Online probability, complexity and randomness

Alexey Chernov (Royal Holloway College), Alexander Shen (LIF, Marseille) ${ }^{1}$,
Nikolay Vereshchagin (Moscow University), Vladimir Vovk (Royal Holloway College)

ALT 2008 (October 2008)

Algorithmic randomness:

$$
\text { Fair Coin } \rightarrow 011001 \ldots
$$

Algorithmic randomness:

$$
\text { Fair Coin } \rightarrow 011001 \ldots
$$

Some sequences look suspicious:

$$
0000000000 \ldots
$$

Algorithmic randomness:

$$
\text { Fair Coin } \rightarrow 011001 \ldots
$$

Some sequences look suspicious:

$$
0000000000 \ldots
$$

or

$$
0101010101 \ldots
$$

Algorithmic randomness:

$$
\text { Fair Coin } \rightarrow 011001 \ldots
$$

Some sequences look suspicious:

$$
0000000000 \ldots
$$

or

$$
0101010101 \ldots
$$

but not all

Statistical
Hypothesis
\rightarrow observed behavior

Statistical Hypothesis

\rightarrow observed behavior compatible or not?

Statistical Hypothesis

\rightarrow observed behavior
compatible or not?
Probability distribution P
sequence α

Statistical Hypothesis

\rightarrow observed behavior
compatible or not?

Probability distribution P sequence α

Martin-Löf: sequence α may be random or non-random with respect to P

Statistical Hypothesis

\rightarrow observed behavior
compatible or not?

Probability distribution P sequence α

Martin-Löf: sequence α may be random or non-random with respect to P
(P is a computable distribution on the Cantor space $\{0,1\}^{\infty}$ of binary sequences)
"Real" life:

"Real" life:

Asking whether bits look random, we should take context into account
"Real" life:

Asking whether bits look random, we should take context into account
lottery result $=f($ yesterday newspaper $)$?
"Real" life:

Asking whether bits look random, we should take context into account
lottery result $=f($ yesterday newspaper $) ? \quad B A D$
"Real" life:

Asking whether bits look random, we should take context into account
lottery result $=f($ yesterday newspaper $) ? \quad B A D$ lottery result $=f($ tomorrow newspaper $)$?
"Real" life:

Asking whether bits look random, we should take context into account
lottery result $=f($ yesterday newspaper)? $\quad B A D$ lottery result $=f$ (tomorrow newspaper)? OK
"On-line randomness": consider a sequence

$$
x_{1}, b_{1}, x_{2}, b_{2}, x_{3}, b_{3}, \ldots
$$

where x_{i} are strings and b_{i} bits.
"On-line randomness": consider a sequence

$$
x_{1}, b_{1}, x_{2}, b_{2}, x_{3}, b_{3}, \ldots
$$

where x_{i} are strings and b_{i} bits.
We may ask whether bits b_{i} are random in this sequence
"On-line randomness": consider a sequence

$$
x_{1}, b_{1}, x_{2}, b_{2}, x_{3}, b_{3}, \ldots
$$

where x_{i} are strings and b_{i} bits.
We may ask whether bits b_{i} are random in this sequence
OLR inbetween classical notions:
"On-line randomness": consider a sequence

$$
x_{1}, b_{1}, x_{2}, b_{2}, x_{3}, b_{3}, \ldots
$$

where x_{i} are strings and b_{i} bits.
We may ask whether bits b_{i} are random in this sequence
OLR inbetween classical notions:
$\mathrm{OLR} \Rightarrow b_{1}, b_{2}, b_{3}, \ldots$ is ML-random;
"On-line randomness": consider a sequence

$$
x_{1}, b_{1}, x_{2}, b_{2}, x_{3}, b_{3}, \ldots
$$

where x_{i} are strings and b_{i} bits.
We may ask whether bits b_{i} are random in this sequence
OLR inbetween classical notions:
$\mathrm{OLR} \Rightarrow b_{1}, b_{2}, b_{3}, \ldots$ is ML-random;
$\mathrm{OLR} \Leftarrow b_{1}, b_{2}, b_{3}, \ldots$ is ML-random with oracle $x_{1}, x_{2}, x_{3}, \ldots$

Martin-Löf randomness with respect to a distribution P (on binary sequences).

Martin-Löf randomness with respect to a distribution P (on binary sequences).

Martin-Löf randomness with respect to a distribution P (on binary sequences).

Such a distribution can be defined by conditional probabilities

$$
\operatorname{Pr}\left[b_{i}=1 \mid b_{1}, b_{2}, \ldots, b_{i-1}\right]
$$

On-line randomness is defined with respect to an on-line distribution P (on sequences
$\left.x_{1}, b_{1}, x_{2}, b_{2}, \ldots\right)$.

On-line randomness is defined with respect to an on-line distribution P (on sequences
$\left.x_{1}, b_{1}, x_{2}, b_{2}, \ldots\right)$.

On-line randomness is defined with respect to an on-line distribution P (on sequences
$\left.x_{1}, b_{1}, x_{2}, b_{2}, \ldots\right)$.

Such a distribution can be defined by conditional probabilities

$$
\operatorname{Pr}\left[b_{i}=1 \mid x_{1}, b_{1}, x_{2}, b_{2}, \ldots, b_{i-1}, x_{i}\right]
$$

On-line probability distribution \rightarrow a class of all distributions compatible with conditional probabilities

On-line probability distribution \rightarrow a class of all distributions compatible with conditional probabilities
a notion of randomness with respect to a class of distributions (Levin, Gacs) [more details in the next talk]

On-line probability distribution \rightarrow a class of all distributions compatible with conditional probabilities
a notion of randomness with respect to a class of distributions (Levin, Gacs) [more details in the next talk]
rather special class of distributions: other notions of algorithmic information theory can be generalized for the on-line framework

Decision complexity of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the minimal length of a program that prints (sequentially) $b_{1}, b_{2}, \ldots, b_{n}$ (and, may be, something else).

Decision complexity of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the minimal length of a program that prints (sequentially) $b_{1}, b_{2}, \ldots, b_{n}$ (and, may be, something else).
notation: $K R\left(b_{1}, b_{2}, \ldots, b_{n}\right)$

Decision complexity of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the minimal length of a program that prints (sequentially) $b_{1}, b_{2}, \ldots, b_{n}$ (and, may be, something else). notation: $K R\left(b_{1}, b_{2}, \ldots, b_{n}\right)$

On-line decision complexity of $x_{1}, b_{1}, \ldots, x_{n}, b_{n}$: the minimal length of a program that reads x_{1}, then outputs b_{1}, then reads x_{2}, then outputs b_{2}, etc.

Decision complexity of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the minimal length of a program that prints (sequentially) $b_{1}, b_{2}, \ldots, b_{n}$ (and, may be, something else). notation: $K R\left(b_{1}, b_{2}, \ldots, b_{n}\right)$

On-line decision complexity of $x_{1}, b_{1}, \ldots, x_{n}, b_{n}$: the minimal length of a program that reads x_{1}, then outputs b_{1}, then reads x_{2}, then outputs b_{2}, etc. notation: $K R\left(x_{1} \rightarrow b_{1}, x_{2} \rightarrow b_{2}, \ldots, x_{n} \rightarrow b_{n}\right)$

A priori probability of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the probability that a universal probabilistic machine produces output bits $b_{1}, b_{2}, \ldots, b_{n}$ (and may be something else after that).

A priori probability of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the probability that a universal probabilistic machine produces output bits $b_{1}, b_{2}, \ldots, b_{n}$ (and may be something else after that).
(Universal machine emulates any other with positive probability. A priori probability is defined up to a multiplicative constant.)

A priori probability of a bit string $b_{1}, b_{2}, \ldots, b_{n}$: the probability that a universal probabilistic machine produces output bits $b_{1}, b_{2}, \ldots, b_{n}$ (and may be something else after that).
(Universal machine emulates any other with positive probability. A priori probability is defined up to a multiplicative constant.)
On-line a priori probability of $x_{1}, b_{1}, x_{2}, b_{2}, \ldots, x_{n}, b_{n}$ is a probability that a universal probabilistic machine, getting x_{1} as input, produces b_{1}, then getting x_{2} as input, produces b_{2}, etc.

Martingales:

- Casino produced bits b_{1}, b_{2}, \ldots and announces the distribution: $\operatorname{Pr}\left[b_{n+1}=1 \mid b_{1}, b_{2}, \ldots, b_{n}\right]$

Martingales:

- Casino produced bits b_{1}, b_{2}, \ldots and announces the distribution: $\operatorname{Pr}\left[b_{n+1}=1 \mid b_{1}, b_{2}, \ldots, b_{n}\right]$
- Player starts with some initial capital (no debt)

Martingales:

- Casino produced bits b_{1}, b_{2}, \ldots and announces the distribution: $\operatorname{Pr}\left[b_{n+1}=1 \mid b_{1}, b_{2}, \ldots, b_{n}\right]$
- Player starts with some initial capital (no debt)
- The game is fair: if declared probability of some outcome is p, then the bet on this outcome is multiplied by $1 / p$

Martingales:

- Casino produced bits b_{1}, b_{2}, \ldots and announces the distribution: $\operatorname{Pr}\left[b_{n+1}=1 \mid b_{1}, b_{2}, \ldots, b_{n}\right]$
- Player starts with some initial capital (no debt)
- The game is fair: if declared probability of some outcome is p, then the bet on this outcome is multiplied by $1 / p$
- Player's strategy can be described by a function $m\left(b_{1}, \ldots, b_{n}\right)=$ the capital after bits b_{1}, \ldots, b_{n}

Martingales:

- Casino produced bits b_{1}, b_{2}, \ldots and announces the distribution: $\operatorname{Pr}\left[b_{n+1}=1 \mid b_{1}, b_{2}, \ldots, b_{n}\right]$
- Player starts with some initial capital (no debt)
- The game is fair: if declared probability of some outcome is p, then the bet on this outcome is multiplied by $1 / p$
- Player's strategy can be described by a function $m\left(b_{1}, \ldots, b_{n}\right)=$ the capital after bits b_{1}, \ldots, b_{n}
- This function is a martingale, i.e.,

$$
\begin{aligned}
m\left(b_{1} \ldots b_{n}\right) & =\operatorname{Pr}\left[b_{n+1}=0 \mid b_{1} \ldots b_{n}\right] m\left(b_{1} \ldots b_{n} 0\right)+ \\
& +\operatorname{Pr}\left[b_{n+1}=1 \mid b_{1} \ldots b_{n}\right] m\left(b_{1} \ldots b_{n} 1\right)
\end{aligned}
$$

On-line martingales:

- Between the bits for betting some other activity happens in the Casino; the protocol is $x_{1}, b_{1}, x_{2}, b_{2}, \ldots$

On-line martingales:

- Between the bits for betting some other activity happens in the Casino; the protocol is $x_{1}, b_{1}, x_{2}, b_{2}, \ldots$
- Casino announces conditional probability only for b_{i} (on-line distribution):
$\operatorname{Pr}\left[b_{n+1}=1 \mid x_{1}, b_{1}, \ldots, x_{n}, b_{n}, x_{n+1}\right]$

On-line martingales:

- Between the bits for betting some other activity happens in the Casino; the protocol is $x_{1}, b_{1}, x_{2}, b_{2}, \ldots$
- Casino announces conditional probability only for b_{i} (on-line distribution):
$\operatorname{Pr}\left[b_{n+1}=1 \mid x_{1}, b_{1}, \ldots, x_{n}, b_{n}, x_{n+1}\right]$
- Player can make bets only on b_{i}

On-line martingales:

- Between the bits for betting some other activity happens in the Casino; the protocol is $x_{1}, b_{1}, x_{2}, b_{2}, \ldots$
- Casino announces conditional probability only for b_{i} (on-line distribution):
$\operatorname{Pr}\left[b_{n+1}=1 \mid x_{1}, b_{1}, \ldots, x_{n}, b_{n}, x_{n+1}\right]$
- Player can make bets only on b_{i}
- The game is fair

On-line martingales:

- Between the bits for betting some other activity happens in the Casino; the protocol is $x_{1}, b_{1}, x_{2}, b_{2}, \ldots$
- Casino announces conditional probability only for b_{i} (on-line distribution):
$\operatorname{Pr}\left[b_{n+1}=1 \mid x_{1}, b_{1}, \ldots, x_{n}, b_{n}, x_{n+1}\right]$
- Player can make bets only on b_{i}
- The game is fair
- Player's strategy can be described by a function $m\left(x_{1}, b_{1}, \ldots\right)=$ the capital after x_{1}, b_{1}, \ldots
- This function is a on-line martingale:

$$
m\left(x_{1}, b_{1}, \ldots, x_{n}, b_{n}\right)=m\left(x_{1}, b_{1}, \ldots, x_{n}, b_{n}, x_{n+1}\right)
$$

(no bets on x_{n+1})

- This function is a on-line martingale:

$$
m\left(x_{1}, b_{1}, \ldots, x_{n}, b_{n}\right)=m\left(x_{1}, b_{1}, \ldots, x_{n}, b_{n}, x_{n+1}\right)
$$

(no bets on x_{n+1})

- Betting is fair:

$$
\begin{aligned}
& m\left(\ldots x_{n}, b_{n}, x_{n+1}\right)= \\
& \quad \operatorname{Pr}\left[b_{n+1}=0 \mid \ldots x_{n}, b_{n}, x_{n+1}\right] m\left(\ldots, x_{n}, b_{n}, x_{n+1}, 0\right)+ \\
& \quad+\operatorname{Pr}\left[b_{n+1}=1 \mid \ldots x_{n}, b_{n}, x_{n+1}\right] m\left(\ldots, x_{n}, b_{n}, x_{n+1}, 1\right)
\end{aligned}
$$

Martingales and probability:

Martingales and probability:
Let P be a distribution on n-bit sequences b_{1}, \ldots, b_{n}

Martingales and probability:
Let P be a distribution on n-bit sequences b_{1}, \ldots, b_{n}
Let E be an event (a set of n-bit sequences)

Martingales and probability:
Let P be a distribution on n-bit sequences b_{1}, \ldots, b_{n}
Let E be an event (a set of n-bit sequences)
Ville's theorem: $\operatorname{Pr}[E]$ is the minimal initial capital needed for a martingale to achieve 1 on all elements of E

Martingales and probability:
Let P be a distribution on n-bit sequences b_{1}, \ldots, b_{n} Let E be an event (a set of n-bit sequences)
Ville's theorem: $\operatorname{Pr}[E]$ is the minimal initial capital needed for a martingale to achieve 1 on all elements of E
In other terms, $1 / \operatorname{Pr}[E]$ is the "market value" for the right to start playing with initial capital 1 and the insider information "outcome will be in E"

On-line
martingales and upper probability:

On-line
martingales and upper probability:
P : an on-line distribution on sequences $x_{1} b_{1} \ldots x_{n} b_{n}$;

On-line
martingales and upper probability:
P : an on-line distribution on sequences $x_{1} b_{1} \ldots x_{n} b_{n}$; E : an event (a set of sequences)

On-line

martingales and upper probability:
P : an on-line distribution on sequences $x_{1} b_{1} \ldots x_{n} b_{n}$;
E : an event (a set of sequences)
Consider the minimal initial capital needed for an on-line martingale to achieve 1 on all elements of E. It can be called upper probability of E.

On-line

 martingales and upper probability:P : an on-line distribution on sequences $x_{1} b_{1} \ldots x_{n} b_{n}$; E : an event (a set of sequences)
Consider the minimal initial capital needed for an on-line martingale to achieve 1 on all elements of E. It can be called upper probability of E.
Upper probability is the maximal probability of E (maximum is taken over all distributions compatible with the on-line conditional probabilities)

On-line
martingales and upper probability:
P : an on-line distribution on sequences $x_{1} b_{1} \ldots x_{n} b_{n}$;
E : an event (a set of sequences)
Consider the minimal initial capital needed for an on-line martingale to achieve 1 on all elements of E. It can be called upper probability of E.
Upper probability is the maximal probability of E (maximum is taken over all distributions compatible with the on-line conditional probabilities)
Game: you choose x_{i} while b_{i} are generated with given (conditional) probabilities; you win if the outcome belongs to E. The winning probability is upper probability of E.
"Cournot principle": events with negligible probabilities never happen
"Cournot principle": events with negligible probabilities never happen
A short form of saying that:

- After a statistical hypothesis (a distribution) is accepted, one should be more aware of events that have bigger probability. (Corollary: events with negligible probabilities could be ignored.)
"Cournot principle": events with negligible probabilities never happen
A short form of saying that:
- After a statistical hypothesis (a distribution) is accepted, one should be more aware of events that have bigger probability. (Corollary: events with negligible probabilities could be ignored.)
- If a simple event that has negligible probability nevertheless happens, the statistical hypothesis should be rejected.
"Cournot principle": events with negligible probabilities never happen
A short form of saying that:
- After a statistical hypothesis (a distribution) is accepted, one should be more aware of events that have bigger probability. (Corollary: events with negligible probabilities could be ignored.)
- If a simple event that has negligible probability nevertheless happens, the statistical hypothesis should be rejected.
"On-line Cournot principle": events with negligible upper probabilities never happen.

Let P be a probability distribution on infinite binary sequences

Let P be a probability distribution on infinite binary sequences null sets with respect to P

Let P be a probability distribution on infinite binary sequences null sets with respect to P
if P is computable, one can define effectively null sets

Let P be a probability distribution on infinite binary sequences null sets with respect to P
if P is computable, one can define effectively null sets
Maximal effectively null set; it's complement is the set of all Martin-Löf random sequences

Let P be a probability distribution on infinite binary sequences null sets with respect to P
if P is computable, one can define effectively null sets
Maximal effectively null set; it's complement is the set of all Martin-Löf random sequences
Now let P be an on-line distribution; then the notion of on-line null set can be defined (using upper probability)

Let P be a probability distribution on infinite binary sequences null sets with respect to P
if P is computable, one can define effectively null sets
Maximal effectively null set; it's complement is the set of all Martin-Löf random sequences

Now let P be an on-line distribution; then the notion of on-line null set can be defined (using upper probability)
If P is computable, the notion of effectively on-line null sets is defined; there exists maximal one; it's complement is the set of on-line random sequences.

Criteria of randomness: a sequence is random with respect to a probability distribution P iff

Criteria of randomness: a sequence is random with respect to a probability distribution P iff

- a priori probability coincide with P (up to a $O(1)$-factor) on its prefixes (Schnorr - Levin)

Criteria of randomness: a sequence is random with respect to a probability distribution P iff

- a priori probability coincide with P (up to a $O(1)$-factor) on its prefixes (Schnorr - Levin)
- no lower semicomputable supermartingale is infinite on its prefixes (Schnorr);

Criteria of randomness: a sequence is random with respect to a probability distribution P iff

- a priori probability coincide with P (up to a $O(1)$-factor) on its prefixes (Schnorr - Levin)
- no lower semicomputable supermartingale is infinite on its prefixes (Schnorr);

Now: a sequence is random with respect to an on-line probability distribution P iff

Criteria of randomness: a sequence is random with respect to a probability distribution P iff

- a priori probability coincide with P (up to a $O(1)$-factor) on its prefixes (Schnorr - Levin)
- no lower semicomputable supermartingale is infinite on its prefixes (Schnorr);

Now: a sequence is random with respect to an on-line probability distribution P iff

- a priori on-line probability coincide with P (up to a $O(1)$-factor) on its prefixes

Criteria of randomness: a sequence is random with respect to a probability distribution P iff

- a priori probability coincide with P (up to a $O(1)$-factor) on its prefixes (Schnorr - Levin)
- no lower semicomputable supermartingale is infinite on its prefixes (Schnorr);

Now: a sequence is random with respect to an on-line probability distribution P iff

- a priori on-line probability coincide with P (up to a $O(1)$-factor) on its prefixes
- no lower semicomputable on-line supermartingale is infinite on its prefixes

Prequential randomness

Prequential randomness

A sequence $p_{1}, b_{1}, p_{2}, b_{2}, \ldots$ is given; b_{i} are bits, p_{i} are rational numbers in $(0,1)$

Prequential randomness

A sequence $p_{1}, b_{1}, p_{2}, b_{2}, \ldots$ is given; b_{i} are bits, p_{i} are rational numbers in $(0,1)$
somebody tells us that this sequence is a protocol of an adjustable random bit generator (b_{i} is obtained randomly and $b_{i}=1$ with probability p_{i})

Prequential randomness

A sequence $p_{1}, b_{1}, p_{2}, b_{2}, \ldots$ is given; b_{i} are bits, p_{i} are rational numbers in $(0,1)$
somebody tells us that this sequence is a protocol of an adjustable random bit generator $\left(b_{i}\right.$ is obtained randomly and $b_{i}=1$ with probability p_{i})
sometimes we do not believe in this

Prequential randomness

A sequence $p_{1}, b_{1}, p_{2}, b_{2}, \ldots$ is given; b_{i} are bits, p_{i} are rational numbers in $(0,1)$
somebody tells us that this sequence is a protocol of an adjustable random bit generator $\left(b_{i}\right.$ is obtained randomly and $b_{i}=1$ with probability p_{i})
sometimes we do not believe in this
e.g., all $p_{i}<0.1$ and most of b_{i} are 1's

Prequential randomness

A sequence $p_{1}, b_{1}, p_{2}, b_{2}, \ldots$ is given; b_{i} are bits, p_{i} are rational numbers in $(0,1)$
somebody tells us that this sequence is a protocol of an adjustable random bit generator (b_{i} is obtained randomly and $b_{i}=1$ with probability p_{i})
sometimes we do not believe in this
e.g., all $p_{i}<0.1$ and most of b_{i} are 1's

A formal definition: we require that $p_{1}, b_{1}, p_{2}, b_{2}, \ldots$ is on-line random wrt on-line distribution where

$$
\operatorname{Pr}\left[b_{i}=1 \mid p_{1}, b_{1}, \ldots, p_{i}\right]=p_{i}
$$

Muchnik's paradox

Let $b_{1}, b_{2}, b_{3} \ldots$ is a sequence of random bits produced by two people alternatively.

Muchnik's paradox

Let $b_{1}, b_{2}, b_{3} \ldots$ is a sequence of random bits produced by two people alternatively.

Each of them guarantees that her bits are random in the context of the sequence (when other's bits are external data)

Muchnik's paradox

Let $b_{1}, b_{2}, b_{3} \ldots$ is a sequence of random bits produced by two people alternatively.

Each of them guarantees that her bits are random in the context of the sequence (when other's bits are external data)
Can we conclude that the entire sequence is random?

Muchnik's paradox

Let $b_{1}, b_{2}, b_{3} \ldots$ is a sequence of random bits produced by two people alternatively.

Each of them guarantees that her bits are random in the context of the sequence (when other's bits are external data)
Can we conclude that the entire sequence is random?
Andrei A. Muchnik [1958-2007]: negative answer

