CCR-2014

Layerwise computable mappings and
computable Lovasz local lemma

following Lovasz, Moser, Tardos, Hoyrup, Rojas, Levin, Fortnow, Miller,
K. Makarychev, Rumyantsev,...



Philosophy



Philosophy

» Probabilistic existence proofs: we show that some
property is true for a random object with positive
probability, and conclude that objects with this property
do exist. Randomized algorithms, exhaustive search.



Philosophy

» Probabilistic existence proofs: we show that some
property is true for a random object with positive
probability, and conclude that objects with this property
do exist. Randomized algorithms, exhaustive search.

» Constructive proofs: explicit construction, (fast)
algorithms,...



Probabilistic proof: uniform matrices



Probabilistic proof: uniform matrices

» 0/1 n X n matrices



Probabilistic proof: uniform matrices

» 0/1 n X n matrices

» k X kminors: krows and k columns selected



Probabilistic proof: uniform matrices

» 0/1 n X n matrices
» k X kminors: krows and k columns selected

» uniform minor: all zeros or all ones



Probabilistic proof: uniform matrices

v

0/1 n X n matrices

» k X kminors: krows and k columns selected

v

uniform minor: all zeros or all ones

v

for k = O(log n) there exists n x n matrix without
uniform k X k minors



Probabilistic proof: uniform matrices

v

0/1 n X n matrices

» k X kminors: krows and k columns selected

v

uniform minor: all zeros or all ones

v

for k = O(log n) there exists n x n matrix without
uniform k X k minors

v

Why? Matrices with uniform minors are compressible, so
they appear with small probability.



Probabilistic proof: max-cut



Probabilistic proof: max-cut

» In a graph with E edges one can color vertices in two
colors obtaining at least E£/2 bicolored edges.



Probabilistic proof: max-cut

» In a graph with E edges one can color vertices in two
colors obtaining at least E£/2 bicolored edges.

» Proof: expected number of bicolored edges is E£/2
(linearity of expectation)



Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF



Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

» (-pVgVr)A(pV-orV-os)A...



Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

» (-pVgVr)A(pV-orV-os)A...
» each clause has exactly 3 literals



Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

» (-pVgVr)A(pV-orV-os)A...
» each clause has exactly 3 literals

» For each 3-CNF there is an assignment that satisfies at
least 7/8 of the clauses



Derandomization



Derandomization

» How to convert probabilistic proof into an explicit
construction?



Derandomization

» How to convert probabilistic proof into an explicit
construction?

» Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed



Derandomization

» How to convert probabilistic proof into an explicit
construction?

» Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)



Derandomization

» How to convert probabilistic proof into an explicit
construction?

» Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)

» Big machinery: pseudo-randomness, expanders,
extractors,...



Infinite case



Infinite case

» Random process (a machine with random bit generator)



Infinite case

» Random process (a machine with random bit generator)

» generates a sequence of output bits



Infinite case

» Random process (a machine with random bit generator)

» generates a sequence of output bits
» we prove that the probability to get a “good” (infinite)
sequence is positive



Infinite case

Random process (a machine with random bit generator)

v

v

generates a sequence of output bits

» we prove that the probability to get a “good” (infinite)
sequence is positive

v

conclusion: good sequences exist



Infinite case

» Random process (a machine with random bit generator)

» generates a sequence of output bits

» we prove that the probability to get a “good” (infinite)
sequence is positive

» conclusion: good sequences exist

» “Derandomization”: can we prove that computable good
sequence exist?



Two simple derandomization tools



Two simple derandomization tools

» (Singleton) Let w be a bit sequence. If the probability to
get w by a randomized algorithm is positive, then w is
computable.



Two simple derandomization tools

» (Singleton) Let w be a bit sequence. If the probability to
get w by a randomized algorithm is positive, then w is
computable.

» (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.



Two simple derandomization tools

» (Singleton) Let w be a bit sequence. If the probability to
get w by a randomized algorithm is positive, then w is
computable.

» (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.

First seem to be useless; the second will be used, but more
general class of randomized algorithms is needed



Randomized algorithm and its output distribution



Randomized algorithm and its output distribution

» Machine M has access to fair coin



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite



Randomized algorithm and its output distribution

Machine M has access to fair coin

v

v

has write-only output tape filled bit by bit

v

output sequence can be finite or infinite

we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

v



Randomized algorithm and its output distribution

Machine M has access to fair coin

v

v

has write-only output tape filled bit by bit

v

output sequence can be finite or infinite

v

we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

v

function m(x) = probability to get x or some extension



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension

» m(x) is lower semicomputable



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension

» m(x) is lower semicomputable

» m(A) =1



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x

» every m with these properties corresponds to some M



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x

» every m with these properties corresponds to some M

» measures m(x) = m(x0) + m(x1) correspond to machines
that generate infinite sequences almost surely



Existence of computable objects



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0
» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)

» w can be reconstructed starting from its prefix in the set



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)

» w can be reconstructed starting from its prefix in the set

Probably not very useful in proving the existence of
computable objects



Existence of computable objects Il



Existence of computable objects Il

» closed set in the Cantor space



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits



Existence of computable objects Il

» closed set in the Cantor space
» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element

» proof: construct w bit by bit in such a way that each
prefix of w has positive probability



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element

» proof: construct w bit by bit in such a way that each
prefix of w has positive probability

This will be used but some more general machines are needed



Lovasz local lemma (special case)



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(—aVvVdV—eA...



Lovasz local lemma (special case)

» CNF: (aV—=bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...
» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 2™3 neighbors, then CNF
is satisfiable



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 2™3 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 2™3 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables

» compactness: finite case is enough



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 2™3 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables
» compactness: finite case is enough

» classical proof uses induction to prove some bound on
conditional probabilities



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 2™3 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables
» compactness: finite case is enough

» classical proof uses induction to prove some bound on
conditional probabilities

» Moser’s proof that uses Kolmogorov complexity



Infinite Lovasz local lemma



Infinite Lovasz local lemma

» countably many variables



Infinite Lovasz local lemma

» countably many variables

» each clause involves m of them



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them

» and has at most 273 neighbors



Infinite Lovasz local lemma

» countably many variables

» each clause involves m of them

2m—3

» and has at most neighbors

» computable CNF: variables and clauses are indexed by
integers



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them

2m—3

» and has at most neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them

2m—3

» and has at most neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i

» and lists all clauses that involve j-th variable given j



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 273 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i
» and lists all clauses that involve j-th variable given j

» Computable LLL: such a CNF has a computable satisfying
assignment



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 273 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i

» and lists all clauses that involve j-th variable given j

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set;



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 273 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i

» and lists all clauses that involve j-th variable given j

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1;



Infinite Lovasz local lemma

» countably many variables

» each clause involves m of them

» and has at most 273 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i

» and lists all clauses that involve j-th variable given j

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser—Tardos algorithm for finding a solution for finite LLL;



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 273 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i
» and lists all clauses that involve j-th variable given j

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser—Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine



Rewriting machines



Rewriting machines

» Machine has a random bit generator and rewritable
output tape



Rewriting machines

» Machine has a random bit generator and rewritable
output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1



Rewriting machines

» Machine has a random bit generator and rewritable
output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping



Rewriting machines

» Machine has a random bit generator and rewritable
output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping

» stronger condition: for each bit position i and every ¢ > 0
we can compute N(i, €) such that change in i-th bit after
N(i,e) steps has probability less than ¢



Rewriting machines

>

Machine has a random bit generator and rewritable
output tape

restriction: each output bit stabilizes (to 0 or to 1) with
probability 1
Defines an almost everywhere defined mapping

stronger condition: for each bit position i and every ¢ > 0
we can compute N(i, €) such that change in i-th bit after
N(i, €) steps has probability less than ¢

mappings defined in this way are layerwise computable



Rewriting machines

>

Machine has a random bit generator and rewritable
output tape

restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

Defines an almost everywhere defined mapping

stronger condition: for each bit position i and every ¢ > 0
we can compute N(i, €) such that change in i-th bit after
N(i,e) steps has probability less than ¢

mappings defined in this way are layerwise computable

output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision



Rewriting machines

>

>

Machine has a random bit generator and rewritable
output tape

restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

Defines an almost everywhere defined mapping

stronger condition: for each bit position i and every ¢ > 0
we can compute N(i, €) such that change in i-th bit after
N(i, €) steps has probability less than ¢

mappings defined in this way are layerwise computable

output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1



Moser-Tardos probabilistic machine



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF
» (assuming all clauses have m variables and at most 2™ 2

neighbors)

» enumerate all clauses, rank = maximal variable number



Moser-Tardos probabilistic machine

v

finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number

» start with random values



Moser-Tardos probabilistic machine

v

finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)
enumerate all clauses, rank = maximal variable number

v

start with random values

v

v

find first unsatisfied clause and resample it



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values
» find first unsatisfied clause and resample it

» Moser—Tardos: this converges with probability 1



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser—Tardos: this converges with probability 1

» they give an estimate for convergence speed



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser—Tardos: this converges with probability 1

» they give an estimate for convergence speed

» so N(i,e) can be computed



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser—Tardos: this converges with probability 1

» they give an estimate for convergence speed

» so N(i,e) can be computed

Q.E.D.

v



Forbidden substrings



Forbidden substrings

» Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length

greater than n.



Forbidden substrings

» Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length
greater than n.

» (Combinatorial translation of Levin’s lemma: for every
a < 1 there exists an everywhere a-complex sequence
where all substrings y have complexity at least

alyl — O(1).)



Forbidden substrings

» Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length
greater than n.

» (Combinatorial translation of Levin’s lemma: for every
a < 1 there exists an everywhere a-complex sequence
where all substrings y have complexity at least
aly| = O(1).)

» Computable version: let Fbe a computable set of
forbidden strings...there exists a computable sequence w...



Forbidden substrings

» Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length
greater than n.

» (Combinatorial translation of Levin’s lemma: for every
a < 1 there exists an everywhere a-complex sequence
where all substrings y have complexity at least
aly| = O(1).)

» Computable version: let Fbe a computable set of
forbidden strings...there exists a computable sequence w...

» J. Miller’s proof (“modified conditional expectations”)



Forbidden substrings

>

Let Fbe a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length
greater than n.

(Combinatorial translation of Levin’s lemma: for every
a < 1 there exists an everywhere a-complex sequence
where all substrings y have complexity at least

aly] = O(1).)
Computable version: let Fbe a computable set of
forbidden strings...there exists a computable sequence w...

J. Miller’s proof (“modified conditional expectations”)

more complicated for bidirectional sequences



Forbidden substrings

>

Let Fbe a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length
greater than n.

(Combinatorial translation of Levin’s lemma: for every

a < 1 there exists an everywhere a-complex sequence
where all substrings y have complexity at least

aly| = O(1).)

Computable version: let Fbe a computable set of
forbidden strings...there exists a computable sequence w...
J. Miller’s proof (“modified conditional expectations”)
more complicated for bidirectional sequences

for 2D sequences and 2°° forbidden rectangular patterns
of area S: Lovasz local lemma is needed



Remarks



Remarks

» Breakthrough: Moser-Tardos algorithm



Remarks

» Breakthrough: Moser-Tardos algorithm

» better name: Moser-Tardos proof for trivial algorithm



Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser-Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence



Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser-Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)



Remarks

» Breakthrough: Moser-Tardos algorithm

» better name: Moser-Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

» computable points in a suitable metric space



Remarks

» Breakthrough: Moser-Tardos algorithm

» better name: Moser-Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

» computable points in a suitable metric space

» using computable sequence outside a Schnorr null set as a
pseudorandom sequence



