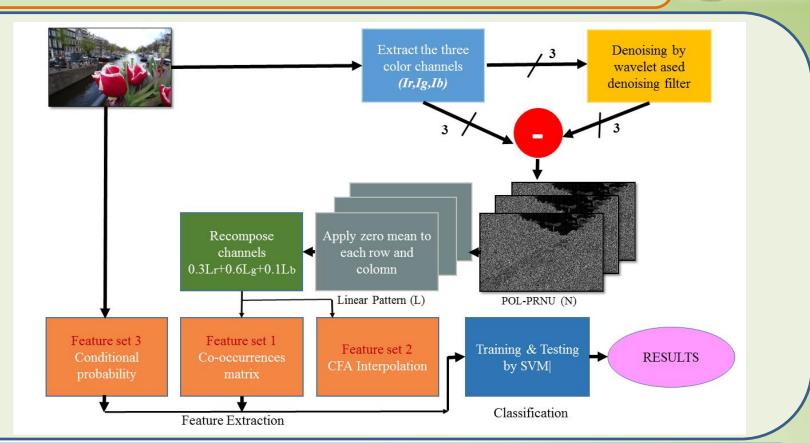
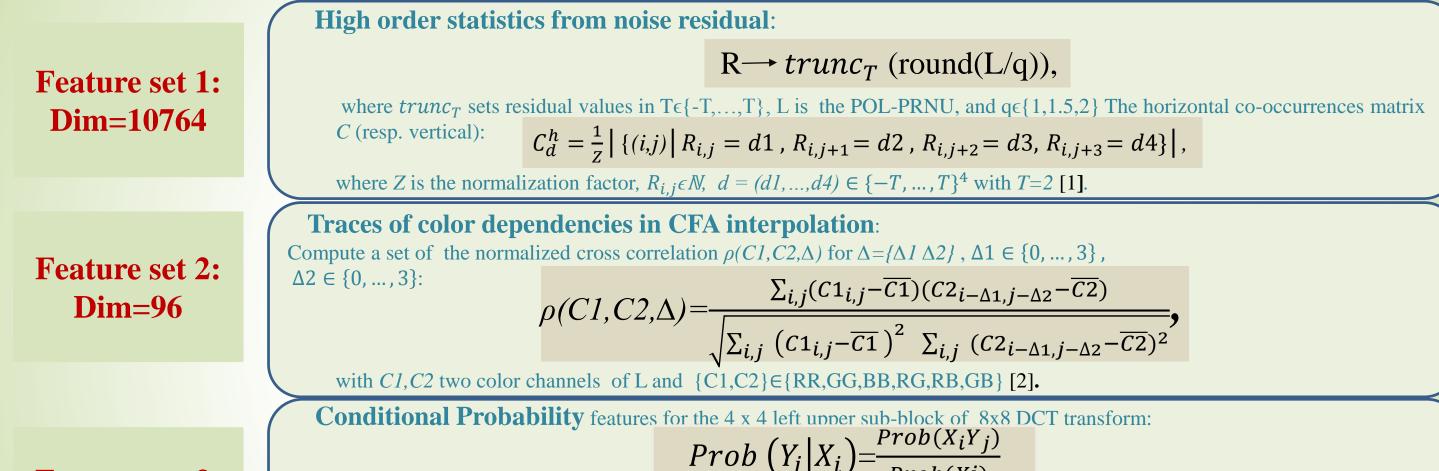


Camera Model Identification Based Machine Learning Approach With High Order Statistics Features




Amel TUAMA, Frédéric COMBY, Marc CHAUMONT

LIRMM (UMR5506), University of Montpellier /CNRS, 34095, Montpellier, FRANCE

Proposed method

- Extract the noise residual: N=I-F(I).
- Normalize the noise residual and obtain Lr, Lg, Lb.
- Recompose channels: 0.3Lr+0.6Lg+0.1Lb.
- Extract two sets of features from the noise residual.
- Extract a set of feature from the original image.
- Classify with multi class SVM.

Feature Dim	:	$\begin{array}{l} FTOD\left(T_{j} X_{i}\right) = \frac{1}{Prob(Xi)} \\ X1 = \{ \text{value at position } r < \text{value at position } s \}, \\ X2 = \{ \text{value at position } r > \text{value at position } s \}, \\ X3 = \{ \text{value at position } r = \text{value at position } \}, \\ Where r, s, t are three relative positions in a DCT block such that {r, s, t} \in \{1, \dots, 4\}x\{1, \dots, 4\} [3]. \end{array}$;		
Experiment Protocol and Results									 14 camera models from Dresden database. (10764 + 96+72 = 10932) features trained by SVM classifier. 1400 images for training, 100 images for each camera model. 1400 images for testing, 100 images for each camera model. Implement the training procedure 10 times and average the results. 						
Camera Model (Dresden base)	Agfa DC733s	Agfa DC 830i	Agfa Sensor 530s	Canon Ixus55	Fujifilm FinepixJ50	Kodak M1063	Nikon D200	Olympus M1050SW	Panasonic DMC-FZ50	Praktica DCZ5.9	Samsung L74wide	Samsung NV15	Sony DSC-H50	Sony DSC-W170	
Correlation m. (PRNU) 97.5% [4]	98	98	100	96	99	98	97	100	96	98	97	96	97	95	
Proposed method 98.7%	99.3	98.6	100	99.9	98.7	99.9	98.1	98	99.6	98.2	99.4	98.9	97.7	96.2	
		Camera Make/Model			No.Images Iden. accuracy			References							
Robustness test (Flickr base)		Canon IXUS 55			97	99.1%		[1] J. Fridrich and J. Kodovsky, "Rich models for steganalysis of digital images,"							
		Fujifilm FinePix J50			74	98	8.7%	882, Jun	IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, pp. 868– 882, June 2012.						
	1.0	Conclusions						 [2] T. Filler, J. Fridrich, and M. Goljan, "Using sensor pattern noise for camera model identification", in Proc. of 15th IEEE International Conference on Image Processing ICIP, San Diego, California, 2008. [3] A.W. Abdul Wahab, A.T.S. Ho, and S. Li, "Intercamera model image source 							
 A new method The results if 08.75% of action 	lustrate	the efficie	ency of the p	roposed r	identific Image E	identification with conditional probability features," in Proc. of the 3rd IIEEJ Image Electronics and Visual Computing Workshop, 2012. [4] J. Lukas, J. Fridrich, and M. Golian, "Digital Camera Identification from									

98.75% of accuracy compared to a correlation based method 97.5%.

 Future work: bigger database with more camera models, additional feature sets and a comparison with a CNN approach. [4] J. Lukas, J. Fridrich, and M. Goljan, "Digital Camera Identification from Sensor Pattern Noise", IEEE Transactions on Information Forensics and Security, 2006.

The 2016 European Signal Processing Conference (EUSIPCO 2016) 29 August - 2 September 2016. Budapest, Hungary