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Algorithmic randomness:
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Some sequences look suspicious:
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Hypothesis → observed behavior

compatible or not?

Probability distribution P sequence α

Martin-Löf: sequence α may be random or
non-random with respect to P
(P is a computable distribution on the Cantor space
{0, 1}∞ of binary sequences)
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“On-line randomness”: consider a sequence
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where xi are strings and bi bits.

We may ask whether bits bi are random in this
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OLR⇐ b1, b2, b3, . . . is ML-random with oracle
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Martin-Löf randomness with respect to a distribution
P (on binary sequences).
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Such a distribution can be defined by conditional
probabilities

Pr[bi = 1|b1, b2, . . . , bi−1]
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Martin-Löf randomness with respect to a distribution
P (on binary sequences).

b1

b2

b3

b4

. . .

Such a distribution can be defined by conditional
probabilities

Pr[bi = 1|b1, b2, . . . , bi−1]



On-line randomness is defined with respect to an
on-line distribution P (on sequences
x1, b1, x2, b2, . . .).

x1

b1

x2

b2

. . .

Such a distribution can be defined by conditional
probabilities

Pr[bi = 1|x1, b1, x2, b2, . . . , bi−1, xi ]



On-line randomness is defined with respect to an
on-line distribution P (on sequences
x1, b1, x2, b2, . . .).

x1

b1

x2

b2

. . .

Such a distribution can be defined by conditional
probabilities

Pr[bi = 1|x1, b1, x2, b2, . . . , bi−1, xi ]



On-line randomness is defined with respect to an
on-line distribution P (on sequences
x1, b1, x2, b2, . . .).

x1

b1

x2

b2

. . .

Such a distribution can be defined by conditional
probabilities

Pr[bi = 1|x1, b1, x2, b2, . . . , bi−1, xi ]



On-line probability distribution → a class of all
distributions compatible with conditional probabilities

a notion of randomness with respect to a class of
distributions (Levin, Gacs) [more details in the next
talk]

rather special class of distributions: other notions of
algorithmic information theory can be generalized for
the on-line framework
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Decision complexity of a bit string b1, b2, . . . , bn: the
minimal length of a program that prints (sequentially)
b1, b2, . . . , bn (and, may be, something else).

notation: KR(b1, b2, . . . , bn)

On-line decision complexity of x1, b1, . . . , xn, bn: the
minimal length of a program that reads x1, then
outputs b1, then reads x2, then outputs b2, etc.

notation: KR(x1 → b1, x2 → b2, . . . , xn → bn)
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A priori probability of a bit string b1, b2, . . . , bn: the
probability that a universal probabilistic machine
produces output bits b1, b2, . . . , bn (and may be
something else after that).

(Universal machine emulates any other with positive
probability. A priori probability is defined up to a
multiplicative constant.)

On-line a priori probability of x1, b1, x2, b2, . . . , xn, bn

is a probability that a universal probabilistic machine,
getting x1 as input, produces b1, then getting x2 as
input, produces b2, etc.
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Martingales:

I Casino produced bits b1, b2, . . . and announces
the distribution: Pr[bn+1 = 1|b1, b2, . . . , bn]

I Player starts with some initial capital (no debt)
I The game is fair: if declared probability of some
outcome is p, then the bet on this outcome is
multiplied by 1/p

I Player’s strategy can be described by a function
m(b1, . . . , bn) = the capital after bits b1, . . . , bn

I This function is a martingale, i.e.,

m(b1 . . . bn) = Pr[bn+1 = 0|b1 . . . bn]m(b1 . . . bn0)+
+ Pr[bn+1 = 1|b1 . . . bn]m(b1 . . . bn1).
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On-line martingales:

I Between the bits for betting some other activity
happens in the Casino; the protocol is
x1, b1, x2, b2, . . .

I Casino announces conditional probability only for
bi (on-line distribution):
Pr[bn+1 = 1|x1, b1, . . . , xn, bn, xn+1]

I Player can make bets only on bi

I The game is fair
I Player’s strategy can be described by a function
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I This function is a on-line martingale:
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Martingales and probability:

Let P be a distribution on n-bit sequences b1, . . . , bn

Let E be an event (a set of n-bit sequences)
Ville’s theorem: Pr[E ] is the minimal initial capital
needed for a martingale to achieve 1 on all elements
of E
In other terms, 1/Pr[E ] is the “market value” for the
right to start playing with initial capital 1 and the
insider information “outcome will be in E ”
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On-line
martingales and upper probability:

P : an on-line distribution on sequences x1b1 . . . xnbn;
E : an event (a set of sequences)
Consider the minimal initial capital needed for an
on-line martingale to achieve 1 on all elements of E .
It can be called upper probability of E .
Upper probability is the maximal probability of E
(maximum is taken over all distributions compatible
with the on-line conditional probabilities)
Game: you choose xi while bi are generated with
given (conditional) probabilities; you win if the
outcome belongs to E . The winning probability is
upper probability of E .
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“Cournot principle”: events with negligible
probabilities never happen

A short form of saying that:

I After a statistical hypothesis (a distribution) is
accepted, one should be more aware of events
that have bigger probability. (Corollary: events
with negligible probabilities could be ignored.)

I If a simple event that has negligible probability
nevertheless happens, the statistical hypothesis
should be rejected.

“On-line Cournot principle”: events with negligible
upper probabilities never happen.
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Let P be a probability distribution on infinite binary
sequences

null sets with respect to P
if P is computable, one can define effectively null sets
Maximal effectively null set; it’s complement is the
set of all Martin-Löf random sequences
Now let P be an on-line distribution; then the notion
of on-line null set can be defined (using upper
probability)
If P is computable, the notion of effectively on-line
null sets is defined; there exists maximal one; it’s
complement is the set of on-line random sequences.
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set of all Martin-Löf random sequences
Now let P be an on-line distribution; then the notion
of on-line null set can be defined (using upper
probability)
If P is computable, the notion of effectively on-line
null sets is defined; there exists maximal one; it’s
complement is the set of on-line random sequences.



Let P be a probability distribution on infinite binary
sequences
null sets with respect to P
if P is computable, one can define effectively null sets

Maximal effectively null set; it’s complement is the
set of all Martin-Löf random sequences
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Criteria of randomness: a sequence is random with
respect to a probability distribution P iff

I a priori probability coincide with P (up to a
O(1)-factor) on its prefixes (Schnorr – Levin)

I no lower semicomputable supermartingale is
infinite on its prefixes (Schnorr);

Now: a sequence is random with respect to an
on-line probability distribution P iff

I a priori on-line probability coincide with P (up to
a O(1)-factor) on its prefixes

I no lower semicomputable on-line supermartingale
is infinite on its prefixes
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Prequential randomness

A sequence p1, b1, p2, b2, . . . is given; bi are bits, pi

are rational numbers in (0, 1)
somebody tells us that this sequence is a protocol of
an adjustable random bit generator (bi is obtained
randomly and bi = 1 with probability pi)
sometimes we do not believe in this
e.g., all pi < 0.1 and most of bi are 1’s
A formal definition: we require that p1, b1, p2, b2, . . .
is on-line random wrt on-line distribution where

Pr[bi = 1|p1, b1, . . . , pi ] = pi
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Muchnik’s paradox

Let b1, b2, b3 . . . is a sequence of random bits
produced by two people alternatively.

Each of them guarantees that her bits are random in
the context of the sequence (when other’s bits are
external data)
Can we conclude that the entire sequence is random?

Andrei A. Muchnik [1958–2007]: negative answer



Muchnik’s paradox

Let b1, b2, b3 . . . is a sequence of random bits
produced by two people alternatively.

Each of them guarantees that her bits are random in
the context of the sequence (when other’s bits are
external data)

Can we conclude that the entire sequence is random?

Andrei A. Muchnik [1958–2007]: negative answer



Muchnik’s paradox

Let b1, b2, b3 . . . is a sequence of random bits
produced by two people alternatively.

Each of them guarantees that her bits are random in
the context of the sequence (when other’s bits are
external data)
Can we conclude that the entire sequence is random?

Andrei A. Muchnik [1958–2007]: negative answer



Muchnik’s paradox

Let b1, b2, b3 . . . is a sequence of random bits
produced by two people alternatively.

Each of them guarantees that her bits are random in
the context of the sequence (when other’s bits are
external data)
Can we conclude that the entire sequence is random?

Andrei A. Muchnik [1958–2007]: negative answer


