙 + 𝑛)). [Hint. Let 𝐴 = {𝑦 | 𝑃 (𝑦) > 𝑝} where 𝑝 is the probability
of 𝑥 with respect to 𝑃 rounded to the nearest integer power of 2.]

This problem explains why we are considering uniform distributions only. Let
us stress that in the definition of Kolmogorov complexity of a finite set of strings
we consider the set as a finite object represented by the list of all its elements in the
lexicographical order. An alternative approach is to measure the complexity of a set

436 14. ALGORITHMIC STATISTICS

as the minimal length of a program enumerating the set. With this approach the
definition of stochastic strings becomes trivial: all strings are stochastic. Indeed
for every string 𝑥 of complexity 𝑘 one can consider the set 𝑆𝑘 of all strings of
complexity at most 𝑘 as an explanation for 𝑥. It has 𝑂(2𝑘) elements and hence
the randomness deficiency of 𝑥 in 𝑆𝑘 is negligible. On the other hand, we can
enumerate this set given 𝑘 and hence 𝑆𝑘 can be enumerated by a program of length
log 𝑘 + 𝑂(1). However, intuitively 𝑆𝑘 is not a good “explanation” for 𝑥.

In the case of general probability distributions (not only uniform) we also con-
sider a distribution as a finite object represented by the list of all pairs (𝑥, 𝑃 (𝑥))
for 𝑥 in the support of 𝑃 and arranged lexicographically. This is why we need
the support to be finite and the values to be rational. Alternatively, we could
consider infinite supports and uniformly computable values—in that case the ex-
planation would be a program computing the function 𝑥 ↦→ 𝑃 (𝑥). It is essential
that we do not allow lower semicomputable semimeasures represented by a pro-
grams that lower semicompute them. If we did, then any string would obtain a
perfect explanation—the maximal lower semicomputable semimeasure.

A historical remark. The first definition of randomness deficiency was given by
Kolmogorov who used the formula log |𝐴| − 𝐶(𝑥). The formula log |𝐴| − 𝐶(𝑥 |𝐴)
used throughout the book is due to [60] (note that in [60] the prefix complexity is
used instead of the plain one, the difference is 𝑂(log(deficiency))). Kolmogorov’s
randomness deficiency log |𝐴| − 𝐶(𝑥) is less than or equal to the randomness defi-
ciency log |𝐴|−𝐶(𝑥 |𝐴), and they differ by at most 𝐶(𝐴). The two deficiencies may
differ that much, e.g., for 𝐴 = {𝑥}. Perhaps Kolmogorov was interested only in
sets 𝐴 with negligible complexity, in which case these two deficiencies are close. For
sets with large complexity the expression log |𝐴| − 𝐶(𝑥) may have large negative
value and hardly makes any sense.

14.2. Stochastic objects

A string 𝑥 is called (𝛼, 𝛽)-stochastic if there is a finite set 𝐴 containing 𝑥 with
𝐶(𝐴) 6 𝛼 and 𝑑(𝑥 |𝐴) 6 𝛽.

For strings 𝑥 of length 𝑛 consider 𝛼 and 𝛽 of order 𝑂(log 𝑛) or 𝑜(𝑛) so that
the complexity of explanation we allow for 𝑥 be small compared to the length of
𝑥. For such 𝛼, 𝛽, are there non-stochastic strings (i.e., “non-explainable” objects)?
An affirmative answer to this question is provided by the following theorem.

Theorem 248. Assume that 2𝛼 + 𝛽 < 𝑛−𝑂(log 𝑛). Then there is a string of
length 𝑛 that is not (𝛼, 𝛽)-stochastic.

(The accurate statement is the following there is a 𝑐 such that for all large
enough 𝑛 and all 𝛼, 𝛽 with 2𝛼+ 𝛽 < 𝑛− 𝑐 log 𝑛 there is a string of length 𝑛 that is
not (𝛼, 𝛽)-stochastic.)

Proof. Consider the list of all finite sets of complexity at most 𝛼. Kolmogorov
complexity of this list is at most 𝛼 + 𝑂(log𝛼) = 𝛼 + 𝑂(log 𝑛) (see p. 39). Ignoring
additive error terms of order 𝑂(log 𝑛) (here and also further) we will assume that
the complexity of the list is less than 𝛼.

Remove from the list all sets of cardinality more than 2𝛼+𝛽 . Kolmogorov com-
plexity of the resulting list is also less than 𝛼. By construction it has at most 2𝛼

sets and each of them has at most 2𝛼+𝛽 elements. Thus the union of all sets in the
list has less than 22𝛼+𝛽 < 2𝑛 strings. Hence there is a string of length 𝑛 that does

14.2. STOCHASTIC OBJECTS 437

not appear in any set from the list. Let 𝑡 be the lexicographically first such string.
Its complexity is at most 𝛼, as it can be found given 𝑛 and the list.

Let us show that this string (denoted by 𝑡 in the sequel) is not (𝛼, 𝛽)-stochastic.
Indeed, assume that it is contained in some set 𝐴 of complexity at most 𝛼. The
cardinality of 𝐴 exceeds 2𝛼+𝛽 since all smaller sets were taken into account by
construction. Therefore

𝑑(𝑡 |𝐴) = log #𝐴− 𝐶(𝑡 |𝐴) > (𝛼 + 𝛽) − 𝐶(𝑡) > (𝛼 + 𝛽) − 𝛼 > 𝛽

(one should also add a reserve of size 𝑐 log 𝑛 to compensate for logarithmic terms
that we ignore). �

In the other direction we have the following trivial bound:

Theorem 249. If 𝛼 + 𝛽 > 𝑛 + 𝑂(log 𝑛), all the strings of length 𝑛 are (𝛼, 𝛽)-
stochastic.

Proof. Indeed, we can split all 𝑛-bit strings into 2𝛼 sets of size 2𝛽 . �

As we will see later, the reality is closer to this bound than to the bound of the
previous theorem. See Problem 365 on p. 457.

It is natural to ask how often non-stochastic objects appear. For example, what
is the fraction of non-stochastic objects among all 𝑛-bit strings? It is immediately
clear that this fraction does not exceed 2−𝛽 : let 𝐴 be the set of all 𝑛-bit strings
and note that strings with deficiency 𝛽 or more form only 2−𝛽-fraction of 𝐴.

On the other hand, if 2𝛼 + 𝛽 ≪ 𝑛, we can extend the reasoning used to prove
Theorem 248. Namely, for some ℎ we consider all sets of complexity at most 𝛼 and
cardinality at most 2𝛼+𝛽+ℎ. Then we take first 2ℎ elements not covered by these
sets; it is possible if 2𝛼 + 𝛽 + ℎ < 𝑛. The complexity of those elements is bounded
by 𝛼+ℎ, so its deficiency in any set of size greater than 2𝛼+𝛽+ℎ elements exceeds 𝛽.
These arguments (with 𝑂(log 𝑛)-corrections needed) prove the following statement:

Theorem 250. The fraction of 𝑛-bit strings that are not (𝛼, 𝛽)-stochastic, is
at least 2−2𝛼−𝛽−𝑂(log𝑛).

Instead of fraction of non-stochastic strings (i.e., the probability of obtaining
such a string by tossing a fair coin), one can ask about their total a priori proba-
bility (i.e., the probability of obtaining such a string by an universal randomized
algorithm). More formally, let m(x) be the discrete a priori probability of 𝑥 as de-
fined in Chapter 4: m(𝑥) = 2−𝐾(𝑥)+𝑂(1). Then we consider the sum of m(𝑥) over
all 𝑥 of length 𝑛 that are not (𝛼, 𝛽)-stochastic. The following theorem estimates
this sum:

Theorem 251. If 2𝛼 + 𝛽 < 𝑛−𝑂(log 𝑛) and 𝛼 < 𝛽 −𝑂(log 𝑛), then this sum
equals 2−𝛼+𝑂(log𝑛).

Proof. We need to prove both lower and upper bounds for this sum. The lower
bound easily follows from the proof of Theorem 248. Indeed, a non-stochastic string
constructed in that proof had complexity 𝛼 and therefore its a priori probability is
2−𝛼 (as usual, we ignore 𝑂(log 𝑛) corrections needed, now in the exponent).

To get an upper bound, consider the sum of m(𝑥) over all strings of length 𝑛.
That sum is a real number 𝜔 6 1. Let �̄� be the number represented by first 𝛼 bits
in the binary representation of 𝜔.

438 14. ALGORITHMIC STATISTICS

Consider the following measure 𝑃 on strings of length 𝑛 associated with �̄�.
Start lower semicomputation of 𝑚(𝑥) for all strings 𝑥 of length 𝑛 and continue
until the sum of all obtained lower bounds for 𝑚(𝑥) reaches �̄�. Let 𝑃 (𝑥) be the
lower bound for m(𝑥) we get at that time. If �̄� and 𝑛 are given, we can compute
𝑃 (𝑥) for all 𝑥 of length 𝑛. Therefore the complexity of 𝑃 is at most 𝛼. The sum of
differences between m(𝑥) and 𝑃 (𝑥) over all strings of length 𝑛 is bounded by 2−𝛼.

As we have seen in Problem 348, one can use arbitrary finite probabilistic dis-
tribution in the definition of stochasticity (with 𝑂(log 𝑛)-change in the parameters),
not only the uniform ones. It remains to show that the total a priori probability of
all strings 𝑥 that have 𝑑(𝑥 |𝑃) > 𝛽 is bounded by 2−𝛼. Indeed, for those strings we
have

log𝑃 (𝑥) − 𝐶(𝑥 |𝑃) > 𝛽.

The complexity of 𝑃 is bounded by 𝛼 and therefore 𝐶(𝑥) exceeds 𝐶(𝑥 |𝑃) at most
by 𝛼. Thus we have

− log𝑃 (𝑥) − 𝐶(𝑥) > 𝛽 − 𝛼.

We ignore 𝑂(log 𝑛)-terms, so we can replace plain complexity by prefix complexity:

− log𝑃 (𝑥) −𝐾(𝑥) > 𝛽 − 𝛼.

Prefix complexity can be defined in terms of a priori probability, so we get

log(m(𝑥)/𝑃 (𝑥)) > 𝛽 − 𝛼

for all 𝑥 that have deficiency exceeding 𝛽 with respect to 𝑃 . By assumption,
𝛼 < 𝛽 with some safety margin (enough to compensate all the simplifications
we made), so we may assume that for all those 𝑥 we have 𝑃 (𝑥) < m(𝑥)/2, or
(m(𝑥)−𝑃 (𝑥)) > m(𝑥)/2. Recall that the sum of m(𝑥)−𝑃 (𝑥) over all 𝑥 of length
𝑛 does not exceed 2−𝛼 by construction of �̄�. Hence the sum of m(𝑥) over all strings
of deficiency (with respect to 𝑃) exceeding 𝛽 is at most 2−𝛼+1, and this is what we
wanted to prove. �

The notion of stochastic object can be considered as a finite analog of the
notion of a Martin-Löf random sequence with respect to a computable measure.
The following problem expresses this similarity in more formal terms.

349 Assume that a sequence 𝜔 is Martin-Löf random with respect to some
computable measure. Prove that for all 𝑛 the 𝑛-bit prefix of the sequence 𝜔 is
an (𝑂(log 𝑛), 𝑂(log 𝑛))-stochastic string. [Hint: use Problem 348.] Conclude that
there is an infinite sequence that is not Martin-Löf random with respect to any
computable measure. [Hint: adding a short prefix does not affect non-stochasticity.]

Historical remarks. The first definition of (𝛼, 𝛽)-stochasticity was given by Kol-
mogorov (the authors learned it from his talk given in 1981 [82], but most probably
it was formulated earlier in 1970s; the definition appeared in print in [173]). Kol-
mogorov and [173] used the formula log |𝐴| − 𝐶(𝑥) for randomness deficiency.

The existence of non-stochastic objects (Theorem 248) was noted in [173].
The first estimates of the a priori measure for the set of non-stochastic objects
appeared in [208]. The first tight bound 2−𝛼 for the a priori measure of (𝛼, 𝛽)-non-
stochastic objects is due to An. Muchnik [138, Theorem 10.10], who established
it for all (𝛼, 𝛽) with 3𝛼 + 𝛽 6 𝑛. Both papers [208] and [138] used Kolmogorov
formula log |𝐴| − 𝐶(𝑥) for randomness deficiency.

14.3. TWO-PART DESCRIPTIONS 439

Theorem 251 appears to be new. Note that this theorem and Muchnik’s re-
sult use incomparable assumptions on the parameters 𝛼, 𝛽. Besides, Theorem 251
estimates the a priori measure of a larger set than Muchnik’s result.

14.3. Two-part descriptions

There is another natural way to estimate the quality of statistical hypotheses.
Let us start with the following remark. If a string 𝑥 belongs to some finite set 𝐴,
we can specify 𝑥 in two steps:

∙ first, we specify 𝐴;
∙ then we specify the ordinal number of 𝑥 in 𝐴 (in some natural ordering,

say, the lexicographic one).

Therefore, we get 𝐶(𝑥) 6 𝐶(𝐴) + log #𝐴 for every element 𝑥 of arbitrary finite set
𝐴 (again with logarithmic precision).

There can be many two-part descriptions of the same string 𝑥 (with different
sets 𝐴). Which of them are “better”? Naturally, we would like to make both
parts smaller (by finding a simpler and smaller set 𝐴): if we can decrease one of
the parameters not increasing the other one, this is an improvement. But what is
better: simple 𝐴 or small complex 𝐴? We can compare the lengths of the resulting
two-part descriptions and choose a set 𝐴 which gives the shorter one. This approach
is often called Minimum Description Length principle, or MDL.

The following simple observation shows that we can move the information from
the first part of the description into its second part (leaving the total length almost
unchanged). In this way we make the set smaller (the price we pay is that its
complexity increases).

Theorem 252. Let 𝑥 be a string and 𝐴 be a finite set that contains 𝑥. Let 𝑖
be a non-negative integer such that 𝑖 6 log #𝐴. Then there exists a finite set 𝐴′

containing 𝑥 such that #𝐴′ 6 #𝐴/2𝑖 and 𝐶(𝐴′) 6 𝐶(𝐴)+ 𝑖+𝑂(log min{𝑖, 𝐶(𝐴)}).

Proof. List all the elements of 𝐴 in some (say, lexicographic) order. Then
split the list into 2𝑖 parts (first #𝐴/2𝑖 elements, next #𝐴/2𝑖 elements etc.; we omit
evident precautions for the case when #𝐴 is not a multiple of 2𝑖). Then let 𝐴′ be
the part with 𝑥. To specify 𝐴′, it is enough to specify 𝐴 and the part number,
which requires at most 𝑖 bits. (The logarithmic term at the end is needed to form
a pair of these two descriptions; it is enough to specify the length of the shorter
description.) �

We will use the following convenient (though non-standard) terminology: a set
𝐴 is called a (𝑘 * 𝑙)-description (of every its element) if 𝐶(𝐴) 6 𝑘 and log #𝐴 6 𝑙.
Theorem 252 can now be formulated as follows: if some 𝑥 has a (𝑘 * 𝑙)-description,
then for every 𝑖 ∈ [0, 𝑙] it also has ((𝑘 + 𝑖 + 𝑂(log min(𝑖, 𝑘))) * (𝑙 − 𝑖))-description.

For a given string 𝑥 let us consider the set 𝑃𝑥 of all pairs ⟨𝑘, 𝑙⟩ such that 𝑥 has
an (𝑘 * 𝑙)-description, i.e., there exists a set 𝐴 containing 𝑥 with 𝐶(𝐴) 6 𝑘 and
log #𝐴 6 𝑙. Obviously, this set is “closed upwards” and contains with each point
all points on the right (with bigger 𝑘) and on the top (with bigger 𝑙). The last
theorem says that we can also move down-right adding ⟨𝑖,−𝑖⟩ (with logarithmic
precision).

We will see that movement in the opposite direction is not always possible. So,
having two-part descriptions with the same total length, we should prefer the one
with bigger set (since it always can be converted into others, but not vice versa).

440 14. ALGORITHMIC STATISTICS

Let us look again at the set 𝑃𝑥 for some 𝑛-bit string 𝑥, see Figure 1. It contains
the point ⟨0, 𝑛⟩ that corresponds to 𝐴 = B𝑛, the set of all 𝑛-bit strings (with
logarithmic precision). On the other side the set 𝑃𝑥 contains the point ⟨0, 𝐶(𝑥)⟩
that corresponds to the singleton 𝐴 = {𝑥}. The boundary of 𝑃𝑥 is some curve
connecting these two points, and this curves never gets into the triangle 𝑘+𝑠 6 𝐶(𝑥)
and always goes down (when moving from left to right) with slope at least −1 or
more, as Theorem 252 says.

𝐶(𝑥)

𝑙(𝑥)

𝐶(𝑥)

𝑃𝑥

complexity

logsize

Figure 1. The set 𝑃𝑥

This picture raises a natural question: which boundary curves are possible and
which are not? Is it possible, for example, that the boundary goes along the dotted
line on Figure 1? The answer is positive: take a random string of desired complexity
and add trailing zeros to achieve desired length. Then the point ⟨0, 𝐶(𝑥)⟩ (the left
end of the dotted line) corresponds to the set 𝐴 of all strings of the same length
having the same trailing zeros. We know that the boundary curve cannot go down
slower than with slope −1 and that it should end at ⟨𝐶(𝑥), 0⟩, therefore it follows
the dotted line (with logarithmic precision).

A more difficult question: is it possible that the boundary curve starts from
⟨0, 𝑛⟩ and goes with the slope −1 to the very end and then goes down rapidly to
⟨𝐶(𝑥), 0⟩ (Figure 2)? Such a string 𝑥, informally speaking, would have essentially
only two types of statistical explanations: a set of all strings of length 𝑛 (and its
parts obtained by Theorem 252) and the exact description, the singleton {𝑥}.

350 Show that such 𝑥 is not (𝛼, 𝛽)-stochastic if 𝛼, 𝛽 are smaller than 𝐶(𝑥)
and 𝑛− 2𝐶(𝑥), respectively.

It turns out that not only these two opposite cases are possible, but also all
intermediate curves (assuming the have a bounded slope and are simple enough),
at least with logarithmic precision. More precisely, the following statement holds:

Theorem 253. Let 𝑘 6 𝑛 be two integers and let 𝑡0 > 𝑡1 > . . . > 𝑡𝑘 be a strictly
decreasing sequence of integers such that 𝑡0 6 𝑛 and 𝑡𝑘 = 0; let 𝑚 be the complexity
of this sequence. Then there exists a string 𝑥 of complexity 𝑘+𝑂(log 𝑛)+𝑂(𝑚) and
length 𝑛+𝑂(log 𝑛)+𝑂(𝑚) for which the boundary curve of 𝑃𝑥 coincides with the line
(0, 𝑡0)–(1, 𝑡1)–. . . –(𝑘, 𝑡𝑘) with 𝑂(log 𝑛) + 𝑂(𝑚) precision: the distance between the
set 𝑃𝑥 and the set 𝑇 = {⟨𝑖, 𝑗⟩ | (𝑖 < 𝑘) ⇒ (𝑗 > 𝑡𝑖)} is bounded by 𝑂(log 𝑛) + 𝑂(𝑚).

14.3. TWO-PART DESCRIPTIONS 441

𝐶(𝑥)

𝑙(𝑥)

𝐶(𝑥)

complexity

logsize

Figure 2. Two opposite possibilities for a boundary curve

(We say that the distance between two sets 𝑃 and 𝑄 is at most 𝜀 if 𝑃 is
contained in 𝜀-neighborhood of 𝑄 and vice versa.)

Proof. For every 𝑖 in the range 0 . . . 𝑘 we list all the set of complexity at
most 𝑖 and size at most 2𝑡𝑖 . For a given 𝑖 the union of all these sets is denoted by
𝑆𝑖. It contains at most 2𝑖+𝑡𝑖 elements. (Here and later we omit constant factors
and factors polynomial in 𝑛 when estimating cardinalities, since they correspond
to 𝑂(log 𝑛) additive terms for lengths and complexities.) Since the sequence 𝑡𝑖
strictly decreases (this corresponds to slope −1 in the picture), the sums 𝑖 + 𝑡𝑖 do
not increase, therefore each 𝑆𝑖 has at most 2𝑡0 = 2𝑛 elements. The union of all 𝑆𝑖

therefore also has at most 2𝑛 (up to a polynomial factor, see above). Therefore, we
can find a string of length 𝑛 (actually 𝑛 + 𝑂(log 𝑛)) that does not belong to any
𝑆𝑖. Let 𝑥 be a first such string in some order (e.g., in lexicographic order).

By construction, the set 𝑃𝑥 lies above the curve determined by 𝑡𝑖. So we need
to estimate the complexity of 𝑥 and prove that 𝑃𝑥 follows the curve (i.e., that 𝑇 is
contained in the neighborhood of 𝑃𝑥).

Let us start with the upper bound for the complexity of 𝑥. The list of all objects
of complexity at most 𝑘 plus the full table of their complexities have complexity
𝑘+𝑂(log 𝑘), since it is enough to know 𝑘 and the number of terminating programs
of length at most 𝑘. Except for this list, we need to know the sequence 𝑡0, . . . , 𝑡𝑘
whose complexity is 𝑚.

The lower bound: the complexity of 𝑥 cannot be less than 𝑘 since all the
singletons of this complexity were excluded (via 𝑇𝑘).

It remains to show that for every 𝑖 6 𝑘 we can put 𝑥 into a set 𝐴 of complexity
𝑖 (or slightly bigger) and size 2𝑡𝑖 (or slightly bigger). For this we enumerate a
sequence of sets of correct size and show that one of the sets will have the required
properties; if this sequence of sets is not very long, the complexity of its elements
is bounded. Here are the details.

We start by taking the first 2𝑡𝑖 strings of length 𝑛 as our first set 𝐴. Then we
start enumerating all finite sets of complexity at most 𝑗 and of size at most 2𝑡𝑗 for
all 𝑗 = 0, . . . , 𝑘, and get an enumeration of all 𝑆𝑗 . Recall that 𝑥 is the first elements
that does not belong to all such 𝑆𝑗 . So, when a new set of complexity at most 𝑗 and

442 14. ALGORITHMIC STATISTICS

of size at most 2𝑡𝑗 appears, all its elements are included in 𝑆𝑗 and removed from
𝐴. Until all elements of 𝐴 are deleted, we have nothing to worry, since 𝐴 covers
the minimal remaining element. If (and when) all elements of 𝐴 are deleted, we
replace 𝐴 by a new set that consists of first 2𝑡𝑖 undeleted (yet) strings of length 𝑛.
Then we wait again until all the elements of this new 𝐴 are deleted, if (and when)
this happens, we take 2𝑡𝑖 first undeleted elements as new 𝐴, etc.

The construction guarantees the correct size of the sets and that one of them
covers 𝑥 (minimal non-deleted element). It remains to estimate the complexity of
the sets we construct in this way.

First, to start the process that generates these sets, we need to know the length
𝑛 (actually something logarithmically close to 𝑛) and the sequence 𝑡0, . . . , 𝑡𝑘. In
total we need 𝑚 + 𝑂(log 𝑛) bits. To specify each version of 𝐴, we need to add its
version number. So we need to show that the number of different 𝐴’s that appear
in the process is at most 2𝑖 or slightly bigger.

A new set 𝐴 is created when all the elements of the old 𝐴 are deleted. Let us
distinguish two types of changes of 𝐴: first changes after a new set of complexity
𝑗 appears with 𝑗 6 𝑖 and the remaining changes. The changes of the first type can
happen only 𝑂(2𝑖) times since there are at most 𝑂(2𝑖) sets of complexity at most
𝑖. Thus it suffices to bound the number of changes of the second type. For those
changes all the elements of 𝐴 are removed due to elements of 𝑆𝑗 with 𝑗 > 𝑖. We
have at most 2𝑗+𝑡𝑗 elements in 𝑆𝑗 . Since 𝑡𝑗 + 𝑗 6 𝑡𝑖 + 𝑖, the total number of deleted
elements only slightly exceeds 2𝑡𝑖+𝑖, and each set 𝐴 consists of 2𝑡𝑖 elements, so we
get about 2𝑖 changes of 𝐴. �

351 Prove we cannot strengthen Theorem 253 by requiring the distance be-
tween the sets 𝑃𝑥 and 𝑇 be 𝑂(log 𝑛) (and not 𝑂(log 𝑛)+𝑂(𝑚)). [Hint. The number
of strings of length 𝑛 + 𝑂(log 𝑛) is much smaller than the number of sets 𝑇 that
satisfy the conditions of the theorem.]

352 Prove that there is no algorithm that given any 𝑥 finds the boundary of
the set 𝑃𝑥 with accuracy 𝑂(log 𝑙(𝑥)).

Stronger results on non-computability of the boundary of 𝑃𝑥 can be found in
the paper [201].

Theorem 253 shows that the value of the complexity 𝐶(𝑥) does not completely
describe the properties of 𝑥; different strings of the same complexity 𝑥 can have
different boundary curves of 𝑃𝑥. This curve can be considered as an infinite-
dimensional characterization of 𝑥.

To understand this characteristic better, the following notation is useful. The
classification of strings according to their complexity can be represented by an
increasing sequence of sets 𝑆0 ⊂ 𝑆1 ⊂ 𝑆2 . . ., where 𝑆𝑖 is the set of all strings
having complexity at most 𝑖. The sets 𝑆𝑖 are enumerable (uniformly in 𝑖); the size
of 𝑆𝑖 is 𝑂(2𝑖).

Now, instead of this linear classification, we have a two-dimensional family 𝑆𝑖,𝑗

where 𝑆𝑖,𝑗 is the union of all finite sets 𝐴 with 𝐶(𝐴) 6 𝑖 and log #𝐴 6 𝑗 (these sets
were called (𝑖 * 𝑗)-descriptions of their elements). We get a two-dimensional table
formed by 𝑆𝑖,𝑗 ; note that it is monotone along both coordinates, i.e., 𝑆𝑖,𝑗 increases
when 𝑖 or 𝑗 increase. Theorem 252 says that this table is (almost) increasing along
the diagonal:

𝑆𝑖,𝑗 ⊂ 𝑆𝑖+𝑘,𝑗−𝑘.

14.3. TWO-PART DESCRIPTIONS 443

(As usual, we ignore logarithmic corrections: one should write

𝑆𝑖,𝑗 ⊂ 𝑆𝑖+𝑘+𝑂(log 𝑘),𝑗−𝑘

instead.)
To understand better the meaning of this two-dimensional stratification, let us

look at the equivalent definitions of 𝑆𝑖,𝑗 . As usual, we ignore the logarithmic terms
and consider as identical two families 𝑆 and 𝑆′ if 𝑆𝑖,𝑗 ⊂ 𝑆′

𝑖+𝑂(log 𝑙),𝑗+𝑂(log 𝑙) where

𝑙 = 𝑖 + 𝑗.
By an “enumerated list” in the following theorem we mean an algorithm that

(from time to time) emits binary strings (may be, with repetitions); the length of
such a list includes repetitions (each string is counted several times according to
its multiplicity). The condition (c) assumes that the algorithm can produce strings
in groups of arbitrary size (different groups produced by the same algorithm may
have different sizes).

Theorem 254. The following properties of a string 𝑥 are equivalent in this
sense (each of them implies the others with logarithmic change in the parameters):

(a) 𝑥 belongs to 𝑆𝑖,𝑗 (has an (𝑖 * 𝑗)-description);
(b) there exists a simple (=of complexity 𝑂(log(𝑖+ 𝑗))) enumerated list of size

at most 2𝑖+𝑗 where 𝑥 appears (for the first time) at least 2𝑗 steps before the end of
the list;

(c) there exists a simple (=of complexity 𝑂(log(𝑖 + 𝑗))) enumerated list of size
at most 2𝑖+𝑗 that includes 𝑥 where strings are produced in at most 2𝑖 groups;

(d) in every simple (=of complexity 𝑂(log(𝑖+𝑗))) enumerated list that includes
all the strings of complexity at most 𝑖 + 𝑗, the string 𝑥 appears (for the first time)
at least 2𝑗 steps before the end of the list.

Proof. To show that (a) implies (c), assume that (a) is true. Enumerate all
sets of complexity at most 𝑖 and size at most 2𝑗 . When a new set appears, it forms
a new group added to the list. In this way we get at most 2𝑖 groups of size at most
2𝑗 , so the total length of the enumerated list is at most 2𝑖+𝑗 . The complexity of
the enumeration algorithm is logarithmic since only 𝑖 and 𝑗 should be specified.

To get (b) from (a), we should modify the construction slightly and add 2𝑗

arbitrary elements after each portion. The total number of elements increases then
by 2𝑖+𝑗 and is still acceptable.

On the other hand, (b) easily implies (a): we need to split the list in groups of
size 2𝑗 . Then we get at most 2𝑖 groups, and only 2𝑗 last elements are left outside
the groups. Therefore, 𝑥 is covered by some group. Each group is determined by its
ordinal number and therefore has complexity 𝑖 (plus logarithmic term that covers
the complexity of the list).

To get (a) from (c), we split each group into pieces of size 2𝑗 (except for one
last piece that can be smaller). The number of full pieces is at most 2𝑖, since the
length of the list is at most 2𝑖+𝑗 . The same is true for the number of non-full pieces.
So every piece can be specified by its ordinal number, so its complexity does not
exceed 𝑖.

So the properties (a)–(c) are equivalent (modulo logarithmic change in parame-
ters), and it remains to show that they are equivalent to (d). Evidently, (d) implies
(b), so it is enough to show that (a) implies (d).

So let us assume that 𝑥 is an element of some finite set 𝐴 that has complexity
at most 𝑖 and size at most 2𝑗 . All elements of 𝐴 have complexity at most 𝑖 + 𝑗 +

444 14. ALGORITHMIC STATISTICS

𝑂(log(𝑖 + 𝑗)); as usually, we ignore the logarithmic term and hope that the reader
can make necessary corrections.

Assume also that an enumerated list is given that includes all the strings of
complexity at most 𝑖 + 𝑗. We want to show that 𝑥 will appear in this list not too
close to the end and at least 2𝑗 strings will follow it. Knowing the set 𝐴, we may
perform the enumeration until all the elements of 𝐴 appear in the list. Let 𝐵 be the
part of the list enumerated at that moment. The set 𝐵 is a finite set of complexity
at most 𝑖 (since it is determined by 𝐴 and the enumerating algorithm, which is
assumed to be simple). Now consider the (lexicographically) first 2𝑗 strings outside
𝐵. Each of these strings is determined by 𝐵 (of complexity 𝑖) and ordinal number
(at most 𝑗 bits), so they have complexity at most 𝑖+𝑗. And all these strings should
appear in the enumeration after 𝑥. �

One could say that we have introduces an additional classification of strings of
complexity at most 𝑙 by measuring the distance to the end of the list. In terms of
our two-dimensional stratification we can speak of an increasing sequence of sets
𝑆𝑖,𝑗 on the diagonal 𝑖+𝑗 = 𝑙. (Strictly speaking, the increasing sequence is obtained
only after logarithmic corrections.) Random strings of length 𝑛 6 𝑙−𝑂(log 𝑙) (i.e.,
the strings of length 𝑛 and complexity 𝑛) are at the beginning of this classification,
having (𝑙 * 0)-descriptions. At the other end we have (few) strings that have only
(0 * 𝑙)-descriptions.

353 Show that all strings at the end of the enumerated list of strings of
complexity at most 𝑛 (that are followed only by poly(𝑛) strings) are “almost equal”
in the sense that the conditional complexity of one of them given the other one is
𝑂(log 𝑛).

One might say that the difference between 𝑙 and the logarithm of the number of
strings after 𝑥 in the enumerated list of all strings of complexity at most 𝑙 measure
how “strange” 𝑥 is. (The equivalence of (b) and (d) guarantees that this measure
does not depend significantly on the choice of enumeration.) Random strings of
length at most 𝑙−𝑂(log 𝑙) are not strange at all, while the strings that are close to
the end of the list, have maximal “strangeness” (close to 𝑙). But one should keep
in mind that

∙ the “strangeness” of a given string 𝑥 of complexity 𝑘 (that is determined
by its position in the enumerated list of all strings of complexity at most
𝑘) can decrease significantly if we consider the same 𝑥 as an element of
the list of all strings of complexity at most 𝑙 for some 𝑙 > 𝑘. In fact,
each string 𝑥 determines a function that maps 𝑙 > 𝐶(𝑥) to the number
of strings after 𝑥 in the enumeration of strings of complexity at most 𝑙.
It is essentially the same curve we considered before (the boundary curve
for 𝑃𝑥) but transformed into other coordinates: for every 𝑙 we look at the
moment when the diagonal line 𝑖 + 𝑗 = 𝑙 gets inside 𝑃𝑥.

∙ the “strangeness” of strings 𝑥 and 𝑦 can be very different even if 𝐶(𝑥 |𝑦) ≈
0 and 𝐶(𝑦 |𝑥) ≈ 0 at the same time. (Indeed, if 𝑙 > 𝐶(𝑥) + 𝑂(log𝐶(𝑥))
then the shortest description for a string 𝑥 is random and is not “strange”
even if 𝑥 were.)

However, if 𝑥 and 𝑦 correspond to each other under a simple com-
putable bijection, this is not possible (see the next problem).

14.3. TWO-PART DESCRIPTIONS 445

354 Assume that 𝑥 and 𝑦 correspond to each other under a bijection computed
by a program of complexity 𝑡. Prove that if 𝑥 ∈ 𝑆𝑖,𝑗 , then 𝑦 ∈ 𝑆𝑖+𝑂(𝑡),𝑗 .

Recall that there is a simple computable bijection that maps a string 𝑥 to a
string 𝑦 if and only if the total complexity of each of those strings conditional to
the other one is negligible (Problem 31 on p. 50).

By very similar arguments as those used to prove Theorem 254 we can show
that 𝑘𝑛 (and also 𝑚𝑛) for different 𝑛 are closely related:

355 Prove that for all 𝑛′ < 𝑛 the string 𝑘𝑛′ (i.e. the binary expansion
of the number 𝑘𝑛′) is equivalent to the length 𝑛′ prefix of the string 𝑘𝑛. (Two
strings 𝑥, 𝑦 are called equivalent if both conditional complexities 𝐶(𝑥 |𝑦), 𝐶(𝑦 |𝑥)
are 𝑂(log 𝑛)). Show that strings 𝑚𝑛 have a similar property. [Hint [201]: For 𝑘𝑛 we
have to show that given any number 𝑇 larger than B (𝑛− 𝑠) we are able to find all
strings of complexity at most 𝑛 except less than 2𝑠 such strings, and the other way
around. Given such a 𝑇 start an enumeration of strings of complexity at most 𝑛
and output them in portions of size 2𝑠. After 𝑇 steps all the complete portions will
appear. Indeed, the number of steps needed to output all complete portions can be
computed from the number of complete portions which has at most 𝑛− 𝑠 bits. The
number of remaining strings is less than 2𝑠. The opposite direction: given a list of
strings of complexity at most 𝑛 except less than 2𝑠 such strings, we again start an
enumeration of strings of complexity at most 𝑛 and wait until all the given strings
appear in that enumeration. Let 𝑇 denote the number of step when it happens.
Then any number 𝑡 > 𝑇 has complexity at least 𝑛− 𝑠. Indeed, if 𝐶(𝑡) < 𝑛− 𝑠 then
consider 2𝑠 first strings outside the list. Each of them has complexity at most 𝑛, a
contradiction. For 𝑚𝑛 the arguments are entirely similar.]

The next result generalizes the statement of Problem 39 on p. 53: if a string 𝑥
has many descriptions of size 𝑘, it has shorter descriptions. Now we speak about
(𝑖 * 𝑗)-descriptions of 𝑥, i.e., finite sets containing 𝑥 that have complexity at most
𝑖 and cardinality at most 2𝑗 .

Theorem 255. Assume that a string 𝑥 has at least 2𝑘 sets as (𝑖*𝑗)-descriptions.
Then 𝑥 has some (𝑖 * (𝑗 − 𝑘))-description and even some ((𝑖− 𝑘) * 𝑗)-description.

In this statement we omit (as usual) logarithmic error terms (the parameters
should be increased by 𝑂(log(𝑖 + 𝑗 + 𝑘))). The word “even” reminds us about
Theorem 252 that allows us to convert (𝑖−𝑘)*𝑗 descriptions to 𝑖*(𝑗−𝑘) descriptions.

Proof. The first (simpler) statement is an easy consequence of the arguments
used in the proof of Theorem 254. Let us enumerate all sets 𝐴 of complexity at
most 𝑖 and size at most 2𝑗 and see which strings belong to 2𝑘 or more sets (are
covered with multiplicity at least 2𝑘). We have at most 2𝑖+𝑗/2𝑘 such elements, i.e.,
2𝑖+𝑗−𝑘, and these elements can be enumerated in at most 2𝑖 groups (each new set 𝐴
may create one new group). So it remains to recall statement (c) of Theorem 254.

To get a stronger second statement we need to decrease the number of groups in
this argument to 2𝑖−𝑘 (keeping the number of elements approximately at the same
level). It can be done as follows. Again we enumerate sets complexity at most 𝑖 and
size at most 2𝑗 and look at the strings that are covered many times. But now we
also consider the strings that are covered with multiplicity 2𝑘−1 (half of the “full”
multiplicity considered before); we call them “candidates”. When an element with
full multiplicity appears, we emit this element together with all candidates that exist
at that moment.

446 14. ALGORITHMIC STATISTICS

In this way we may emit elements that will never reach the full multiplicity,
but this is not a problem since the total number of emitted elements can increase at
most twice compared to our count. The advantage is that the number of groups is
now much smaller: after all candidates are emitted, we need at least 2𝑘−1 new sets
to get a new element with full multiplicity (its multiplicity should increase from
2𝑘−1 to 2𝑘). �

This result has the following important corollary:

Theorem 256. If a string 𝑥 has (𝑖 * 𝑗)-description 𝐴 such that 𝐶(𝐴 |𝑥) > 𝑘,
then 𝑥 has also a (𝑖 * (𝑗 − 𝑘))-description and even ((𝑖− 𝑘) * 𝑗)-description.

Again we omit the logarithmic corrections needed for the exact formulation.

Proof. Knowing 𝑥 and the values of 𝑖 and 𝑗 (the latter information is of
logarithmic size), we can enumerate all (𝑖 * 𝑗)-descriptions of 𝑥. Therefore, the
complexity of each (𝑖 * 𝑗)-description given 𝑥 does not exceed the logarithm of the
number of descriptions, and if there is a (𝑖*𝑗)-description 𝐴 with large 𝐶(𝐴 |𝑥), this
means that there are many descriptions and we can apply the previous theorem. �

This statement shows that the descriptions with optimal parameters (on the
boundary of 𝑃𝑥 for a given 𝑥) are simple relative to 𝑥. Which, intuitively speaking,
is not surprising at all: if a description contains some irrelevant information (not
related to 𝑥), it hardly could be optimal.

Historical remarks. The idea to consider two-part descriptions with optimal
parameters goes back to Kolmogorov. Theorem 252 was mentioned by Kolmogorov
in his talk in 1974 [81]. It appeared in print in [60, 177]. Possible shapes of
the set 𝑃𝑥 (Theorem 253) were found in [201]. The enumerations of all objects of
bounded complexity and their relation to two-part descriptions were studied in [60,
Section III, E]. Theorem 254, although inspired by [60] and [201], is presumably
new. Theorems 255 and 256 appeared in [201].

14.4. Hypotheses of restricted type

In this section we consider the restricted case: the sets (considered as de-
scriptions, or statistical hypotheses) are taken from some family 𝒜 that is fixed in
advance. (Elements of 𝒜 are finite sets of binary strings.) Informally speaking, this
means that we have some a priori information about the black box that produces
a given string: this string is obtained by a random choice in one of the 𝒜-sets, but
we do not know in which one.

Before we had no restrictions (the family 𝒜 was the family of all finite sets).
It turns out that the results obtained so far can be extended (with weaker bounds)
to other families that satisfy some natural conditions. Let us formulate these con-
ditions.

(1) The family 𝒜 is enumerable. This means that there exists an algorithm
that prints elements of 𝒜 as lists, with some separators (saying where one element
of 𝒜 ends and another one begins).

(2) For every 𝑛 the family 𝒜 contains the set B𝑛 of all 𝑛-bit strings.
(3) The exists some polynomial 𝑝 with the following property: for every 𝐴 ∈ 𝒜,

for every natural 𝑛 and for every natural 𝑐 < #𝐴 the set of all 𝑛-bit strings in 𝐴
can be covered by at most 𝑝(𝑛) · #𝐴/𝑐 sets of cardinality at most 𝑐 from 𝒜.

14.4. HYPOTHESES OF RESTRICTED TYPE 447

For a string 𝑥 we denote by 𝑃𝒜
𝑥 the set of pairs ⟨𝑖, 𝑗⟩ such that 𝑥 has (𝑖 * 𝑗)-

description that belongs to 𝐴. The set 𝑃𝒜
𝑥 is a subset of 𝑃𝑥 defined earlier; the

bigger 𝒜 is, the bigger is 𝑃𝒜
𝑥 . The full set 𝑃𝑥 is 𝑃𝒜

𝑥 for the family 𝒜 that contains
all finite sets.

Assume that the family 𝒜 has properties (1)–(3). Then for every string 𝑥 the
set 𝑃𝒜

𝑥 has properties close to the properties of 𝑃𝑥 proved earlier. Namely, for every
string 𝑥 of length 𝑛 the following is true:

∙ The set 𝑃𝒜
𝑥 contains a pair that is 𝑂(log 𝑛)-close to ⟨0, 𝑛⟩. Indeed, the

property (2) guarantees that the family 𝒜 contains the set B𝑛 that is a
(𝑂(log 𝑛) * 𝑛)-description of 𝑥.

∙ The set 𝑃𝒜
𝑥 contains a pair that is 𝑂(1)-close to ⟨𝐶(𝑥), 0⟩. Indeed, the

condition (3) applied to 𝑐 = 1 and 𝐴 = B𝑛 says that every singleton
belongs to 𝐴, therefore each string has ((𝐶(𝑥) + 𝑂(1)) * 0)-description.

∙ The adaptation of Theorem 252 is true: if ⟨𝑖.𝑗⟩ ∈ 𝑃𝒜
𝑥 , then

⟨𝑖 + 𝑘 + 𝑂(log 𝑛), 𝑗 − 𝑘⟩ ∈ 𝑃𝒜
𝑥

for every 𝑘 6 𝑗. (Recall that 𝑛 is the length of 𝑥.) Indeed, assume
that 𝑥 has (𝑖 * 𝑗)-description 𝐴 ∈ 𝒜. For a given 𝑘 we enumerate 𝒜
until we find a family of 𝑝(𝑛)2𝑘 sets of size 2−𝑘#𝐴 (or less) in 𝒜 that
covers all strings of length 𝑛 in 𝐴. Such a family exists due to (3), and
𝑝 is the polynomial from (3). The complexity of the set that covers 𝑥
does not exceed 𝑖 + 𝑘 + 𝑂(log 𝑛 + log 𝑘), since this set is determined
by 𝐴, 𝑛, 𝑘 and the ordinal number of the set in the cover. We may
assume without loss of generality that 𝑘 6 𝑛, otherwise {𝑥} can be used
as ((𝑖+ 𝑘 +𝑂(log 𝑛)) * (𝑗− 𝑘))-description of 𝑥. So the term 𝑂(log 𝑘) can
be omitted.

Example. Consider the family 𝒜 formed by all balls in Hamming’s sense,
i.e., the sets 𝐵𝑦,𝑟 = {𝑥 | 𝑙(𝑥) = 𝑙(𝑦), 𝑑(𝑥, 𝑦) 6 𝑟} (here 𝑙(𝑢) is the length of
binary string 𝑢, and 𝑑(𝑥, 𝑦) is the Hamming distance between two strings 𝑥 and 𝑦
of the same length). The parameter 𝑟 is called the radius of the ball, and 𝑦 is its
center. Informally speaking, this means that the experimental data were obtained
by changing at most 𝑟 bits in some string 𝑦 (and all possible changes are equally
probable). This assumption could be reasonable if some string 𝑦 is sent via an
unreliable channel. Both parameters 𝑦 and 𝑟 are not known to us in advance.

356 Prove that for 𝑟 6 𝑛 the set B𝑛 of 𝑛-bit strings can be covered by
poly(𝑛)2𝑛/𝑉 Hamming balls of radius 𝑟, where 𝑁 stands for the cardinality of such
a ball (i.e., 𝑉 = 1 + 𝑛 + · · · +

(︀
𝑛
𝑟

)︀
).

[Hint. Consider 𝑁 balls of radius 𝑟 whose centers are randomly chosen in
B𝑛. For a given 𝑥 the probability to be not covered by any of them equals (1 −
𝑉/2𝑛)𝑁 < 𝑒−𝑉 𝑁/2𝑛 . For 𝑁 = 𝑛 ln 2 · 2𝑛/𝑉 this upper bound is 2−𝑛, so for this 𝑁
the probability to leave some 𝑥 uncovered is less than 1.]

357 Prove that this family (of all Hamming balls) satisfies conditions (1)–(3)
above.

[Hint for (3). Let 𝐴 be a ball of radius 𝑎 and let 𝑐 be a number less than #𝐴.
We need to cover 𝐴 by balls of cardinality 𝑐 or less. Without loss of generality we
may assume that 𝑎 6 𝑛/2. Indeed, if 𝑎 > 𝑛/2 then we can cover 𝐴 by two balls
𝐴0, 𝐴1 of radius 𝑛/2 (the set of all 𝑛-bit strings can be covered by two balls of radius

448 14. ALGORITHMIC STATISTICS

𝑛/2, whose centers are the all zero sequence and all one sequence). Assuming that
the statement holds for 𝐴0 and 𝐴1, we cover both 𝐴0 and 𝐴1 and then join the
obtained families of balls. As the cardinality of both 𝐴0, 𝐴1 is not more than that
of 𝐴, we are done.

Let 𝑏 be the maximal integer in the interval 0 . . . 𝑛/2 such that the cardinality
|𝐵| of a ball of radius 𝑏 does not exceed 𝑐. We will cover 𝐴 by Hamming balls
of radius 𝑏. When we increase the radius of the ball by one, its size increases as
most 𝑛 + 1 times. Therefore |𝐵| > 𝑐/(𝑛 + 1) and it suffices to cover 𝐴 by at most
poly(𝑛)|𝐴|/|𝐵| balls of radius 𝑏.

Cover all the strings that are at distance at most 𝑏 from the center of 𝐴 by one
ball of radius 𝑏 that has the same center as 𝐴. Partition the remaining points into
spheres of radiuses 𝑑 = 𝑏 + 1, . . . , 𝑎: the sphere of radius 𝑑 consists of all strings at
Hamming distance exactly 𝑑 from the center of 𝐴. As the number of those spheres
is at most 𝑛 it suffices, for every 𝑑 ∈ (𝑏, 𝑛/2], to cover a sphere of radius 𝑑 by at
most poly(𝑛)|𝑆|/|𝐵| balls of radius 𝑏.

Fix 𝑑 and a sphere 𝑆 of radius 𝑑 ∈ (𝑏, 𝑛/2]. We will show that for some 𝑓 a
small family of balls whose centers are at distance 𝑓 from the center of 𝑆 covers 𝑆.
Let 𝑓 be the solution to the equation 𝑏 + 𝑓(1 − 2𝑏/𝑛) = 𝑑 rounded to the nearest
integer. Consider any ball 𝐵 of radius 𝑏 whose center is a distance 𝑓 from the center
of 𝑆.

We claim that a fraction at least 1/ poly(𝑛) of points in 𝐵 belong to 𝑆. Indeed.
let 𝑥 and 𝑦 denote the centers of 𝑆 and 𝐵, respectively. Let 𝑃 denote the set of
all indexes 𝑖 from 1 to 𝑛 where 𝑦 coincides with 𝑥 (i.e., 𝑥𝑖 = 𝑦𝑖) and let 𝑄 stand
for the complement of 𝑃 . Choose a set of (𝑏/𝑛)|𝑃 | indexes from 𝑃 and another
set of (𝑏/𝑛)|𝑄| indexes from 𝑄. Then flip the bits of 𝑦 with chosen indexes. The
resulting string 𝑦′ is at distance (𝑏/𝑛)|𝑃 | + (𝑏/𝑛)|𝑄| = 𝑏 from 𝑦 and at distance
𝑓−(𝑏/𝑛)𝑓+(𝑛−𝑓)(𝑏/𝑛) = 𝑑 from 𝑥. Thus 𝑦′ belongs to the intersection of 𝐵 and 𝑆.

The number of strings 𝑦′ that can be obtained in this way equals
(︀

𝑓
𝑓(𝑏/𝑛)

)︀(︀
𝑛−𝑓

(𝑛−𝑓)(𝑏/𝑛)

)︀
.

Up to a factor poly(𝑛) this number equals

2𝑓ℎ(𝑏/𝑛,1−𝑏/𝑛)+(𝑛−𝑓)ℎ(𝑏/𝑛,1−𝑏/𝑛) = 2𝑛ℎ(𝑏/𝑛,1−𝑏/𝑛).

On the other hand, the cardinality |𝐵| of a ball of radius 𝑏 is equal to this number
as well, up to a factor poly(𝑛).

Thus every ball 𝐵 of radius 𝑏 with center at distance 𝑓 from 𝑥 covers at least
|𝐵|/ poly(𝑛) of points from 𝑆. Choose such ball 𝐵 at random. All points 𝑧 ∈ 𝑆
have the same probability to be covered by 𝐵. As each ball 𝐵 covers |𝐵|/ poly(𝑛)
of points from 𝑆, this probability is at least |𝐵|/(|𝑆|poly(𝑛)). Hence there is a
polynomial 𝑝 such that 𝑝(𝑛)|𝑆|/|𝐵| random balls of radius 𝑏 with centers at distance
𝑓 from 𝑥 cover 𝑆 with positive probability.]

358 Consider the family 𝒜 that consists of all Hamming balls. Prove that

there exist a string 𝑥 for which the set 𝑃𝒜
𝑥 is much smaller than the set 𝑃𝑥. (Exact

statement: for some positive 𝜀 and for all sufficiently large 𝑛 there exists a string 𝑥
of length 𝑛 such that the distance between 𝑃𝒜

𝑥 and 𝑃𝑥 exceeds 𝜀𝑛.) [Hint. Fix some
𝛼 in (0, 1/2) and let 𝑉 be the cardinality of the Hamming ball of radius 𝛼𝑛. Find a
set 𝐸 of cardinality 𝑁 = 2𝑛/𝑉 such that every Hamming ball of radius 𝛼𝑛 contains
at most 𝑛 points from 𝐸. (This property is related to list decoding in the coding
theory. The existence of such a set can be proved by a probabilistic argument: 𝑁
randomly chosen 𝑛-bit strings have this property with positive probability; indeed,

14.4. HYPOTHESES OF RESTRICTED TYPE 449

the probability of a random point to be in 𝐸 is an inverse of the number of points, so
the distribution is close to Poisson distribution with parameter 1, and tails decrease
much faster that 2−𝑛 needed.) Since 𝐸 can be found by an exhaustive search, we
can assume that its complexity is 𝑂(log 𝑛) and ignore it (and other 𝑂(log 𝑛) terms)
in the sequel. Let now 𝑥 be a random element in 𝐸, i.e., a string 𝑥 ∈ 𝐸 of complexity
about log #𝐸. The complexity of a ball 𝐴 of radius 𝛼𝑛 that contains 𝑥, is at least
𝐶(𝑥), since knowing such a ball and an ordinal number of 𝑥 in 𝐴∩𝐸, we can find 𝑥.
Therefore 𝑥 does not have (log #𝐸, log 𝑉)-descriptions in 𝒜. On the other hand, 𝑥
does have (0, log #𝐸)-description if we do not require it to be in 𝒜; the set 𝐸 is such
a description. The point (log #𝐸, log 𝑉) is above the line 𝐶(𝐴)+log #𝐴 = log #𝐸,
so 𝑃𝒜

𝑥 is significantly smaller than 𝑃𝑥.]

359 Describe the set 𝑃𝒜
𝑥 for 𝑥 constructed in the preceding problem. [Hint.

The border of the set 𝑃𝒜
𝑥 consists of a vertical segment 𝐶(𝐴) = 𝑛 − log 𝑉 , where

log #𝐴 6 log 𝑉 , and the segment of slope −1 defined by 𝐶(𝐴)+ log #𝐴 = 𝑛, where
log 𝑉 6 log #𝐴.]

Let 𝒜 be a family that has properties (1)–(3). We now prove a (weaker)
version of Theorem 253 where the precision is only 𝑂(

√
𝑛 log 𝑛) instead of 𝑂(log 𝑛).

Note that with this precision the term 𝑂(𝑚) in Theorem 253 (proportional to the
complexity of the boundary curve) is not needed. Indeed, if we draw a curve on a
cell paper with cell size 𝑂(

√
𝑛) or larger, the curve goes through 𝑂(

√
𝑛) cells and

can be described by 𝑂(
√
𝑛) bits, so we may assume without loss of generality that

the complexity of the curve (the sequence 𝑡𝑖 in the statement below) is 𝑂(
√
𝑛).

Theorem 257. Let 𝑘 6 𝑛 be two integers and let 𝑡0 > 𝑡1 > . . . > 𝑡𝑘 be a
strictly decreasing sequence of integers such that 𝑡0 6 𝑛 and 𝑡𝑘 = 0. Then there
exists a string 𝑥 of complexity 𝑘 + 𝑂(

√
𝑛 log 𝑛) and length 𝑛 + 𝑂(log 𝑛) for which

the distance between the set 𝑃𝒜
𝑥 and the set 𝑇 = {⟨𝑖, 𝑗⟩ | (𝑖 6 𝑘) ⇒ (𝑗 > 𝑡𝑖)} is at

most 𝑂(
√
𝑛 log 𝑛).

Proof. The proof is similar to the proof of Theorem 253. Let us recall first
that proof. We consider the string 𝑥 that is the lexicographically first string (of
suitable length 𝑛′) that is not covered by any “bad” set, i.e., by any set of complexity
at most 𝑖 and size at most 2𝑗 , where the pair (𝑖, 𝑗) is at the boundary of the set 𝑇 .
The length 𝑛′ is chosen in such a way that the total number of strings in all bad sets
is strictly less than 2𝑛

′
. On the other hand, we need “good sets” that cover 𝑥. For

every boundary point (𝑖, 𝑗) we construct a set 𝐴𝑖,𝑗 that contains 𝑥, has complexity
close to 𝑖 and size 2𝑗 . The set 𝐴𝑖,𝑗 is constructed in several attempts. Initially
𝐴𝑖,𝑗 is the set of lexicographically first 2𝑗 strings of length 𝑛′. Then we enumerate
bad sets and delete all their elements from 𝐴𝑖,𝑗 . At some step 𝐴𝑖,𝑗 may become
empty; then we fill it with 2𝑗 lexicographically first strings that are not in the bad
sets (at the moment). By construction the final 𝐴𝑖,𝑗 contains the first 𝑥 that is not
in bad sets (since it is the case all the time). And the set 𝐴𝑖,𝑗 can be described
by the number of changes (plus some small information describing the process as a
whole and the value of 𝑗). So it is crucial to have an upper bound for the number
of changes. How do we get this bound? We note that when 𝐴𝑖,𝑗 becomes empty, it
is filled again, and all the new elements should be covered by bad sets before the
new change could happen. Two types of bad sets may appear: “small” ones (of size
less than 2𝑗) and “large ones” (of size at least 2𝑗). The slope of the boundary line
for 𝑇 guarantees that the total number of elements in all small bad sets does not

450 14. ALGORITHMIC STATISTICS

exceed 2𝑖+𝑗 (up to a poly(𝑛)-factor), so they may make 𝐴𝑖,𝑗 empty only 2𝑖 times.
And the number of large bad sets is 𝑂(2𝑖), since the complexity of each is bounded
by 𝑖. (More precisely, we count separately the number of changes for 𝐴𝑖,𝑗 that are
first changes after a large bad set appears, and the number of other changes.)

Can we use the same argument in the new situation? We can generate bad sets
as before and have the same bounds for their sizes and the total number of their
elements. So the length 𝑛′ of 𝑥 can be the same (in fact, almost the same, as we
will need now that the union of all bad sets is less than half of all strings of length
𝑛′, see below). Note that we now may enumerate only bad sets in 𝒜, since 𝒜 is
enumerable, but we do not even need this condition. What we cannot do is to let
𝐴𝑖,𝑗 to be the set of the first non-deleted elements: we need 𝐴𝑖,𝑗 to be a set from
𝒜.

So we now go in the other direction. Instead of choosing 𝑥 first and then finding
suitable “good” 𝐴𝑖,𝑗 that contain 𝑥, we construct the sets 𝐴𝑖,𝑗 ∈ 𝒜 that change
in time in such a way that (1) their intersection always contains some non-deleted
element (an element that is not yet covered by bad sets); (2) each 𝐴𝑖,𝑗 has not too
many versions. The non-deleted element in their intersection (in the final state) is
then chosen as 𝑥.

Unfortunately, we cannot do this for all points (𝑖, 𝑗) along the boundary curve.
(This explains the loss of precision in the statement of the theorem.) Instead, we
construct “good” sets only for some values of 𝑗. These values go down from 𝑛 to
0 with step

√
𝑛 log 𝑛. We select 𝑁 =

√︀
𝑛/ log 𝑛 points (𝑖1, 𝑗1), . . . , (𝑖𝑁 , 𝑗𝑁) on the

boundary of 𝑇 ; the first coordinates 𝑖1, . . . , 𝑖𝑁 form a non-decreasing sequence, and
the second coordinates 𝑗1, . . . , 𝑗𝑁 split the range 𝑛 . . . 0 into (almost) equal intervals
(𝑗1 = 𝑛, 𝑗𝑁 = 0). Then we construct good sets of sizes at most 2𝑗1 , . . . , 2𝑗𝑁 , and
denote them by 𝐴1, . . . , 𝐴𝑁 . All these sets belong to the family 𝒜. We also let 𝐴0

to be the set of all strings of length 𝑛′ = 𝑛 + 𝑂(log 𝑛); the choice of the constant
in 𝑂(log 𝑛) will be discussed later.

Let us first describe the construction of 𝐴1, . . . , 𝐴𝑁 assuming that the set of
deleted elements is fixed. (Then we discuss what to do when more elements are
deleted.) We construct 𝐴𝑠 inductively (first 𝐴1, then 𝐴2 etc.). As we have said,
#𝐴𝑠 6 2𝑗𝑠 (in particular, 𝐴𝑁 is a singleton), and we keep track of the ratio

(the number of non-deleted strings in 𝐴0 ∩𝐴1 ∩ . . . ∩𝐴𝑠)/2𝑗𝑠 .

For 𝑠 = 0 this ratio is at least 1/2; this is obtained by a suitable choice of 𝑛′

(the union of all bad sets should cover at most half of all 𝑛′-bit strings). When
constructing the next 𝐴𝑠, we ensure that this ratio decreases only by poly(𝑛)-
factor. How? Assume that 𝐴𝑠−1 is already constructed; its size is at most 2𝑗𝑠−1 .
The condition (3) for 𝒜 guarantees that 𝐴𝑠−1 can be covered by 𝒜-sets of size at
most 2𝑗𝑠 , and we need about 2𝑗𝑠−1−𝑗𝑠 covering sets (up to poly(𝑛)-factor). Now we
let 𝐴𝑠 be the covering set that contains maximal number of non-deleted elements
in 𝐴0 ∩ . . .∩𝐴𝑠−1. The ratio can decrease only by the same poly(𝑛)-factor. In this
way we get

(the number of non-deleted strings in 𝐴0 ∩𝐴1 ∩ . . . ∩𝐴𝑠) > 𝛼−𝑠2𝑗𝑠/2,

where 𝛼 stands for the poly(𝑛)-factor mentioned above.2

2Note that for the values of 𝑠 close to 𝑁 the right-hand side can be less than 1; the inequality
than claims just the existence of non-deleted elements. The induction step is still possible: the

non-deleted element is contained in one of the covering sets.

14.4. HYPOTHESES OF RESTRICTED TYPE 451

Up to now we assumed that the set of deleted elements is fixed. What happens
when more strings are deleted? The number of the non-deleted elements in 𝐴0 ∩
. . . ∩ 𝐴𝑠 can decrease, and at some point and for some 𝑠 can become less than the
declared threshold 𝜈𝑠 = 𝛼−𝑠2𝑗𝑠/2. Then we can find minimal 𝑠 where this happens,
and rebuild all the sets 𝐴𝑠, 𝐴𝑠+1, . . . (for 𝐴𝑠 the threshold is not crossed due to the
minimality of 𝑠). In this way we update the sets 𝐴𝑠 from time to time, replacing
them (and all the consequent ones) by new versions when needed.

The problem with this construction is that the number of updates (different
versions of each 𝐴𝑠) can be too big. Imagine that after an update some element is
deleted, and the threshold is crossed again. Then a new update is necessary, and
after this update next deletion can trigger a new update, etc. To keep the number
of updates reasonable, we will ensure that after the update for all the new sets 𝐴𝑙

(starting from 𝐴𝑠) the number of non-deleted elements in 𝐴0 ∩ . . . ∩ 𝐴𝑙 is twice
bigger than the threshold 𝜈𝑙 = 𝛼−𝑙2𝑗𝑙/2. This can be achieved if we make the factor
𝛼 twice bigger: since for 𝐴𝑠−1 we have not crossed the threshold, for 𝐴𝑠 we can
guarantee the inequality with additional factor 2.

Now let us prove the bound for the number of updates for some 𝐴𝑠. These
updates can be of two types: first, when 𝐴𝑠 itself starts the update (being the
minimal 𝑠 where the threshold is crossed); second, when the update is induced by
one of the previous sets. Let us estimate the number of the updates of the first
type. This update happens when the number of non-deleted elements (that was
at least 2𝜈𝑠 immediately after the previous update of any kind) becomes less than
𝜈𝑠. This means that at least 𝜈𝑠 elements were deleted. How can this happen? One
possibility is that a new bad set of complexity at most 𝑖𝑠 (“large bad set”) appears
after the last update. This can happen at most 𝑂(2𝑖𝑠) times, since there is at most
𝑂(2𝑖) objects of complexity at most 𝑖. The other possibility is the accumulation of
elements deleted due to “small” bad sets, of complexity at least 𝑖𝑠 and of size at
most 2𝑗𝑠 . The total number of such elements is bounded by 𝑛𝑂(2𝑖𝑠+𝑗𝑠), since the
sum 𝑖𝑙 + 𝑗𝑙 may only decrease as 𝑙, increases. So the number of updates of 𝐴𝑠 not
caused by large bad sets is bounded by

𝑛𝑂(2𝑖𝑠+𝑗𝑠)/𝜈𝑠 =
𝑂(𝑛2𝑖𝑠+𝑗𝑠)

𝛼−𝑠2𝑗𝑠
= 𝑂(𝑛𝛼𝑠2𝑖𝑠) = 2𝑖𝑠+𝑁𝑂(log𝑛) = 2𝑖𝑠+𝑂(

√
𝑛 log𝑛)

(recall that 𝑠 6 𝑁 , 𝛼 = poly(𝑛), and 𝑁 ≈
√︀
𝑛/ log 𝑛). This bound remains valid

if we take into account the induced updates (when the threshold is crossed for the
preceding sets: there are at most 𝑁 6 𝑛 these sets, and additional factor 𝑛 is
absorbed by 𝑂-notation).

We conclude that all the versions of 𝐴𝑠 have complexity at most

𝑖𝑠 + 𝑂(
√︀
𝑛 log 𝑛),

since each of them can be described by the version number plus the parameters
of the generating process (we need to know 𝑛 and the boundary curve, whose
complexity is 𝑂(

√
𝑛) according to our assumption, see the discussion before the

statement of the theorem). The same is true for the final version. It remains to
take 𝑥 in the intersection of the final 𝐴𝑠. (Recall that 𝐴𝑁 is a singleton, so final
𝐴𝑁 is {𝑥}.) Indeed, by construction this 𝑥 has no bad (𝑖 * 𝑗)-descriptions where
(𝑖, 𝑗) is on the boundary of 𝑇 . On the other hand, 𝑥 has good descriptions that are
𝑂(

√
𝑛 log 𝑛)-close to this boundary and whose vertical coordinates are

√
𝑛 log 𝑛-

apart. (Recall that the slope of the boundary guarantees that horizontal distance

452 14. ALGORITHMIC STATISTICS

is less than the vertical distance.) Therefore the position of the boundary curve for
𝑃𝒜
𝑥 is determined with precision 𝑂(

√
𝑛 log 𝑛), as required.3 �

Remark. In this proof we may use bad sets not only from 𝒜. Therefore, the
set 𝑃ℬ

𝑥 is close to 𝑇 for every family ℬ that contains 𝒜, and it is not even needed
that ℬ satisfies the requirements (1)–(3) itself.

360 Provide the missing details in this argument.

361 (1) Let 𝑥 be a string of length 𝑛 and let 𝑟 be a natural number not
exceeding 𝑛/2. By 𝐶𝑟(𝑥) we denote the minimal (plain) complexity of a string 𝑦
of the same length 𝑛 that differs from 𝑥 in at most 𝑟 positions. Prove that (with
𝑂(log 𝑛) precision) the value of 𝐶𝑟(𝑥) is the minimal 𝑖 such that 𝑥 has (𝑖* log 𝑉 (𝑟))-
description that is a Hamming ball. (Here 𝑉 (𝑟) is the cardinality of a Hamming
ball of radius 𝑟 in B𝑛.)

(2) Describe all the possible shapes of the function 𝐶𝑟(𝑥) as a function of 𝑟
(that appear for different 𝑥) with precision 𝑂(

√
𝑛 log 𝑛).

[Hint. For every 𝑥 in B𝑛 we have 𝐶0(𝑥) = 𝐶(𝑥) and 𝐶𝑛(𝑥) = 𝑂(log 𝑛). Also
we have

0 6 𝐶𝑎(𝑥) − 𝐶𝑏(𝑥) 6 log(𝑉 (𝑏)/𝑉 (𝑎)) + 𝑂(log 𝑛)

for every 𝑎 < 𝑏 6 𝑛/2. On the other hand, for every 𝑘 6 𝑛 and for every function
𝑡 : {0, 1, . . . , 𝑛/2} such that

𝑡(0) = 𝑘, 𝑡(𝑛/2) = 0 and 0 6 𝑡(𝑎) − 𝑡(𝑏) 6 log(𝑉 (𝑏)/𝑉 (𝑎)) for every 𝑎 < 𝑏 6 𝑛/2,

there exists a string 𝑥 of length 𝑛 and complexity 𝑘+𝑂(
√
𝑛 log 𝑛) such that 𝐶𝑎(𝑥) =

𝑡(𝑎) + 𝑂(
√
𝑛 log 𝑛) for all 𝑎 = 0, 1, . . . 𝑛/2.]

We can again look at the error-correcting codes: if a (Kolmogorov)-simple set
of codewords has distance 𝑑, then for a codeword 𝑥 in this set the function 𝐶𝑟(𝑥)
does not significantly decrease when 𝑟 increases from 0 to 𝑑/2 (indeed, the codeword
can be reconstructed from the approximate version of it).

Complexity measure 𝐶𝑟(𝑥) was introduced in the paper [68]. In [54], this
notion was generalized to conditional complexity. There are two natural general-
izations, a uniform and a non-uniform ones. The uniform conditional complexity
𝐶𝑢

𝑟𝑠(𝑥 |𝑦) is defined as the minimal length of a program that given any string 𝑦′

at Hamming distance at most 𝑠 from 𝑦 outputs a string 𝑥′ at Hamming distance
at most 𝑟 from 𝑥. It is important that 𝑥′ may depend on 𝑦′. The non-uniform
conditional complexity 𝐶𝑟𝑠(𝑥 |𝑦) is defined as max𝑦′ min𝑥′ 𝐶(𝑥′ |𝑦′) where 𝑥′, 𝑦′ are
at Hamming distance at most 𝑟, 𝑠 from 𝑥, 𝑦, respectively. The difference between
the uniform and the non-uniform definitions is the following. In the non-uniform
definition the program to transform 𝑦′ to 𝑥′ may depend on 𝑦′ while in the uniform
definition the same short program must transform every 𝑦′ to an 𝑥′. This implies
that the non-uniform complexity cannot exceed the uniform one. The non-uniform
complexity can by much less than the uniform one (see [54] for details).

Theorem 254 provided a criterion saying whether a given string has a (𝑖 * 𝑗)-
description (unrestricted). It is not clear whether similar criterion could be found
for an arbitrary class 𝒜 of allowed descriptions. On the other hand, Theorem 255

3Now we see why 𝑁 was chosen to be
√︀

𝑛/ log𝑛: the bigger 𝑁 is, the more points on the

curve we have, but then the number of versions of the good sets and their complexity increases,

so we have some trade-off. The chosen value of 𝑁 balances these two sources of errors.

14.4. HYPOTHESES OF RESTRICTED TYPE 453

is (with minimal changes) valid for an arbitrary enumerable family of descriptions,
see requirement (1).

Theorem 258. Let 𝒜 be an enumerable family of finite sets. Assume that 𝑥 is
a string of length 𝑛 that has at least 2𝑘 different (𝑖* 𝑗)-descriptions from 𝒜. (Recall
that (𝑖 * 𝑗)-description of 𝑥 is a finite set of complexity at most 𝑖 and cardinality at
most 2𝑗 containing 𝑥.) Then 𝑥 has some ((𝑖− 𝑘) * 𝑗)-description from 𝒜.

Therefore, if 𝒜 satisfies also the requirement (3), the string 𝑥 in this theorem
also has (𝑖 * (𝑗 − 𝑘))-description. (See above about the version of Theorem 252 for
restricted descriptions.)

As usual, these statements need logarithmic terms to be exact (this means that
𝑂(log(𝑛+𝑖+𝑗+𝑘))-terms should be added to the descriptions parameters).

Proof. Let us enumerate all (𝑖 * 𝑗)-descriptions from 𝒜, i.e., finite sets that
belong to 𝒜, have cardinality at most 2𝑗 and complexity at most 𝑖. For a fixed
𝑛, we start a selection process: some of the generated descriptions are marked
(=selected) immediately after their generation. This process should satisfy the fol-
lowing requirements: (1) at any moment every 𝑛-bit string 𝑥 that has at least 2𝑘

descriptions (among enumerated ones) belongs to one of the marked descriptions;
(2) the total number of marked sets does not exceed 2𝑖−𝑘𝑝(𝑛, 𝑘, 𝑖, 𝑗) for some poly-
nomial 𝑝. So we need to construct a selection strategy (of logarithmic complexity).
We present two proofs: a probabilistic one and an explicit construction.

Probabilistic proof. First we consider a finite game that corresponds to
our situation. The game is played by two players, whose turn to move alternates.
Each player makes 2𝑖 moves. At each move the first player presents some set of
𝑛-bit strings, and the second player replies saying whether it marks this set or not.
The second player loses, if after some moves the number of marked sets exceeds
2𝑖−𝑘+1(𝑛 + 1) ln 2 (this specific value follows from the argument below) or if there
exists a string 𝑥 that belongs to 2𝑘 sets of the first player but does not belong to
any marked set.

Since this is a finite game with full information, one of the players has a winning
strategy. We claim that the second player can win. If it is not the case, the first
player has a winning strategy. We get a contradiction by showing that the second
player has a probabilistic strategy that wins with positive probability against any
strategy of the first player. So we assume that some (deterministic) strategy of the
first player is fixed, and consider the following simple probabilistic strategy of the
second player: every set 𝐴 presented by the first player is marked with probability
𝑝 = 2−𝑘(𝑛 + 1) ln 2.

The expected number of marked sets is 𝑝2𝑖 = 2𝑖−𝑘(𝑛+ 1) ln 2. By Chebyshev’s
inequality, the number of marked set exceeds the expectation by a factor 2 with
probability less than 1/2. So it is enough to show that the second bad case (after
some move there exists 𝑥 that belongs to 2𝑘 sets of the first player but does not
belong to any marked set) happens with probability at most 1/2.

For that, it is enough to show that for every fixed 𝑥 the probability of this bad
event is at most 2−(𝑛+1). The intuitive explanation is simple: if 𝑥 belongs to 2𝑘

sets, the second player had (at least) 2𝑘 chances to mark a set containing 𝑥 (when
these 2𝑘 sets were presented by the first player), and the probability to miss all

these chances is at most (1 − 𝑝)2
𝑘

; the choice of 𝑝 guarantees that this probability
is less than 1/2−(𝑛+1). Indeed, using the bound (1−1/𝑥)𝑥 < 1/𝑒, it is easy to show

454 14. ALGORITHMIC STATISTICS

that
(1 − 𝑝)2

𝑘

< 𝑒− ln 2(𝑛+1) = 2−(𝑛+1).

A meticulous reader would say that this argument is not technically correct,
since the behavior of the first player (and the moment when next set containing 𝑥
is produced) depends on the moves of the second player, so we do not have inde-
pendent events with probability 1 − 𝑝 each (as it is assumed in the computation).4

The formal argument considers for each 𝑡 the event 𝑅𝑡: “after some move of the
second player the string 𝑥 belongs to at least 𝑡 sets provided by the first player,
but does not belong to any selected set”. Then we prove by induction (over 𝑡) that
the probability of 𝑅𝑡 does not exceed (1 − 𝑝)𝑡. Indeed, it is easy to see that 𝑅𝑡

is a union of several disjoint subsets (depending on the events happening until the
first player provides 𝑡 + 1st set containing 𝑥), and 𝑅𝑡+1 is obtained by taking a
(1 − 𝑝)-fraction in each of them.

Constructive proof. We consider the same game, but now allow more sets to
be selected (replacing the bound 2𝑖−𝑘+1(𝑛 + 1) ln 2 by a bigger bound 2𝑖−𝑘𝑖2 ln 2)
and also allow the second player to select sets that were produced earlier (not
necessarily at the preceding move of the first player). The explicit winning strategy
for the second players performs simultaneously 𝑖− 𝑘 + log 𝑖 sub-strategies (indexed
by the numbers log(2𝑘/𝑖), log(2𝑘/𝑖) + 1, . . . , 𝑖).

The sub-strategy number 𝑠 wakes up once in 2𝑠 moves (when the number of
moves already made by the first player is a multiple of 2𝑠). It forms a family 𝑆 that
consists of 2𝑠 last sets produced by the first player, and the set 𝑇 that consists of
all strings 𝑥 covered by at least 2𝑘/𝑖 sets from 𝑆. Then it selects some elements in
𝑆 in such a way that all 𝑥 ∈ 𝑇 are covered by one of the selected sets. It is done
by a greedy algorithm: first take a set from 𝑆 that covers maximal part of 𝑇 , then
the set that covers maximal number of non-covered elements, etc. How many steps
do we need to cover the entire 𝑇? Let us show that

(𝑖/2𝑘)𝑛2𝑠 ln 2

steps are enough. Indeed, every element of 𝑇 is covered by at least 2𝑘/𝑖 sets from
𝑆. Therefore, some set from 𝑆 covers at least #𝑇2𝑘/(𝑖2𝑠) elements, i.e., 2𝑘−𝑠/𝑖-
fraction of 𝑇 . At the next step the non-covered part is multiplied by (1 − 2𝑘−𝑠/𝑖)
again, and after 𝑖𝑛2𝑠−𝑘 ln 2 steps the number of non-covered elements is bounded
by

#𝑇 (1 − 2𝑘−𝑠/𝑖)𝑖𝑛2
𝑠−𝑘 ln 2 < 2𝑛(1/𝑒)𝑛 ln 2 = 1,

therefore all elements of 𝑇 are covered. (Instead of a greedy algorithm one may
use a probabilistic argument and show that randomly chosen 𝑖𝑛2𝑠−𝑘 ln 2 sets from
𝑆 cover 𝑇 with positive probability; however, our goal is to construct an explicit
strategy.)

Anyway, the number of sets selected by a sub-strategy number 𝑠, does not
exceed

𝑖𝑛2𝑠−𝑘(ln 2)2𝑖−𝑠 = 𝑖𝑛2𝑖−𝑘 ln 2,

4The same problem appears, if we observe a sequence of independent trials, each of them is
successful with probability 𝑝, select some trials (before they are actually performed, based on the

information obtained so far), and ask what is the probability of the event “𝑡 first selected trials

were all unsuccessful”. This probability does not exceed (1 − 𝑝)𝑡; it can be smaller if the total
number of selected trials is less than 𝑡 with positive probability. This scheme was considered by

von Mises when he defined random sequences using selection rules.

14.5. OPTIMALITY AND RANDOMNESS DEFICIENCY 455

and we get at most 𝑖2𝑛2𝑖−𝑘 ln 2 for all sub-strategies.
It remains to prove that after each move of the second player every string 𝑥

that belongs to 2𝑘 or more sets of the first player, also belongs to some selected set.
For 𝑡th move we consider the binary representation of 𝑡:

𝑡 = 2𝑠1 + 2𝑠2 + . . . , where 𝑠1 > 𝑠2 > . . .

Since 𝑥 does not belong to the sets selected by sub-strategies number 𝑠1, 𝑠2, . . .,
the multiplicity of 𝑥 among the first 2𝑠1 sets is less than 2𝑘/𝑖, the multiplicity of
𝑥 among the next 2𝑠2 sets is also less than 2𝑘/𝑖, etc. For those 𝑗 with 2𝑠𝑗 < 2𝑘/𝑖
the multiplicity of 𝑥 among the respective portion of 2𝑠𝑗 sets is obviously less than
2𝑘/𝑖. Therefore, we conclude that the total multiplicity of 𝑥 is less that 𝑖 ·2𝑘/𝑖 = 2𝑘

sets of the first player and the second player does not need to care about 𝑥. This
finishes the explicit construction of the winning strategy.

Now we can assume without loss of generality that the winning strategy has
complexity at most 𝑂(log(𝑛 + 𝑘 + 𝑖 + 𝑗)). (In the probabilistic argument we have
proved the existence of a winning strategy, but then we can perform the exhaustive
search until we find one; the first strategy found will have small complexity.) Then
we use this simple strategy to play against the strategy of the second player which
enumerates all 𝒜-sets of complexity less than 𝑖 and size 2𝑗 (or less). The selected
sets can be described by their ordinal number (among the selected sets), so their
complexity is bounded by 𝑖− 𝑘 (with logarithmic precision). Every string that has
2𝑘 different (𝑖* 𝑗)-descriptions in 𝒜, will also have one among the selected sets, and
that is what we need. �

As before (for arbitrary sets), this result implies that explanation with minimal
parameters are simple with respect to the explaining object:

Theorem 259. Let 𝒜 be an enumerable family of finite sets. If a string 𝑥
has (𝑖 * 𝑗)-description 𝐴 ∈ 𝒜 such that 𝐶(𝐴 |𝑥) > 𝑘, then 𝑥 has a ((𝑖 − 𝑘) * 𝑗)-
description in 𝒜. If the family 𝒜 satisfies the condition (3), then 𝑥 has also a
(𝑖 * (𝑗 − 𝑘))-description in 𝒜.

As usual, we omit the logarithmic corrections needed in the exact statement of
this result.

A historical remark. All the results from this section, including non-trivial
exercises, are from [202]. The probabilistic proof of Theorem 258 was independently
proposed by Michal Koucký and Andrei Muchnik.

14.5. Optimality and randomness deficiency

We have considered two ways to measure how bad is a finite 𝐴 as an “explana-
tion” for a given object 𝑥: the first is the randomness deficiency that was defined
as

𝑑(𝑥 |𝐴) = log #𝐴− 𝐶(𝑥 |𝐴);

the second one, defined as

𝛿(𝑥 |𝐴) = log #𝐴 + 𝐶(𝐴) − 𝐶(𝑥),

shows how far is the two-part description of 𝑥 using 𝐴 from the optimum, can be
called optimality deficiency. How are these two numbers related? First let us make
an easy observation.

456 14. ALGORITHMIC STATISTICS

Theorem 260. The randomness deficiency of an string 𝑥 of a finite set 𝐴 does
not exceed its optimality deficiency (with logarithmic precision, as usual; here 𝑙(𝑥)
stands for the length of 𝑥):

𝑑(𝑥 |𝐴) 6 𝛿(𝑥 |𝐴) + 𝑂(log 𝑙(𝑥)).

Proof. We need to prove that

log #𝐴− 𝐶(𝑥 |𝐴) 6 log #𝐴 + 𝐶(𝐴) − 𝐶(𝑥) + 𝑂(log 𝑙(𝑥)).

Canceling the term log #𝐴, we get an inequality

𝐶(𝑥) 6 𝐶(𝐴) + 𝐶(𝑥 |𝐴) + 𝑂(log 𝑙(𝑥));

its right-hand side is the complexity of the pair ⟨𝑥,𝐴⟩ (with logarithmic preci-
sion; note that the bound we are interested in is true 𝑂(log𝐶(𝑥 |𝐴)) = 𝑂(log 𝑙(𝑥))
correction) and therefore it is an upper bound for 𝐶(𝑥). �

This argument shows that the difference between these two deficiencies is close
to 𝐶(𝑥,𝐴)−𝐶(𝑥), i.e., to 𝐶(𝐴 |𝑥) with precision 𝑂(log 𝑙(𝑥) + log𝐶(𝐴)), and this is
𝑂(log 𝑙(𝑥)) if 𝐶(𝐴) = 𝑂(𝐶(𝑥)). (There is no sense in considering the “explanations”
that are much more complex that the object they try to explain, so we will always
assume that 𝐶(𝐴) = 𝑂(𝐶(𝑥)).)

It is easy to give an example of a hypothesis whose optimality deficiency exceeds
significantly its randomness deficiency. Let 𝑥 be a random string of length 𝑛, and
let 𝐵 be the set of all strings of length 𝑛 plus some random string 𝑦 of length 𝑛−1.
Then 𝐶(𝐵 |𝑥) is close to 𝑛, and the optimality deficiency is about 𝑛, while the
randomness deficiency is still small (including 𝑦 in the set of all strings of length 𝑛
does not change much the randomness deficiency of 𝑥 in that set). In this example,
the hypothesis 𝐵 looks bad from the intuitive viewpoint: it contains an irrelevant
element 𝑦 which has nothing in common with 𝑥 that we try to explain; eliminating
this 𝑦, we improve the hypothesis and make its optimality deficiency close to its
randomness deficiency (that is small in both cases).

Recall that we have proved Theorem 256 that shows that the situation in this
example is general: if for a given hypothesis 𝐵 for a string 𝑥 the difference between
the optimality deficiency 𝛿(𝑥 |𝐵) and randomness deficiency 𝑑(𝑥 |𝐵) is large (this
difference is about 𝐶(𝐵 |𝑥), as we have seen), then one can find another hypothesis
𝐴 of the same size and of the same (and even smaller by 𝐶(𝐵 |𝑥)) complexity such
that 𝛿(𝑥 |𝐴) does not exceed 𝑑(𝑥 |𝐵).

Therefore, the question whether for a given string 𝑥 there exists a set 𝐴 with
𝐶(𝐴) 6 𝛼 and 𝑑(𝑥 |𝐴) 6 𝛽 (asked in the definition of (𝛼, 𝛽)-stochasticity), is
equivalent (with logarithmic precision) to the question whether there exists a set
𝐴 with 𝐶(𝐴) 6 𝛼 and 𝛿(𝑥 |𝐴) 6 𝛽. That is, set 𝑃𝑥 contains the same information
about 𝑥 as the set 𝑄𝑥 of pairs ⟨𝛼, 𝛽⟩ for which 𝑥 is (𝛼, 𝛽)-stochastic, but using
different coordinates.

362 Let 𝑥 be a 𝑛-bit string of complexity 𝑘. Show that the set 𝑃𝑥 (see
Theorem 253) determines for which 𝛼 and 𝛽 the string 𝑥 is (𝛼, 𝛽)-stochastic: this
happens iff the pair (𝛼,𝐶(𝑥) − 𝛼 + 𝛽) is in 𝑃𝑥 or 𝛼 > 𝐶(𝑥) (with logarithmic
accuracy).

363 Prove the claim from p. 437: the first inequality of Theorem 249 can be
replaced by a weaker inequality 𝛼 + 𝛽 < 𝑛 − 𝑂(log 𝑛). [Hint. Consider the first
string of length 𝑛 that has no 𝛼 * (𝑛 − 𝛼) descriptions (to be precise we need to

14.5. OPTIMALITY AND RANDOMNESS DEFICIENCY 457

subtract 𝑂(log 𝑛) from the parameters). Its complexity is close to 𝛼. The previous
problems implies that 𝑥 is not 𝛼, 𝛽-stochastic.]

364 Prove that the fraction of non-(𝛼, 𝛽)-stochastic strings among 𝑛-bit strings

is at least 2−𝛼−𝛽−𝑂(log𝑛). [Hint. Consider the first 2𝑛−𝛼−𝛽 strings of length 𝑛 (in
lexicographic order) that do not have (𝛼*(𝑛−𝛼))-descriptions (we omit logarithmic
corrections in the parameters). Each of them has complexity at least 𝛼 and at most
𝛼 + 𝑛 − 𝛼 − 𝛽 = 𝑛 − 𝛽. The latter implies that for every 𝑥 in this set the point
(𝛼,𝐶(𝑥) − 𝛼 + 𝛽) does not belong to 𝑃𝑥.]

365 Prove that the first inequality of Theorem 251 can be replaced by a weaker
inequality 𝛼+𝛽 < 𝑛−𝑂(log 𝑛). [Hint: The proof of the upper bound remains almost
the same: a priori probability of a string provided by Problem 363 is at least 2−𝛼.
The proof of the lower bound used only the inequality 𝛼 < 𝛽 −𝑂(log 𝑛).]

366 For every 𝑥 consider the set 𝑄𝑥 of all pairs (𝛼, 𝛽) such that 𝑥 is (𝛼, 𝛽)-
stochastic. Characterize possible behaviors of 𝑄𝑥.

[Hint. Let 𝑥 be a 𝑛-bit string of complexity 𝑘. Then the set 𝑄𝑥 is upward
closed [i.e., (𝛼, 𝛽) ∈ 𝑄𝑥 implies (𝛼′, 𝛽′) ∈ 𝑄𝑥 for all 𝛼′ > 𝛼, 𝛽′ > 𝛽] and contains
pairs (0, 𝑛− 𝑘) and (𝑘, 0) with logarithmic precision [this means that 𝑄𝑥 contains
some pairs (𝑂(log 𝑛), 𝑛− 𝑘 + 𝑂(log 𝑛)) and (𝑘 + 𝑂(1), 0)]. On the other hand, let
𝑘 and 𝑛 be some numbers, 𝑘 6 𝑛, and let 𝑠0, . . . , 𝑠𝑘 be a sequence of integers such
that 𝑛 − 𝑘 > 𝑠0 > 𝑠1 > . . . > 𝑠𝑘 = 0. Let 𝑚 be the complexity of this sequence.
Then there exists a string 𝑥 of length 𝑛 and complexity 𝑘 + 𝑂(log 𝑛) + 𝑂(𝑚) such
that 𝑄𝑥 is 𝑂(log 𝑛) + 𝑂(𝑚) close to the set 𝑆 = {⟨𝛼, 𝛽⟩ | (𝛼 6 𝑘) ⇒ (𝛽 > 𝑠𝛼)}.]

367 Assume that for a string 𝑥 and some 𝛼 there exists a hypothesis that
achieves minimal randomness deficiency among hypotheses of complexity at most
𝛼, and its optimality deficiency exceeds its randomness deficiency by 𝛾. Then the
boundary of 𝑃𝑥 contains a segment of slope −1 that covers the interval (𝛼 − 𝛾, 𝛼)
on the horizontal axis. [Hint. Use the stronger statement of Theorem 256.]

368 Let 𝒜 be a family of finite sets that satisfies the conditions (1)–(3). Prove
that for any 𝑥 and any 𝛼 6 𝐶(𝑋) the following are equivalent with logarithmic
precision:

∙ there exists a set 𝐴 ∈ 𝒜 of complexity at most 𝛼 with 𝑑(𝑥 |𝐴) 6 𝛽;
∙ there exists a set 𝐴 ∈ 𝒜 of complexity at most 𝛼 with 𝛿(𝑥 |𝐴) 6 𝛽;
∙ the point (𝛼,𝐶(𝑥) − 𝛼 + 𝛽) belongs to 𝑃𝒜

𝑥 .

369 Let 𝒜 be an arbitrary family of finite sets enumerated by program 𝑝.
Prove that for every 𝑥 of length at most 𝑛 the following statements are equivalent
up to 𝑂(𝐶(𝑝) + log𝐶(𝐴) + log 𝑛 + log log #𝐴)-change in the parameters:

∙ there exists a set 𝐴 ∈ 𝒜 such that 𝑑(𝑥 |𝐴) 6 𝛽;
∙ there exists a set 𝐴 ∈ 𝒜 such that 𝛿(𝑥 |𝐴) 6 𝛽

Historical remarks. The existence of strings of length 𝑛 and complexity about 𝑘
that are not (𝑘, 𝑛−𝑘+𝑂(log 𝑛))-stochastic was first proved in [60, Theorem IV.2].
The study of possible shapes of the set 𝑄𝑥 was initiated by V. V’yugin [209, 210]
using direct arguments (and not the relation between 𝑄𝑥 and 𝑃𝑥). The descriptions
of possible shapes of 𝑄𝑥 with accuracy 𝑂(log 𝑛) (Problem 366) is due to [201], where
reduction to the set 𝑃𝑥 is used. Problems 367, 368 and 369 go back to [201, 202].

458 14. ALGORITHMIC STATISTICS

14.6. Minimal hypotheses

Fix a string 𝑥. We have associated with 𝑥 the set 𝑃𝑥 consisting of all pairs
(𝛼, 𝛽) such that 𝑥 has an (𝛼*𝛽)-description. Those descriptions were considered as
“statistical hypotheses to explain 𝑥”. How do they look like? It turns out that we
can identify a more or less explicit class of models such that every model reduces in
a sense to a model from that class. This class arises from the proof of Theorem 254.

Let 𝑙 be some number greater than 𝐶(𝑥). Then the list of all strings of com-
plexity at most 𝑙 contains 𝑥. Fix some enumeration of this list (an algorithm that
generates all these strings; each appears only once). We assume that this algorithm
is simple: its complexity is 𝑂(log 𝑙). Let 𝑁𝑙 be the number of elements in the list.
Consider the binary representation of 𝑁𝑙, i.e. the sum

𝑁𝑙 = 2𝑠1 + 2𝑠2 + . . . + 2𝑠𝑡 , where 𝑠1 > 𝑠2 > . . . > 𝑠𝑡.

According to this decomposition, we may split the list itself into groups: first 2𝑠1

elements, next 2𝑠2 elements, etc. The string 𝑥 belongs to one of these groups. This
group (the corresponding finite set) can be considered as a hypothesis for 𝑥. In
this way we get a family of models for 𝑥: each 𝑙 > 𝐶(𝑥) produces some hypothesis,
denoted 𝐵𝑥,𝑙 in the sequel.

The following two theorems prove the promised properties of these models.
First, they are minimal, i.e., they lie on the border of the set 𝑃𝑥. Second, each
model for 𝑥 reduces in a sense to one of them.

Theorem 261. Assume that 𝑥 belong to the part 𝐵𝑥,𝑙 of size 2𝑠 in this con-
struction. Then this part is a ((𝑙 − 𝑠) * 𝑠)-description of 𝑥 and the point (𝑙 − 𝑠, 𝑠)
is on the boundary of 𝑃𝑥. (As usual, the exact statement needs a logarithmic cor-
rection: this part is a ((𝑙− 𝑠+𝑂(log 𝑙)) * 𝑠)-description of 𝑥 and the corresponding
point is in the 𝑂(log 𝑙)-neighborhood of the boundary of 𝑃𝑥).

Proof. To specify this part, it is enough to know its size and the number of
elements enumerated before it, i.e., it is enough to know 𝑠, 𝑙 and all bits of 𝑁𝑙

except 𝑠 last bits (i.e., 𝑙−𝑠 bits). Also we need to know the enumerating algorithm
itself, but it has logarithmic complexity (as we assumed). Therefore the complexity
of the part is 𝑙− 𝑠+𝑂(log 𝑙), and the number of elements is 2𝑠, as we have claimed.

If the point (𝑙− 𝑠, 𝑠) were far from the boundary and were in 𝑃𝑥 together with
more than logarithmic neighborhood, then the string 𝑥 would have much better
two-part descriptions (with the same or even smaller total length and with larger
size), so Theorem 254 (d) would imply that the string 𝑥 appears in the list earlier
(more that 2𝑠 elements follow 𝑥 in the enumeration), which is impossible in our
construction. �

The next result explains in which sense these descriptions are universal. Let
𝑥 be an arbitrary string and let 𝐴 be some finite set that contains 𝑥. Let 𝑙 be
the maximal complexity of the elements of 𝐴. As before, let us split the strings of
complexity at most 𝑙 (there are 𝑁𝑙 of them) into parts corresponding to 1s in the
binary representation of 𝑁𝑙. Let 𝐵 be the part that contains 𝑥 and let 2𝑠 be its
size.

Theorem 262. The hypothesis 𝐵 = 𝐵𝑥,𝑙 (considered as an “explanation” for
𝑥) is not worse than 𝐴 in terms of complexity and optimality deficiency:

(a) 𝐶(𝐵) 6 𝐶(𝐴) + 𝑂(log 𝑙);

14.6. MINIMAL HYPOTHESES 459

(b) 𝛿(𝑥 |𝐵) 6 𝛿(𝑥 |𝐴) + 𝑂(log 𝑙);
(c) 𝐶(𝐵 |𝐴) 6 𝑂(log 𝑙) (the hypothesis 𝐵 is simple given 𝐴).

Proof. Knowing 𝐴 and 𝑙, we can enumerate all strings of complexity at most
𝑙 until we see all the elements of 𝐴. At that moment the string 𝑥 already appears,
and it belongs to the part of size 2𝑠), so there are only 𝑂(2𝑠) strings yet to be
discovered (from this part and the smaller parts). Therefore, we know 𝑁𝑙 with
precision 𝑂(2𝑠) and therefore know its first 𝑙− 𝑠 bits (with 𝑂(1)-advice). And this
information, together with 𝑙 and 𝑠, determines 𝐵. Therefore, 𝐶(𝐵 |𝐴) 6 𝑂(log 𝑙),
so we have proved (c) and therefore (a).

The statement (b) follows directly from the construction. Indeed, if 𝐶(𝐴) = 𝛼
and log #𝐴 = 𝛽, then all the strings in 𝐴 have (𝛼*𝛽)-description and complexity at
most 𝛼+𝛽+𝑂(log𝛼), so their maximal complexity 𝑙 does not exceed 𝛼+𝛽+𝑂(log𝛼).
The two-part description we have constructed is a ((𝑙 − 𝑠) * 𝑠)-description (as the
previous theorem shows), so its total length and optimality deficiency do not exceeds
those of 𝐴. �

The relation between parameters of descriptions 𝐴 and 𝐵 is illustrated by Fig. 3:
the dot corresponds to the parameters of 𝐴, and the gray area shows the possible
parameters of 𝐵.

𝛼

𝐴

𝛽

𝐵

Figure 3. The parameters of the hypothesis 𝐴 and its “simplification” 𝐵

What happens if the initial hypothesis 𝐴 is already on the boundary of 𝑃𝑥?
Does it mean that 𝐵 has the same parameters as 𝐴? Generally, no: the model 𝐵
may lie on the dashed part of the boundary of the grey area shown at Figure 3. (It
is not possible that 𝐵 is inside the grey area, since in this case 𝐴 will correspond
to the internal point of 𝑃𝑥.)

In other words: assume that the boundary of 𝑃𝑥 consists of vertical lines and
non-vertical lines with slope −1. Then the left-upper endpoints of non-vertical
segments correspond to the hypotheses of described type (since for such 𝐴 the grey
area where 𝐵 resides, has only one common point with 𝑃𝑥).

Notice that the information that is contained in these hypotheses, does not
really depend on 𝑥: the hypothesis 𝐵 contains the same information as (𝑙 − 𝑠)-bit
prefix of the string 𝑁𝑙. As we have seen in Theorem 355 (p. 445), this prefix can
be replaced by 𝑁𝑙−𝑠, which has the same information as first 𝑙− 𝑠 bits of Chaitin’s
Ω number. Thus the larger is the complexity of our model the more information
about Ω it has. This is discouraging, since the number Ω does not depend on 𝑥.

There might be that other parameters (than complexity and cardinality) help
to distinguish models of the same size and complexity, as explanations for 𝑥. The

460 14. ALGORITHMIC STATISTICS

paper [197] suggest one such parameter, namely the total complexity 𝐴 condi-
tional to 𝑥. In all our examples intuitively right models for 𝑥 have small total
complexity conditional to 𝑥. On the other hand, one can show that models from
the “universal” family from Theorem 261 have large total complexity conditional
to some their members. We omit the proof of this claim, which may be found
in [197].

Note also that this observation (saying that different hypotheses contain almost
the same information) is applicable only to hypotheses of our special type and not
to arbitrary hypotheses on the boundary of 𝑃𝑥, as the following example shows.
Let 𝑥 be a random 𝑛-bit string. Consider two hypotheses: the set of 𝑛-bit strings
𝑦 that have the same first half as 𝑥, and the set of 𝑛-bit strings 𝑦 that have the
same second half as 𝑥. Both hypotheses have small optimality deficiency, but the
information contained in them is completely different. (This does not contradict to
our results above, since the set of all 𝑛-bit strings as 𝐵 has better parameters than
both.)

Historical remarks. Cutting the list of all strings of complexity at most 𝑘 into
portions according to the binary expansion of 𝑁𝑘 was introduced in [60], where
it was noticed that for 𝑘 = 𝐶(𝑥) we obtain in this way a model for 𝑥 with small
optimality deficiency. Later, in [201], models of this type were considered also for
𝑘 > 𝐶(𝑥), and theorems 261 and 262 were proven.

14.7. A bit of philosophy

There are several philosophical questions related to the task of finding a good
two-part description for a given string 𝑥. For instance, we can let 𝑥 be the sequence
of all observations about the world made by mankind (encoded in binary) and then
consider scientific theories as models 𝐴 for 𝑥. Among those theories we want do
identify “right” ones. Our criteria are the simplicity of the theory in question
(measured by the Kolmogorov complexity of 𝐴; the less the complexity is the
better), and the “concreteness” or the “explanatory capability” (measured by the
size of 𝐴; the less the size is the more concrete is the model hence the better). One
can also recall the ancient philosopher Occam and his razor (“entities must not be
multiplied beyond necessity”), which advises to choose the simplest explanation.
Or, we can look for a scientific theory 𝐴 such that the randomness deficiency of the
data 𝑥 with respect to 𝐴 is small (“a good theory should explain all the regularities
in the data”).

There are also more practical issues related to algorithmic statistics. Kol-
mogorov complexity can be considered as a theory of “ultimate compression”: the
complexity of a string 𝑥 is the lower bound for its compressed size for compressors
without loss of information. The closer to this bound the compressed size is the
better the compression method is (for files from a practically important family of
files).

This applies to lossless data compression. What about lossy compression?
Nowadays many compression techniques are used that discard certain not important
parts of the information that is being encoded. Such methods allow to decrease the
compressed size below Kolmogorov complexity.

For instance, assume that we are given an old phonograph record that has
scratches in random places of the record. These scratches produce peaks on the
waveform of the sound (the two-dimensional plot of sound pressure as a function of

14.7. A BIT OF PHILOSOPHY 461

time). Thus the original information has been distorted. Due to this distortion the
Kolmogorov complexity of the record has been increased much (if there are many
scratches). However, if we care only about the general impression of playing the
record, the exact spots of the scratches are not important. It is enough to store in
the compressed file only the general character of the scratches.

In other words, our phonograph record is an element of a large family that
consists of all the records with about the same number of scratches “of the same
type”. In this way we obtain a two-part description of the record: the first part is
the description of this set (the clean record and statistical parameters of the noise)
and the second part identifies the exact spots of the scratches. If our method of
compression discards the second part, then after decompression we will get another
record. That record will be obtained from the original clean record by adding
another noise with the same statistical parameters. One can hope that the audience
will not notice the change. Besides, if the decompressing program does not add any
noise at all to the clean record, thus “denoising” the record, then we obtain even
better result (of course unless we are interested rather in listening to an ancient
phonograph than in listening to music).

The statement of Problem 369 can be interpreted as follows using this analogy.
Assume that a string 𝑥 was obtained from an unknown string 𝑦 of the same length
by adding a noise. That is, for some known natural number 𝑟 the string 𝑥 was
obtained by a random sampling in radius-𝑟 Hamming ball with the center 𝑦. We
want to denoise 𝑥 and to this end we are looking for a Hamming ball of radius 𝑟 that
provides the minimal length tow part description for 𝑥 (that is, the Hamming ball
of minimal complexity). Assume that we have succeeded and such a ball is found.
With high probability the randomness deficiency of 𝑥 in the original ball is small.
By Problem 369 (for the family of all Hamming balls of radius 𝑟) the randomness
deficiency of 𝑥 in the ball we have found is small as well. Thus the second part in
the found two-part description for 𝑥 has no useful information. In other words, the
center of the ball we have found is a denoised version of 𝑥 (in particular, we have
also removed the noise present in 𝑦).

Here is another example of lossy compression via Kolmogorov complexity. Kol-
mogorov complexity of a high-resolution picture of a sand-dune is very large, as
it identifies the locations of all individual grains of sand, which are random. For
a person who looks at that picture, the picture is just a “typical element” of the
set of all similar pictures, where the sand-dune is at the same place, has the same
form and consists of the sand of the same type, while individual sand grains may
occupy arbitrary spots. If our compressor stores only the description of this large
set and the decompressing program finds any typical element of that set, the person
contemplating the picture will hardly notice any difference.

We should remember that this is just an analogy and we should not expect that
mathematical theorems on Kolmogorov complexity of two-part descriptions will be
directly applied in practice. One of the reasons for that is our ignoring the compu-
tational complexity of decompressing programs and ignoring compressing programs
at all. It might be that it is this ignoring that implies paradoxical independence of
some minimal models on the string 𝑥 mentioned earlier.

Appendix 1. Complexity and foundations of
probability

In this section there are no theorems and no proofs; instead, we discuss the
foundations of probability theory (the connection between probability theory as a
part of mathematics, and its applications to the “real world”), especially the role
of the algorithmic information theory, following [179].

Probability theory paradox

One often describes the natural sciences framework as follows: a hypothesis is
used to predict something, and the prediction is then checked against the observed
actual behavior of the system; if there is a contradiction, the hypothesis needs to
be changed.

Can we include probability theory in this framework? A statistical hypothesis
(say, the assumption of a fair coin) should be then checked against the experimental
data (results of coin tossing) and rejected if some discrepancy is found. However,
there is an obvious problem: The fair coin assumption says that in a series of, say,
1000 coin tossings all the 21000 possible outcomes (all 21000 bit strings of length
1000) have the same probability 2−1000. How can we say that some of them con-
tradict the assumption while other do not?

The same paradox can be explained in a different way. Consider a casino that
wants to outsource the task of card shuffling to a special factory that produced
shrink-wrapped well shuffled decks of cards. This factory would need some quality
control department. It looks at the deck before shipping it to the customer, blocks
some “badly shuffled” decks and approves some others as “well shuffled”. But how
is it possible if all 𝑛! orderings of 𝑛 cards have the same probability?

Here is a modernized version of the same paradox. Imagine that a company
that runs a multiple-choice test for millions of students decided to make for each
participant an individual version of the test by random permutation of possible
answers to each question. Imagine that in one of the copies all the correct answers
turn out to be labeled as “A”. Should they discard this copy?

Current best practice

Whatever the philosophers say, statisticians have to perform their duties. Let
us try to provide a description of their current “best practice” (see [192, 174, 179]).

A. How a statistical hypothesis is applied. First of all, we have to admit that
probability theory makes no predictions but only gives recommendations: if the
probability (computed on the basis of the statistical hypothesis) of an event 𝐴
is much smaller than the probability of an event 𝐵, then the possibility of the
event 𝐵 must be taken into consideration to a greater extent than the possibility

463

464 APPENDIX 1. COMPLEXITY AND FOUNDATIONS OF PROBABILITY

of the event 𝐴 (assuming the consequences are equally grave). For example, if the
probability of 𝐴 is smaller than the probability of being killed on the street by a
meteorite, we usually ignore 𝐴 completely (since we have to ignore event 𝐵 anyway
in our everyday life).

Borel [22] describes this principle as follows: “. . . Il y a à Paris moins d’un
million d’hommes adultes ; les journaux rapportent chaque jour des accidents ou
incidents bizarres arrivés à l’un d’eux ; la vie serait impossible si chacun craig-
nait continuellement pour lui-même toutes les aventures qu’on peut lire dans le
faits divers cela revient à dire qu’on doit négliger pratiquement les probabilités
inférieures à un millionième. ⟨. . .⟩

Souvent la peur d’un mal fait tomber dans un pire.
Pour savoir distinguer le pire, il est bon de connâıtre les probabilités des diverses

éventualités. . . ” (p. 232–233).5

B. How a statistical hypothesis is tested. Here we cannot say näıvely that if we
observe some event that has negligible probability according to our hypothesis, we
reject this hypothesis. Indeed, this would mean that any 1000-bit sequence of the
outcomes would make the fair coin assumption rejected (since this specific seqeunce
has negligible probability 2−1000).

Here algorithmic information theory comes into play: We reject the hypothesis
if we observe a simple event that has negligible probability according to this hy-
pothesis. For example, if coin tossing produces thousand tails, this event is simple
and has negligible probability, so we don’t believe the coin is fair. Both conditions
(“simple” and “negligible probability”) are important: the event “the first bit is a
tail” is simple but has probability 1/2, so it does not discredit the coin. On the
other hand, every sequence of outcomes has negligible probability 2−1000, but if it
is not simple, its appearance does not discredit the fair coin assumption.

Often both parts of this scheme are combined into a statement “events with
small probabilities do not happen”. For example, Borel writes: “. . . je suis arrivé
à la conclusion qu’on ne devrait pas craindre d’employer le mot de certitude pour
désigner une probabilité qui differe de l’unité d’une quantité suffisamment petite”
([22], p. 5).6 Sometimes this statement is called “Cournot principle”. But we pre-
fer to distinguish between these two stages, because for the hypothesis testing the
existence of a simple description of an event with negligible probability is impor-
tant, and for application of the hypothesis it seems unimportant. (We can expect,
however, that events interesting to us have simple descriptions because of their
interest.)

Simple events and events specified in advance

Unfortunately, this scheme remains not very precise: the Kolmogorov complex-
ity of an object 𝑥 (defined as the minimal length of the program that produces 𝑥)
depends on the choice of programming language; we need also to fix some way to

5Fewer than a million people live in Paris. Newspapers daily inform us about the strange
events or accidents that happen to some of them. Our life would be impossible if we were afraid of

all adventures we read about. So one can say that from a practical viewpoint we can ignore events

with probability less that one millionth. . . Often trying to avoid something bad we are confronted
with even worse. . . To avoid this it is good to know the probabilities of different events.

6I came to the conclusion that one must not be afraid to use the word certainty to describe
a probability that falls short of unity by a sufficiently small quantity.

SIMPLE EVENTS AND EVENTS SPECIFIED IN ADVANCE 465

describe the events in question. Both choices lead only to an 𝑂(1) change asymp-
totically; however, strictly speaking, due to this uncertainty we cannot say that one
event has smaller complexity than the other one. (The word “negligible” is also not
very precise.) On the other hand, the scheme described, while very vague, seems
to be the best approximation to the current practice.

One of the possible ways to eliminate complexity in this picture is to say that a
hypothesis is discredited if we observe a very unprobable event that was specified in
advance (before the experiment). Here we come to the following question. Imagine
that you make some experiment and get a sequence of thousand bits that looks
random at first. Then somebody comes and says “Look, if we consider every third
bit in this sequence, the zeros and ones alternate”. Will you still believe in the fair
coin hypothesis? Probably not, even if you haven’t thought about this event before
looking at the sequence: the event is so simple that one could think about it. In fact,
one may consider the union of all simple events that have small probability, and it
still has small probability (if the bound for the complexity of a simple event is small
compared to the number of coin tossing involved, which is a reasonable condition
anyway). And this union can be considered as specified before the experiment (e.g.,
it is described in this book).

On the other hand, if the sequence repeats some other sequence observed earlier,
we probably won’t believe it is obtained by coin tossing even if this earlier sequence
had high complexity. One may explain this opinion saying the the entire sequence
of observations is simple since it contains repetitions; however, the first observation
may not be covered by any probabilistic assumption. This could be taked into
account by considering the conditional complexity of the event (with respect to all
information available before the experiment).

The conclusion: we may remove one problematic requirement (being “simple”
in some vague sense) and replace it by another problematic one (being specified
before the observation). Borel comments on the situation [21, p. 111-112]:

Disons un mot de la réflexion de Bertrand relativement au tri-
angle équilatéral que formeraient trois étoiles ; elle se rattache
à la question du nombre rond. Si l’on considère un nombre
pris au hasard entre 1.000.000 et 2.000.000 la probabilité pour
qu’il soit égal à 1.342.517 est égale à un millionième ; la prob-
abilité pour qu’il soit égal à 1.500.000 est aussi égale à un mil-
lionième. On considérera cependant volontiers cette dernière
éventualité comme moins probable que la première ; cela tient
à ce qu’on ne se représente jamais individuellement un nom-
bre tel que 1.542.317 ; on le regarde comme le type de nombres
d’apparences analogues et si, en le transcrivant, on modifie un
chiffre, on s’en aperçoit à peine et l’on ne distingue pas 1.324.519
de 1.324.517 : le lecteur a besoin de faire un effort pour s’assurer
que les quatre nombres écrits dans le lignes précédentes sont tous
différents.

Lorsque l’on a observé un nombre tel que le précédent comme
évaluation d’un angle en dixiémes de secondes centésimales, on
ne songe pas à se poser la question de savoir qulle était la prob-
abilité pour que cet angle fût précisément égal a 13∘42′51′′,7 car
on ne se serait jamais posé cette question précise avant d’avoir

466 APPENDIX 1. COMPLEXITY AND FOUNDATIONS OF PROBABILITY

mesuré l’angle. Il faut bien que cet angle ait une valeur et,
quelle que soit sa valeur à un dixième de seconde près, on pour-
rait, après l’avoir mesurée, dire que la probabilité a priori, pour
que cette valeur soit précisément telle qu’elle est, est un dix-
millionième, et que c’est là un fait bien extraordinaire. ⟨. . .⟩

La question est de savoir si l’on doit faire ces mêmes réserves
dans le cas où l’on constate qu’un des angles du triangle formé
par trois étoiles a une valeur remarquable et est, par exemple,
égal à l’angle du triangle équilatéral ⟨. . .⟩ ou à un demi-angle
droit ⟨. . .⟩ Voici ce que l’on peut dire à se sujet : on doit se
défier beaucoup de la tendance que l’on a à regarder comme re-
marquable une circonstance que l’on n’avait pas précisée avant
l’expérience, car le nombre des circonstances qui peuvent ap-
parâıtre comme remarquables, à divers points de vue, est très
considérable.7

Frequency approach

The most natural and common explanation of the notion of probability says
that probability is the limit value of frequencies observed when the number of
repetitions tends to infinity. (This approach was advocated as the only possible
basis for probability theory by Richard von Mises.)

However, we cannot observe infinite sequences, so the actual application of
this definition should somehow deal with finite number of repetitions. And for
finite number of repetitions our claim is not so strong: we do not guarantee that
frequency of tails for a fair coin is exactly 1/2; we say only that it is highly improbable
that it deviates significantly from 1/2. Since the words highly improbable need to
be interpreted, this leads to some kind of logical circle that makes the frequency
approach much less convincing; to get out of this logical circle we need some version
of Cournot principle.

Technically, the frequency approach can be related to the principles explained
above. Indeed, the event “the number of tails in a 1 000 000 coin tossings deviates

7Let us comment on the Bertrand’s observation (about a equilateral triangle formed by three
stars); it is related to the idea of a “round number”. Consider a random integer between 1 000 000

and 2 000 000. The probability that it is equal to 1342517, is one over million; the probability that
it is equal to 1500000, is also one over million. However, the second event is often considered as

something less likely than the first one. This is because nobody considers individually a number
like 1542317. It is considered as a example of some type of numbers, and if we change accidentally

one digit when copying such a number, it is hardly noticeable: 1324519 looks very similar to

1324517. A special effort is needed to check that four numbers mentioned above are different.
When a number like this appears as an angle measured in centesimal seconds, we do not ask

ourselves what is the probability that this angle is exactly 13∘42′51′′,7 because we never would

be interested in such a question before the measurement. Of course, the angle should have some
value, and whatever this value is (up to a tenth of a second), we may measure it and say that

the a priori probability to get this value is one in ten millions, so an extraordinary event has

happened. . .
The question is whether the same reservations apply if one of the angles formed by three

starts has a remarkable value, for example, is equal to the angle in the equilateral triange. . . or

the half of the right angle. . . What can we say about that? one should try hard to avoid the
temptation to consider some event not fixed before the experiment, as a remarkable one, because

a lot of events could look remarkable from some viewpoint.

ARE “REAL-LIFE” SEQUENCES COMPLEX? 467

from 500 000 more than by 100 000” has a simple description and very small prob-
ability, so we reject the fair coin assumption if such an event happens (and ignore
the dangers related to this event if we accept the fair coin assumption). In this way
the belief that frequency should be close to probability (if the statistical hypothesis
is chosen correctly) can be treated as the consequence of the principles explained
above.

Dynamical and statistical laws

We have described how the probability theory is usually applied. But the
fundamental question remains: well, probability theory describes (to some extent)
the behavior of a symmetric coin or dice and turns out to be practically useful
in many cases. But is it a new law of nature or some consequence of the known
dynamical laws of classical mechanics? Can we somehow “prove” that a symmetric
dice indeed has the same probabilities for all faces (if the starting point is high
enough and initial linear and rotation speeds are high enough)?

Since it is not clear what kind of “proof” we would like to have, let us put the
question in a more practical way. Assume that we have a dice that is not symmetric
and we know exactly the position of its center of gravity. Can we use the laws of
mechanics to find the probabilities of different outcomes?

It seems that this is possible, at least in principle. The laws of mechanics
determine the behavior of a dice (and therefore the outcome) if we know the initial
point in the phase space (initial position and velocity) precisely. The phase space,
therefore, is split into six parts that correspond to six outcomes. In this sense there
is no uncertainty or probabilities up to now. But these six parts are well mixed
since very small modifications affect the result, so if we consider a small (but not
very small) part of the phase space around the initial conditions and any probability
distribution on this part whose density does not change drastically, the measures
of the six parts will follow the same proportion.

The last sentence can be transformed into a rigorous mathematical statement
if we introduce specific assumptions about the size of the starting region in the
phase space and variations of the density of the probability distribution on it. It
then can be proved. Probably it is a rather difficult mathematical problem not
solved yet, but at least theoretically the laws of mechanics allow us to compute the
probabilities of different outcomes for a non-symmetric dice.

Are “real-life” sequences complex?

The argument in the preceding section would not convince a philosophically
minded person. Well, we can (in principle) compute some numbers that can be
interpreted as probabilities of the outcomes for a dice, and we do not need to fix the
distribution on the initial conditions, it is enough to assume that this distribution
is smooth enough. But still we speak about probability distributions that are
somehow externally imposed in addition to dynamical laws.

Essentially the same question can be reformulated as follows. Make 106 coin
tosses and try to compress the resulting sequence of zeros and ones by a standard
compression program, say, gzip. (Technically, you need first to convert bit sequence
into a byte sequence.) Repeat this experiment (coin tossing plus gzipping) as many
times as you want, and this will never give you more that 1% compression. (Such
a compression is possible for less than 2−10000-fraction of all sequences.) This

468 APPENDIX 1. COMPLEXITY AND FOUNDATIONS OF PROBABILITY

statement deserves to be called a law of nature: it can be checked experimentally
in the same way as other laws are. So the question is: does this law of nature
follows from dynamical laws we know?

To see where the problem is, it is convenient to simplify the situation. Imagine
for a while that we have discrete time, phase space is [0, 1) and the dynamical law
is

𝑥 ↦→ 𝑇 (𝑥) = if 2𝑥 < 1 then 2𝑥 else 2𝑥− 1.

So we get a sequence of states 𝑥0, 𝑥1 = 𝑇 (𝑥0), 𝑥2 = 𝑇 (𝑥1), . . .; at each step we
observe where the current state is — writing 0 if 𝑥𝑛 is in [0, 1/2) and 1 if 𝑥𝑛 is in
[1/2, 1).

This transformation 𝑇 has the mixing property we spoke about: if for some
large 𝑡 we look at the set of points that after 𝑡 iterations are in the left half of the
interval, we see that it is just the set of reals where 𝑡-th bit of the binary represen-
tation is zero, and these reals occupy about a half in every (not too short) interval.
In other terms, we see that a sequence of bits obtained is just the binary representa-
tion of the initial condition. So our process just reveals the initial condition bit by
bit, and any statement about the resulting bit sequence (e.g., its incompressibility)
is just a statement about the initial condition.

So what? Do we need to add to the dynamical laws just one more metha-
physical law saying that world was created at the random (=incompressible) state?
Indeed, algorithmic transformations (including dynamical laws) cannot increase sig-
nificantly the Kolmogorov complexity of the state, so if objects of high complexity
exist in the (otherwise deterministic, as we assume for now) real world now, they
should be there at the very beginning. (Note that it is difficult to explain the ran-
domness observed saying that we just observe the world at random time or in a
random place: the number of bits needed to encode the time and place in the world
is not enough to explain an incompressible string of length, say 106, if we use stan-
dard estimates for the size and age of the world: the logarithms of the ratios of the
maximal and minimal lengths (or time intervals) that exist in nature are negligible
compared to 106 and therefore the position in space-time cannot determine a string
of this complexity.

Should we conclude then that instead of playing the dice (as Einstein could
put it), God provided “concentrated randomness” (a state of high Kolmogorov
complexity) while creating the world?

Randomness as ignorance: Blum–Micali–Yao pseudorandomness

This discussion becomes too philosophical to continue it seriously. However,
there are important mathematical results that could influence the opinion of the
philosophers discussing the notions of probability and randomness if they knew
these results. In this book we did not touch the complexity with bounded resources
(an important but not well studied topic) and stayed in the realm of general com-
putability theory, but we cannot avoid this topic when discussing the philosophical
aspects of the notion of probability.

This result is the existence of pseudorandom number generators (as defined by
Yao, Blum and Micali; they are standard tools in computational cryptography, see,
e.g., Goldreich textbook [61]). Their existence has been proven using some com-
plexity assumptions (the existence of one-way functions) that are widely believed
though not proven yet.

A DIGRESSION: THERMODYNAMICS 469

Let us explain what a pseudorandom number generator (in Yao – Blum –
Micali) sense is. Here we use rather vague terms and oversimplify the matter, but
there is a rigorious mathematics behind. So imagine a simple and fast algorithmic
procedure that gets a “seed”, which is a binary string of moderate size, say, 1000
bits, and produces a very long sequence of bits out of it, say, of length 1010. By
necessity the output string has small complexity compared to its length (complexity
is bounded by the seed size plus the length of the processing program, which we
assume to be rather short). However, it may happen that the output sequences
will be “indistinguishable” from truly random sequences of length 1010, and in this
case the transformation procedure is called pseudorandom number generator.

It sounds as a contradiction: as we have said, output sequences have small
Kolmogorov complexity, and this property distinguishes them from most of the
sequences of length 1010. So how they can be indistinguishable? The explanation is
that the difference becomes obvious only when we know the seed used for producing
the sequence, but there is no way to find out this seed looking at the sequence itself.
The formal statement is quite technical, but its idea is simple. Consider any simple
test that looks at 1010-bit string and says ‘yes’ or ‘no’ (by whatever reason; any
simple and fast program could be a test). Then consider two ratios: (1) the fraction
of bit strings of length 1010 that pass the test (among all bit strings of this length);
(2) the fraction of seeds that lead to a 1010-bit string that passes the test (among
all seeds). The pseudorandom number generator property guarantees that these
two numbers are very close.

This implies that if some test rejects most of the pseudorandom strings (pro-
duced by the generator), then it would also reject most of the strings of the same
length, so there is no way to find out whether somebody gives us random or pseu-
dorandom strings.

In a more vague language, this example shows us that randomness may be
in the eye of the beholder, i.e., the randomness of an observed sequence could
be the consequence of our limited computational abilities which prevent us from
discovering non-randomness. (However, if somebody shows us the seed, our eyes
are immediately opened and we see that the sequence has very small complexity.)

So we should not exclude the possibility that the world is governed by simple
dynamical laws and its initial state can be also described by several thousands of
bits. In this case “true” randomness does not exist in the world, and every sequence
of 106 coin tossings that happened or will happen in the foreseeable future produces
a string that has Kolmogorov complexity much smaller than its length. However,
a computationally limited observer (like ourselves) would never discover this fact.

A digression: thermodynamics

The connection between statistical and dynamical laws was discussed a lot
in the context of thermodynamics while discussing the second law. However, one
should be very careful with exact definition and statements. For example, it is often
said that the Second Law of thermodynamics cannot be derived from dynamical
laws because they are time-reversible while the second law is not. On the other
hand, it is often said that the second law has many equivalent formulations, and one
of them claims that the perpetual motion machine of the second kind is impossible,
i.e., no device can operate on a cycle to receive heat from a single reservoir and
produce a net amount of work.

470 APPENDIX 1. COMPLEXITY AND FOUNDATIONS OF PROBABILITY

However, as Nikita Markaryan explained (personal communication), in this
formulation the second law of thermodynamics is a consequence of dynamic laws.
Here is a sketch of this argument. Imagine a perpetual motion machine of a second
kind exists. Assume this machine is attached to a long cylinder that contains warm
gas. Fluctuations of gas pressure provide a heat exchange between gas and machine.
On the other side machine has rotating spindle and a rope to lift some weight (due
to rotation).

gas machine

When the machine works, the gas temperature (energy) goes down and the weight
goes up. This is not enough to call the machine a perpetual motion machine of
the second kind (indeed, it can contain some amount of cold substance to cool the
gas and some spring to lift the weight). So we assume that the rotation angle (and
the height change) can be made arbitrarily large by increasing the amount of the
gas and the length of the cylinder. We also need to specify the initial conditions of
the gas; here the natural requirement is that the machine works (as described) for
most initial conditions (according to the natural probability distribution in the gas
phase space).

Why is such a machine impossible? The phase space of the entire system can
be considered as a product of two components: the phase space of the machine
itself and the phase space of the gas. The components interact, and the total en-
ergy is constant. Since the machine itself has some fixed number of components,
the dimension of its component (or the number of degrees of freedom in the ma-
chine) is negligible compared to the dimension of the gas component (resp. the
number of degrees of freedom in the gas). The phase space of the gas is split into
layers corresponding to different level of energy; the higher the energy is, the more
volume in the phase space is used, and this dependence overweights the similar
dependence for the machine since the gas has much more degrees of freedom. Since
the transformation of the phase space of the entire system is measure-preserving, it
is impossible that a trajectory started from a large set with high probability ends
in a small set: the probability of this event does not exceed the ratio of a measures
of destination and source sets in the phase space. So the machine that (with high
probability) cools the gas in a random state and produces mechanical energy (=is
a perpetuum mobile of the second kind) is impossible.

This argument is quite informal and ignores many important points. For ex-
ample, the measure on the phase space of the entire system is not exactly a product
of measures on the gas and machine coordinates; the source set of the trajectory
can have small measure if the initial state of the machine is fixed with very high
precision, etc. (The latter case does not contradicts the laws of thermodynamics: if
the machine use a fixed amount of cooling substance of very low temperature, the
amount of work produced can be very large.) But at least these informal arguments

ANOTHER DIGRESSION: QUANTUM MECHANICS 471

make plausible that dynamic laws make impossible the perpetual motion machine
of the second kind (if the latter is defined properly).

Another digression: quantum mechanics

Another physics topic often discussed is quantum mechanics as a source of
randomness. There were many philosophical debates around quantum mechanics.
However, it seems that the relation between quantum mechanical models and obser-
vations resembles the situation with probability theory and statistical mechanics.
The difference is that in quantum mechanics the model assigns amplitudes (instead
of probabilities) to different outcomes (or events). The amplitudes are complex
numbers and “quantum Cournot principle” says that if the (absolute value) of
the amplitude of event 𝐴 is smaller than for event 𝐵, then the possibility of the
event 𝐵 must be taken into consideration to a greater extent than the possibility
of the event 𝐴 (assuming the consequences are equally grave). Again this implies
that we can (practically) ignore events with very small amplitudes.

The interpretation of the square of amplitude as probability can be then derived
is the same way as in the case of the frequency approach. If a system is made of 𝑁
independent identical systems with two outcomes 0 and 1 and the outcome 1 has
amplitude 𝑧 in each system, then for the entire system the amplitude of the event
“the number of 1’s among the outcomes deviates significantly from 𝑁 |𝑧|2” is very
small (it is just the classical law of large numbers in disguise).

One can then try to analyze measurement devices from the quantum mechanical
viewpoint and to “prove” (using the same quantum Cournot principle) that the
frequency of some outcome of measurement is close to the square of the length of
the projection of the initial state to corresponding subspace outside some event of
small amplitude, etc.

Appendix 2. Four algorithmic faces of randomness

V. Uspensky

This appendix is a translation of the brochure “Four algorithmic
faces of randomness” (2nd corrected edition, MCCME Publish-
ers, Moscow, 2009; the first edition was published in 2006) that
is based on a lecture delivered by V.U. during the summer school
“Modern mathematics” (Dubna near Moscow, Russia, July 23,
2005). The terminology used in this brochure8 is somewhat dif-
ferent from the one used in the rest of the book; in particular, the
terms ‘chaotic’, ‘typical’, and ‘unpredictable’ are used to stress
specific properties of random objects that appear in the corre-
sponding definition. Chaoticness means that the complexity is
high (no regularities that can be used to give a short descrip-
tion); typicalness is based on measure theory; unpredictability
guarantees that no strategy can win in a prediction game against
this sequence. There are rigorous definitions for these notions
that can be considered possible definitions of “true randomness”.
And it is remarkable that natural definitions of chaoticness and
typicalness turn out to be equivalent (Levin–Schnorr theorem).

Introduction

If somebody tells us that she tossed a “fair” coin twenty times and got the
string

10001011101111010000 (I)

(where 0 and 1 denote head and tail), or the string

01111011001101110001, (II)

this would not surprise us. However, if somebody claims to obtain

00000000000000000000 (III)

or
01010101010101010101, (IV)

we start to doubt that the experiment was really performed in a proper way. But
why?

8The same terminology was approved by A.N. Kolmogorov and used in the opening talk “Al-

gorithms and randomness” at the First World Congress of the Bernoulli Society (A.N. Kolmogorov
and V.A. Uspensky, delivered by V.U.), and in [83, 206, 192, 138]

473

474 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

Somehow the strings (I) and (II) are perceived as “random” while (III) and
(IV) are not.

But what does it mean, to be “perceived as random”? Classical probability
theory says nothing about this natural question. Sometimes they say that the
outcomes (III) and (IV) have very small probability 2−20 to appear in a fair coin
tossing, so the chances to get them are less than one to million. Still, (I) and (II)
have exactly the same probability!

Let us start with three important remarks.

∙ First, the intuitive idea of randomness depends on the assumed probability
distribution. If the coin is very asymmetric and one side is much heavier,
or it is tossed in a very special way, (III) or (IV) may not surprise us. So,
for simplicity, we will speak mostly about fair coin, i.e., independent trials
with success probability 1/2.

∙ Second, the intuitive idea of randomness has sense only if the string is
long enough. It would be stupid to ask which of four strings 00, 01, 10,
11 looks more random than the others.

∙ Finally, there is no sharp boundary between (intuitively) random and non-
random strings. Indeed, changing one bit in a random string, we get a
string that is random, too. But in several steps we can obtain (III) or
(IV) from any string. This well known effect is sometimes called “heap
paradox”.

So, trying to define randomness, one should consider very long strings, or,
even better, infinite bit sequences (in general infinite objects are “approximations
from above” for large finite objects). For infinite sequences one may try to draw a
meaningful sharp division between random and non-random objects, i.e., to define
rigorously a mathematical notion of random bit sequence . In this survey we
describe several attempts to provide such a definition, made by different authors.
However, a general disclaimer is needed: for all practical purposes only finite se-
quences (strings) matter, so these definitions are necessarily far from “the real life”.
In fact, even very long finite sequences never appear in the real life, so it is hard to
extend our intuition of randomness even to long finite strings. This said, we now
switch to mathematical definitions.

Let us start with some useful notation and terminology.
We consider finite bit strings, i.e., finite sequences of zeros and ones. (They are

also called binary words.) A string 𝑥 = 𝑥1, . . . , 𝑥𝑛 has length 𝑛, denoted also by
|𝑥|.9 A string may have zero length, i.e., contain no bits; it is then called an empty
string and denoted by Λ.

The set of all binary strings is denoted by Ξ. The set of all infinite bit sequences
is denoted by Ω. An infinite sequence 𝑎1, 𝑎2, 𝑎3, . . . has finite string 𝑎1, 𝑎2, . . . , 𝑎𝑛
as its 𝑛-bit prefix. For every string 𝑥 we consider the set Ω𝑥 ⊂ Ω of all infinite
sequences that have prefix 𝑥. This set is called a ball, and the volume of this ball
is defined as 2−|𝑥| and denoted by v(𝑥).10

Each sequence from Ω is considered as a record of an (infinite) coin tossing. Let
us repeat that for now we assume that the coin is fair. Mathematically speaking, it

9We used the notation 𝑙(𝑥) for the length of 𝑥 in the main part of the book.
10In the rest of the book we call Ω𝑥 an interval, not a ball, and speak about its length, not

volume.

INTRODUCTION 475

means that we consider a uniform probability distribution on Ω where for each ball
Ω𝑥 the probability to get an element of Ω𝑥 is equal to its volume.

Our goal is to specify a well defined subset of Ω that could be considered as
the set of all random sequences. The traditional probability theory cannot help
here; even the question hardly can be stated in its language. In a paradoxical way,
the notion of algorithm helps. It may sound strange: the notion of randomness is
defined in terms of the notion of algorithm, which is a deterministic procedure that
has nothing to do with randomness, but it is the case. All known definitions of
randomness for individual objects (in our case — individual binary sequences) are
based on the theory of algorithms in some way.

We may start by trying to identify a characteristic property that intuitively
should be possessed by all random sequences, and then use this property (specified
rigorously) as a formal definition of randomness.

So, what properties could be reasonably expected from a randomly chosen bit
sequence?

First of all, the limit frequency should exist in such a sequence. For the simplest
case of a fair coin this means that the fraction of zeros (as well as the fraction of ones)
in the 𝑛-bit prefix of the sequence should converge to 1/2 as 𝑛 goes to infinity. This
property can be called frequency stability. Moreover, the same property should hold
not only for the sequence itself, but also for every its reasonably chosen subsequence.

Second, a randomly chosen sequence is expected to be chaotic. This means
that it has a complex structure and cannot have a reasonable description. The
psychological difference between the perception of strings (I), (II) and (III), (IV)
can be explained, as Kolmogorov suggested, by the fact that string (I) and (II)
have no short description while (III) and (IV) have a regular structure and can be
described easily.

Third, a randomly chosen sequence should be typical, in the sense that it be-
longs to any reasonable majority.

Finally, it should be unpredictable. It means that making bets against this
sequence, trying to guess its terms, we cannot win systematically, and no clever
strategy could help us.

Of course, these wordings are vague. One should specify the meaning of word
“reasonable” that occurs in the explanations of frequence stability, chaoticness and
typicalness, as well of the words “description” and “strategy”. Theory of algo-
rithms can be used to convert these descriptions into formal definitions, and we
get four rigorously defined properties: frequency stability, chaoticness, typicalness,
and unpredictability. Each of them can be considered as some “algorithmic face of
randomness” and can at some extent pretend to be a mathematical definition of
randomness. In this way we get four well defined classes of sequences that could
compete for the title of the “true class of random sequences” though each has its
strong and weak points.

In the following exposition our goal is two-fold: (1) to give rigorous definitions
for the four properties mentioned above and therefore to define four classes of
sequences; (2) to state (currently known) relations between these properties (and,
therefore, between the corresponding classes of sequences).

476 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

Face One: Frequency stability and stochasticness

The idea to define the notion of an individual random sequence goes back to
Richard von Mises, a well known German mathematician; it seems that he was the
first who tried to give such a definition. This happened in the beginning of XX
century, in 1919. At least it was him who suggested a reasonable approach to this
definition (though he did not give a rigorous mathematical one).

Von Mises started by requiring frequency stability, i.e., the existence of limit
frequency: the fraction of ones among the first 𝑛 terms should converge (for the case
of fair coin) to 1/2 as 𝑛 tends to infinity. Of course, this property is not sufficient.
For example, this is true for the (definitely non-random) sequence

0, 1, 0, 1, 0, 1, 0, 1,

Evidently, we should require that not only the sequence itself, but also its sub-
sequences satisfy the frequency stability property. But we cannot expect all the
subsequences to be stable in this sense: indeed, even a perfectly random sequence
has a zero subsequence, we may select just the terms that are equal to zero. So we
have to restrict ourselves and consider only “reasonable chosen”, or “admissible”
subsequences.

It is nice to consider any subsequence of a given sequence as the result of
selection procedure applied to the terms of the original sequence: the subsequence
consists just of those terms which are selected. Any selection procedure is based on
some selection rule. To obtain a reasonable, or admissible, subsequence, one needs
to use a reasonable (admissible) selection rule. For example, a reasonable selection
rule may select all terms 𝑎𝑖 where 𝑖 is a prime number, or all terms that follow
zeros (i.e., all terms 𝑎𝑖+1 such that 𝑎𝑖 = 0). In this way we get two admissible
subsequences.

Kolmogorov at some point suggested the name ‘stochastic’ for a sequence whose
admissible subsequences all have the frequency stability property.

The scheme suggested by von Mises was rather vague; it was turned to a rigor-
ous definition of randomness when the theory of algorithms was developed. One of
its inventors, an American mathematician Alonzo Church suggested in 1940 to de-
fine admissible selection rule as algorithms of special type. The sequences where all
Church-admissible subsequences satisfy the frequency stability property are called
Church stochastic sequences.11 This definition, however, looks too broad: for exam-
ple, there exists a Church stochastic sequences that becomes non-Church-stochastic
after a computable permutation of its terms.12

In 1963 Kolmogorov modified the definition given by Church and suggested a
broader class of admissible selection rules, thus defining a broader (in fact, strictly
broader) class of admissible subsequences. In particular, Kolmogorov’s definition
does not require that the selected terms keep the ordering they had in the orig-
inal sequence. A corresponding class of sequences, called Kolmogorov stochastic
sequences13, appears: they are sequences such that all Kolmogorov-admissible sub-
sequences satisfy the frequency stability property. By definition, this class is a

11In the main part of the book they are called Mises–Church random sequences.
12See Theorem 203 (d), p. 319.
13They are called Mises–Kolmogorov–random sequences in the main part of the book. The

most standard name used nowadays is Kolmogorov–Loveland stochastic sequences.

FACE ONE: FREQUENCY STABILITY AND STOCHASTICNESS 477

subclass (in fact, a proper subclass) of the class of Church stochastic sequences. In
the sequel we denote the class of stochastic sequences by S.

Soon it turned out that the class S is also too broad. For example, one may
construct a Kolmogorov stochastic sequence where each prefix has more zeros than
ones.14 It contradicts our intuition (supported by some theorems of probability
theory: a one-dimensional random walk returns to the starting point with proba-
bility 1). So even a most strict version of Mises approach currently known does not
provide an intuitively satisfactory notion of randomness, though it is a interesting
object to study that reflects some aspects of randomness.

To be precise, let us reproduce the definitions suggested by Church and Kol-
mogorov. In both cases we define some class of admissible selection rules used to
form subsequences of a given sequence.

Imagine that the terms of the sequence (zeros and ones) are written on paper
cards that are put on the table, face down, so we do not see what is written on the
cards. Our goal is to select some of the cards and form another sequence made of the
bits on the selected cards. This subsequence (in the case of Kolmogorov’s definition
this term is used in a broad sense, the order of terms in the subsequence may differ
from their order in the original sequence) is called an admissible subsequence. An
admissible selection rule is an algorithm that decides on each step (1) which bit
should be revealed (corresponding card turned over) next and (2) whether this bit
should be included in the subsequence or not. The algorithm has access to the bits
already revealed (those bits form its input). It may well happen that the algorithm
selects only finitely many bits (it may hang, or reveal more and more bits without
selecting any of them), in this case we say that no admissible subsequence is formed.
(Anyway, the frequency stability property makes sense only for infinite sequences.)
If for every admissible selection rule we get a sequence that satisfies the frequency
stability property, the original sequence is called stochastic.

To give a more precise description, let us recall some terminology. A function is
called computable if there is an algorithm that computes this function. This means,
for some function 𝑓 , that (1) the algorithm terminates on every input 𝑥 such that
𝑓(𝑥) is defined, and produces 𝑓(𝑥), and (2) the algorithm does not terminate on
all inputs where 𝑓 is undefined.

Assume that a sequence 𝑎1, 𝑎2, . . . is given, so 𝑛-th card contains bit 𝑎𝑛. A
Church admissible selection rule is an arbitrary computable function 𝐺 defined on
all binary strings and having True and False as values. The cards are turned over
sequentially (first the card that carries 𝑎1, then 𝑎2, etc.); before the next card is
turned over, the selection rule decides whether that card is selected or not. This
is done in the following way. Assume that 𝑛 cards, carrying bits 𝑎1, . . . , 𝑎𝑛, have
been turned over. If 𝐺(𝑎1, . . . , 𝑎𝑛) equals True, then the next card, carrying 𝑎𝑛+1,
is included in the subsequence, otherwise it is not. At the first step we include 𝑎1
in the subsequence depending on the value of 𝐺(Λ). In other terms, the selected
subsequence consists of terms

𝑎𝑛(1), 𝑎𝑛(2), 𝑎𝑛(3), . . . ,

where 𝑛(1), 𝑛(2), 𝑛(3), . . . are all numbers 𝑛 such that 𝐺(𝑎1, . . . , 𝑎𝑛−1) = True,
assuming that there are infinitely many numbers with this property. Otherwise we
get a finite sequence, and it is not considered as admissible subsequence.

14See Theorem 203 (b), p. 319.

478 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

This was Church’s definition. Before we explain Kolmorogov’s version, let us
explain what we mean by a generalized subsequence of some sequence 𝑎1, 𝑎2, It
is a sequence of the form

𝑎𝜙(1), 𝑎𝜙(2), . . . , 𝑎𝜙(𝑘), . . . ,

where
𝑖 < 𝑗 ⇒ 𝜙(𝑖) ̸= 𝜙(𝑗).

In the usual definition of subsequence the last condition is stronger: we require that
subsequence is monotone, i.e., 𝜙(𝑖) < 𝜙(𝑗) for 𝑖 < 𝑗.

Each Kolmogorov admissible selection rule attempts to select some generalized
subsequence of the given sequence. Here we say “attempts” since this attempt may
be unsuccessful: in this case instead of an infinite subsequence we get a tuple (finite
sequence) that consists of some terms taken from the original sequence. We say that
our original sequence is Kolmogorov stochastic if all infinite subsequences obtained
from it by Kolmogorov admissible rules have the frequency stability property.

It remains to explain what is a Kolmogorov admissible selection rule. To specify
such a rule, we consider two computable functions 𝐹 and 𝐺. The first one (𝐹) is
used to construct some intermediate generalized subsequence; the final subsequence
is a (monotone) subsequence of that intermediate sequence. Both functions 𝐹 and
𝐺 are defined on (some) binary strings, so their domains are subsets of Ξ (may
be, different ones). The values of 𝐹 are positive integers, and the values of 𝐺 are
Boolean values True and False. We start by constructing a sequence of natural
numbers

𝑛(1) = 𝐹 (Λ), 𝑛(2) = 𝐹 (𝑎𝑛(1)), . . . , 𝑛(𝑘 + 1) = 𝐹 (𝑎𝑛(1), . . . , 𝑎𝑛(𝑘)).

This construction is stopped and gives a finite sequence in the following three cases:

∙ the value 𝐹 (𝑎𝑛(1), . . . , 𝑎𝑛(𝑘)) is undefined;
∙ the value 𝐺(𝑎𝑛(1), . . . , 𝑎𝑛(𝑘)) is undefined;
∙ the value 𝐹 (𝑎𝑛(1),. . .,𝑎𝑛(𝑘)) coincides with one of the 𝑛(1), . . . , 𝑛(𝑘).

If none of these three events happens, we get an infinite sequence of indices

𝑛(1), 𝑛(2), 𝑛(3), . . . ,

and a generalized subsequence 𝑎𝑛(1), 𝑎𝑛(2), 𝑎𝑛(3), Now, and this is a last step,
we select a (monotone) subsequence of these subsequence by choosing all terms
𝑎𝑛(𝑘) such that 𝐺(𝑎𝑛(1), . . . , 𝑎𝑛(𝑘−1)) = True, in the order of increasing 𝑘.

Face Two: Chaoticness

Let us return to the strings (I)–(IV) that we started with. According to Kol-
mogorov’s explanation, the strings (I) and (II) look random because they are com-
plex, while (III) and (IV) look non-random because they are simple. It seems that
intuitively we expect the result of a random process be complex, and suspect some
cheating when it turns out to be simple.

There are many ways to compare objects around us: we can distinguish big and
small objects, or heavy and light objects. Also we can speak about complex and
simple objects. In 1960s Kolmogorov15 observed that mathematics can be used for

15Kolmogorov’s paper of 1965 became most known, but he was not alone: many people inde-

pendently came to similar ideas. As Kolmogorov notes in his paper of 1969, the first publication
in this direction was written by Ray Solomonoff; Gregory Chaitin also developed this idea a bit

later.

FACE TWO: CHAOTICNESS 479

such a classification. Now the corresponding mathematical theory is usually called
Kolmogorov complexity theory.

The main idea is simple and natural: complexity of an object can be mea-
sured by the length of its shortest description . Each object has long descrip-
tions, however a complex object cannot have short descriptions.

Let 𝑌 be a set of all objects we consider, and let 𝑋 be a set of all possible
descriptions of those objects. Let us recall that |𝑥| stands for the length of 𝑥.
According to what we said, the complexity of an object 𝑦, denoted by Comp(𝑦), is
defined by the formula

Comp(𝑦) = min
𝑥

{|𝑥| : 𝑥 is a description of 𝑦}.

If an object 𝑦 has no descriptions at all, its complexity is infinite (the minimum of
the empty set is defined as infinity).

Of course, we need some uniform way to measure the length of descriptions, it
would be unfair to say that something can be easily described in Chinese because
only one hieroglyph is needed, and has only a complicated English description that
consists of several dozen letters. So we assume that all descriptions are presented
as binary strings. In other words, we assume in the sequel that 𝑋 = Ξ.

The set of all pairs ⟨𝑥, 𝑦⟩ where 𝑥 describes 𝑦, can be called a language of de-
scriptions, or description language. Note that (for some description language) some
object 𝑦 may have many descriptions. We may also consider description languages
where the same 𝑥 can describe several objects. For example, the expression “a
string of zeros” can be considered as a description of all such strings, and we may
even consider an expression “a bit string” as a description of all binary strings.16

All said was a preparation to the following formal definition. Consider an
arbitrary subset 𝐸 in the Cartesian product Ξ×𝑌 , called a description language. If
⟨𝑥, 𝑦⟩ ∈ 𝐸, we say that the string 𝑥 is a description of the object 𝑦. The complexity
Comp𝐸 of an object 𝑦 with respect to the description language 𝐸 is defined as

Comp𝐸(𝑦) = min
𝑥

{|𝑥| : ⟨𝑥, 𝑦⟩ ∈ 𝐸}.

(Again, the minimum of the empty set is infinite.)
For a language 𝐸 = Ξ×𝑌 where every string 𝑥 is a description of every object

𝑦, the complexity of all objects equals zero, since the empty string is a description
of every object. Such a description language is formally allowed but will not appear
in the classes of description languages we consider in the sequel.

Imagine two description languages with the following property: to get a descrip-
tion of some object 𝑦 for the second language, we take its description for the first
language and repeat it twice. Evidently the second description language is worse,
since it provides descriptions that are twice longer, and we want the descriptions
to be short.

Formally speaking, we say that a description language 𝐴 is not worse than a
description language 𝐵, and write 𝐴 6 𝐵, if there exists some constant 𝑐 such that
Comp𝐴(𝑦) < Comp𝐵(𝑦) + 𝑐 for all 𝑦.

Consider natural languages as description languages. Assume that for any pair
of natural languages there is a translation algorithm that converts any given text
in the first language into an equivalent text in the second language. We then

16However, we should not go too far in this direction, otherwise the notion of complexity will

be trivial.

480 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

can conclude that description language corresponding to the second language is
not worse than that corresponding to the first language. For example, a Turkish-
language description of an object may consist of two parts: a Japanese-language
description and a Japanese–Turkish translation algorithm. In this way we get
a Turkish description that is longer than a Japanese description at most by a
constant (the length of Japanese–Turkish translation algorithm). This constant
does not depend on the choice of the described object. Taking the shortest possible
Japanese description, we conclude that Turkish language is not worse than Japanese
language if we consider both as description languages.

Let us call a language family any family of description languages. Having some
language family ℒ, we may ask whether there exists an optimal language in this
family. A language 𝐴 from ℒ is optimal (for ℒ) if it is not worse than any other
description language in the family, i.e., if

(∀𝐵 ∈ ℒ) (𝐴 6 𝐵).

An optimal description language, if it exists for some family, should be used
to measure complexity. The complexity of an object with respect to some fixed
optimal description language can be called algorithmic entropy of this object.17

Entropy is the final version of the measure of complexity (when some family of
description languages is fixed).

For some language families one can prove the existence of an optimal description
language. For those families the notion of entropy is well defined. The statements
of this type are usually called Solomonoff–Kolmogorov theorems, since they were
first to discover such statements.

A given family may contain (and usually contains) many optimal description
languages. Each of them gives some entropy function. However, due to the op-
timality definition, every two entropies (corresponding to two optimal description
languages for some family) differ at most by an additive constant. In other words,
if 𝐴 and 𝐵 are two optimal description languages in the family ℒ, then there exists
a constant 𝑐 such that

|Comp𝐴(𝑦) − Comp𝐵(𝑦)| < 𝑐

for all 𝑦.

Remark. Of course, one can rightfully complain that the notion of entropy
that pretends to be a complexity measure for individual objects, is still defined only
up to some bounded additive term, and one would like to select some “true” entropy
function among different ones. However, attempts of this type have not succeeded
up to now.

We use the letter 𝐾 to denote algorithmic entropy (as a tribute to Kolmogorov)18

and sometimes add another letter to specify the family of description languages
used. If 𝐾 ′ and 𝐾 ′′ are two entropy functions for the same family of description
languages, then

|𝐾 ′ −𝐾 ′′| < 𝑐

(as we have noted).

17In the main part of the book we keep the name “complexity” for this notion, using the

word “entropy” for Shannon entropy only.
18In the main part of the book the letter 𝐾 is used for prefix version of complexity (entropy).

FACE TWO: CHAOTICNESS 481

Kolmogorov not only gave a definition of algorithmic entropy, but also realized
its connection with randomness. He observed that for a random sequence the
entropy of its 𝑛-bit prefix grows fast as 𝑛 tends to infinity. Notice that a random
sequence can start with, say, million of zeros, and the entropy of this prefix is very
low, but asymptotically it still grows fast.

When speaking about prefixes of binary sequences, we use binary strings (such
as (I), (II), (III), (IV)) as objects whose complexity is measured. So we assume
that 𝑌 = Ξ in the sequel.

If a description language contains a pair ⟨𝑧, 𝑧⟩, this means that 𝑧 is its own
description. Consider a description language 𝐷 that consists of all such pairs; this
𝐷 can be called a diagonal language (as mathematicians would say); the linguists
could call it antonymous description language. Evidently, Comp𝐷(𝑦) = |𝑦|. Let us
consider only language families that include 𝐷 (the family of monotone description
languages defined in the sequel, has this property). Then for every entropy function
𝐾 for this family there exists some 𝑐 such that

𝐾(𝑦) < |𝑦| + 𝑐

for all 𝑦. So, up to an additive constant, the maximal possible value of entropy
for a 𝑛-bit string is 𝑛. Kolmogorov conjectured that for a random sequence this
upper bound for its 𝑛-bit prefixes is tight (again up to a constant). This is how
Kolmogorov interpreted the chaoticness property.

So let us fix some language family (that contains an optimal language) and let
𝐾 be one of the corresponding entropy functions. A sequence

𝑎1, 𝑎2, . . . , 𝑎𝑛, . . .

is then called chaotic if there exist a constant 𝑐 such that

𝐾(𝑎1, 𝑎2, . . . , 𝑎𝑛) > 𝑛− 𝑐

for all 𝑛. Evidently, this definition does not depend on the choice of specific entropy
function in the family, but may depend on the choice of the family.

It turned out that for some natural language family the notion of chaoticness
defined in this way gives a reasonable formalization of the intuitive idea of random-
ness.

In Kolmogorov complexity theory the relations between descriptions and ob-
jects have algorithmic nature. Following Kolmogorov, we restrict ourselves to enu-
merable19 sets. The notion of an enumerable set is one of the main notions in the
theory of computability (and in mathematics in general). It can be explained in-
tuitively in the following way. Imagine a printing device that prints binary strings
sequentially; printed strings are separated by spaces. The time intervals between
printing consecutive strings may be arbitrary (but each string should be printed
completely without delays, and infinite sequences of bits are not allowed). It may
happen that the device hangs (and does not print anything) after finitely many
strings have been printed, then the set of strings printed by the device is finite. In
particular, the device may print nothing at all, then we get an empty set of out-
put strings. For such a device, the set of all printed strings is enumerable — and
every enumerable set can be obtained in this way, if the device is equipped with a

19What we call “enumerable” is usually called “computably enumerable”, or “recursively
enumerable”. The word “enumerable” is usually refers to countable sets. In our exposition, we

use the term “enumerable sets” to refer to computably enumerable sets.

482 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

suitable program. For example, for every formal theory (like set theory, or formal
arithmetic) the set of all theorems (provable statements) is enumerable. The intro-
duction of a formal computational model or of a general notion of a formal theory
falls beyond our scope. However we will describe the notion of an enumerable set
in more details.

Let us start with countable sets. This term is used in two different ways. One,
more narrow, definition says that countable sets are those sets for which there exists
a one-to-one correspondence with the set N of all natural numbers. The other, more
liberal, definition says that countable sets are those sets for which there exists a
one-to-one correspondence with some initial segment of N. Here by initial segment
of N we mean a subset 𝑀 of N that is downward-closed, i.e., every natural number
that is smaller than some element of 𝑀 , also belongs to 𝑀 . For example, the
entire N and the empty set ∅ are both initial segments of N, and all finite sets
are countable in this more liberal interpretation. We use this interpretation; then
one can say that a set is countable if it is either empty or can be represented as
a set of terms of an infinite sequence. For example, the finite set {𝑎, 𝑏, 𝑐} is the
set of terms of infinite sequence 𝑎, 𝑏, 𝑐, 𝑐, 𝑐, 𝑐, If we additionally require that
this infinite sequence is computable, we get the definition of an enumerable set. It
remains to explain what is a computable sequence.

A sequence 𝑤1, 𝑤2, . . . , 𝑤𝑛, . . . is called computable if there exists an algorithm
that for any given 𝑛 computes its 𝑛th term 𝑤𝑛. One may say that the notion of a
computable sequence is an effective (algorithmic) version of the notion of sequence,
and the notion of an enumerable set is an effective (algorithmic) version of the
notion of a countable set.20 Let us repeat the definition: a set is enumerable if it
is empty or it is a set of terms of some computable sequence.

All the description languages we consider are subsets of Ξ×Ξ and therefore are
all countable. Kolmogorov suggested to consider enumerable description languages
only. The final step in the definition of chaoticness was made by Leonid Levin, a
student of Kolmogorov; in 1973 he published a paper where a class of monotone
description languages was introduced, and the corresponding notion of chaoticness
was studied.21 Let us provide the corresponding definitions.

We say that strings 𝑢 and 𝑣 are compatible, and write 𝑢 ≈ 𝑣, if one of there
strings is a prefix of the other one.

A description language 𝐸 is called monotone if 𝐸 is enumerable and the fol-
lowing requirement is satisfied:(︀

⟨𝑥1, 𝑦1⟩ ∈ 𝐸 & ⟨𝑥2, 𝑦2⟩ ∈ 𝐸 & (𝑥1 ≈ 𝑥2)
)︀
⇒ (𝑦1 ≈ 𝑦2).

It can be shown that there exists a monotone description language that is optimal
for the family of monotone description languages. So the notion of entropy for this
family is well defined; the corresponding entropy function is called the monotone
entropy22 and denoted by KM .

20To stress the difference between algorithmic and non-algorithmic notions, enumerable sets

are usually called recursive enumerable or computably enumerable (computable function were
traditionally called “recursive functions” for historical reasons). The word “enumerable” is often

used as a synonym for “countable”.
21A similar notion was introduced by Claus-Peter Schnorr in his publication of 1972, see

below, p.490, footnote.
22In the main part of the book this function is called “monotone complexity’; it is defined in

Section 6.2.

FACE THREE: TYPICALNESS 483

A sequence that is chaotic for the monotone description languages is called just
chaotic in the sequel.23 The chaoticness requirement can be written as follows:

∃𝑐 ∀𝑛 (KM (𝑎1, 𝑎2, . . . , 𝑎𝑛) > 𝑛− 𝑐).

We denote the class of all chaotic sequences by C.
It seems that the definition of chaoticness is a good approximation to the in-

tuitive notion of randomness. There are two reasons for this.
First, every chaotic sequences satisfies the standard laws of probability theory

(such as the strong law of large numbers, the law of iterated logarithm etc.)
Second, the class C of chaotic sequences coincides with another natural candi-

date for the randomness definition, the class T of typical sequences (see below):

C = T.

One could even use the names typical-chaotic or chaotic-typical for the sequences
in C (=T) and denote this class by CT or TC. This class is a proper subclass
of the class S of all Kolmogorov stochastic sequences (as we said, the definition of
stochasticity seems to be too liberal to reflect our intuition of randomness):

TC ⊂ S, TC ̸= S.

Face Three: Typicalness

What do we mean by saying that some object is “typical” for some category?
This means that it belongs to every reasonable majority of objects selected from
this category. For example, a typical human being has height less than 2 meters
(i.e., belongs to the majority of people who have height less than 2 meters), has
age at least 3 (i.e., belongs to the majority of people who are at least 3 years old),
etc. The adjective “reasonable” is important here, since every object 𝑥 is doomed
to fall outside the overwhelming majority of objects that differ from 𝑥.

Our intuition says that every random object is typical. But how can we clarify
the latter notion? Let us give a mathematical definition of typicalness for a bit
sequence (assuming the uniform distribution on infinite bit sequences that corre-
sponds to a fair coin tossing). As we have said, for that we need to specify what is
an “overwhelming majority” in the set of all sequences and when that majority is
“reasonable”. Then the class of typical sequences is defined as the intersection of
all reasonable overwhelming majorities.

A set of sequences forms an overwhelming majority if its complement is small,
so we need to define the notion of a small set. Using the language of probability
theory, we can say that some set 𝑄 is small if the event “randomly chosen sequence
is in 𝑄” has probability zero. In terms of measure theory small sets are just sets of
measure 0. However, we want to have a more explicit definition. It can be given in
the following way.

A set 𝑄 is small if it can be covered by a countable family of balls whose total
volume is arbitrarily small. In other terms, 𝑄 is small if for every natural 𝑚 there
exists a sequence of binary strings

⟨𝑥(1), 𝑥(2), . . . , 𝑥(𝑛), . . .⟩

23Since this property is equivalent to Martin-Löf randomness (called “typicalness” in this

appendix), we do not use a different name in the main text of the book.

484 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

such that

𝑄 ⊂
⋃︁
𝑛

Ω𝑥(𝑛),∑︁
𝑛

v(𝑥(𝑛)) =
∑︁
𝑛

2−|𝑥(𝑛)| <
1

𝑚
.

Evidently, each sequence forms a small set (a singleton), so the intersection of all sets
with small complements is empty, and we need to define “reasonable overwhelming
majority” in a more restrictive way.

This can be done by considering the following effective version of the definition
of a small set.

First, we require the sequence ⟨𝑥(1), 𝑥(2), . . . , 𝑥(𝑛), . . .⟩ in the definition to be
computable. In other terms, some algorithm should compute 𝑥(𝑛) given 𝑛 as input.

Second, we require not only the computability of this sequence, but uniform
computability: the sequence ⟨𝑥(1), 𝑥(2), . . . , 𝑥(𝑛), . . .⟩ with required properties can
be constructed by some algorithm given 𝑚. We need to explain what does it
mean: this sequence is an infinite object, and algorithms deal with finite objects
only. We require that there exists some algorithm that, given 𝑚, produces an
algorithm (=a program) that computes some sequence ⟨𝑥(1), 𝑥(2), . . . , 𝑥(𝑛), . . .⟩
with required properties.24

These two changes in the definition of a small set give us a definition of a more
restricted notion, that of an effectively small set.25 The complements of effectively
small sets could be called effectively large sets. Now the intersection of all effectively
large sets is not empty; moreover, this intersection itself is an effectively large set.
This smallest effectively large set is our goal: we denote it by T and call it the set
of all typical sequences.

Typical sequences are usually called Martin-Löf random sequences, since this
definition was suggested (as a definition of randomness) in 1966 by Per Martin-
Löf, a eminent Swedish mathematician, who in 1964 and 1965 studied at Moscow
University under the supervision of A.N. Kolmogorov.

As we have said already, the class T of all typical sequences coincides with the
class C of all chaotic sequences,

T = C,

and the elements of this class can be called chaotic-typical or typical-chaotic se-
quences (and the class may be denoted by CT or TC).

As we have already mentioned,

CT ⊂ S, CT ̸= S.

Face Four: Unpredictability

Any random sequence is unpredictable in the following sense: if we know the
values of some its terms, it does not give us any information about the terms not
revealed yet. So if a Casino prepares a random sequence and then allows a Player
to make bets on the values of the terms she does not know, the Casino is safe;
more precisely, there is no strategy for the Player that allows her to make Casino
bankrupt independent of the initial amount of money Casino has.

24An equivalent definition requires that, given 𝑚 and 𝑛, an algorithm computes 𝑛-th term
of a sequence that satisfies the requirements for the given 𝑚.

25In the main part of the book those sets are called effectively null sets.

FACE FOUR: UNPREDICTABILITY 485

In other terms, we define the unpredictability of some sequence in terms of a
game where Casino uses that sequence and Player makes bets against that sequence,
i.e., on the values of terms of that sequence not revealed yet. Players and Casino
initially have some amounts of money. Casino also has some bit sequence, and
Player does not know it. Player can then make bets about some bits of that
sequence, not necessarily in the monotone order and not necessarily about all bits
— some terms of the sequence may be skipped.

We can imagine that bits are written on cards that lie on an infinite table face
down, so Player does not see the bits: she sees only an infinite sequence of card
backs. At each move, Player points to some card, makes a prediction about the bit
on that card and declares the amount of her bet. Then the card is turned over. If
the prediction is correct, Casino pays that amount to Player; if the prediction is
wrong, Player loses her money (i.e., pays that amount to Casino). The Player wins
if she managed to make Casino bankrupt. Of course, if Player has unlimited credit
resources, she can always win by doubling the bets until her guess becomes correct.
But we assume that Player has no credit line, so the amount of the bet should not
exceed her current capital.

A sequence is called predictable if there is a strategy for Player that allows her
to win against that sequence. This means that for arbitrarily large initial capital of
Casino, the Casino will nevertheless become bankrupt if Player uses this strategy.
A sequence is called unpredictable if it is not predictable.

More formally the game may be described as follows. We consider an infinite
sequence of zeros and ones:

a = ⟨𝑎1, 𝑎2, 𝑎3, . . .⟩.
At each move Player creates a triple

⟨𝑛, 𝑖, 𝑣⟩,
where

𝑛 ∈ N, 𝑖 ∈ {0, 1}, 𝑣 ∈ Q, 𝑣 > 0;

here, as usual, N is the set of natural numbers,26 and Q is the set of rational
numbers. The meaning of this triple is the following: 𝑛 is the number of the bit
on which the bet is made; 𝑖 is the predicted value of that bit, and non-negative
rational number 𝑣 is the amount of the bet. The moves are performed sequentially,
starting from the first one; the triple that represents 𝑘-th move, is denoted by
⟨𝑛(𝑘), 𝑖(𝑘), 𝑣(𝑘)⟩. (More formally, moves are triples of the described form.)

The player’s capital before 𝑘-th move is denoted by 𝑉 (𝑘 − 1). Without loss of
generality we may assume that the initial capital of Player equals 1, i.e., 𝑉 (0) = 1.

After each move, Player’s capital changes according to the following rules:

∙ if 𝑖(𝑘) = 𝑎𝑛(𝑘) (Player made a correct guess), then
𝑉 (𝑘) = 𝑉 (𝑘 − 1) + 𝑣(𝑘);

∙ if 𝑖(𝑘) ̸= 𝑎𝑛(𝑘) (Player made an incorrect guess), then
𝑉 (𝑘) = 𝑉 (𝑘 − 1) − 𝑣(𝑘).

Two additional remarks are needed.

26Sometimes 0 is considered as a natural number (logicians and computability experts usually

do this), sometimes not — here we follow the second convention and do not consider 0 as a natural
number.

486 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

First, moves may be valid or invalid, and the game is continues only if the move
is valid. By definition, a valid move should satisfy two requirements:

1) the number of bit on which bet is made, is valid : this means that this bit
was not used earlier, i.e., 𝑛(𝑘) does not appear among 𝑛(1), . . . , 𝑛(𝑘− 1);

2) the bet itself is valid : its size is less than the current capital, i.e., 𝑣(𝑘) <
𝑉 (𝑘 − 1).

Game stops when Player makes an incorrect move. In this case she keeps the
current capital forever, and cannot win.

It is also possible that Player refrains from making any move (she may even
refrain from making the first move); in this case she also keeps the current capital
forever, and cannot win. However, we do not say in this case that the game is
“stopped”. Player can think for an arbitrarily long time before making her next
move; the time for thinking is not limited, so it is possible that she thinks forever,
i.e., never makes any move. While thinking, the capital remains unchanged, so in
this case the capital remains unchanged forever. We do not say, however, that the
game is stopped, since Player never explicitly declares that she will not make any
move. So three scenarios are possible: (1) Player makes infinitely many moves;
(2) Players attempts to make an invalid move and the game is stopped; (3) Player
at some point start thinking but never makes a move.

Of course, this is only an illustration, and the formal definition goes as follows.
By definition, Player wins against the sequence a if

sup
𝑘

𝑉 (𝑘) = +∞,

i.e.,
∀𝑊 ∃𝑘 𝑉 (𝑘) > 𝑊.

This means that Player can cause the bankruptcy of Casino independently of its
initial capital. This is possible only if game is infinite, that is, at each turn Player
makes a valid move.

The game is described now, and we define the notion of a strategy. A strategy
is a rule that tells Player what she should do, i.e., prescribes the next move based
on the history of the game. The strategy is not required to be total, its output
may be undefined because Player makes no move: the strategy produces an output
exactly in the cases when Player makes some move. The input to the strategy is
the history of the game, that is, the sequence of all the moves made so far and the
values of the bits revealed so far. (One could add to the history the information
about the capital at every moment, but this is redundant, since this information
can be easily computed.)

So the history before 𝑘th move can be represented as a table:

𝑛(1) 𝑛(2) . . . 𝑛(𝑘 − 1)
𝑖(1) 𝑖(2) . . . 𝑖(𝑘 − 1)
𝑣(1) 𝑣(2) . . . 𝑣(𝑘 − 1)
𝑎𝑛(1) 𝑎𝑛(2) . . . 𝑎𝑛(𝑘−1)

(for 𝑘 = 1 the table is empty).
A strategy therefore is a function that maps every table of this kind to a move

⟨𝑛, 𝑖, 𝑣⟩, or may be undefined (on some tables). Here ‘table of this kind’ means
arbitrary table with positive integers in the first row, non-negative rational numbers
in the third row, and bits in the second and fourth rows.

FACE FOUR: UNPREDICTABILITY 487

Assume that we are given a strategy and a table that can appear during the
game of that strategy against some sequence. Then the first three rows of that table
can be uniquely reconstructed from the last row. Indeed, we reconstruct the first
move ⟨𝑛(1), 𝑖(1), 𝑣(1)⟩ applying the strategy to the empty table. Then (assuming
that the fourth row is known) we know the history of the game before the second
move, i.e., the table

𝑛(1)
𝑖(1)
𝑣(1)
𝑎𝑛(1).

Then we apply the strategy again to find the second move ⟨𝑛(2), 𝑖(2), 𝑣(2)⟩ an hence
the table

𝑛(1) 𝑛(2)
𝑖(1) 𝑖(2)
𝑣(1) 𝑣(2)
𝑎𝑛(1) 𝑎𝑛(2),

and so on.
So, when defining strategies, we may assume that only the fourth line of the

table is given to the strategy. This line is a binary string (an element of Ξ). Given
a binary string, the strategy may have no output, or provide the next move, an
element of N × {0, 1} × Q+, as an output. (Here Q+ stands for the set of all
non-negative rational numbers.)

So we can now give the final definition of a strategy: it is a partial mapping of
type

Ξ → N× {0, 1} ×Q+.

We are interested in strategies that are computable, i.e., that can be computed
by an algorithm. Let us specify what does that mean. Assume that an algorithm
A gets elements of a set 𝑋 as inputs and produces elements of a set 𝑌 as outputs.
Consider the subset of 𝑋 that consists of all inputs for which A provides some
output, and the function from this subset of 𝑋 to 𝑌 that maps each input value
to the corresponding output value. We say that A computes that function, and a
function is computable if some algorithm computes it.

We will consider strategies that are computable in this sense. (If the algorithm
does not terminate for an input history, then the strategy is undefined on that
history, in which case we may imagine that Player is thinking about her move but
never comes to any decision.)

We say that a sequence a is predictable if there exists a computable strategy
that wins against a (i.e., Player wins if she uses this strategy against a). Otherwise,
a is unpredictable.27 The class of all unpredictable sequences is denoted by U.

It is known that every unpredictable sequence is Kolmogorov stochastic (be-
longs to the class S) and that every typical-chaotic sequence is unpredictable:

CT ⊂ U ⊂ S.

It is known also that the class of Kolmogorov stochastic sequences is signifi-
cantly larger that the class of unpredictable sequences:

S ̸= U.

27In the main text unpredictable sequence are mentioned as “Kolmogorov–Loveland random”;
see the discussion on p. 321.

488 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

But the question whether the classes of chaotic (=typical) and unpredictable
sequences coincide, is still open:

CT
?
= U.

This is an important problem; several people tried to solve it but got only
partial results.

Strategies that avoid invalid moves. Defining unpredictable sequences,
we may restrict ourselves to strategies that never make invalid moves. Indeed, we
can modify an algorithm A that computes the winning strategy, and get another
algorithm B that does not terminate when A attempts to make an invalid move.
One has to check whether the move is valid, and this can be done algorithmically:
knowing the input for A, we reconstruct the history of the game, including the
numbers of bits revealed and the current capital of Player, so we can check the
validity of the move recommended by A, and cancel an invalid attempt.28

Generalization for arbitrary computable distributions

Up to now we considered only the case of the uniform distribution on the
space Ω of binary sequences; all the main ideas can be illustrated in this special
case. Now, to complete the picture, we consider the general case of arbitrary
computable probability distribution on Ω. (See the definition below.) Let us make
some comments for the readers that are not yet familiar with the general notion of
a probability distribution (measure).

We say that a set 𝑀 is equipped with a measure 𝜇 if (1) some class of subsets
of 𝑀 is chosen; its elements are called measurable subsets; (2) for each measurable
subset 𝐴 some number 𝜇(𝐴) is chosen; this number is called the measure of 𝐴.
There are some requirements (axioms of measure theory); we do not go into the
details here and note only that this requirements imply the following fact: any finite
or countable union of disjoint measurable subsets is measurable and its measure
is equal to the sum of the measures of the parts. For probability measures, or
probability distributions we require also that 𝜇(𝑀) = 1. The intuitive meaning
of 𝜇(𝐴) is the probability of the event “a randomly chosen element of 𝑀 belongs
to 𝐴”.

A measure on Ω is determined by the measures of balls. For the uniform
distribution (and only for it) we have

(∀𝑥 ∈ Ξ) (𝜇(Ω𝑥) = 2−|𝑥|).

It corresponds to the case where zeros and ones are equiprobable and trials are
independent. A slightly more general case is Bernoulli distribution, called also a
binomial distribution. Here the trials are also independent, but in each trial the
probabilities of 1 and 0 are 𝑝 and 1− 𝑝 respectively. This number 𝑝 is a parameter;
for 𝑝 = 1/2 we get the uniform distribution. Formally, for the Bernoulli distribution
with parameter 𝑝 we have

𝜇(Ω𝑥) = 𝑝𝑘(1 − 𝑝)|𝑥|−𝑘,

where 𝑘 is the number of 1s in 𝑥.

28A more complicated argument shows that the class of unpredictable sequences does not
change if we consider only total computable strategies, i.e., the strategies defined on all inputs.
See the discussion on p. 321.

GENERALIZATION FOR ARBITRARY COMPUTABLE DISTRIBUTIONS 489

Next step is to consider quasi-Bernoulli distributions where trials are still in-
dependents, but the probability of success may depend on the number of the trial:
in 𝑘th trial the outcome 1 appears with probability 𝑝(𝑘). More formally, consider
a sequence of reals

p = ⟨𝑝(1), 𝑝(2), . . . , 𝑝(𝑘), . . .⟩, 0 6 𝑝(𝑘) 6 1.

Then the quasi-Bernoulli distribution with parameter p is defined by the formula

𝜇(Ω𝑥) =

𝑛∏︁
𝑖=1

𝑟𝑖,

where 𝑟𝑖 = 𝑝(𝑖) if 𝑥𝑖 = 1 and 𝑟𝑖 = 1 − 𝑝(𝑖) if 𝑥𝑖 = 0. If p = ⟨𝑝, 𝑝, . . . , 𝑝, . . .⟩, we get
Bernoulli distributions as a special case.

In this section we show how the definitions of stochasticness, chaoticness, typ-
icalness and unpredictability can be extended to the case of arbitrary computable
probability distribution 𝜇 (see the definition below). Let us tell in advance that for
this more general case the same relationships hold:

C(𝜇) = T(𝜇) ⊂ U(𝜇) ⊂ S(𝜇),

S(𝜇) ̸= U(𝜇)

(the last inequality is true assuming that all balls have positive measures).
Here C(𝜇), T(𝜇), U(𝜇), S(𝜇) denote (respectively) the classes of chaotic, typi-

cal, unpredictable and Kolmogorov stochastic sequences with respect to the distri-
bution 𝜇, these classes are defined below. Our old classes now can be written as
C = C(𝜂), T = T(𝜂), U = U(𝜂) and S = S(𝜂) for the uniform distribution 𝜂 on Ω.

Let us warn the reader that this section is addressed to people who like gen-
eralizations. It is a bit more difficult than the previous exposition. Moreover, our
task, that is the search for a natural definition of randomness, is less clear for gen-
eral distributions. The intuitive meaning of an individual random sequence as a
plausible outcome of some natural physical process like coin tossing becomes less
and less clear as we switch from the simple example of fair coin tossing and the
uniform distribution to more and more general classes of distributions.

Computable measures (distributions). One may attempt to call a mea-
sure on Ω computable if there exists an algorithm that for each binary string 𝑥
computes a measure 𝜇(Ω𝑥) of the ball Ω𝑥. However, we have to be cautious: an
output of an algorithm may be a integer or rational number (to be more precise,
its name or representation as a string over a finite alphabet), and we cannot name
all the real numbers since we have only countably many names. So we require
that the algorithm computes not a real number (the measure of the ball) but its
approximations.

Here is the definition. A measure 𝜇 is computable if there exists an algorithm
that for any given pair (a binary string 𝑥, a positive rational 𝜀) computes a rational
number that differs from 𝜇(Ω𝑥) at most by 𝜀.

One could add a requirement that there is an algorithm that for a given 𝑥 says
whether the equality 𝜇(Ω𝑥) = 0 holds or not. That requirement gives a strictly
smaller class of measures that are called strongly computable measures in the sequel.

An important subclass of the class of computable measures is the class of
computable-rational measures where the measure of each ball Ω is a rational number

490 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

that can be computed (the corresponding fraction presented) given 𝑥. Note that it
is not the same as a computable measure whose values (on balls) are rational num-
bers: in the latter case we are able only to provide arbitrarily close approximations
to the rational number which is the measure of the ball, and this is not enough to
produce this number entirely (as a fraction of two integers).

Recalling that probability distributions are those measures for which the mea-
sure of Ω equals 1, we may speak about computable probability distributions on
Ω. Many definitions and statements about randomness for the uniform distribution
can be generalized naturally to arbitrary computable probability distributions. In
particular, one can prove a general version of Martin-Löf’s theorem (saying that
the intersection of all effectively large sets is an effectively large set itself), and
Levin’s theorem (saying that typicalness is equivalent to chaoticness defined using
monotone complexity).29

Stochasticness. Recall our notation: 𝑘th term of some sequence e is denoted
by 𝑒𝑘 or (to avoid subscripts) by 𝑒(𝑘).

For the case of the uniform distribution stochasticness was understood as global
frequency stability, i.e., the stability of frequencies in all admissible subsequences.
Those subsequences were obtained by application of Kolmogorov-admissible selec-
tion rules. For the general case of an arbitrary computable measure this scheme
remains the same, but frequency stability should be replaced by some more general
property derived from the strong law of large numbers in probability theory.

For the Bernoulli distribution with parameter 𝑝 ∈ (0, 1) the definition is clear:
we require that every admissible subsequence has the frequency stability property
with limit frequency 𝑝. In other terms, for every admissible subsequence the fraction
of ones in its 𝑛-bit prefixes tends to 𝑝 as 𝑛 → ∞. We also treat the cases 𝑝 = 0 and
𝑝 = 1 in a special way: only the sequence that contains only zeros (respectively,
ones) is stochastic.

Can we consider even a more general case of non-Bernoulli distribution? This
definitely goes beyond the original idea of von Mises: he tries to define the notion
of probability as limit frequency in random sequences. Still one can try to follow
this path, starting with quasi-Bernoulli sequences.

One could not expect the existence of limit frequency in the subsequences of
a quasi-Bernoulli sequence (and different subsequences may have different limit
frequencies even if they exist). So the stochasticity requirement should take into
account the selection rules (which terms were selected). But first let us exclude
the case when a bit appears that has probability zero: we declare a sequence a
non-stochastic if there exists some 𝑘 such that 𝑎(𝑘) = 0 and 𝑝(𝑘) = 1, or 𝑎(𝑘) = 1
and 𝑝(𝑘) = 0. Assuming this does not happen, we call a sequence a stochastic with
respect to a selection rule Θ if its generalized subsequence

b = ⟨𝑎(𝑚1), 𝑎(𝑚2), . . . , 𝑎(𝑚𝑘), . . .⟩,

29In the main part of the book this result is called Levin–Schnorr theorem; Schnorr’s paper

was published earlier and considers some special notion of complexity called “process complexity”.
It can differ significantly from monotone complexity (see below the section about history and

bibliography), but the underlying ideas are similar and the proof for one of them can be easily
adapted for the other one.

GENERALIZATION FOR ARBITRARY COMPUTABLE DISTRIBUTIONS 491

obtained by this rule, satisfies the following requirement taken from the strong law
of large numbers for quasi-Bernoulli distributions:

𝑎(𝑚1) + · · · + 𝑎(𝑚𝑘)

𝑘
− 𝑝(𝑚1) + · · · + 𝑝(𝑚𝑘)

𝑘
→ 0

as 𝑘 → ∞. Now we can define stochastic sequence with respect to a given quasi-
Bernoulli measure by requiring that for every Kolmogorov-admissible selection rule
that produces an infinite generalized subsequence, this subsequence is stochastic
with respect to this rule.

Remark. By definition, generalized subsequences are always infinite, so the
word ‘infinite’ in the last sentence can be omitted. However, we use it to stress that
we really are interested only in the infinite sequences, not tuples.

Now we want to extend the notion of Kolmogorov-stochasticness to a wider
class of probability distribution. First, let us introduce some notation.

Let 𝑛(1), 𝑛(2), . . . , 𝑛(𝑘) be some natural numbers and let 𝑖(1), 𝑖(2), . . . , 𝑖(𝑘) be

some bits. By 𝐴
𝑛(1), ..., 𝑛(𝑘)
𝑖(1), ..., 𝑖(𝑘) we denote the set of all sequences a ∈ Ω such that

𝑎𝑛(1) = 𝑖(1), 𝑎𝑛(2) = 𝑖(2), . . . , 𝑎𝑛(𝑘) = 𝑖(𝑘). (*)

The ratio
𝜇
(︀
𝐴

𝑛(1), ..., 𝑛(𝑘),𝑚
𝑖(1), ..., 𝑖(𝑘), 1

)︀
𝜇
(︀
𝐴

𝑛(1), ..., 𝑛(𝑘)
𝑖(1), ..., 𝑖(𝑘)

)︀
is denoted in the sequel by

𝜇

(︃
𝑚
1

⃒⃒⃒⃒
⃒ 𝑛(1), . . . , 𝑛(𝑘)
𝑖(1), . . . , 𝑖(𝑘)

)︃
,

since it is the conditional probability of the event “𝑚th term of a equals 1” under
the condition (*). That probability is undefined when the denominator equals zero.

Let us fix an arbitrarily sequence a ∈ Ω and some Kolmogorov-admissible se-
lection rule Θ. Our goal is to define the notion “a is stochastic with respect to Θ”.
Recall that Θ was applied to select a subsequence of a in two steps. First, we select
an auxiliary generalized subsequence c; then the resulting subsequence is obtained
by omitting some terms in c. More precisely,

c = ⟨𝑎𝑛(1), 𝑎𝑛(2), . . . , 𝑎𝑛(𝑘), . . .⟩,
where the number 𝑛(𝑘) is computed algorithmically given the tuple

⟨𝑎𝑛(1), 𝑎𝑛(2), . . . , 𝑎𝑛(𝑘−1)⟩.
Then, using the same tuple as input, the rule Θ decides whether the term 𝑎𝑛(𝑘)
should be included in the final subsequence b. Therefore,

b = ⟨𝑎(𝑛(𝑘1)), 𝑎(𝑛(𝑘2)), . . . , 𝑎(𝑛(𝑘𝑗)), . . .⟩.
At both stages it may happen that Θ (the corresponding algorithm) does not pro-
duce any output (the number in the first case, and the decision bit in the second
case). Then b is finite and we do not require anything, hence the sequence a is
declared to be stochastic with respect to Θ. But if b is infinite, then some require-
ment should be fulfilled to make a stochastic with respect to Θ. Let us describe
that requirement.

492 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

By 𝑟𝑗 we denote the conditional probability

𝜇

(︃
𝑛(𝑘𝑗)

1

⃒⃒⃒⃒
⃒ 𝑛(1), 𝑛(2), . . . , 𝑛(𝑘𝑗 − 1)
𝑎(𝑛(1)), 𝑎(𝑛(2)), . . . , 𝑎(𝑛(𝑘𝑗 − 1))

)︃
.

Consider the difference

𝛿𝑗 =
𝑟1 + 𝑟2 + · · · + 𝑟𝑗

𝑗
− 𝑎(𝑛(𝑘1)) + 𝑎(𝑛(𝑘2)) + · · · + 𝑎(𝑛(𝑘𝑗))

𝑗
.

Here 𝛿𝑗 is defined only if all 𝑟1, . . . , 𝑟𝑗 are defined.
We say that b satisfies the strong law of large numbers if all 𝛿𝑗 are defined and

𝛿𝑗 → 0 as 𝑗 → ∞. A sequence a is then called stochastic with respect to Θ if the
generalized subsequence obtained from a according to Θ satisfies the strong law of
large numbers.

Finally, a sequence a is called Kolmogorov stochastic with respect to a given
probability distribution if a is stochastic with respect to every Kolmogorov-admis-
sible selection rule that selects an infinite generalized subsequence from a.

This definition by itself does not use the computability of the measure. How-
ever, to compare it with other randomness notions we need to assume that the
measure (the probability distribution in question) is computable.

Chaoticness. A sequence a = ⟨𝑎1, 𝑎2, 𝑎3, . . .⟩ is chaotic with respect to a com-
putable measure 𝜇 if there exists a constant 𝑐 such that

KM (𝑎1, 𝑎2, . . . , 𝑎𝑛) > − log𝜇(Ω𝑎1,𝑎2,...,𝑎𝑛
) − 𝑐,

for all 𝑛 (here log stands, as usual, for the binary logarithm).
For arbitrary computable measures, the motivation for this definition is the

same as it was for the uniform measure. One can prove that for every computable
measure 𝜇 there exists some 𝑐 such that

KM (𝑥) < − log𝜇(Ω𝑥) + 𝑐

for all strings 𝑥. Informally speaking, for every computable measure 𝜇 we can find
some monotone description language that fits that measure in the following sense:
it provides short descriptions for strings 𝑥 that have big values of 𝜇(Ω𝑥) (as the
inequality above specifies). The sequence is chaotic if those descriptions cannot be
significantly shortened (more than by a constant).

Typicalness. The definition of typicalness can be naturally extended to arbi-
trary measures: we used the volume (=the uniform measure) of balls when defining
small sets, and now we should use their measure instead.

As before, we start by defining effectively small sets. A set 𝑄 ⊂ Ω is effectively
small with respect to measure 𝜇 if there exists and algorithm A with the following
property. Given any positive integer 𝑚 and input, the algorithm A produces as
output an algorithm for computing a sequence ⟨𝑥(1), 𝑥(2), . . . , 𝑥(𝑛), . . .⟩ such that

𝑄 ⊂
⋃︁
𝑛

Ω𝑥(𝑛),∑︁
𝑛

𝜇(Ω𝑥(𝑛)) <
1

𝑚
.

Then a set is considered as effectively large with respect to 𝜇 if its complement is
effectively small.

GENERALIZATION FOR ARBITRARY COMPUTABLE DISTRIBUTIONS 493

For every computable measure 𝜇 the following Martin-Löf theorem holds: the
union of all effectively small sets is effectively small, and therefore the intersection
of all effectively large sets is effectively large. This result provides the smallest
effectively large sets which is called the constructive support of measure 𝜇. The
elements of this constructive support are called typical with respect to 𝜇, so the set
T(𝜇) is defined as the constructive support of the distribution 𝜇.

Unpredictability. Let us explain how the definition of unpredictability (given
above for the uniform distribution) should be changed for the case of arbitrary dis-
tributions. Two changes are necessary for that: some auxiliary factor (that equals
1 for the uniform distribution and was therefore omitted), and some additional rule
that tells us when to stop the game (for the uniform distribution it is not needed
since the corresponding situation cannot happen).

The payoff for bets depends on the probability distribution. If Player makes
a wrong guess, her bet is lost, i.e., the capital decreases by the size of the bet.
But if she makes a correct guess, the increase is proportional to the bet, and the
coefficient depends on the probability of the correctly predicted outcome. The
coefficient is large if this outcome has small probability, and is small if it has large
probability. For the uniform distribution the probability is always 1/2 and the
coefficient is always 1. The exact value of the coefficient for an arbitrary distribution
is determined as follows.

Recall that 𝑎𝑘 denotes the 𝑘th term of a sequence a; similarly, 𝑎′𝑘 is 𝑘th term
of a′, etc. Player’s 𝑗th move is a triple ⟨𝑛(𝑗), 𝑖(𝑗), 𝑣(𝑗)⟩.

Let a be the sequence used by Casino for the game. Let

𝐴(𝑘 − 1) = {a′ ∈ Ω: 𝑎′𝑛(𝑗) = 𝑎𝑛(𝑗) for all 𝑗 = 1, 2 . . . , 𝑘 − 1}

(so 𝐴(0) = Ω), and

𝐴𝑖(𝑘) = {a′ ∈ 𝐴(𝑘 − 1) : 𝑎′𝑛(𝑘) = 𝑖} for 𝑖 = 0, 1.

This notation makes sense if all the numbers 𝑛(𝑙) appearing in it are defined. Note
that

Ω = 𝐴(0) ⊃ 𝐴(1) ⊃ 𝐴(2) ⊃ . . . , (1)

1 = 𝜇(𝐴(0)) > 𝜇(𝐴(1)) > 𝜇(𝐴(2)) > (2)

If Player’s 𝑘th guess was correct, then

𝑖(𝑘) = 𝑎𝑛(𝑘), 𝐴𝑖(𝑘)(𝑘) = 𝐴(𝑘); (3)

otherwise
𝑖(𝑘) ̸= 𝑎𝑛(𝑘), 𝐴1−𝑖(𝑘)(𝑘) = 𝐴(𝑘); (4)

note also that
𝐴(𝑘 − 1) = 𝐴0(𝑘) ∪𝐴1(𝑘). (5)

If 𝑖(𝑘) = 𝑎𝑛(𝑘) (i.e., 𝑘th guess was correct), Player’s capital increases according
to the following formula:

𝑉 (𝑘) = 𝑉 (𝑘 − 1) + 𝑣(𝑘) ·
𝜇(𝐴1−𝑖(𝑘)(𝑘))

𝜇(𝐴𝑖(𝑘)(𝑘))
. (6)

This formula guarantees that the game is fair, i.e., the expected change of the
capital at 𝑘th step equals zero. However, an unpleasant surprise is possible when
we apply this rule: the value 𝜇(𝐴𝑖(𝑘)(𝑘)) in the denominator may be equal to 0.
In this case (that was not possible for the uniform distribution, as well as for any

494 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

positive distribution where all balls have positive measures) a special additional
stopping rule is used.

Additional stopping rule. It is used when it happens (for the first time)
that 𝜇(𝐴(𝑘)) = 0 (cf. the equation (2) above). Assume that 𝜇(𝐴(𝑘 − 1)) ̸= 0,
𝜇(𝐴(𝑘)) = 0. The last move made was 𝑘th move, when Player made a prediction
𝑖(𝑘). If the prediction turns out to be correct (i.e., 𝑖(𝑘) = 𝑎𝑛(𝑘)), then the game is
stopped and Player’s capital is declared to be infinite 𝑉 (𝑘) = +∞, and Player wins
the game. If the prediction turns to be incorrect, i.e., 𝑖(𝑘) ̸= 𝑎𝑛(𝑘), then the game
is also stopped, but in this case the capital of the Player remains unchanged (and
fixed), so Player does not win the game.

This rule takes care of the problem of zero denominator in (6). Indeed, (6) is
applied only if 𝑖(𝑘) = 𝑎𝑛(𝑘). In this case 𝐴𝑖(𝑘)(𝑘) = 𝐴(𝑘), according to (3). So if
we get a zero denominator, it means that 𝜇(𝐴(𝑘)) = 0. But in this case we apply
the additional stopping rule instead of (6). (Or we could say that we apply (6) and
declare that we get +∞ when dividing positive number 𝜇(𝐴1−𝑖(𝑘)(𝑘)) by zero.)

The definitions of a strategy, a computable strategy, a strategy that performs
only valid moves remain (up to these changes) the same as for the special case of
the uniform distribution.

History and bibliography

We print the numbers in italic to distinguish them from the references in the
main list of references.

[1] A. Kolmogorov, V. Uspensky. Algorithms and randomness. SIAM J. The-
ory Probab. Appl., v. 32 (198), p. 389–412. Translated with annoying errors (for
instance, everywhere instead of the correct translation “recursively enumerable”
an incorrect translation “countable” is used); better translation can be found in:
Yu.V. Prokhorov, V.V. Sazonov, eds., Proc. 1st World Congress of the Bernoulli
Society (Tashkent 1986), v. 1, Probability Theory and Appl., VNU Science Press,
Utrecht, 1987, p. 3–55.

[2] V. Uspensky, A. Semenov. Algorithms: main ideas and applications. Kluwer
Academic Publishers, 1993, 269 pp.

[3] V. Uspensky, A. Semenov, A. Shen. Can an individual sequence of zeros
and ones be random? Russian Math. Surveys, v. 45(1), 1990, p. 121–189.

[4] V. Uspensky, A. Shen. Relations between varieties of Kolmogorov complex-
ities. Mathematical Systems Theory, v. 29 (3), 1996, p. 271–292.

[5] An. Muchnik, A. Semenov, V. Uspensky. Mathematical metaphysics of
randomness, Theoretical Computer Science, v. 207, 1998, p. 263–317.

[6] A. Shen, On relations between different algorithmic definitions of random-
ness, Soviet Math. Dokl., v. 38 (2), 1989, 316–319.

[7] V. V’yugin, Algorithmic entropy (complexity) of finite objects and its ap-
plication to defining randomness and amount of information, Selecta Mathematica
formerly Sovietica, v. 13(4), 1994, p. 357–389.

[8] M. Li, P. Vitányi. An Introduction to Kolmogorov Complexity and Its Ap-
plications., Springer-Verlag, 1993, xx+546 pp., 38 illustrations; third ed., 2008,
xxiii+790 pp., 50 illustrations.

Of course, this list is not complete in any sense. However, in these publications
(especially in [8]) one can find further references to get a more complete picture. In

HISTORY AND BIBLIOGRAPHY 495

[2], in Section 2.6 (Applications to probability theory) different definitions of ran-
dom sequence are given (p. 166–178). Note that the terminology in [2] is different:
what we call chaotic sequences is called there Kolmogorov random sequences, what
we call typical sequences is called there Martin-Löf random sequences; Church
stochastic sequences are called there Mises–Church random sequences, and Kol-
mogorov stochastic sequences are called there Mises–Kolmogorov–Loveland random
sequences (and in [3] they are called Kolmogorov–Loveland stochastic sequences;
D. Loveland independently discovered this class later, in 1966, while Kolmogorov’s
paper appeared in 1963). The unpredictable sequences (as defined by us) do not
appear in [2] since they were introduced only later (in 1998, see [5]).

An example of a Church stochastic sequence that becomes not Church stochas-
tic after a computable permutation of its terms was published by D. Loveland in
1966. That example is important not only because it shows a flaw in Church’s
definition, but also because it stresses an important property of randomness that is
intuitively obvious but was not taken into account earlier: conservation after every
computable permutation.

Description complexity theory, i.e., the theory of complexity of objects, should
not be mixed with computational complexity theory, i.e., the theory of complexity
of computations. Description complexity theory forms the basis for algorithmic
information theory. Both theories, closely related, were founded by Kolmogorov
in his seminar talks at Lomonosov Moscow State University in the beginning of
1960s; Kolmogorov’s main goal was to create a new foundation for information
theory based on the idea that the more complex an object is, the greater is the
information carried by that object. That new foundation should avoid the notion
of probability replacing it by the notion of algorithm, and also should be applied to
the definition of an individual random object. In his 1969 paper (English version
was published in 1968) Kolmogorov wrote:

(1) Basic information theory concepts must and can be
founded without recourse to the probability theory, and in such
a manner that “entropy” and “mutual information” concepts
are applicable to individual values.

(2) Thus introduced, information theory concepts can form
the basis of the term random, which naturally suggests that
randomness is the absence of regularities.30

The idea to measure the complexity of an object by the length of its shortest
description was proposed by Kolmogorov in his paper of 1965;31 a year earlier
similar ideas were published in the US by Ray Solomonoff (Kolmogorov learned
about Solomonoff’s work when publishing his 1969 paper32 and cited it). So we
called Solomonoff–Kolmogorov theorem the statement about existence of an optimal
description language. At the same time (middle of 1960s) Kolmogorov suggested
in his seminar talks that the growth of complexity of prefixes can be used to define
randomness for individual infinite sequences. However, the family of description
languages introduced by Kolmogorov turned out to be unsuitable for this, and (as

30The published English version of this paper says “random is the absence of periodicity”,

but this evidently is a translation error, and we correct the text following the Russian version.
31See item [77] in the main list of references.
32See item [78] in the main list of references.

496 APPENDIX 2. FOUR ALGORITHMIC FACES OF RANDOMNESS

we have said before) a suitable family was found in 1973 by Leonid Levin who
defined the notion of monotone entropy.

Typical sequences were defined (and called “random”) by Per Martin-Löf in
1966, as we have said earlier.

The existence of a Kolmogorov stochastic sequence that is not typical (= not
chaotic) was proven by Alexander Shen (see [6] or [2, Section 6.2.4]).33

Let 𝐾 be one of the entropy functions (many of them were studied, includ-
ing plain, a priori, monotone, process, prefix and decision entropies; the versions
mentioned are different in the sense that the difference between any two of these
entropy functions is not bounded). We may try to define chaotic sequences (with
respect to the uniform distribution) using 𝐾 by requiring that

∃𝑐 ∀𝑛 (𝐾(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛) > 𝑛− 𝑐).

(Just for the record: for plain and decision entropy no sequences with this prop-
erty exist, and for four other versions we get a definition that is equivalent to
typicalness.) The equivalence of chaoticness for monotone entropy and typicalness
was shown by Levin in the same paper where monotone entropy was introduced.
Independently Claus-Peter Schnorr in 1973 paper34 (the conference version was
published in 1972) introduced another version of entropy, process entropy (Schnorr
used the name “process complexity”) and proved (by a similar argument) that the
corresponding notion of chaoticness is equivalent to typicalness. The process en-
tropy and monotone entropy differ significantly (their difference is unbounded, as
Vladimir Vyugin showed [7]); later Schnorr switched to monotone entropy, and
the equivalence between chaoticness based on monotone entropy and typicalness is
sometimes called Levin–Schnorr theorem.

The prefix entropy was introduced by Levin in his Ph.D. thesis submitted in
1971 but the thesis was rejected35 and the definition was published only in 1974.36

Later Gregory J. Chaitin independently discovered the same definition (see his
paper “A theory of program size formally identical to information theory”, Journal
of the Association of Computing Machinery, 1975, v. 22, no. 3, p. 329–340) where
he also introduced chaoticness definition using prefix entropy and claimed (without
proof) that this version of chaoticness is equivalent to typicalness; the proof was
first published in Vyugin’s paper [7, Corollary 3.2]. The prefix entropy can be
defined as entropy for the family of prefix description languages. A set 𝐸 is a prefix
description language if 𝐸 is enumerable and the following condition holds:(︀

⟨𝑥1, 𝑦1⟩ ∈ 𝐸 & ⟨𝑥2, 𝑦2⟩ ∈ 𝐸 & (𝑥1 ≈ 𝑥2)
)︀
⇒ (𝑦1 = 𝑦2).

Note also that the term “complexity” is normally used for what we call “en-
tropy” (i.e., complexity with respect to an optimal description language).

Unpredictable sequences (as defined above) appeared (spring 1991) in the joint
talk “Randomness and Lawlessness” given by Andrei Muchnik, Alexey Semenov

33The main idea of this proof was invented by M. van Lambalgen for monotone selection

rules and can be easily generalized to non-monotone ones. — A. Shen.
34See item [168] in the main list of references.
35Levin was a USSR citizen. The rejection of his thesis, having been approved by Kolmogorov

who was the thesis advisor and all the reviewers, took place for political reasons. He emigrated
in 1978 and earned a Ph.D. at the Massachussets Institute of Technology (MIT) in 1979.

36See item [93] in the main list of references.

HISTORY AND BIBLIOGRAPHY 497

and Vladimir Uspensky at the conference in California devoted to the foundations
of randomness (March 4–7, Institute for Mathematical Studies in the Social Sci-
ences, Stanford University). The paper [5] published in 1998 is based on that
talk and contained the results about relations between unpredictability and other
randomness notions.37

Note that the definition of unpredictability given in the present exposition
slightly differs from the definition in [5]. Namely, in [5] the bet was called valid if
a weaker inequality 𝑣(𝑘) 6 𝑉 (𝑘 − 1) holds, while we require the strict inequality
𝑣(𝑘) < 𝑉 (𝑘 − 1). Both definitions are equivalent (i.e., lead to the same class
of unpredictable sequences), but still our current definition looks somehow more
thoughtful. There are two reasons to prefer the new version. First, the game
looks more natural: if Players bets all her capital and makes a wrong guess, then
no money is left and the rest of the game is trivial (only zero bets are possible).
Second, we need strict inequality to make the game realistic from the algorithmic
viewpoint for arbitrarily computable measures (only computable-rational measures
were considered in [5]). Indeed, before a bet is made, Player should check that the
bet is valid. She can check the strict inequality 𝑣(𝑘) < 𝑉 (𝑘 − 1) before making
the bet (checking algorithm terminates and confirms the inequality if it holds, and
does not terminate otherwise), but one cannot construct similar algorithm for the
inequality 𝑣(𝑘) 6 𝑉 (𝑘 − 1) and arbitrary computable measure.

The game approach to randomness was mentioned already by von Mises who
spoke about the non-existence of a winning strategy (without formal definitions)
when playing against Casino. Later several formal definitions were suggested, but
the version from [5] (with a cosmetic change mentioned above) seems to be more
adequate. Indeed, in the previous versions either the computability requirement for
the strategy was replaced by requirement of another kind (still of algorithmic na-
ture, but less natural), or the resulting class of sequences was known to be different
from the class of chaotic-typical sequences. For the definition from [5] there is still
some hope that it is equivalent to chaoticness and typicalness; if it is indeed the
case, this equivalence will be another reason to believe that this class (of chaotic-
typical sequences) is a good approximation for our intuitive notion of a random
sequence.

37For the case when the bets are made from left to right, as the sequence terms appears,
the game approach to randomness and the corresponding notion of martingale was introduced in

1930s by Jean Ville [204] as an alternative to von Mises’ approach.

Bibliography

[1] Ahlswede R., Cai N., Li S. R., Yeung R., Network Information Flow, IEEE Transactions on

Information Theory, v. 46 (2000), no. 4, p. 1204–1216.
[2] Ahlswede R., Körner J., On common information and related characteristics of correlated in-

formation sources, Preprint, Presented at the 7th Prague Conference on Information Theory

(1974).
[3] Alon N., Newman I., Shen A., Tardos G., and Vereshchagin N., Partitioning multi-

dimensional sets in a small number of “uniform” parts, European Journal of Combinatorics,

v. 28 (2007), p. 134–144.

Preliminary version: ECCC38 TR05-095 (2005).

[4] Andreev M., Busy beavers and Kolmogorov complexity, Pursuit of the Universal, proceed-
ings of the 12th Computability in Europe conference, CiE2016, Paris, France, June 27 –

July 1, 2016, p. 195–204.

[5] Bauwens B., Plain and prefix complexity characterizations of 2-randomness: simple proofs,
Archive for Mathematical Logic, v. 54 (2015), no. 5, p. 615–629. . http://arxiv.org/abs/

1310.5230 (2013).

[6] Bauwens B., Shen A., Complexity of complexity and strings with maximal plain and prefix
Kolmogorov complexity, Journal of Symbolic Logic, v. 79 (2014), issue 2, p. 620–632.

[7] Bauwens B., Shen A., Takahashi H., Conditional probabilities and van Lambalgen theorem
revisited, http://arxiv.org/abs/1607.04240 (2016).

[8] Becher V., Figueira S., and Picchi R., Turing unpublished algorithm for normal numbers,

Theoretical Computer Science, v. 377 (2007), no. 1–3, p. 126–138.
[9] Bennett C.H., Gács P., Li M., Vitányi P.M.B., and Zurek W., Information distance, IEEE

Trans. Information Theory, v. 44 (1998), no. 4, p. 1407–1423.

Preliminary version: Thermodynamics of computation and information distance, Proc. 25th
ACM Symp. on Theory of Computing (STOC 1993), p. 21–30.

[10] Bienvenu L., Game-theoretic characterization of randomness: unpredictability and stochas-

ticity, Ph.D. thesis, University of Marseille, 2008.
[11] Bienvenu L., Desfontaines D., Shen A., Generic algorithms for halting problem and optimal

machines revisited, Logical Methods in Computer Science, v. 12 (2:1), 2016, p. 1–29. See

also http://arxiv.org/abs/1503.00731.pdf.
[12] Bienvenu L., Downey R., Kolmogorov complexity and Solovay functions, Electronic Proc.

26th Symp. on Theoretical Aspects of Computer Science (STACS 2009), http://stacs2009.
informatik.uni-freiburg.de/proceedings.php

[13] Bienvenu L., Gács P., Hoyrup M., Rojas C., and Shen A., Algorithmic tests and randomness

with respect to a class of measures, Proc. of the Steklov Institute of Mathematics, v. 274
(2011), p. 41–102. See also: http://arxiv.org/abs/1103.1529.

[14] Bienvenu L., Hölzl R., Porter C., Shafer P., Randomness and semi-measures, http://arxiv.

org/abs/1310.5133.
[15] Bienvenu L., Hoyrup M., Shen A., Layerwise computability and image randomness, http:

//arxiv.org/abs/1607.04232.

[16] Bienvenu L., Muchnik An., Shen A., Vereshchagin N.K., Limit complexities revisited, Theory
of Computing Systems, v. 47 (2010), no. 3, p. 720–736.

See also: http://arxiv.org/abs/0802.2833. A corrected version which includes also sim-

plified proofs of stronger results: http://arxiv.org/abs/1204.0201

38Electronical Colloquium on Computational Complexity, http://eccc.hpi-web.de.

499

500 BIBLIOGRAPHY

[17] BienvenuL., SablikM., The dynamics of cellular automata in shift-invariant topologies,

Proc. 11th Conference on Developments in language theory (DLT 2007), LNCS39 v. 4588,

p. 84–95.
[18] Bienvenu L., Shafer G., Shen A., On the history of martingales in the study of randomness,

Electronic Journal for History of Probability and Statistics, v. 5 (2009), no. 1, p. 1–40,

http://www.jehps.net/juin2009/BienvenuShaferShen.pdf

A more detailed exposition: Bienvenu L., Shen A., Algorithmic information theory and

martingales, http://arxiv.org/abs/0906.2614.

[19] Bienvenu L., Shen A., Random semicomputable reals revisited, Computation, Physics and
Beyound, Lecture Notes in Computer Science, v. 7160, 2012, p. 31–45. See also http://

arxiv.org/abs/1110.5028.

[20] Bienvenu L., Shen A., K-trivial, K-low and MLR-low sequences: a tutorial. Fields of logic
and computation, II. Essays dedicated to Yuri Gurevich on the occasion of his 75th birthday,

Lecture notes in computer science, 9300 (2015), p. 1–23. See also: http://arxiv.org/abs/

1407.4259.

[21] Borel E., Le hasard, Paris, Librairie Félix Alcan, 1920.

[22] Borel E., Probabilité et certitude, Presses Universitaires de France, 1961. English translation:
Borel E., Probability and certainty, Walker, 1963.

[23] Buhrman H., Fortnow L., Laplante S., Resource-bounded Kolmogorov complexity revisited,

SIAM Journal on Computing, v. 31 (2002), no. 3, p. 887-905.
[24] Buhrman H., Fortnow L., Newman I., Vereshchagin N., Increasing Kolmogorov complexity,

Proc. 22nd Symp. on Theoretical Aspects of Computer Science (STACS 2005), LNCS v.

3404, p. 412–421.
Preliminary version: ECCC TR04-081 (2004).

[25] Calude C. S., Information and randomness: an algorithmic perspective, 2nd ed., Springer-

Verlag, 2002 (first edition, 1994), 450 pp. ISBN 3-540-43466-6.
[26] Calude C. S., Hertling P., Khoussainov B., Wang, Y., Recursively enumerable reals and

Chaitin Omega numbers, Proc. 15th Symp. on Theoretical Aspects of Computer Science
(STACS 1998), LNCS v. 1373, p. 596–606.

[27] Calude C. S., Staiger L. and Terwijn S., On partial randomness, Annals of Pure and Applied

Logic, v. 138 (2006), no. 1-3, p. 20–30.
[28] Chaitin G. J., On the length of programs for computing binary sequences, Journal of the

ACM, v. 13 (1966), no. 4, p. 547–569.

[29] Chaitin G. J., On the length of programs for computing binary sequences: statistical con-
siderations, Journal of the ACM, v. 16 (1969), no. 1, p. 145–159.

[30] Chaitin G. J., Computational complexity and Gödel’s incompleteness theorem, ACM

SIGACT News, no. 9 (1971), p. 11–12.
[31] Chaitin G. J., Information-theoretic limitations of formal systems, Journal of the ACM,

v. 21 (1974), no. 3, p. 403–424.

[32] Chaitin G. J., A theory of program size formally identical to information theory, Journal of
the ACM, v. 22 (1975), no. 3, p. 329–340.

[33] Chaitin G. J., Information-theoretic characterizations of recursive infinite strings, Theoreti-
cal Computer Science, v. 2 (1976), issue 1, p. 45–48.

[34] Chaitin G. J., Incompleteness theorems for random reals, Advances in Applied Mathematics,

v. 8 (1987), p. 119–146.
[35] Chaitin G. J., Algorithmic information theory, Cambridge University Press, 1987. Third

printing, 1990.
[36] Champernowne D.G., The construction of decimals normal in the scale of ten, Journal of

the London Mathematical Society, v. 8 (1933), p. 254–260.

[37] Chan T.H., Yeung R.W., On a relation between information inequalities and group theory,

IEEE Transactions on Information Theory, v. 48 (2002), no. 7, p. 1992–1995.
[38] Chernov A.V., Complexity of sets obtained as values of propositional formulas, Mathematical

Notes, v. 75, issue 1 (January 2004), p. 131–139.
[39] Chernov A., Muchnik An.A., Romashchenko A., Shen A., Vereshchagin N.K., Upper semi-

lattice of binary strings with the relation “𝑥 is simple conditional to 𝑦”, Theoretical Com-

puter Science, v. 271 (2002), no. 1–2, p. 69–95.

39Lecture Notes in Computer Science.

BIBLIOGRAPHY 501

Preliminary version: Proc. 14th IEEE Conference on Computational Complexity (CCC

1999), p. 114–122.

[40] ChernovA., HutterM., Schmidhuber J., Algorithmic complexity bounds on future
prediction errors, Information and Computation, v. 205 (2007), p. 242–261. DOI

10.1016/j.ic.2006.10.004. See also: http://arxiv.org/abs/cs/0701120.

[41] Chernov A., Shen A., Vereshchagin N., Vovk V., On-line Probability, Complexity and Ran-
domness, Proc. 19th Conference on Algorithmic Learning Theory (ALT 2008), p. 138–153.

[42] Chernov A., Skvortsov D., Skvortsova E., and Vereshchagin N., Variants of realizability for

propositional formulas and the logic of the weak law of excluded middle, Proc. of Steklov
Institute of Mathematics, v. 242 (2003), p. 67–85. Preliminary version: Proc. 16th Workshop

on Computer Science Logic (CSL 2002), LNCS v. 2471, p. 74–88.

[43] Chung F.R.K., Graham R.L., Frankl P., Shearer J. B., Some intersection theorems for
ordered sets and graphs, Journal of Combinatorial Theory, A, v. 43 (1986), p. 23–37.

[44] Church A., On the concept of a random sequence, Bull. Amer. Math. Soc, v. 46 (1940),
no. 2, p. 130–135.

[45] Cormen T.H., Leiserson C.E., Rivest, R. L., Stein C., Introduction to Algorithms, 3 ed.,

Cambridge, MIT Press, 2009.
[46] Daley R.P., Minimal-program complexity of pseudo-recursive and pseudo-random sequences,

Mathematical Systems Theory (now Theory of Computing Systems), v. 9 (1975), no. 1,

p. 83-94.
[47] Dawid A.P., de Rooij S., Shafer G., Shen A., Vereshchagin N.K., and Vovk V., Insur-

ing against loss of evidence in game-theoretic probability, Statistics & Probability Letters,

v. 81 (2011), no. 1, p. 157–162. See also: http://arxiv.org/abs/1005.1811.
[48] Day, A., Increasing the gap between descriptional complexity and algorithmic probability,

Proc. 24th IEEE Conference on Computational Complexity (CCC 2009), p. 263–273. A

more detailed exposition:
http://homepages.mcs.vuw.ac.nz/˜adam/papers/day˙monotone˙a˙priori.pdf.

[49] Downey R., Hirschfeldt D., Algorithmic randomness and complexity, Springer-Verlag, 2010,
855 pp. ISBN 978-0387955674.

[50] DowneyR., HirschfeldtD., NiesA., Terwijn S., Calibrating randomness., The Bulletin of

Symbolic Logic, v. 12 (2006), no. 3, p. 411–491.
[51] Durand B., Levin L., Shen A., Complex tilings, Journal of Symbolic Logic, v. 73 (2007),

no. 2, 593–613. See also: http://arxiv.org/abs/cs/0107008.

[52] Durand D., Shen A., and Vereshchagin N., Descriptive complexity of computable sequences,
Theoretical Computer Science, v. 171 (2001), p. 47–58.

Preliminary versions: Proc. 16th Symp. on Theoretical Aspects of Computer Science

(STACS 1999), LNCS v. 1563, p. 153–162, ECCC TR01-087 (2001).
[53] DurandB. and Vereshchagin N., Kolmogorov – Loveland stochasticity for finite strings,

Information Processing Letters, v. 91 (2004), p. 263–269.

[54] Fortnow L., Lee T., Vereshchagin N., Kolmogorov complexity with error, Proc. 23rd Symp.
Theoretical Aspects of Computer Science (STACS 2006), LNCS v. 3884, p. 137–148.

Preliminary version: ECCC TR04-080 (2004).
[55] Gács P., On the symmetry of algorithmic information, Soviet Math. Dokl, v. 15 (1974),

no. 5, p. 1477-1480.

[56] Gács P., Exact expressions for some randomness test, Zeitschrift für Math. Logik und Grund-
lagen d. Math., v. 26 (1980), p. 385–394.

[57] Gács P., On the relation between descriptional complexity and algorithmic probability, The-
oretical Computer Science, 1983, v. 22, p. 71–93.
Preliminary version: Proc. 22nd Symp. on Foundations of Computer Science (FOCS 1981),

p. 296–303.

[58] Gács P., Every sequence is reducible to a random one, Information and Control (now In-
formation and Computation), v. 70 (1986), no. 2–3, p. 186–192.

[59] Gács, P., and Körner, J., Common information is far less than mutual information, Problems
of Control and Information Theory, v. 2 (1973), no. 2, p. 149–162.

[60] Gács P., Tromp J., Vitányi P.M.B., Algorithmic statistics, IEEE Transactions on Informa-

tion Theory, v. 47, no. 6, 2001, p. 2443–2463.
[61] Goldreich O., Foundations of Cryptography. V. 1. Basic Tools, Cambridge University Press,

Cambridge, 2007.

502 BIBLIOGRAPHY

[62] Gorbunov K. Yu., On a complexity of the formula 𝐴 ∨ 𝐵 ⇒ 𝐶, Theoretical Computer

Science, v. 207 (1998), no. 2, p. 383–386.

[63] Halmos P. R., Measure Theory, N.Y.: Van Nostrand, 1950. 292 pp.
[64] Hammer D., Romashchenko A., Shen A., Vereshchagin N., Inequalities for Shannon entropies

and Kolmogorov complexities, Journal of Computer and System Sciences, v. 60 (2000),

p. 442–464.
Preliminary version: Proc. 12th IEEE Conference on Computational Complexity (CCC

1997), p. 13–23.

[65] Hammer D., Shen A., A strange application of Kolmogorov complexity, Theory of Computing
Systems, v. 31 (1998), no. 1, p. 1–4.

[66] Hoeffding, W., Probability inequalities for sums of bounded random variables, Journal of

the American Statistical Association, v. 58, issue 301 (March 1963), p. 13–30.
[67] Hölzl R., Kräling T., Merkle W., Time-bounded Kolmogorov complexity and Solovay func-

tions, Proc. 34th Symp. Mathematical Foundations of Computer Science (MFCS 2009),
LNCS v. 5734, p. 392–402.

[68] Impagliazzo R., Shaltiel R., and Wigderson A., Extractors and pseudo-random generators

with optimal seed length, Proceedings of the 32nd ACM Symp. on the Theory of Computing
(STOC 2000), p. 1–10.

[69] Kakutani S., On equivalence of infinite product measures, Annals of Mathematics, Second

Series, v. 49 (1948), no. 1, p. 214–224.
[70] Kalinina E., Prefix-free and prefix-correct complexities with compound conditions, Proc. 5th

Computer Science Symp. in Russia (CSR 2010), LNCS v. 6072, p. 259–265.

[71] Karpovich P., Monotone complexity of a pair, Proc. 5th Computer Science Symp. in Russia
(CSR 2010), LNCS v. 6072, p. 266–275.

[72] Kjos-Hanssen B., The probability distribution as a computational resource for randomness

testing, Open access Journal of Logic and Analysis, v.2 (2010),
http://logicandanalysis.org/index.php/jla/article/view/78.

[73] Kjos-Hanssen B., Merkle W., Stephan F., Kolmogorov complexity and the recursion theo-
rem, Transaction of the American Mathematical Society, v. 363 (2010), p. 5465–5480.

Preliminary version: Proc. 23rd Symp. on Theoretical Aspects of Computer Science (STACS

2006), LNCS v. 3884, p. 149–161.
[74] Kleene S.C., On the interpretation of intuitionistic number theory, Journal of Symbolic

Logic, v. 10 (1945), pp. 109–124.

[75] Kolmogoroff A., Zur Deutung der intuitionistishen Logik, Mathematische Zeitschrift, Bd. 35
(1932), H. 1, S. 58–65.

[76] Kolmogorov A.N., On tables of random numbers, Sankhyā, The Indian Journal of Statistics,

Ser. A, v. 25 (1963), no. 4, p. 369–376. Reprinted in: Theoretical Computer Science, v. 207
(1998), no. 2, p. 387–395.

[77] Kolmogorov A.N., Three approaches to the quantitative definition of information, Problems

Inform. Transmission, v. 1 (1965), no. 1, p. 1–7.
[78] Kolmogorov A.N., Logical basis for information theory and probability theory, IEEE Trans.

Inform. Theory, v. 14 (1968), p. 662–664.
[79] Kolmogorov A.N., Combinatorial foundations of information theory and the calculus of

probabilities [a talk at International Mathematical Congress (Nice, 1970)], Russian Mathe-

matical Surveys, v. 38 (1983) no. 4, p. 29–40.
[80] Kolmogorov A.N., Fomin S.V. Introductory Real Analysis, Englewood Cliff: Prentice-Hall,

1970. 403 pp.
[81] Kolmogorov A.N., Talk at the Information Theory Symposium in Tallinn, Estonia (then

USSR), 1974.

[82] Kolmogorov A.N., Talk at the seminar at Moscow State University Mathematics Department

(Logic Division), 26 November 1981. [The definition of (𝛼, 𝛽)-stochasticity was given in this
talk, and the question about the fraction of non-stochastic objects was asked.]

[83] Kolmogorov A.N. and Uspensky V.A., Algorithms and randomness, SIAM J. Theory
Probab. Appl. v. 32 (1987) p. 389–412 [with annoying translation errors40.]. Without annoy-
ing translation errors: Prokhorov Yu.V. and Sazonov V.V., Eds., Proc. 1st World Congress

40Some of those errors drastically distort meaning; e. g. Russian term ‘perechislimyi’, which

should be translated as ‘enumerable’, or ‘recursively enumerable’, was translated as ‘countable’

BIBLIOGRAPHY 503

of the Bernoulli Society (Tashkent 1986), v. 1: Probab. Theory and Appl., VNU Science

Press, Utrecht 1987, p. 3–55.

[84] Kolmogorov i kibernetika [Kolmogorov and cybernetics, in Russian]. A collection of papers,
edited by D.A. Pospelov and Ya.I. Fet. Novosibirsk: IVM MG SO RAN, 2001. (Voprosy

istorii informatiki [The history of computer science], 2) The transcript of Kolmogorov’s talk

in the Institute of Philosophy of Russian Academy of Sciences (April 23, 1965) is on p. 118—
137. It is also available (October 2014) as http://cshistory.nsu.ru/?int=VIEW&el=1832&

templ=INTERFACE.

[85] Kučera A., Measure, Π0
1-classes and complete extensions of PA, In: Ebbinghaus H.-D.,

Müller G.H. and Sacks G.E. (Eds.), Recursion Theory Week (Oberwolfach, 1984), Lecture

Notes in Mathematics, v. 1141 (1985), p. 245–259.

[86] Kučera A., Slaman T., Randomness and recursive enumerability, SIAM Journal on Com-
puting, v. 31 (2001), no. 1, p. 199–211.

[87] Kuipers L., Niederreiter H., Uniform distribution of sequences, Wiley-Interscience, 1949.
[88] Kummer M., On the complexity of random strings, Proc. 13th Symp. on Theoretical Aspects

of Computer Science (STACS 1996), LNCS v. 1046, p. 25–36.

[89] van Lambalgen M., Random sequences, Ph. D. Thesis, University of Amsterdam, 1987.
[90] de Leeuw K., Moore E. F., Shannon C.E., and Shapiro N., Computability by probabilis-

tic machines. In: C. E. Shannon and J. McCarthey (Eds.), Automata Studies, Princeton

University Press, Princeton, New Jersey, 1956, p. 183–212.
[91] Levin L.A., Some theorems on the algorithmic approach to probability theory and informa-

tion theory (1971 dissertation directed by A.N. Kolmogorov; turned down as required by

the Soviet authorities despite unanimously positive reviews). English translation published
later in Annals of Pure and Applied Logic, v. 162 (2010), p. 224–235. The original Russian

version of the thesis is available as http://www.cs.bu.edu/fac/lnd/dvi/diss/1-dis.pdf.

[92] Levin L.A., On the notion of a random sequence, Soviet Math. Dokl., v. 14 (1973), p. 1413–
1416.

[93] Levin L.A., Laws of information conservation (nongrowth) and aspects of the foundation of

probability theory, Problems of Information Transmission, v. 10 (1974), p. 206–210.
[94] Levin L.A., Various measures of complexity for finite objects (axiomatic description), Soviet

Math. Dokl., v. 17 (1976), p. 522–526.
[95] Levin L.A., On the principle of conservation of information in intuitionistic mathematics,

Soviet Math. Dokl., v. 17 (1976), no. 2, p. 601–605

[96] Levin L.A., Uniform tests of randomness, Soviet Math. Dokl., v. 17 (1976), issue 2, p. 337–
340.

[97] Levin L.A., On a concrete method of assigning complexity measures, Soviet Math. Dokl.,

v. 18 (1977), no. 3, p. 727–731.
[98] Levin L.A., A concept of independence with application in various fields of mathematics,

MIT Technical Report, MIT/LCS/TR-235, 1980, 21 p.

[99] Levin L.A., Randomness conservation inequalities: information and independence in math-
ematical theories, Information and Control, v. 61 (1984), no. 1–2, p. 15–37.

[100] Levin L.A., Vyugin V.V., Invariant properties of informational bulks, Proc. 6th Symp. on

Mathematical Foundations of Computer Science (MFCS 1977), LNCS v. 153, p. 359–364.
[101] Levin L.A., Forbidden information, 2002, 8 pp., http://arxiv.org/abs/cs/0203029.

Preliminary version: Proc. 43th IEEE Symp. on Foundations of Computer Science (FOCS
2002), p. 761–768.

[102] Li M., Vitányi P., An Introduction to Kolmogorov complexity and its applications, 3rd ed.,
Springer, 2008 (1 ed., 1993; 2 ed., 1997), xxiii+790 pp. ISBN 978-0-387-49820-1.

[103] Li S.R., Yeung R.W., Cai N., Linear network coding, IEEE Transactions on Information

Theory, v. 49 (2003), no. 2, p. 371–381.

[104] Loomis L.H., Whitney H., An inequality related to the isoperimetric inequality, Bulletin
American Mathematical Society, v. 55 (1949), p. 961–962.

[105] Loveland D.W., A new interpretation of von Mises’ concept of a random sequence, Z. Math.
Logik und Grundlagen d. Math., v. 12 (1966), p. 279–294.

[106] Loveland D.W., The Kleene hierarchy classification of recursively random sequences, Trans.

Amer. Math. Soc., v. 125 (1966), p. 497–510.

[107] Loveland D.W., A Variant of the Kolmogorov concept of complexity, Information and Con-
trol (now Information and Computation), v. 15 (1969), p. 510–526.

504 BIBLIOGRAPHY

[108] Loveland D.W., On minimal-program complexity measures, Proc. 1st ACM Symp. on The-

ory of Computing (STOC 1969), p. 61–65.

[109] Lutz J., Dimension in complexity classes, SIAM Journal on Computing, v. 32 (2003),
p. 1236–1259.

Preliminary version: Proc. 15th IEEE Conference on Computational Complexity (CCC

2000), p. 158–169.
[110] Lutz J. H., The dimensions of individual strings and sequences, Information and Computa-

tion, v. 187 (2003), no. 1, p. 49–79.

Preliminary version: Gales and the constructive dimension of individual sequences, Proc.
27th Colloquium on Automata, Languages, and Programming (ICALP 2000), LNCS v. 1853,

p. 902–913.

[111] Makarychev K., Makarychev Yu., Chain independence and common information. IEEE
Transactions on Information Theory, v. 58 (2012), no. 8, p. 5279–5286.

See also: Conditionally independent random variables, http://arxiv.org/abs/cs/0510029.
[112] Makarychev K., Makarychev Yu., Romashchenko A., Vereshchagin N., A new class of non-

Shannon-type inequalities for entropies, Communications in Information and Systems, v. 2

(2002), no. 2, p. 147-166.
[113] Manin Yu. I. Vychislimoe i nevychillimoe (Computable and non-computable),

Moscow: Sovetskoe radio (Soviet radio), 1980, 128 pp. (Russian)

[114] Martin-Löf P., The definition of random sequences, Information and Control (now Infor-
mation and Computation), v. 9 (1966), p. 602–619.

[115] Martin-Löf P., Algorithmen und zufällige Folgen, Vier Vorträge von Per Martin-Löf

(Stockholm) gehalten am Mathematischen Institut der Universität Erlangen–Nürnberg, Als
Manuskript vervielfältigt, Erlangen, 1966, 61 pp, see also

http://www.probabilityandfinance.com/misc/erlangen.pdf.

[116] Martin-Löf P., Complexity oscillations in infinite binary sequences, Z. Wahrscheinlichkeit-
stheorie verw. Geb., v. 19 (1971), p. 225–230.

[117] Mayordomo E., A Kolmogorov complexity characterization of constructive Hausdorff dimen-
sion, Information Processing Letters, v. 84 (2002), no. 1, p. 1–3.

[118] Merkle W. The Kolmogorov–Loveland stochastic sequences are not closed under selecting

subsequences, Journal of Symbolic Logic, v. 68 (2003), p. 1362–1376.
Preliminary version: Proc. 29th Colloquium on Automata, Languages, and Programming

(ICALP 2002), LNCS v. 2380, p. 390–400.

[119] Merkle W., The complexity of stochastic sequences, Proc. 18th IEEE Conference on Com-
putational Complexity (CCC 2003), p. 230–235.

[120] Miller J., Every 2-random real is Kolmogorov random, Journal of Symbolic Logic, v. 69

(2004), no. 3, p. 907–913.
[121] Miller J., Contrasting plain and prefix-free Kolmogorov complexity, (preprint from 2006),

http://www.math.wisc.edu/˜jmiller/Notes/contrasting.pdf.

[122] Miller J., Yu L., On initial segment complexity and degrees of randomness, Transactions of
the American Mathematical Society, v. 360 (2008), no. 6, p. 3193–3210.

[123] Miller J., The 𝐾-Degrees, low for 𝐾 degrees, and weakly low for 𝐾 sets. Notre Dame Journal
of Formal Logic, v. 50, no. 4 (2009), p. 381–391.

[124] Miller J., Two notes on subshifts, Proceedings of the American Mathematical Society, v. 140

(2012), no. 5, p. 1617–1622. see also
http://www.math.wisc.edu/˜jmiller/Papers/subshifts.pdf

[125] von Mises R., Grundlagen der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift,
Bd. 5 (1919), S. 52–99. Reprinted in the book: Selected Papers of Richard von Mises.
Volume Two. Probability and Statistics, General. American Mathematical Society, 1964.

p. 57–106.

[126] von Mises R., Wahrscheinlichkeit, Statistik und Wahrheit, Wien: Springer-Verlag, 1928,
189 p.

[127] von Mises R., On the foundations of probability and statistics, Annals of Mathematical
Statistics, v. 12 (1941), p. 191–205. Reprinted in the book: Selected Papers of Richard von
Mises. Volume Two. Probability and Statistics, General. American Mathematical Society,

1964. p. 340–355.

[128] von Mises R., Doob J. L., Discussion of papers on probability theory, Annals of Mathematical
Statistics, v. 12 (1941), p. 215–217. Reprinted in the book: Selected Papers of Richard von

BIBLIOGRAPHY 505

Mises. Volume Two. Probability and Statistics, General. American Mathematical Society,

1964, p. 356–359.

[129] Moser R.A., A constructive proof of the Lovasz Local Lemma, Proc. 41st ACM Symp. on
Theory of Computing (STOC 2009), p. 343-350, see also http://arxiv.org/abs/0810.4812.

[130] Moser R.A., Tardos G., A constructive proof of the general Lovasz Local Lemma, Journal

of the ACM, v.57 (2010), no. 2, p. 11.1–11.15, see also http://arxiv.org/abs/0903.0544.
[131] Muchnik An.A., On the basic structures of the descriptive theory of algorithms, Soviet

Math. Dokl., v. 32 (1985), no. 3, p. 671–674.

[132] Muchnik An.A., Lower limits on frequencies in computable sequences and relativized a priori
probability, SIAM Theory Probab. Appl., v. 32 (1987) p. 513–514.

[133] Muchnik An.A., On common information, Theoretical Computer Science, v. 207, no. 2

(1998), p. 319–328.
[134] Muchnik An.A. Conditional complexity and codes, Theoretical Computer Science, v. 271

(2002), no. 1–2, p. 97–109.
Preliminary version: Muchnik A., Semenov A., Multi-conditional descriptions and codes in

Kolmogorov complexity, ECCC TR00-015 (2000).

[135] Muchnik An.A., Mezhirov I., Shen A., Vereshchagin N.K., Game interpretation of Kol-
mogorov complexity, 2010, http://arxiv.org/abs/1003.4712.

[136] Muchnik An.A., Positselsky S. E., Kolmogorov entropy in the context of computability

theory, Theoretical Computer Science, v. 271 (2002), no. 1–2, p. 15–35.
[137] Muchnik An. A., Romashchenko A., Stability of properties of Kolmogorov complexity under

relativization. Problems of Information Transmission, v. 46, no. 1 (2010), p. 38–61.

Preliminary version: Muchnik An.A., Romashchenko A., Random oracle does not help ex-
tract the mutual information, Proc. 33rd Symp. on Mathematical Foundations of Computer

Science (MFCS 2008), LNCS v. 5162, p. 527–538.

[138] Muchnik An.A., Semenov A. L., Uspensky V.A., Mathematical metaphysics of randomness,
Theoretical Computer Science, v. 207, no. 2 (1998), p. 263–317.

[139] Muchnik An.A., Shen A., Ustinov M., Vereshchagin N.K., Vyugin M., Non-reducible de-
scriptions for conditional Kolmogorov complexity, Theoretical Computer Science, v. 384

(2007), no. 1, p. 77–86.

Preliminary versions: Muchnik An.A., Shen A., Vereshchagin N.K., Vyugin M., Non-
reducible descriptions for conditional Kolmogorov complexity, Proc. 3rd Conference on The-

ory and Applications of Models of Computation (TAMC 2006), LNCS v. 3959, p. 308–317

and ECCC TR04-054 (2004).
[140] Muchnik An.A., Vereshchagin N.K., Shannon entropy vs. Kolmogorov complexity, Proc.

1st Computer Science Symp. in Russia (CSR 2006), LNCS v. 3967, p. 281–291.

[141] Muchnik An.A., Vereshchagin N.K., On joint conditional complexity (entropy), Proc. of
the Steklov Institute of Mathematics, v. 274 (2011), p. 90-104.

Preliminary versions: Muchnik An.A., Vereshchagin N.K., Logical operations and Kol-

mogorov complexity. II. Proc. 16th IEEE Conference on Computational Complexity (CCC
2001), p. 256–265 and ECCC TR01-089 (2001).

[142] Musatov D., Improving the space-bounded version of Muchnik’s conditional complexity
theorem via “naive” derandomization, Proc. 6th Computer Science Symp. in Russia (CSR

2011), LNCS v. 6651, p. 64–76.

[143] Musatov D., Space-bounded Kolmogorov extractors, Proc. 7th Computer Science Symp. in
Russia (CSR 2012), LNCS v. 7353, p. 266–277.

[144] Musatov D., Romashchenko A., Shen A., Variations on Muchnik’s conditional complexity
theorem, Theory Comput. Syst., v. 49 (2011), no.2, p. 227–245.
Preliminary version: Proc. 4th Computer Science Symp. in Russia (CSR 2009), LNCS

v. 5675, p. 250–262.

[145] Niederreiter H., A combinatorial problem for vector spaces over finite fields, Discrete Math-
ematics, v. 96 (1991), no. 3, p. 221–228.

[146] Nies A., Computability and randomness, Oxford University Press, 2009, 420 pp. ISBN 978-
0-19-923076-1

[147] Nies A., Stephan F., Terwijn S., Randomness, relativization and Turing degrees, Journal of

Symbolic Logic, v. 70 (2005), no. 2, p. 515–535.

[148] Novikov G., Relations between randomness deficiencies, http://arxiv.org/abs/1608.

08246. (2016)

506 BIBLIOGRAPHY

[149] Radó, T., On non-computable functions, Bell System Technical Journal, v. 41, issue 3, May

1962, p. 877–884.

[150] Razenshteyn I., Common information revisited, 2012, http://arxiv.org/abs/1104.3207.
[151] Reimann J., Computability and fractal dimension, PhD thesis, Ruprecht-Karls Universität

Heidelberg, 2004 (URN: urn:nbn:de:bsz:16-opus-55430), see

http://www.ub.uni-heidelberg.de/archiv/5543.
[152] Romashchenko A., Pairs of words with nonmaterializable mutual information, Problems of

Information Transmission, v. 36 (2000), no. 1, p. 3–20.

[153] Romashchenko A., Extracting the mutual information for a triple of binary strings, Proc.
18th IEEE Conference on Computational Complexity (CCC 2003), p. 221–235.

[154] Romashchenko A., Rumyantsev A., Shen A., Zametki po teorii kodirovaniya (Notes on

coding theory), Moscow: MCCME, 2011, 80 pp. (Russian)
[155] Romashchenko A., Shen A., Topological arguments for Kolmogorov complexity, Theory of

Computing Systems, v. 56, 2015, issue 3, p. 513–526.
[156] Romashchenko A., Shen A., Vereshchagin N., Combinatorial interpretation of Kolmogorov

complexity, Theoretical Computer Science, v. 271 (2002), no. 1–2, p. 111–123.

Preliminary versions: Proc. 15th IEEE Conference on Computational Complexity (CCC
2000), p. 131–137, ECCC TR00-026 (2000).

[157] Rumyantsev A., Kolmogorov complexity, Lovasz Local Lemma and critical exponents, Proc.

2nd Computer Science Symp. in Russia (CSR 2007), LNCS v. 4649, p. 349–355. See also:
http://arxiv.org/abs/1009.4995.

[158] Rumyantsev A., Infinite computable version of Lovasz Local Lemma, 2010,

http://arxiv.org/abs/1012.0557.
[159] Rumyantsev A., Ushakov M., Forbidden substrings, Kolmogorov complexity and almost

periodic sequences, Proc. 23rd Symp. on Theoretical Aspects of Computer Science (STACS

2006), LNCS v. 3884, p. 396–407. See also: http://arxiv.org/abs/1009.4455.
[160] Schmidt W., On normal numbers, Pacific Journal of Mathematics, v. 10 (1960), no. 2,

p. 661–672.
[161] Schnorr C. P., Eine Bemerkung zum Begriff der zufälligen Folge, Zeitschrift für Wahrschein-

lichkeitstheorie und Verw. Gebiete, v. 14 (1969), p. 27–35.

[162] Schnorr C. P., Über die Definition effektiver Zufallstests, Teil I, Zeitschrift für Wahrschein-
lichkeitstheorie und Verw. Gebiete, v. 15 (1970), p. 297–312.

[163] Schnorr C. P., Über die Definition effektiver Zufallstests, Teil II, Zeitschrift für Wahrschein-
lichkeitstheorie und Verw. Gebiete, v. 15 (1970), p. 313–328.

[164] Schnorr C. P., Klassifikation der Zufallsgesetze nach Komplexität und Ordnung, Zeitschrift

für Wahrscheinlichkeitstheorie und Verw. Gebiete, v. 16 (1970), p. 1–21.
[165] Schnorr C. P., Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der

Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, v. 218, IV+212 S, Springer,

1971.
[166] Schnorr C. P., A unified approach to the definition of random sequences, Mathematical

Systems Theory (now Theory of Computing Systems), v. 5 (1971), no. 3, p. 246–258.

[167] Schnorr C. P, Optimal Gödel numberings, Proc. IFIP congress 71 (1971), v. 1. p. 56–58.
[168] Schnorr C. P., Process complexity and effective random tests, Journal of Computer and

System Sciences, v. 7 (1973), p. 376–388.
Preliminary version: Proc. 4th ACM Symp. on Theory of Computing (STOC 1972), p. 168–

176.

[169] Schnorr C. P., Optimal enumerations and optimal Gödel numberings, Mathematical Systems
Theory (now Theory of Computing Systems), v. 8 (1975), no. 2, p. 182–191.

[170] Shafer G., Shen A., Vereshchagin N.K., Vovk V., Test martingales, Bayes factors, and p-

values, Statistical Science v. 26 (2011), no. 1, p. 84–101. see also
http://arxiv.org/abs/0912.4269.

[171] Shafer G., Vovk V., Probability and finance: it’s only a game! New York: Wiley, 2001.

[172] Shen A., Aksiomaticheskoe opisanie ponyatiya entropii konechnogo objekta (An axiomatic
description of the notion of entropy of finite objects), Logic and foundations of mathematics.

Abstracts of the 8th All-union conference “Logic and methodology of science”, Palanga, Sept

26–28, 1982, Vilnius, 1982, p. 104–105. (Russian)
[173] Shen A., The concept of (𝛼, 𝛽)-stochasticity in the Kolmogorov sense, and its properties.

Soviet Math. Dokl., v. 28, no. 1, 1983, p. 295–299

BIBLIOGRAPHY 507

[174] Shen A., K logicheskim osnovam primenenia teorii veroyatnostei (On logical foundations

of applications of probability theory), Workshop on Semiotic aspects of formalization of

intellectual activities, Telavi, Oct. 29–Nov. 6, 1983, p. 144–146. (Russian)
[175] Shen A., Algorithmic variants of the notion of entropy, Soviet Math. Dokl., v. 29 (1984),

no. 3, p. 569–573.

[176] Shen A., On relations between different algorithmic definitions of randomness, Soviet Math.
Dokl., v. 38 (1989), no. 2, p. 316–319.

[177] Shen A., Discussion on Kolmogorov Complexity and Statistical Analysis, The Computer

Journal, v. 42, no. 4, 1999, p. 340–342.
[178] Shen A., Multisource algorithmic information theory, Proc. 3rd Conference on Theory and

Applications of Models of Computation (TAMC 2006), LNCS v. 3959, p. 327–338.

[179] Shen A., Algorithmic information theory and foundations of probability, Proc. 3rd Workshop
on Reachability Problems (2009), LNCS v. 5797, p. 26–34.

[180] Shen A., Around Kolmogorov complexity: basic notions and results. Measures of Complex-
ity. Festschrift for Alexey Chervonenkis, edited by V. Vovk, H. Papadoupoulos, A. Gam-

merman, Springer, 2015, p. 75–116. See also: http://arxiv.org/abs/1504.04955 (2015)

A revised version of: Algorithmic information theory and Kolmogorov complexity, lecture
notes, http://www.it.uu.se/research/publications/reports/2000-034.

[181] Shen A. and Vereshchagin N., Logical operations and Kolmogorov complexity, Theoretical

Computer Science, v. 271 (2002), p. 125–129.
Preliminary version: ECCC TR01-088 (2001).

[182] Shen A. and Vereshchagin NK. Computable functions, American Mathematical Society,

Student mathematical library, vol. 19, 2003.
[183] Sipser M., Introduction to the theory of computation, PWS Publishing, 1996.

[184] Slepian D., Wolf J.K., Noiseless coding of correlated information sources, IEEE Transactions

on Information Theory, v. IT-19 (1973), no. 4, p. 471–480.
[185] Solomonoff R. J., A formal theory of inductive inference, part 1, part 2, Information and

Control (now Information and Computation), v. 7 (1964), p. 1–22, p. 224–254.
[186] Solovay R., Draft of a paper (or series of papers) on Chaitin’s work, done for the most part

during Sept.–Dec. 1974, unpublished (but available to many people in the field).

[187] Solovay R.M., On Random R.E. Sets. In: A.I. Arruda, N.C.A. da Costa, R. Chaqui (Eds.),
Non-classical logics, model theory and computability, North-Holland, Amsterdam, 1977, p.

283–307.

[188] Tadaki K., A generalization of Chaitin’s halting probability Ω and halting self-similar sets,
Hokkaido mathematical journal, v. 31 (2002), no. 1, p. 219–253. See also: http://arxiv.

org/abs/nlin/0212001.

[189] Takahashi H., On a definition of random sequences with respect to conditional probability,
Information and Computation, v. 206 (2008), no. 12, p. 1375–1382.

[190] Takahashi H., Algorithmic randomness and monotone complexity on prod-

uct space, Information and Computation, v. 209 (2011), no. 2, p. 183–197,
dx.doi.org/10.1016/j.ic.2010.10.003. see also http://arxiv.org/abs/0910.5076.

[191] Uspensky V., Semenov A., Algorithms: main ideas and applications, Kluwer Academic
Publishers, 1993, 269 pp.

[192] Uspensky V.A., Semenov A. L., Shen’ A.Kh., Can an individual sequence of zeros and ones

be random? Russian Math. Surveys, v. 45 (1990), no. 1, p. 121–189.
[193] Uspensky V.A., Shen A., Relations between varieties of Kolmogorov complexities, Mathe-

matical Systems Theory (now Theory of Computing Systems), v. 29 (1996), no. 3, p. 271–
292.

[194] Vereshchagin N.K. Kolmogorov complexity conditional to large integers. Theoretical Com-

puter Science, v. 271 (2002), no. 1–2, p. 59–67.

Preliminary version: ECCC TR01-086 (2001).
[195] Vereshchagin N., Kolmogorov complexity of enumerating finite sets, Information Processing

Letters, v. 103 (2007), p. 34–39.
Preliminary version: ECCC TR04-030 (2004).

[196] Vereshchagin N.K., Kolmogorov complexity and games, Bulletin of the EATCS, v. 94

(2008), p. 43–75.

[197] Vereshchagin N., Minimal sufficient statistic revisited, Proc. 5th Conference on Computabil-
ity in Europe (CiE 2009), LNCS v. 5635, p. 478–487.

508 BIBLIOGRAPHY

[198] Vereshchagin N.K., Shen A., Lektsii po matematicheskoi logike i teorii algoritmov, Chast’

2, Yazyki i ischisleniya (Lectures in mathematical logic and computability theory, Part 2,

Languages and Calculi), 3rd edition, Moscow: MCCME, 2008,
ftp://ftp.mccme.ru/users/shen/logic/firstord.

[199] Vereshchagin N., Shen A., Algorithmic statistics revisited, Measures of Complexity.

Festschrift for Alexey Chervonenkis, edited by V. Vovk, H. Papadoupoulos, A. Gammerman,
Springer, 2015, p. 235–252. See also: http://arxiv.org/abs/1504.04950 (2015)

[200] Vereshchagin N., Shen A., Algorithmic statistics: forty years later. http://arxiv.org/abs/

1607.08077 (2016)
[201] Vereshchagin N.K, and Vitányi P.M.B, Kolmogorov’s structure functions with an appli-

cation to the foundations of model selection, IEEE Transactions on Information Theory,

v. 50 (2004), no. 12, p. 3265–3290.
Preliminary version: Proc. 43th IEEE Symp. on Foundations of Computer Science (FOCS

2002), p. 751–760.
[202] Vereshchagin N.K, and Vitányi P.M.B, Rate distortion and denoising of individual

data using Kolmogorov complexity, IEEE Transactions on Information Theory, v. 56

(2010), no. 7, p. 3438–3454, see also http://arxiv.org/abs/cs/0411014 (2004). See also:
arXiv:cs/0411014 (2004).

[203] Vereshchagin N. and Vyugin M., Independent minimum length programs to translate be-

tween given strings, Theoretical Computer Science, v. 271 (2002), p. 131–143. Preliminary
version: ECCC TR00-035 (2000).

[204] Ville J., Étude critique de la notion de collectif, Gauthier-Villars, 1939. (Monographies des

probabilités. Calcul des probabilites et ses applications. Publiée sous la direction de M. Émile
Borel. Fascicule III.)

[205] Vovk V.G., On a randomness criterion, Soviet Mathematics Doklady, v. 35 (1987), no. 3,

p. 656–660. See also: http://www.vovk.net/criterion.pdf
[206] Vovk V.G., The law of the iterated logarithm for random Kolmogorov, or chaotic, sequences,

Theory of Probability and its Applications, v. 32 (1987), no. 3, p. 413–425.

[207] Vovk V., V’yugin V.V., On the empirical validity of Bayesian method, Journal of the Royal
Statistical Society, B, v. 55 (1993), p. 253–266.

[208] V’yugin V.V., Nonstochastic objects, Problems of Information Transmission, v. 21, no. 2,

1985, p. 77–83.
[209] V.V. V’yugin, On the defect of randomness of a finite object with respect to measures with

given complexity bounds, SIAM Theory of Probability and Its Applications, v. 32, issue 3,

1987, p. 508–512.
[210] V.V. V’yugin, Algorithmic complexity and stochastic properties of finite binary sequences,

The Computer Journal, v. 42, no. 4, 1999, p. 294–317.

[211] V’yugin V.V., Algorithmic entropy (complexity) of finite objects and its applications to
defining randomness and amount of information, Selecta Mathematica formerly Sovietica,
v. 13(4), 1994, p. 357–389.

[212] V’yugin V.V., Ergodic theorems for individual random sequences, Theoretical Computer

Science, v. 207 (1998), no. 2, p. 343–361.

[213] V’yugin V.V., Non-stochastic infinite and finite sequences, Theoretical Computer Science,
v. 207 (1998), no. 2, p. 363–382.

[214] Wald A., Sur la notion de collectif dans le calcul des probabilités (On the notion of collective

in probability theory), présentée par M. Émile Borel. Comptes rendus, v. 202, p. 180–183
(séance du 20 janvier 1936).

[215] Wald A., Die Wiederspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeitsrechnung,
Ergebnisse eines matematischen Kolloquiums, v. 8 (1937), p. 38–72. Reprinted in: Menger

K., Ergebnisse eines Mathematischen Kolloquiums, Springer: Wien, New York, 1998.
[216] Wall D.D., Normal Numbers, Ph. D thesis, University of California, Berkeley CA, 1949.

[217] Wigderson, A., Randomness extractors—applications and constructions, Proc. 29th Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2009), DOI 10.4230/LIPIcs.FSTTCS.2009.2340,
http://drops.dagstuhl.de/opus/volltexte/2009/2340/.

[218] Yeung, R.W., A First course in information theory, Kluwer Academic / Plenum Publishers,
2002.

BIBLIOGRAPHY 509

[219] Zaslavsky, I. D.; Tseitin, G. S. O singulyarnykh pokrytiyakh i svyazannykh s nimi svoist-

vah konstruktivnykh funktsii (Singular coverings and properties of constructive functions

connected with them), Trudy Mat. Inst. Steklov, v. 67 (1962) p. 458 502. (Russian)
[220] Zhang Z., Yeung R.W., A non-Shannon-type conditional information inequality, IEEE

Transactions on Information Theory, v. 43 (1997), p. 1982–1986.

[221] Zhang Z., Yeung R.W., On characterization of entropy function via information inequalities,
IEEE Transactions on Information Theory, v. 44 (1998), p. 1440–1450.

[222] Zimand M., Guest Column: Possibilities and Impossibilities in Kolmogorov complexity ex-

traction, SIGACT News, December 2010.
[223] Zvonkin AK., Levin L.A., The complexity of finite objects and the development of the

concepts of information and randomness by means of the theory of algorithms, Russian

Math. Surveys, v. 25 (1970), no. 6, p. 83–124.

Index

1-random sequence 170

2-random sequence 170

B (𝑛) 36, 39
BB (𝑛) 38, 39

BP (𝑛) 183

𝐶(𝑥) 29
𝐶(𝑥, 𝑦) 45

𝐶𝐴(𝑥) 117

𝐶> 36
𝐻(𝜉) 229

𝐻(𝑥) 29

𝐼(𝑥 :𝑦) 58, 360
𝐼(𝑥 :𝑦 :𝑧) 64

𝐾(𝑥) 29
𝐾(𝑥) 96

𝐾(𝑥 |𝑧) 117

𝐾𝐴(𝑥) 117
KA (𝑥) 136

KM (𝑥) 144

𝐾𝑅(𝑥) 205
𝐶(𝑥 |𝑦) 48

𝐾-low set 215

𝐶(𝑥‖𝐴) 216
Λ, empty string 12

Ω 21, 171, 174, 185

Ω number 459
Ξ 11
𝛼-gales 297

𝛼-null set 185, 186
F, the space of partial functions 213

0′ 41
41 172

4𝑐 173
𝜎-additivity 67
𝜎-algebra 67
𝑎(𝑥) 136

bin(𝑛) 12
𝑐-equivalence 359

d𝐸 87
d𝑃 87
𝑓0-space 213
𝑓0-spaces 209

𝑙(𝑥), the length of the string 𝑥 12
𝑚-reduction 41

𝑚(𝑖) 95
𝑚(𝑥 |𝑧) 117

a priori complexity 136, 144, 147, 162
a priori probability 95, 110, 136

conditional 117

continuous 136
discrete 136, 170

a priori randomness deficiency 191

absolutely normal real 277
admissible selection rule 477

Ahlswede–Körner theorem 357

algorithm probabilistic 89
algorithmic entropy 480

almost uniform set 334, 335
amount of information 15

algorithmic approach 323

combinatorial approach 323
probabilistic approach 323

amount of information in 𝑥 about 𝑦 58

ample excess lemma 164
arithmetic coding 160

Arslanov theorem 42

artificial independence 356
atomless measure 190

balanced sequence 274
ball 474

basic function 86

basic inequality 61, 235, 328, 348
Bernoulli distribution 488
Bernoulli measure 21, 69, 79

Bertrand postulate 367
Besicovitch distance 270

binary words 474

bipartite graph 365, 379
black box 433
blind randomness 79
Borel set 67
Borel–Cantelli lemma 71

busy beaver, function 39

Cantor set 186

Cantor space 67, 185, 270

511

512 INDEX

Cauchy–Schwarz inequality 269

Chaitin number Ω 171, 174, 185

chaotic sequence 481, 483, 492, 496
chaoticness 475

characteristic sequence 81, 192

characteristic sequence of the set 215
Chebyshev inequality 114, 453

Church admissible selection rule 477

Church stochastic sequence 476
CNF 260

co-enumerable property 221

code 225
average length 226

injective 225
prefix 225

prefix-free 225

uniquely decodable 225
codes for two conditions 387

codewords 225

combinatorial amount of information 327
combinatorial interpretation 342

combinatorial interpretation of inequalities

338
common information 359, 397

combinatorial meaning 365

relativized 118
compatible strings 209, 482

completeness deficiency 174
complex subsequences 262

complexity 210, 479

a priori 136, 144
a priori complexity 136

axiomatic definition 33

combinatorial interpretation 338
conditional 17, 48, 212, 410

relativized 216

decision 205, 207
conditional 212

Kolmogorov 12, 14

monotone 19, 144, 146, 239
conditional 212

of a pair 360
of finite object 30

of functions 213

of large numbers 36
of natural numbers 30

of pairs 45, 62, 111, 328
prefix 99, 119

of texts 159

of triples 46, 62, 328

plain 29
prefix 97, 110

conditional 116, 212
of pairs 111
of triples 120, 123

relativized 41, 215, 369

total 49, 383, 445
complexity of a problem 409

complexity vector 336, 343
computable function 11, 29, 477

computable mapping 105, 205, 213

computable martingale 290
computable measure 74, 75

computable number 74

computable sequence 56
computable series 173

computable set 35
condition 48

conditional complexity 17, 212, 410

prefix 116
relativized 216

conditional decompressor 48

conditional entropy 231
conditional independence 65, 235, 352, 370

conditional probability 231, 287

conjunction 409
constructive support of measure 493

continuity of measure 68

continuous mapping 205
Σ → Σ 141

copmplexity with respect to description

mode 29
coset 333

Cournot principle 464
criterion of Martin-Löf randomness 139,

160, 177

plain complexity 165
Solovay 176

critical implication 420

cut 391

decidable set 35

decompressor 11, 29, 143, 205
for functions 213

optimal 97, 144, 207, 212

prefix-free 105, 111
prefix-stable 105, 145

description 29, 48, 479

self-delimiting 96
shortest 360

description language 479

description mode 11, 29, 205, 210
optimal 13, 29

discrete a priori probability 170
disjunction 409
distance Besicovitch 270

distance between sequences 67
distance Kullback – Leibler 227

distribution marginal 201
Doob inequality 283
Doob theorem 286

effective Hausdorff dimension 187
effectively null set 72, 73, 161

effectively open set 84, 192
empty string 12, 474
encoding 225

INDEX 513

entropy 324

algorithmic 480

conditional 229, 231
monotone (algorithmic) 482

of a pair 229, 230

prefix (algorithmic) 496
Shannon 17, 70, 225, 226, 229, 237, 238

enumerable family of sets 31

enumerable set 31, 91, 481
equivalence with accuracy 𝑐 359

everywhere dense set 192

expander 379, 388
expectation-bounded randomness

deficiency 87
explanation for a string 434

extension of measure 68

extractor 135, 385

family of sets enumerable 31

fingerprint 378, 388
finite automaton 248

finite field 394

forbidden sequence 260, 261
forbidden string 259

Ford–Fulkerson theorem 386, 393

formula propositional 412
fractals 185

frequency 21, 221

lower 221
frequency of a letter 226

frequency stability 273, 475

frequency stability axiom 273
function basic 86

computable 11, 29, 477

hash 378
lower semicomputable 289

prefix-free 97, 100
prefix-stable 96

with respect to the first argument 116

Solovay 179, 180
upper semicomputable 33

game 381, 383, 400, 453
game argument 54

generalized subsequence 478
generic sequence 84, 192
Gibbs inequality 227
graph 365

bipartite 365, 379
cut 391

expander 379
matching 383
random 380

group 333, 351

group action 333

Hall theorem 386

halting probability 90
halting problem 38, 41

Hamming ball 447
cardinality 448

Hamming distance 447

hash function 378
Hausdorff dimension 185, 186, 296

effective 187, 298

Huffman code 229
hypotheses 446

hypotheses of restricted type 446
hypothesis minimal 458

image measure 195

implication critical 420
incompressible string 18, 57, 359

independence conditional 65, 352, 370

of random variables 233
of strings 62, 65

inequality Azuma–Hoeffding 314, 316
basic 235, 328, 348

Cauchy–Schwarz 269

Chebyshev 114, 453
Doob 283

Fano 236

for complexities 323
Gibbs 227

Ingleton 349, 370

Kolmogorov 283
Kraft 226

Kraft–McMillan 229

non-Shannon 353
information mutual 59

information common for three strings 64
information flow 392

Ingleton inequality 349, 370

injective code 225
input node 375

input tape 100

inseparable sets 42
interval 67

intuitionistic logic 412
IPC 412

König lemma 255

Kakutani theorem 309
Kollektiv 22, 273, 321

Kolmogorov admissible selection rule 478

Kolmogorov complexity 12, 14
conditional 48

monotone 144

of pairs 45, 62
of triples 46, 62

prefix 97

relativized 215
Kolmogorov complexity plain 29

Kolmogorov inequality 283
Kolmogorov stochastic sequence 476, 478,

483, 487, 491, 492

Kolmogorov–Levin theorem 51, 53
Kolmogorov–Solomonoff theorem 29, 48

514 INDEX

Kraft inequality 226

Kraft–Chaitin lemma 108

Kraft–McMillan inequality 229
Kripke model 420, 421

Kullback – Leibler distance 227

Kullback–Leibler distance 288
Kurtz randomness 84

Lambalgen theorem 199
language recognized by the automaton 248

law of iterated logarithm 251, 281

law of large numbers 79
for variable probabilities 313

strong 192, 315

law of rarge numbers 69
layerwise computable mapping 195

lemma ample excess 164

Borel–Cantelli 71
Levin 253

Lovász 263
length of a string 474

Levin lemma 253

Levin–Schnorr theorem 160, 162
Lipschitz mapping 270

Lipschitz property 30

local lemma, Lovász 257
Lovász lemma 256

Lovász local lemma 257

low for Martin-Löf randomness 194
low set 194

lower bounds for complexity 19

lower graph of mapping 141
lower semicomputable 86

lower semicomputable function 130

lower semicomputable martingale 289
lower semicomputable real 82, 90, 172

lower semicomputable semimeasure 93
lower semicomputable series 94

map computable 29

mapping computable 105, 141, 205, 213
continuous 104, 205

continuous Σ → Σ 141
covering 404

Lipschitz 270
lower graph 141

marginal distribution 201
Markov chain 65, 235

Martin-Löf random sequence 484
martingale 283, 287, 321

computable 187, 290, 291
lower semicomputable 289, 290
partial 302
strongly winning on a sequence 285

winning on a sequence 284, 302
with respect to distribution 286

matching 383

on-line 383
mathematical statistics 433

matroid 349
maximal semimeasure 93

McMillan inequality 229, 234

MDL (minimal description length) 439
measurable set 68

measure 68, 185

atomless 190
Bernoulli 21, 69, 79, 89

computable 74, 75, 133
uniform 69

Miller–Yu theorem 168

minimal hypothesis 458
minimal sufficient statistics 397

ML-random point 82

ML-random real 82
ML-randomness 77

modulus of convergence 36

Moivre–Laplace theorem 242
monotone complexity 19, 144, 146

monotone machine 142

Muchnik theorem 377
combinatorial version 382

Muchnik’s theorem combinatorial

interpretaion 382
mutual information 59, 234

mutual informaton 360

non-computability of complexity 19

non-Shannon inequality 353

non-stochastic string 436
normal real 277

normal sequence 277
not worse, comparison of description modes

12

null set 21, 68, 275
number Solovay complete 174

numbering 214

computable 214
Gödel 214

optimal 214

Occam’s razor 20, 460
open subset 67

optimal conditional decompressor 48
optimal decompressor 97, 144, 212

prefix-free 183

prefix-stable 117
optimal description language 480
optimal description mode 13, 29

optimal numbering 214
optimality deficiency 455

oracle 41, 214

0′ 215
non-computable 193

orbit of the point 333
output node 375

paradox Berry’s 19

heap 474

INDEX 515

partial martingale 302

Peirce’s law 413

Peirce, Charles Sanders (1839–1914) 413
plane Kolmogorov complexity 29

prefix 474

prefix code 225
prefix complexity 97, 162

of pairs 119

of triples 120, 123
prefix randomness deficiency 435

prefix 435

prefix-free code 225
prefix-free encoding 45

prefix-free function 97, 100
prefix-stable function 96

probabilistic algorithm 89, 129

probabilistic argument 403
probability a priori 95

conditional 231, 287

of a letter 226
of the event 68

von Mises 273

probability bounded randomness test 86
probability distribution computable 488

probability measure 189

probability-bounded randomness deficiency
87

problem 409
profile of a pair of strings 400

proper sequence 191

propositional formula 412
pseudo-disjunction 411

pseudorandomness generator 385

PSPACE 384

random graph 380

random sequence 72, 273, 474
random string 18, 116

random variable conditional independence

352
independence 233

randomness blind 79

computable 296
computably 322

deficiency 18
Kurtz 296, 322
Martin-Löf 76, 321, 484
Mises–Church 295, 322

Mises–Church–Daley 316, 322
Mises–Kolmogorov–Loveland 303, 321,

322
of real numbers 171

partial-computably 322
Schnorr 83, 294

randomness deficiency 18, 85, 160, 196,

434, 455

a priori 191
expectation-bounded 87, 164

probability-bounded 87
randomness extractor 135

randomness test Martin-Löf 85

probability-bounded 86
real absolutely normal 277

normal in base 𝑏 277

regular function 74
relation enumerable 385

relativization 60, 117, 214, 235
inequalities 235

robust program 142

Schnorr effectively null set 83
Schnorr random sequence 295

Schnorr randomness 294
Scott domain 213

secret sharing 393

selection rule 273, 274, 299
Church–Daley admissible 299

Church-admissible 276

Kolmogorov–Loveland admissible 303
self-delimited input 99

self-delimiting description 96

self-delimiting program 13
semimartingale 290

semimeasure 106, 119, 290

continuous 130
lower semicomputable 93

maximal 93

on the binary tree 130
simple 132

universal 136
semimeasures lower semicomputable 136

separable set 41

sequence 1-random 170
2-random 170

balanced 274

characteristic 81
Church stochastic 276

computably random 291, 296, 322

convergence speed 172
forbidden 260

generic 84, 192

Kolmogorov–Loveland random 321
Kurtz random 296, 322
lower semicomputable 91
Martin-Löf random 76, 240, 282, 321

criterion 139

Martin-Ĺ’of random 438
Mises–Church random 276, 278, 282,

295, 322
Mises–Church–Daley random 308, 316,

322
Mises–Kolmogorov–Loveland random

303, 308, 317, 319, 321, 322
normal 277
partial-computably random 302, 322

proper 191

516 INDEX

random 79, 474

Schnorr random 83, 278, 295

typical 77
unpredictable 484

weakly 1-generic 192

set 𝛼-null 185, 186
𝑐-uniform 334

𝑟- separable 41

almost uniform 334, 335
Borel 67

Cantor 67

computable 35
decidable 35

effectively null 72, 73, 161
effectively open 84, 192

enumerable 31, 91, 481

everywhere dense 192
low 194

measurable 68

null 68, 275
open 67, 103

prefix-free 112

Schnorr effectively null 83
simple 36, 132

Turing complete 41

uniform 328, 329
Shannon entropy 17, 70, 225, 226, 229, 324

shortest description 360
simple family of sets 132

simple semimeasure 132

simple set 36, 132
singleton 187

Slepian–Wolf theorem 377, 385

slow convergence in the Solovay sense 179
slowly converging series 183

Solomonoff–Kolmogorov theorem 13

Solovay complete number 174
Solovay function 182

Solovay reduction 173

solution to a problem 409
space of partial functions 213

stabilizer subgroup 333
Stirling’s approximation 238

stochastic sequence 490

stochastic string 436
strategy 487

string forbidden 259
incompressible 18, 41, 359
random 18

stochastic 436

strong law of large numbers 250, 288
sufficient statistics 398

suffix code 225
supermartingale 290
symmetry of information 59

the quantity of information in 𝑥 about 𝑦 17
The Strong Law of Large Numbers 21

theorem Ahlswede–Körner 357
Arslanov 42

Baire 192

Chan–Yeung 333, 334
Doob 286

Ford–Fulkerson 386

Gödel incompleteness 23
Hall 386

Kakutani 309
Kolmogorov–Levin 51

Kolmogorov–Solomonoff 48

Lambalgen 199
Levin–Schnorr 21, 187

Martin-Löf 490, 493

Romashchenko 324, 335, 337
Shannon coding 242

Shannon on perfect cryptosystems 237

Slepian–Wolf 385
Solomonoff–Kolmogorov 13

total conditional complexity 49, 383, 445

transitivity 270
Turing completeness 41

Turing degree 190
Turing equivalence 185, 190

Turing machine 22, 99, 245

crossing sequence 246
Turing reduction 41

typical representative of a set 434

typical sequence 77, 483, 484
typicalness 475

typization 335, 337, 342

uniform measure 69

uniform probability distribution 475

uniform set 328, 329
construction 331

uniform tests of randomness 79

universal continuous semimeasure 136
universal enumerable set 215

universal probabilistic machine halting

probability 171
unpredictability 475

unpredictable seqeunce 496

unpredictable sequence 484, 485, 487, 493
upper graph of function 33
upper semicomputable function 33

Ville example 281
volume of a ball 474

volume of a three-dimensional body 269

weakly 1-generic sequence 192

word c-equivalence 359

XOR 393

Glossary

Ahlswede, Rudolf F. 357, 358, 392

Andreev, Mikhail 6

Arslanov, Marat 42

Arzumanyan, Vitaly 6

Asarin, Eugene 6

Azuma, Kazuoki 314, 316

Baire, René-Louis 192

Bauwens, Bruno 6, 54, 126, 201

Becher, Verónica 278

Bennett, Charles H. 385

Bernoulli, Jacob 21, 69, 79, 106, 189, 250,
257, 275, 288, 291, 303, 308, 398, 488

Berry, G.G. 19

Bertrand, Joseph Louis François 367, 465,
466

Besicovitch, Abram 270

Bienvenu, Laurent 6, 88, 98, 162, 171, 178,
179, 193, 201, 270, 295

Blum, Manuel 468

Borel, Félix Édouard Justin Émile 67, 71,
176, 464, 465

Buhrman, Harry Matthijs 6, 53, 385

Cai, Ning 392

Calude, Cristian Sorin 3, 6, 171

Cantelli, Francesco Paolo 71, 176

Cantor, Georg Ferdinand Ludwig Philipp
67, 82, 86, 87, 149, 164, 186, 189, 202,
270, 283, 312

Cauchy, Augustin-Louis 269, 427

Chaitin, Gregory 3, 23, 36, 56, 98, 108,
120, 171, 185, 295, 459, 478

Champernowne, David Gawen 278

Chan, Terence 333

Chelnokov, Georgy 6

Chernov, Alexey 6, 212, 370, 421

Chung, Fan R. K. 237

Church, Alonzo 276, 281, 291, 295, 299,
304, 307, 315, 316, 495

Cormen, Thomas H. 393

Cournot, Antoine Augustin 464, 471

Daley, Robert P. 299, 301, 304, 305, 308,
315–317, 319, 321, 322

Dawid, Alexander Philip 285
Day, Adam 147, 148
Dektyarev, Mikhail 6
Doob, Joseph Leo 283, 286, 294
Downey, Rodney Graham 3, 42, 179, 194
Durand, Bruno 6, 57, 308
Einstein, Albert 468
Ershov, Yuri 209, 213
Euclid of Alexandria 245
Fano, Robert Mario 236
Feigelman, Marina 6
Figueira, Santiago 278
Fomin, Sergey 68
Ford, Lester Randolf, Jr. 386, 393
Fortnow, Lance Jeremy 53, 264, 385, 452
Frankl, Peter 237
Fulkerson, Delbert Ray 386, 393
Gács, Péter 6, 54, 79, 88, 147, 148, 164,

168, 194, 201, 296, 373, 385, 436, 446,
457, 460

Gibbs, Josiah Willard 227
Gödel, Kurt 23, 49, 214, 216, 410
Goldreich, Oded 468
Graham, Ronald Lewis 237
Hall, Philipp 386
Halmos, Paul Richard 68
Hammer, Daniel 22, 323, 348
Hamming, Richard Wesley 35, 447
Hardy, Godfrey Harold 252
Hausdorff, Felix 185–187, 189, 252, 271,

296, 298
Hertling, Peter 171
Hirschfeldt, Dennis R. 3, 6, 42, 194
Hoeffding, Wassily 314, 316
Hölzl, Rupert 6, 179, 201
Hoyrup, Mathieu 6, 88, 195
Huffman, David A. 228
Hutter, Marcus 212
Impagliazzo, Russel 452
Ingleton, Aubrey William 347, 349,

351–354, 370
Jordan, Marie Ennemond Camill 84

517

518 Glossary

Kakutani, Shizuo 309, 311

Kalinina, Elena 6, 54, 220

Karpovich, Pavel 6, 210

Kepler, Johannes 20

Khinchin, Alexander 252

Khodyrev, Alexander 6, 187

Khoussainov, Bakhadyr 171

Kjos-Hanssen, Bjørn 42, 79

Kleene, Stephen Cole 412

Kolmogorov Andrei 3, 6, 11, 13, 48, 51,
68, 159, 279, 283, 302, 303, 308, 323,
412, 475–477

König, Julius 255

Körner, János 357, 373

Koucký, Michal 6

Kraft, Leon G. 108, 226, 229, 295

Kräling, Thorsten 179

Kripke, Saul Aaron 420

Kučera, Antońın 171, 178, 194

Kuipers, Lauwerens 277

Kullback, Solomon 227, 288

Kumok, Akim 6

Kurtz, Stewart A. 84, 281, 296, 321

Lambalgen, Michiel van 199, 305, 308, 496

Laplante, Sophie 385

Lee, Troy 452

Leeuw, Karel de 221

Lehtonen, Olga 6

Leibler, Richard 227, 288

Leiserson, Charles E. 393

Levin, Leonid 3, 5, 6, 51, 79, 88, 98, 120,
126, 139, 158, 171, 174, 183, 187, 190,
192, 241, 242, 291, 295, 311, 473, 496

Li, Ming 3, 5, 29, 248, 385

Li, Shuo-Yen Robert 392

Littlewood, John Edensor 252

Loomis, Lynn Harold 237, 267

Lovász, László 256, 257

Loveland, Donald 56, 206, 279, 302, 303,
308, 317, 319, 495

Lutz, Jack H. 187, 297

Makarychev, Konstantin 6, 256, 353, 373

Makarychev, Yuri 6, 353, 373

Makhlin, Anton 6

Manin, Yuri 35

Markaryan, Nikita 470

Martin-Löf, Per 3, 19, 58, 67, 68, 74, 79,
85, 139, 160, 171, 194, 240, 251, 276,
281, 304, 308, 438, 483

Mayordomo, Elvira 187

McMillan, Brockway 229, 234

Medvedev, Yuri 421

Merkle, Wolfgang 6, 42, 179, 293, 299,
303, 320

. . (Albert Ronald da Silva Meyer) 56
Mezhirov, Ilya 6, 381
Micali, Silvio 468
Miller, Joseph S. 6, 115, 116, 164, 168,

170, 255
Milovanov Alexey 6
Minasyan, Alexander 6
Mises, Richard von 21, 80, 273, 274, 276,

281, 291, 295, 299, 303, 304, 307, 315,
316, 454, 466, 476, 495

Moore, Edward Forrest 221
Moser, Robin A. 264, 266
Muchnik, Andrei 1, 6, 115, 198, 262, 305,

361, 365, 366, 377, 381, 387, 388, 397,
421, 438, 496

Musatov, Daniil 6, 385
Newman, Ilan 53
Niederreiter, Harald 210
Nies, André 3, 6, 42, 170, 194
Novikov, Gleb 6, 88
Ockham (Occam), William of 20, 460
Peirce, Charles Sanders 413
Picchi, Rafael 278
Podolskii, Vladimir 6
Porter, Christopher R. 6, 201
Positselsky, Semen 6, 115
Post, Emil Leon 36
Pritykin, Yuri 6
Ptolemaios, Klaudios 20
Radó, Tibor 39
Raskin, Mikhail 6
Razenshteyn, Ilya 6, 368, 369
Reimann, Jan 6, 186
Rivest, Ron 393
Rojas, Cristobal 88
Romashchenko, Andrei 6, 49, 323, 324,

348, 352, 355, 370, 385
Rooij, Steven de 285
Rumyantsev, Andrei 6, 163, 254, 256, 260
Rute, Jason 6
Sablik, Mathieu 270
Salnikov, Sergey 6
Savchik, Alexey 6
Savin, Arseny 6
Schmidhuber, Jürgen 212
Schmidt, Wolfgang M. 277
Schnorr, Claus-Peter 3, 83, 139, 158, 174,

183, 187, 214, 241, 242, 278, 290, 291,
294, 295, 311, 473, 482, 496

Schwarz, Hermann Amandus 269, 427
Scott, Dana 209, 213

Glossary 519

Semenov, Alexey 6, 262, 496
Shafer, Glenn 98, 162, 285, 289
Shafer, Paul 201
Shaltiel, Ronen 452
Shannon, Claude Elwood 3, 17, 70, 221,

225, 226, 237, 238, 240, 242, 323, 332,
353, 377, 392

Shapiro, Norman Z. 221
Shearer, James B. 237
Shuvalov, Victor 6
Simpson, Steven 6
Sipser, Michael 6, 248
Skvortsov, Dmitry Pavlovich 421
Skvortsova, Elena Zelikovna 421
Slaman, Theodore A. 171, 178
Slepian, David 377
Solomonoff, Ray 3, 4, 13, 48, 478
Solovay, Robert Martin 78, 116, 126, 127,

172, 220
Soprunov, Sergey 6
Stein, Clifford 393
Steinhaus, Hugo 252
Stephan, Frank 42, 170
Tadaki, Kohtaro 186
Takahashi, Hayato 201
Tarasov, Sergey 6
Tardos, Gábor 264, 266
Terwijn, Sebastiaan A. 170
Tromp, John T. 436, 446, 457, 460

Tseitin, Grigory 78

Turing, Alan Mathison 22, 39, 41, 58, 99,
185, 190, 193, 194, 202, 246, 247, 278

Ushakov, Maxim 6, 254

Ustinov, Michael 6, 397

Ville, Jean-André 279, 281, 283, 284, 290,
321, 497

Vitányi, Paul Michael Bela 3, 5, 6, 29,
248, 385, 436, 446, 457, 460

Vorovyov, Sergey 6

Vovk, Vladimir 6, 251, 285, 289, 309

Vyalyi, Mikhail 6

Vyugin, Mikhail 397

Vyugin, Vladimir 6, 193, 438, 457, 496

Wald, Abraham 274, 279, 299

Wall, Donald Dines 277

Wang, Yongge 171

Whitney, Hassler 237, 267

Wigderson, Avi 135, 452

Wolf, Jack K. 377

Yao, Andrew Chi-Chih 468

Yeung, Raymond W. 333, 353, 392

Yu, Liang 164, 168

Zaslavsky, Igor 78

Zhang, Zhen 353

Zimand, Marius 135

Zurek, Wojciech H. 385

Zvonkin, Alexander 6, 190, 192

