PELICAN: a deeP architecturE for the Llght Curve ANalysis

Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez

Centre de Physique des Particules de Marseille

March 15, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

The Large Synoptic Survey Telescope (LSST)

Artist view, Credit : Todd Mason, Mason Productions Inc. / LSST Corporation

- a 10-year survey of the sky
- first light in 2020
- a 8.4-meter special three-mirror design, creating an exceptionally wide field of view, and has the ability to survey the entire sky in only three nights.
- 200 petabyte set of images and data products !

The main property of deep learning

Classical methods

Input data

Separation with a classifier

Deep learning

Input data

Feature learning

The best feature space representation is found by the network

イロト イロ・イモト イモト 三日 のへの

Typical CNN architecture

三日 のへで

Classification of light curves

Conclusion

The light curves

EI= DQC

Irregular sampling

Sparse data

Classification of light curves

Conclusion

The observational strategy

8

Data

Classification of light curves

Conclusion

Two different sampling

もうてい 正則 スポットポット 白マ

How to label light curves?

The spectrocopy technique

Study of the decomposition of the light by a dispersive element (prism, optical fibres) to analyze the composition of an astrophysical object

A testing database not representative in flux

The non-representativeness of the databases, which is a problem of mismatch, is critical for machine learning process.

The classification of light curves of supernovae (SN Ia/ SN Non-Ia)

Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez (arXiv:1901.01298)

What deep learning method should we adopt?

• Recurrent neural network: suited to time series

⇒ Interpolation of data can biais the learning
⇒ Performance comparable to classical method

Convolutional neural network

 Transform input light curves into images : Light Curve Images (LCI)

Convolutional neural network

 Transform input light curves into images : Light Curve Images (LCI)

🕰 Overfitting of missing data (zero values) 🚛 🚛 🔊 🕫

Convolutional neural network

- Transformer les courbes de lumière en image: les Light Curve Images (LCI)
- 2 Adapt convolution operations

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

General Introduction	Deep Learning	Data	Classification of light curves	Conclusion

Non-representativeness bewteen the training and the test databases

General Introduction	Deep Learning	Data	Classification of light curves	Conclusion

Non-representativeness bewteen the training and the test databases

Our solution

Non-supervised learning to extract features from the test light curves

Variable sampling depending on the observational strategy of LSST

Variable sampling depending on the observational strategy of LSST

Our solution

Add a regularization term inside the network

1. Use of a Sigmoid function

2. Regularization with a Kullback-Leibler divergence

$$\begin{split} KL(\rho \| \hat{\rho}_j) &= \rho \log \frac{\rho}{\hat{\rho}_j} + (1-\rho) \log \left(\frac{1-\rho}{1-\hat{\rho}_j} \right) \\ & \downarrow \\ Activation of a \\ neuron \end{split}$$

19

Nerverier er er ein 1740

A regularization term

Visualization

Activation of 12 neurons :

=> Among 5 000 neurons only a restricted number of them are activated (between 10 and 30) with a score above 0.2

Problem n°3

Evolution of light curves with distances in the Universe

Problem n°3

Evolution of light curves with distances in the Universe

Our solution

Semi-supervised learning by minimizing distances in the feature space

The contrastive loss applied to light curves

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖■ のQ@

PELICAN

PELICAN

PELICAN			
	FC 11c	La conservation of the server	Edition Legend Convolution Person Convolution Person Convolution Person

Classification of light curves

◇ ▷ ◇ 正正 → 雨 → → 雨 → → □ →

Classification of light curves

PELICAN

40

20

0

-20

-40

60

40

20

0

-20

-40

-60

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

The main survey and the deep fields of LSST

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖■ のQ@

Results on DDF

	Training database (spec only)	Test database (phot only)	Accuracy	Recall _{ia} Precision _{ia} >0.95	Recall _{ia} Precision _{ia} > 0.98	AUC
	500	1,500	0.849 (0.746)	0.617 (0.309)	0.479 (0.162)	0.937 (0.848)
D D	2,000	2,000	0.925 (0.783)	0.895 (0.482)	0.818 (0.299)	0.984 (0.882)
F	2,000	22,000	0.934 (0.793)	0.926 (0.436)	0.851 (0.187)	0.986 (0.880)
	10,000	14,000	0.979 (0.888)	0.992 (0.456)	0.978 (0.261)	0.998 (0.899)

30

:▶ ΞΙ= ৩٩@

Results on WFD

	Training database (spec only)	Test database (phot only)	Accuracy	Recall _{ia} Precision _{ia} > 0.95	Recall _{ia} Precision _{ia} > 0.98	AUC
w	DDF Spec : 2, 000	WFD : 15, 000	0.917 (0.650)	0.857 (0.066)	0.485 (0.000)	0.974 (0.765)
F	DDF Spec : 3, 000	WFD: 40, 000	0.940 (0.650)	0.939 (0.111)	0.729 (0.000)	0.984 (0.752)
	DDF Spec : 10, 000	WFD : 80, 000	0.962 (0.651)	0.977 (0.121)	0.889 (0.010)	0.992 (0.760)

▲ Ξ ► ▲ Ξ ► Ξ Ξ = 𝒴 𝔅

Validate PELICAN on real data

Training database	test database	Accuracy	AUC	
SDSS simulations:	SDSS-II SN	0.462	0.722	
219,362	confirmed : 582	0.402	0.722	
SDSS-II SN confirmed :	SDSS-II SN	0.798	0.586	
80	confirmed : 502	0.796	0.500	
SDSS simulations : 219,362 SDSS-II SN confirmed : 80	SDSS-II SN confirmed : 502	0.868	0.850	

32

- The future astrophysical surveys will deliver multi-band photometry for billions of sources
- Many issues for the classification algorithms
- Performance never achived for the classification of light curves by considering a non-representative training database

Perspectives

• The method can be used for different kind of noisy images as sonar images

Thank you for your attention!

- The future astrophysical surveys will deliver multi-band photometry for billions of sources
- Many issues for the classification algorithms
- Performance never achived for the classification of light curves by considering a non-representative training database

Perspectives

• The method can be used for different kind of noisy images as sonar images

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank you for your attention!

Appendix

pact of Signal-to-Noise Ratio (SNR) on widths of PDFs

The Stripe 82 region, which combines repeated observations of the same part of the sky, gives us the opportunity to look into the impact of SNR

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fonction de perte = $|| x - x' ||_2$

1. Utilisation de la fonction d'action Sigmoïde

2. Régularisation à l'aide de la divergence de Kullback-Leibler

=> Among 5 000 neurons only a restricted number of them are activated (between 10 and 30) with a score above 0.2