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This column is devoted to mathematics 

for fun. What better purpose is there 

for mathematics? To appear here, 

a theorem or problem or remark does 

not need to be profound (but it is 

allowed to be); it may not be directed 

only at specialists; it must attract 

and fascinate. 

We welcome, encourage, and 

frequently publish contributions 

from readers--either new notes, or 

replies to past columns. 

Please send all submissions to the 

Mathematical Entertainments Editor, 

Alexander Shen, Institute for Problems of 

Information Transmission, Ermolovoi 19, 

K-51 Moscow GSP-4, 101447 Russia; 

e-mail:shen@landau.ac.ru 

Two More Probabilistic Arguments 

After the column about  probabilist ic 

arguments  was finished, I came across 

two problems (both from high-school 

mathematical  competi t ions in Russia) 

that  may be easily solved using nice 

probabilist ic arguments,  and I'd like to 

share these. 

1. The sets $1, $ 2 , . . . ,  Sk are dif- 

ferent  subsets  of a set S that has 200 

elements.  Moreover, St r Sj for any 
f200~ i r j .  Prove that k -< ~100J- 

Here is the solution. Consider the 

following process: We start  with an 

empty set and add random elements  of 

S one by one until  (after 200 steps) we 

get the whole set S. For  a fixed subset  

A, let us compute the probabil i ty Pr[A] 

that A will appear during this process. 

For  example, Pr[Q] = Pr[S] = 1; for 

a n y s  E S, the probability Pr[{s}] is equal 

to 1/200 (all elements of S can be cho- 

sen and added to • with equal proba- 

bilities). Moreover, any subset  A C S of 

a given cardinality a has the same 

chance to appear during this process, 

and only one subset of cardinality a may 

appear, so Pr[A] = 1/(2a~176 

Consider k random variables 

~1, �9 �9 �9 ~rk; the value of ~i is equal to 1 

if the given set S,i appears  during the 

process; otherwise, ~r~ is equal to 0. The 
2OO expected value of ~i is 1/( s~ ), where 

st is the number  of e lements  in S~, so 
200 this expected value is at least 1/(100) 

(each row in the Pascal triangle has a 

maximum in the center). 

Now, consider the random variable 

= ~rl + "" § ~k. This sum cannot  ex- 

ceed 1, as two different sets Si and Sj 
may not  appear in the process (if S,~ 

precedes Sj in the process,  then Si r 
Sj). So, the expected value of ~r does 

not  exceed 1, and each term has ex- 
200 pected value at least 1/(100). Therefore, 

the number  of terms k does not  exceed 
( 200"~ 

1002. 

R 

Figure 1. R o b o t  in the labyrinth 

2. A robot  R placed in the labyrinth 

(as in Fig. 1) is equipped with a pro- 

gram. The labyrinth is a square n x n 

where some walls are placed be tween  

cells (in addition to the external walls 

around the square). The program is a se- 

quence of commands 1 e f t ~ r i 9 h t 

u p ,  and d o u n (no loops or branches) .  

Executing each command,  the robot  

moves in the prescribed direct ion if 

possible (and does nothing when  there 

is a wall in this direction). Prove that 

for any n, there exists a program that 

works correctly for all labyrinths of 

size n )< n ( independently of the posi- 

t ions of walls inside the square and the 

robot 's  initial position). Here, "works 

correctly" means  that the robot  visits 

all reachable cells. 

To solve this problem, we prove 

that  a sufficiently long r andom pro- 

gram will work with posit ive proba-  

bility. For  each n x n labyrinth,  there  

is a p rogram of size 4n 3 that  works  

for it, as each cell is reachable  in at 

most  4n  s teps (round-trip) and  there 

are at mos t  n 2 admissible  cells. 

Therefore,  a random program of size 

N = 4n 3 will work with probabi l i ty  at 
least ~ = (1/4) 4n3 and fail with proba-  

bility at mos t  1 - s . A r andom pro- 
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gram of  size 2N will  fail wi th  proba-  

bi l i ty  at  mos t  (1 - e)9; a r a n d o m  pro-  
g ram of  size kN will fail wi th  proba-  
bi l i ty  at mos t  (1 - s)k. This p robabi l i ty  

is c o m p u t e d  for a f ixed labyrinth;  if k 
is large enough, (1 - s )k is smal le r  

than  1 divided by the n u m b e r  of  dif- 

ferent  labyr inths  of  size n x n, and a 
r a n d o m  program of  size k N  works  for 
all of  t hem with posi t ive  probabi l i ty .  

Q.E.D. 

Ponce le t  Theorem Revis i ted 
Consider  two circles C1 and  C2 (Fig. 2). 
The wel l -known Ponce le t  theorem 

guaran tees  that  if there  exis ts  a trian- 
gle inscr ibed  in C1 and c i rcumscr ibed  

a round  C2, then there  are  infinitely 
many  tr iangles with this proper ty .  

Ponce le t ' s  theorem can  be refor- 

mula ted  as follows. Cons ider  the map- 

ping f : Ci ~ Ci def ined as  shown in 
Figure  3. 

If f ( f ( f ( A ) ) )  = A for some  poin t  A 

on Cb then f ( f ( f (X) ) )  = X for any 
poin t  X on C1. 

There  is a nice p roof  of  this  state- 
ment  (it is explained,  for  example ,  in 

Praso lov  and Tikhomirov ' s  t ex tbook  
on geometry):  one can def ine a mea- 

sure  on C1 in such a way  tha t  the mea- 
sure  of  the  arc X - f ( X )  is a cons tant  
that  does  not  depend  on the  choice  of 

X. Then , f ( f ( f (A) ) )  = A means  that  this 
cons tan t  equals one-third of  the mea- 
sure  of  C~. 

The same argument  a l lows us to 
prove  the Poncele t  t heo rem not  only 

for t r iangles but  for a rb i t ra ry  n-gons [if 
f(~O(A) = A, then this  cons tan t  equals 

(1/n)th fract ion of the measure  of  C1 
a n d f ( ' 0 ( X )  = X for any X]. 

OK, but  why should  such  a measure  
exist? After we dec ide  to look for it, 

f inding such a measure  is ra ther  easy. 
Assume that  the measu re  is p(X)ds, 
where  P(J0 is some (yet  unknown)  
dens i ty  function and s is the  natura l  pa- 
rameter .  To find condi t ions  on p that  

guarantee  the des i red  proper ty ,  con- 
s ider  two infinitesimally close tangents  
to C2. The measures  of  infintesimal 

a rcs  A1 and A2 cut  by  these  l ines are  to 
be  made  equal (Fig. 4). 

The lengths of arcs  A1 and A~ are 
p ropor t iona l  to the segments  11 and 12. 

Therefore,  if we define p(X) f o r X  E C1 
as  the rec iproca l  of  the length of  the 

tangent  f rom X to the circle C2, a rcs  A1 
and A2 will have equal measures ,  and 
we  are done.  

What  p roper t i e s  of  curves  Ci and  C2 
were  used  in this  proof?. Fo r  C2, we 
need  to know that  two tangents  to  C2 
going f rom the same point  X are equal 

(Fig. 5). 
If the  tangents  were of  different  

lengths, the  densi ty  p(X) wouldn ' t  be 
well  defined.  

Figure 2. Two circles and triangles. 

~ )  

X 

Figure 3. Poncelet mapping. 

Figure 5. Two equal tangents to C2:I1 - / 2 .  

For  C1, we need  another  p roper ty  o f  
a circle: any line intersect ing a circle  
at  two points,  forms equal angles wi th  

the circle in bo th  intersect ion poin ts  
(Fig. 6). 

This p rope r ty  guarantees  that  the  

arcs  Ai  and A2 (Fig. 4) are p ropor t iona l  

to 11 and 12 (infinitesimal tr iangles a re  
similar).  

The Ponce le t  theorem is valid no t  
only for circles  bu t  for any conic sec- 

tions. However ,  this  p roof  seems to be  
not  appl icable  in the general  case. 
Prasolov and Tikhomirov say  (after ex- 

plaining the p r o o f  for the case of two  
circles),  "We won ' t  prove this theorem 
in the general  case  s ince all known 

proofs  are  complicated."  
However,  the  Moscow mathemat i -  

cian A.A. Panov found that  this p r o o f  

can be general ized.  His argument  is ex- 
pla ined below.  The  inspirat ion c o m e s  
from classical  mechanics ,  so let us re- 

call  some facts. 
It is well  k n o w n  that  there  is no 

gravity inside the  sphere.  A s imilar  
two-dimensional  s t a tement  is also t rue  

if the gravi ta t ional  force is propor-  

Figure 4. Two infinitesimal arcs should be 

equal. 

Figure 6. Two equal intersection angles. 
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A2 

Figure 7. Two elliptic arcs  have the s a m e  

measure.  

t ional  to the  inverse  d is tance  (not the  

squared inverse  distance,  as in the  
three-dimensional  case).  To see why, 
look again at  Figure  4: forces  coming 

from arcs A1 and A2 compensa te  each  
other, because  d is tances  are  propor-  

t ional  to masses .  
Now, wha t  can  be  said about  the  

gravity inside an el l ipsoid? Or inside an 

ell ipse in the two-dimens ional  case? Of 
course,  the answer  depends  on the 
mass  distr ibution.  I will show that  

there  exists  a d is t r ibut ion that  guaran- 

C] tees  the  absence  of  gravi ty inside the 

ellipse. Indeed, imagine  that  a cir- 
" ~  cle is drawn on a weight less  
) elast ic  film using heavy  ink, and 

then this film is s t r e tched  to- 
gether  with the circle  (so the cir- 

~ cle becomes  an ellipse).  Then, the 
J gravity is still absent  inside the  ellipse. 

Here  is why. Although the lengths 11 

and 12 in Figure 4 do change  when we 
s t re tch  the film, their  ra t io  remains  the  

same, as do the masses  on arcs  A1 and 
A2, so the  gravi tat ional  fo rces  from A1 

and A2 still compensa te  each  other. 
Thus, we have cons t ruc ted  a distr ibu- 
t ion of  masses  along the el l ipse (we de- 
note  this dis t r ibut ion by d~p in the se- 

quel) that  generates  no gravity inside 

the  ellipse. 
Returning to Ponce le t ' s  theorem,  let 

us prove  it for the case  when  C1 is an 
el l ipse and C2 is a circle.  Cons ider  a 

d is t r ibut ion d~/l(x) on C1, where  l(x) 
is the  length of  the tangent  from x E 

C1 to the cirlce C2 (Fig. 7). 

The same argument  as before  
shows  tha t  the  measures  of  a rcs  A1 and 

A2 are equal. Therefore,  all t angents  to 
the  circle  C2 cut  the same f rac t ion of  

el l ipse C1 (when measured  accord ing  
to the  dis t r ibut ion d~/l(x)), and the 
Ponce le t  t heo rem is proved.  

What  if both  C1 and C2 are  el l ipses? 
Then, we  s t re tch  the pic ture  to conver t  

C2 into a circle. The s ta tement  of  the 
Ponce le t  t heorem is invariant  under  
affine t ransformat ions ,  so we are  done. 

It is a lso invariant  under  pro jec t ive  
t ransformat ions ,  so the s t a t emen t  is 
true for any  conic sections.  

Remark: As A.A. Panov poin ts  out, 

in fact  any two conic sect ions  could  be  
t r ans fo rmed  to circles by one projec-  
tive t ransformat ion;  this observa t ion  

gives us another  way to prove  
Ponce le t ' s  t heorem for any two conic  

sec t ions  af ter  we have proved  it for  cir- 
cles. 

I c lose  with an "archaeological  dis- 

covery" f rom David Gale of  Berkeley.  

In a t r iangle cal led ABC, 
Pick a po in t  on AB, call it P. 

Pick a Q on BC, 
Where BQ is BP. 

Ah the joys  of  pure  geo-me-tree! 

On CA p ick  an R, oh p lease  do, 
Where CR is exac t ly  CQ, 

And now p ick  an S 

Euclid's Last (or Lost) Theorem 
by David Gale 

On AB, more  or  less, 
So that  "AS is AR" is true. 

On BC the next  le t te r  is T, 
Where BT is BS, don ' t  you see. 

On CA pick a U, 
And you'l l  know wha t  to do, 

Next  what ' s  this? we 've  arr ived 
back  at  P! 

Now some  proofs  were soon  found 

c lose  at hand, 
But it didn' t  turn out  quite as planned, 

Fo r  though not  very large 

(They would  fit in the  marg-  
in) regret tably,  none of  them 

scanned.  

C 

T U 

B P S A 
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