
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CCR-2014

Layerwise computable mappings and
computable Lovasz local lemma

following Lovasz, Moser, Tardos, Hoyrup, Rojas, Levin, Fortnow, Miller,
K. Makarychev, Rumyantsev,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Philosophy

▶ Probabilistic existence proofs: we show that some
property is true for a random object with positive
probability, and conclude that objects with this property
do exist. Randomized algorithms, exhaustive search.

▶ Constructive proofs: explicit construction, (fast)
algorithms,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Philosophy

▶ Probabilistic existence proofs: we show that some
property is true for a random object with positive
probability, and conclude that objects with this property
do exist. Randomized algorithms, exhaustive search.

▶ Constructive proofs: explicit construction, (fast)
algorithms,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Philosophy

▶ Probabilistic existence proofs: we show that some
property is true for a random object with positive
probability, and conclude that objects with this property
do exist. Randomized algorithms, exhaustive search.

▶ Constructive proofs: explicit construction, (fast)
algorithms,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: uniform matrices

▶ 0/1 n× n matrices
▶ k× k minors: k rows and k columns selected
▶ uniform minor: all zeros or all ones
▶ for k = O(log n) there exists n× n matrix without
uniform k× k minors

▶ Why? Matrices with uniform minors are compressible, so
they appear with small probability.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: uniform matrices

▶ 0/1 n× n matrices

▶ k× k minors: k rows and k columns selected
▶ uniform minor: all zeros or all ones
▶ for k = O(log n) there exists n× n matrix without
uniform k× k minors

▶ Why? Matrices with uniform minors are compressible, so
they appear with small probability.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: uniform matrices

▶ 0/1 n× n matrices
▶ k× k minors: k rows and k columns selected

▶ uniform minor: all zeros or all ones
▶ for k = O(log n) there exists n× n matrix without
uniform k× k minors

▶ Why? Matrices with uniform minors are compressible, so
they appear with small probability.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: uniform matrices

▶ 0/1 n× n matrices
▶ k× k minors: k rows and k columns selected
▶ uniform minor: all zeros or all ones

▶ for k = O(log n) there exists n× n matrix without
uniform k× k minors

▶ Why? Matrices with uniform minors are compressible, so
they appear with small probability.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: uniform matrices

▶ 0/1 n× n matrices
▶ k× k minors: k rows and k columns selected
▶ uniform minor: all zeros or all ones
▶ for k = O(log n) there exists n× n matrix without
uniform k× k minors

▶ Why? Matrices with uniform minors are compressible, so
they appear with small probability.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: uniform matrices

▶ 0/1 n× n matrices
▶ k× k minors: k rows and k columns selected
▶ uniform minor: all zeros or all ones
▶ for k = O(log n) there exists n× n matrix without
uniform k× k minors

▶ Why? Matrices with uniform minors are compressible, so
they appear with small probability.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: max-cut

▶ In a graph with E edges one can color vertices in two
colors obtaining at least E/2 bicolored edges.

▶ Proof: expected number of bicolored edges is E/2
(linearity of expectation)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: max-cut

▶ In a graph with E edges one can color vertices in two
colors obtaining at least E/2 bicolored edges.

▶ Proof: expected number of bicolored edges is E/2
(linearity of expectation)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: max-cut

▶ In a graph with E edges one can color vertices in two
colors obtaining at least E/2 bicolored edges.

▶ Proof: expected number of bicolored edges is E/2
(linearity of expectation)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

▶ (¬p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬s) ∧ . . .

▶ each clause has exactly 3 literals
▶ For each 3-CNF there is an assignment that satisfies at
least 7/8 of the clauses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

▶ (¬p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬s) ∧ . . .

▶ each clause has exactly 3 literals
▶ For each 3-CNF there is an assignment that satisfies at
least 7/8 of the clauses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

▶ (¬p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬s) ∧ . . .

▶ each clause has exactly 3 literals

▶ For each 3-CNF there is an assignment that satisfies at
least 7/8 of the clauses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Probabilistic proof: at least 7/8 satisfied clauses in 3-CNF

▶ (¬p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬s) ∧ . . .

▶ each clause has exactly 3 literals
▶ For each 3-CNF there is an assignment that satisfies at
least 7/8 of the clauses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Derandomization

▶ How to convert probabilistic proof into an explicit
construction?

▶ Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)

▶ Big machinery: pseudo-randomness, expanders,
extractors,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Derandomization

▶ How to convert probabilistic proof into an explicit
construction?

▶ Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)

▶ Big machinery: pseudo-randomness, expanders,
extractors,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Derandomization

▶ How to convert probabilistic proof into an explicit
construction?

▶ Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed

(possible if we can compute the conditional expectation)
▶ Big machinery: pseudo-randomness, expanders,
extractors,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Derandomization

▶ How to convert probabilistic proof into an explicit
construction?

▶ Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)

▶ Big machinery: pseudo-randomness, expanders,
extractors,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Derandomization

▶ How to convert probabilistic proof into an explicit
construction?

▶ Conditional expectations: fix sequentially the values of
the variables so that conditional expectation does not
decrease, until all the variables are fixed
(possible if we can compute the conditional expectation)

▶ Big machinery: pseudo-randomness, expanders,
extractors,…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite case

▶ Random process (a machine with random bit generator)
▶ generates a sequence of output bits
▶ we prove that the probability to get a “good” (infinite)
sequence is positive

▶ conclusion: good sequences exist
▶ “Derandomization”: can we prove that computable good
sequence exist?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite case

▶ Random process (a machine with random bit generator)

▶ generates a sequence of output bits
▶ we prove that the probability to get a “good” (infinite)
sequence is positive

▶ conclusion: good sequences exist
▶ “Derandomization”: can we prove that computable good
sequence exist?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite case

▶ Random process (a machine with random bit generator)
▶ generates a sequence of output bits

▶ we prove that the probability to get a “good” (infinite)
sequence is positive

▶ conclusion: good sequences exist
▶ “Derandomization”: can we prove that computable good
sequence exist?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite case

▶ Random process (a machine with random bit generator)
▶ generates a sequence of output bits
▶ we prove that the probability to get a “good” (infinite)
sequence is positive

▶ conclusion: good sequences exist
▶ “Derandomization”: can we prove that computable good
sequence exist?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite case

▶ Random process (a machine with random bit generator)
▶ generates a sequence of output bits
▶ we prove that the probability to get a “good” (infinite)
sequence is positive

▶ conclusion: good sequences exist

▶ “Derandomization”: can we prove that computable good
sequence exist?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite case

▶ Random process (a machine with random bit generator)
▶ generates a sequence of output bits
▶ we prove that the probability to get a “good” (infinite)
sequence is positive

▶ conclusion: good sequences exist
▶ “Derandomization”: can we prove that computable good
sequence exist?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Two simple derandomization tools

▶ (Singleton) Let ω be a bit sequence. If the probability to
get ω by a randomized algorithm is positive, then ω is
computable.

▶ (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.

First seem to be useless; the second will be used, but more
general class of randomized algorithms is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Two simple derandomization tools

▶ (Singleton) Let ω be a bit sequence. If the probability to
get ω by a randomized algorithm is positive, then ω is
computable.

▶ (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.

First seem to be useless; the second will be used, but more
general class of randomized algorithms is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Two simple derandomization tools

▶ (Singleton) Let ω be a bit sequence. If the probability to
get ω by a randomized algorithm is positive, then ω is
computable.

▶ (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.

First seem to be useless; the second will be used, but more
general class of randomized algorithms is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Two simple derandomization tools

▶ (Singleton) Let ω be a bit sequence. If the probability to
get ω by a randomized algorithm is positive, then ω is
computable.

▶ (Closed set) Let S be a closed set in the Cantor space. If a
randomized algorithm produces an element in S with
probability 1, then A has a computable element.

First seem to be useless; the second will be used, but more
general class of randomized algorithms is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin

▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit

▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite

▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension

▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable

▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x

▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM

▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomized algorithm and its output distribution

▶ MachineM has access to fair coin
▶ has write-only output tape filled bit by bit
▶ output sequence can be finite or infinite
▶ we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

▶ function m(x) = probability to get x or some extension
▶ m(x) is lower semicomputable
▶ m(Λ) = 1

▶ m(x) ≥ m(x0) +m(x1) for all binary strings x
▶ every m with these properties corresponds to someM
▶ measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:
▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set

Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

▶ assume that probability of {ω} is greater than some ε > 0

▶ consider maximal set of incomparable strings x such that
m(x) > ε

▶ each element of this set can be extended uniquely (or
cannot be extended at all)

▶ ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space
▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free
▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space

▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free
▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space
▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free
▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space
▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free

▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space
▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free
▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space
▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free
▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Existence of computable objects II

▶ closed set in the Cantor space
▶ = defined by a family of conditions, each dealing with
finitely many bits

▶ example: square-free
▶ If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

▶ proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables

▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable

▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables

▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough

▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lovasz local lemma (special case)

▶ CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

▶ each clause excludes some combination of variables
appearing in it

▶ assume each clause has exactly m variables
▶ if there are less than 2m clauses then CNF is satisfiable
▶ LLL: if each clause has at most 2m−3 neighbors, then CNF
is satisfiable

▶ neighbors: clauses that have common variables
▶ compactness: finite case is enough
▶ classical proof uses induction to prove some bound on
conditional probabilities

▶ Moser’s proof that uses Kolmogorov complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables

▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them

▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors

▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i

▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j

▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set;

it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1;

such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;

but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Infinite Lovasz local lemma

▶ countably many variables
▶ each clause involves m of them
▶ and has at most 2m−3 neighbors
▶ computable CNF: variables and clauses are indexed by
integers

▶ algorithm writes down i-th clause given i
▶ and lists all clauses that involve j-th variable given j
▶ Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping

▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable

▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rewriting machines

▶ Machine has a random bit generator and rewritable
output tape

▶ restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

▶ Defines an almost everywhere defined mapping
▶ stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

▶ mappings defined in this way are layerwise computable
▶ output distribution is still computable: m(x) = the
probability that output starts with x, can be computed
with arbitrary precision

▶ paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF

▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)

▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number

▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values

▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it

▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1

▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed

▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed

▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moser–Tardos probabilistic machine

▶ finds an assignment for infinite computable CNF
▶ (assuming all clauses have m variables and at most 2m−2

neighbors)
▶ enumerate all clauses, rank = maximal variable number
▶ start with random values
▶ find first unsatisfied clause and resample it
▶ Moser–Tardos: this converges with probability 1
▶ they give an estimate for convergence speed
▶ so N(i, ε) can be computed
▶ Q.E.D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)
▶ more complicated for bidirectional sequences
▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)
▶ more complicated for bidirectional sequences
▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)
▶ more complicated for bidirectional sequences
▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)
▶ more complicated for bidirectional sequences
▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)

▶ more complicated for bidirectional sequences
▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)
▶ more complicated for bidirectional sequences

▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Forbidden substrings

▶ Let F be a set of strings (“forbidden strings”); assume that
F contains at most 2αn strings of length n, where α < 1 is
a constant. Then there exists a constant c and a sequence
ω that does not contain forbidden substrings of length
greater than n.

▶ (Combinatorial translation of Levin’s lemma: for every
α < 1 there exists an everywhere α-complex sequence
where all substrings y have complexity at least
α|y| − O(1).)

▶ Computable version: let F be a computable set of
forbidden strings…there exists a computable sequence ω…

▶ J. Miller’s proof (“modified conditional expectations”)
▶ more complicated for bidirectional sequences
▶ for 2D sequences and 2αS forbidden rectangular paerns
of area S: Lovasz local lemma is needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm
▶ beer name: Moser–Tardos proof for trivial algorithm
▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space
▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm

▶ beer name: Moser–Tardos proof for trivial algorithm
▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space
▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm
▶ beer name: Moser–Tardos proof for trivial algorithm

▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space
▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm
▶ beer name: Moser–Tardos proof for trivial algorithm
▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space
▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm
▶ beer name: Moser–Tardos proof for trivial algorithm
▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space
▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm
▶ beer name: Moser–Tardos proof for trivial algorithm
▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space

▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

▶ Breakthrough: Moser–Tardos algorithm
▶ beer name: Moser–Tardos proof for trivial algorithm
▶ layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

▶ algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

▶ computable points in a suitable metric space
▶ using computable sequence outside a Schnorr null set as a
pseudorandom sequence

