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Probabilistic 
Proofs 

Th~s column ~s devoted to mathemahcs  

f o r  f un  What better purpose ~s there 

f o r  mathematws2 To appear here, 

a theorem orproblem or remark does 

not need to be profound (but ~t ~s 

allowed to be), zt may not be d~rected 

only at spec~ahsts, ~t must  attract 

and fascinate 

We welcome, encourage, and 

frequently  pubhsh contnbutwns  

f rom readers--ezther new notes, or 

rephes to past  columns 

Please send all subm)ss)ons to the 

Mathemattcal Entertatnments E@tor 

Alexander Shen, Instttute for Problems of 

Informat)on Transm~ss)on, Ermolovot 19, 

K-51 Moscow GSP-4, 101447 Russ)a 

e-rnatl shen@landau ac ru 

I n this zssue I present  a collectmn of 

nice proofs that are based on some 

kind of a probabfllstlc argument,  

though the s ta tement  doesn' t  men tmn  

any probabflmes First a simple geo- 

me tnc  example 

(1)  I t  ~s k n o w n  that ocean cove~s 
mo~e than one h a l f  o f  the Earth 's  sur-  

f ace  P~ove that the~e are two s ym-  
metr ic  po in t s  covered by water  

Indeed, let X be a random point  

Consider the events  "X is covered by 

water" and " - X  is covered by water" 

(Here - X  denotes the point antzpodal 

to X) Both events  have probabili ty 

more than 1/2, so they cannot  be mu- 

tually exclusive 

Of course, the same (tnwal)  argu- 

ment  can be explmned without any 
probabilit ies Let W C S 2 be the subset  

of the sphere covered by water, and let 
/.t(X) be the area of a region X C S 2 

Then/x(W) + / x ( -  W) > ~($2), so W A 

( - W )  # 0 
However, as we see m the following 

examples, probabil i ty theory may be 

more than a convement  language to ex- 

press the proof 

(2)  A sphere ~s colored ~n two col- 

ors 10% o f  ~ts sur face  ~s white ,  the re- 
manning pa~t ~s black Prove that 
the)e ~s a cube ~nscr~bed ~n the sphere 
such that all ~ts 8 vertices are black 

Indeed, let us take a random cube 

mscnbed  in the sphere For each ver- 

tex the probabil i ty of the event "vertex 

is white" ~s 0 1 Therefore the event 

"there exists a wtute vertex" has prob- 

ability at most  8 • 0 1 < 1, therefore 

the cube has 8 black vertices with a 

posmve probabflxty 

This argument  assumes maphc~tly 

that there exxsts a random variable (on 

some sample space) whose values are 

cubes wath numbered  vemces  and 

each vertex ~s uniformly dzstnbuted 

over the sphere The easmst way to 

construct  such a varmble ~s to consider  

SO(3) with an m v a n a n t  measure as a 

sample space 

It seems that here probabili ty lan- 

guage is more important  if we dzd not  

have probabzhtms m mind, why should 

we consider an m v a n a n t  measure on 
SO(3) 9 

Now let us switch from toy exam- 

ples to more s enous  ones 

(3)  In th~s eaample  we w a n t  to con- 
s t ruc t  a b~part~te g~aph w~th the fol-  
lowing p~ operh es 

(a)  both pa~ts L and R (called "left" 
and ")~ght") contain  n vertices, 

(b) each ve~ tex on the left ~s con- 
nected to at  most  e~ght vert ices on the 
r~ght, 

(c) f o r  each set X C L that conta ins  

at  least 0 5n vert ices the set o f  all 
neighbors o f  all vert ices  ~n X conta~ns 
at  least 0 7n vert ices 

(These reqmrements  are taken from 

the def inmon of "expander graphs", 

constants  are chosen to slmphfy cal- 

culaUons ) 

We want to prove that for each n 

there exists a graph that satisfies con- 

dmons  (a) - (c) For small  n zt is easy 

to draw such a graph (e g ,  for n -< 8 

we jus t  connect  all the verhces m L 

and m R), but  it seems that m the gen- 

eral case there is no smaple construc- 

txon wath an easy proof 

However, the following probabihs- 

tic argument  proves that such graphs 

do exist For each left vertex x pink 

eight random vertices on the ngh t  

(some of them may comclde) and call 

these vertices nezghbors of x All 

chomes are independent  We get a 

graph that satisfies (a) and Co), let us 

prove that it satisfies (c) wath positive 

probabili ty 

F~x some X C L that has at least 
0 5n vertzces and some Y C R that has 

less than 0 7n vertices What is the 

probabili ty of the event  "All neighbors 

of all e lements of X belong to Y"9 For 

each fixed x E X the probablhty that 

all eight random choices produce an el- 

ement  from Y, does not  exceed (0 7) 8 

For different e lements  of X choices are 

independent ,  so the resul tmg probabil- 
ity is bounded by (0 7s) ~ = 0 7 4n 
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There  are fewer  than 2 '~ different pos- 

siblhtms for each of  the sets X and Y, 

so the probabflgy of  the event  "there 

exist  X and Y such that  #X-->05n, 

#Y < 0 7n, and all neighbors  of  all ver- 

t ices m Xbe long  to Y" does  not  exceed  

2 ~ X 2 n • 0 74n = 0 982n < 1 Thls event 

embodms the negation of  the require- 

ment  (c), so we are done 

All the examples  above  fo l low the 

same  scheme  We want  to p rove  that  

an obJect  with some p rope r ty  a ex- 

rots We cons ider  a s ta table  probabil-  

ity dis t r ibut ion and prove  that  a ran- 

dom obJect has p roper ty  ~ with 

nonze ro  probabi l i ty  Let us cons ider  

n o w  two examples  of  a more  general  

s c h e m e  if the expec t a t i on  of  a ran- 

dora variable  ~" is g rea te r  than some 

n u m b e r  ~, some  va lues  of  ( are 

g rea te r  than 

(4) A p~ece of  pape~ has area 10 

square centimeters Prove that ~t can 

be placed on the ~nteget g ~ d  (the s~de 

o f  whose square ~s 1 cm)  so that at 

least 10 g ~ d  points  a~e covered 

Indeed, let us place a piece of  paper  

on the grid randomly The expec ted  

number  of  grid points  covered  by it is 

p r o p o m o n a l  to its area (because  this 

expec ta t ion  is an additive function) 

Moreover,  for big prates  the boundary 

effects  are negligible, and the number  

of  covered  points is close to the area 

(relative error  is small) So the coeffi- 

cmnt is 1, and the expec ted  number  of 

covered  points is equal to the area If 

the area  is 10, the expec ted  number  is 

10, so there must  be at least  one posi- 

t ion where  the number  of  covered  

points  is 10 or more 

(5) A stone ~s convex, ~ts surface 

has a~ea S P~ove that the stone can 

be placed ~n the sunhgh t  ~n such a 

way  that the shadow will have a~ea at 

least S/4 (We assume that hght  ~s pe~- 

pendwula~ to the plane where the 

shadow ~s cast, ~f ~t ~s not, the shadow 

only becomes b~gge~ ) 

Let us compute  the expec ted  area 

of  the shadow Each pmce of  the sur- 

face contr ibutes to the shadow exactly 

twice  (here convexi ty  is used), so the 

shadow m half the sum of  the shadows 

of  all pieces Taking into account  that 

for each piece all possible direct ions of 

light are eqmprobable,  we see that the 

expec ted  area of  the shadow is pro- 

p o m o n a l  to the area of the s tone sur- 

face To find the coefficmnt, take the 

sphere  as an example it has area  4~-r 2 

and its shadow has area wr 2, so the ex- 

pec ted  shadow area is S/4 
(6) We fimsh our col lect ion of  nice 

p iobabihs tm proofs with a wel l -known 

example,  so race and unexpec ted  that  

it cannot  be onutted It is the proba- 

bihstm proof  of  the Welerstrass theo- 

rem saying that  any cont~nuous func-  

tton can be approximated by a 

po lynomial  (AS far as I know, ttus 

proof  is due to S N Bernstem ) 

L e t f  [0, 1] ~ ~ be a con t inuous  

func tmn Let p be a real number  m [0, 

1] Cons t ruc t  a random variable  in the 

fol lowing way Make n independen t  

trials, the probabil i ty  of  success  in 

each  o f  them being p If the n u m b e r  

of  successes  is /~, take f (Mn)  as the 

value of  the random var iable  For  

each p we get a random variable  Its 

expec ta t ion  is a funct ion of  p, let  us 

call it f . ( p )  

It is easy to see that for each n the 

functlonf~t is a polynomml (What else 

can we get ff the cons t ruc tmn uses 

only a finite number  of  f-values~) On 

the o ther  hand, fn is close to f, because  

for any p the ratm k/n m close to p with 

ove rwhe lmmg probablhty (assuming n 

is big enough),  so in most  cases  the 

value o f f ( k / n )  is close to f (p ) ,  since 

f ( p )  is uniformly continuous 

The formal  argument  reqmres  some 

es tmmtes  of  probabilit ies (Chernoff  

bound or  whatever) ,  but we omit  the 

detmls 

Colorings Revisited 
In the 1997, no 4 issue of  The Intel- 

l~gencer I discussed a homotopm proof  

of  the following fact I f  ~n a t~angu -  

lat~on o f  the sphere S 2 each vertea ~s 

~nc~dent to an even nz~mbe~ o f  edges, 

then the~e ~s a 3-coloring of  the ver- 

tices such that endpo~nts o f  any  edge 

have d~ffe~ent colo~s 

David Gale of  Berkeley wn te s  in re- 

sponse 

As you may know, the c o n d m o n  

that each ver tex  lies on an even num- 

ber of  edges is also a necessary  and 

sufficient condit ion for the faces  to be 

2-colorabte Using that fact I found the 

following homolog]cal, or rather  coho- 

mologmal, p roof  of the theorem 

Color the faces red and blue Then 

give the red triangles the clockwise,  

the blue ones the counter-clockwise 

orientat ion This gives a unique orien- 

tation to all edges of  the polyhedron,  

meaning we can put  arrows on the 

edges so that  as one goes around a tri- 

angle, arrows point  in the same direc- 

tion Now use cohomology  mod 3 and 

define the 1-cocham which assigns 1 

to each edge in the direct ion of  its ar- 

row and - 1 m the opposi te  direct ion 

By the proper ty  above  this is a 1-co- 

cycle 0ts  coboundary  on any tnangle  

is 1 + 1 + 1 = 0), hence  because  we 

are on the sphere  it must  be the co- 

boundary of  a 0-cocham C, and thin C 

nmst  assign different  integers mod 3 

to adJacent ver t ices  Otherwise its 

coboundary  would  be zero on some 

edge 

The proof  that the faces are 2-col- 

orable is also homologmal  Usmg mod 

2 homology, let c be the unit 1-chain 

that assigns 1 to all the edges By the 

evenness  property,  the boundary of  

this cham is zero, so it m a 1-cycle and 

hence because  we are on the sphere it 

must be the boundary o f a  2-chmn This 

2-chmn must  have distract values on 

adjacent faces, for if not, the boundary 

operator  would assign 0 to their com- 

mon edge 

This finishes the proof  of the fol- 

lov. mg theorem 

T h e o r e m  1 Let T be a triangula- 

tion of  the 2-sphere The fo l lowing 

s tatements  a~e equzvalent 

1 Every vertex has even degree 

2 The faces  can be 2-colored 

3 The vertices can be 3-colored 

There is a smular  theorem that also 

has a nice homologlcal  proof  

T h e o r e m  2 The vett~ces can be 4- 

colored r the edges can be 3- 

colored (mean tng  all three colors 

appea~ a~ound every t~angle)  

The proof  uses cohomolog~j with 

coefficients in the Klein Four  Group Ka 

(whereas the p roof  of  Theorem 1 used 

7//2;7 and/ / /37/)  

Assume that  "~ertmes are 4-colored 

Identify the colors  with the e lements  

of  K4 = {0, A, B, C} For  any tnangle  

its co lonng is e i ther  of  the form 0, A, 
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B or A, B, C, and the coboundary  is ei- 

ther (A, A + B = C, B) or (A + B = C, 

B + C = A ,  C + A = B ) ,  so the edges 

are 3-colored with the n o n - z e r o  ele- 

ments  of K4 

Assume that edges are 3-colored 

Identify the colors with the non-zero 

elements  of/{4 Then this is a 1-cocy- 

cle C1, since the sum of the three non- 

zero e lements  of K4 ts zero Hence on 

the 2-sphere Ct is the coboundary  of a 

0-cochain Co, and this must  assign dif- 

ferent colors to adJacent vertices a and 

b since Ci(a ,b )  = Co(a) + Co(b) nmst  

be non-zero 

Letter  from Prof. 
Dr. Hanfr:ed Lenz  

August 28, 1997 
A problem in mathematical  en- 

tertmnment,  w]thout any scientific 

value Fred two or more squares or 

higher powers of integers with the 

santo decimal digits in different order, 

such as 125 and 512, 256 and 625, 169, 

196, and 961, 1024 and 2401, 1296, 2916, 

and 9216, 1728 and 2781 etc Such num- 

bers can be constructed,  e g,  10609, 

16900, 19600, 90601, and 96100, ol else 

30043=27,108,144,064 and 40033= 

64,144,108,027 

The following example shows a 

method of construct ion Let a and b be 

two integers with one digit, and sup- 

pose a 2 and b 2 a r e  e]thel both smaller 

than 10 o] both larger than 10 and ab 

Is smaller than 50 Then the two 
squares (100a + b) 2 = 10000a 2 + 200ab 

+ b 2 and (100b + a) 2 = 10000b 2 + 

200ab + a 2 ha~e the same dlg]ts It ]s 

easy to generalize this construction,  
see 30043 and 40033 above But I am 

more interested in random examples 

such as the first example 125 and 512 

Yours sincerely, 

Hanfned Lenz 

(Berlin and Mumch, Germany) 
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