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Philosophy

» Probabilistic existence proofs: we show that some
property is true for a random object with positive
probability, and conclude that objects with this property
do exist. Randomized algorithms, exhaustive search.

» Constructive proofs: explicit construction, (fast)
algorithms,...
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0/1 n X n matrices

» k X kminors: krows and k columns selected

v

uniform minor: all zeros or all ones

v

for k = O(log n) there exists n x n matrix without
uniform k X k minors

v

Why? Matrices with uniform minors are compressible, so
they appear with small probability.
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Probabilistic proof: max-cut

» In a graph with E edges one can color vertices in two
colors obtaining at least E£/2 bicolored edges.

» Proof: expected number of bicolored edges is E£/2
(linearity of expectation)
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Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

» (-pVgVr)A(pV-orV-os)A...
» each clause has exactly 3 literals

» For each 3-CNF there is an assignment that satisfies at
least 7/8 of the clauses
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Derandomization

» How to convert probabilistic proof into an explicit
construction?

» Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)

» Big machinery: pseudo-randomness, expanders,
extractors,...
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Infinite case

» Random process (a machine with random bit generator)

» generates a sequence of output bits

» we prove that the probability to get a “good” (infinite)
sequence is positive

» conclusion: good sequences exist

» “Derandomization”: can we prove that computable good
sequence exist?
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Two simple derandomization tools

» (Singleton) Let w be a bit sequence. If the probability to
get w by a randomized algorithm is positive, then w is
computable.

» (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.

First seem to be useless; the second will be used, but more
general class of randomized algorithms is needed
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Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x

» every m with these properties corresponds to some M

» measures m(x) = m(x0) + m(x1) correspond to machines
that generate infinite sequences almost surely
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Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)

» w can be reconstructed starting from its prefix in the set

Probably not very useful in proving the existence of
computable objects
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Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element

» proof: construct w bit by bit in such a way that each
prefix of w has positive probability

This will be used but some more general machines are needed
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Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvVdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 2™3 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables
» compactness: finite case is enough

» classical proof uses induction to prove some bound on
conditional probabilities

» Moser’s proof that uses Kolmogorov complexity
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Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 273 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause given i
» and lists all clauses that involve j-th variable given j

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser—Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine
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Rewriting machines

>

>

Machine has a random bit generator and rewritable
output tape

restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

Defines an almost everywhere defined mapping

stronger condition: for each bit position i and every ¢ > 0
we can compute N(i, €) such that change in i-th bit after
N(i, €) steps has probability less than ¢

mappings defined in this way are layerwise computable

output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1
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Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser—Tardos: this converges with probability 1

» they give an estimate for convergence speed

» so N(i,e) can be computed

Q.E.D.

v
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Forbidden substrings

>

Let Fbe a set of strings (“forbidden strings”); assume that
F contains at most 2°” strings of length n, where o < 1 is
a constant. Then there exists a constant c and a sequence
w that does not contain forbidden substrings of length
greater than n.

(Combinatorial translation of Levin’s lemma: for every

a < 1 there exists an everywhere a-complex sequence
where all substrings y have complexity at least

aly| = O(1).)

Computable version: let Fbe a computable set of
forbidden strings...there exists a computable sequence w...
J. Miller’s proof (“modified conditional expectations”)
more complicated for bidirectional sequences

for 2D sequences and 2°° forbidden rectangular patterns
of area S: Lovasz local lemma is needed
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Remarks

» Breakthrough: Moser-Tardos algorithm

» better name: Moser-Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

» computable points in a suitable metric space

» using computable sequence outside a Schnorr null set as a
pseudorandom sequence



