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The Problem of Estimating Evolutions
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Our Work: 
Using A Sequence of Images with a 

Spatio-Temporal Model to Predict the 
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Not Enough and Sparse Observed Indicators
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Our Alternative: Use Nighttime Light Evolutions as 
Reference Data

● (Noisy) Proxy for economic 
activity

● Data available since 1990
● Every year
● Covers the entire globe
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● Landsat-7 (2000-2020) (B, G, R, NIR, SWIR-1 & 2)

● VIIRS-like NTL evolutions1

● Patching Strategy : 

○ 32×32 grid 

○ Pairs of SITS and NTL sequence

⇒ Supervised Learning in a 5-fold cross 

validation set up

○ Leave Zanzibar Island out for visualization
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Transformer-Based Models

Transformer Architecture

Spatial Transformer Training
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Held-Out Zone Results

∆t = 1 : All models fails
∆t = 10 : STT is better than ST
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Spatio-Temporal Models Could Help to Understand 
Socio-Economic Dynamics
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Takeaway messages:

● Short-term evolutions are hard to estimate for both spatial and spatio-temporal models

● Mid-and-long-term evolution estimations are better predicted with spatio-temporal models

● Preliminary tests confirm these results 

Future direction:

● Enlarging the study area
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R² = 0.351

There is room for improvement
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Is Two Time-Steps Enough ?



How do we Compute the Results
“Per year” Results Evolution Results

(Deltas)
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Zanzibar, a Large Diversity of Nighttime light Patterns

Noise ? 

Urban core evolution ?

Peri-urban evolution ?

Coastal/rural 
evolution ?
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Enlarging the study area
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The SustainBench : a Source of SDGs Monitoring 
Dataset
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Sustainbench website1 : https://sustainlab-group.github.io/sustainbench/
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Living Standard Measurement Study & 
Demographic and Health Survey 

Data harmonization between countries 
Ready to use in a deep leanring context 


