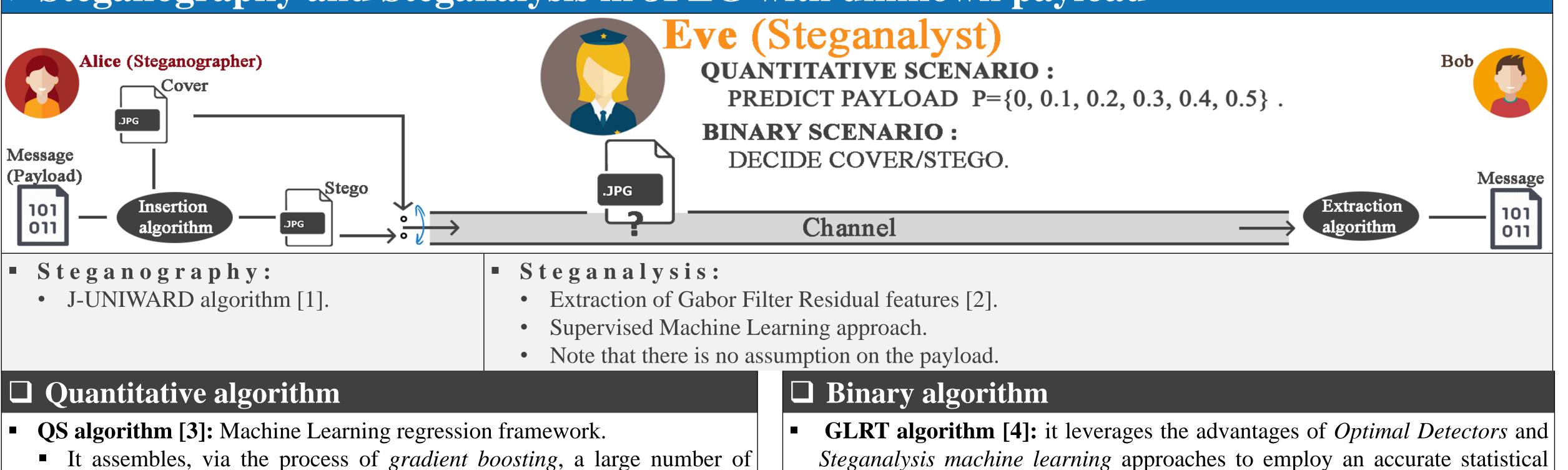


Quantitative and Binary Steganalysis in JPEG: A Comparative Study

Ahmad ZAKARIA¹, Marc CHAUMONT ^{1,2}, Gérard SUBSOL¹


¹LIRMM, Univ. of Montpellier, CNRS, Montpellier, France.

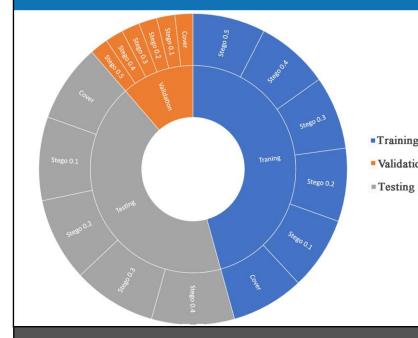
² Univ. of Nîmes, France.

Steganography and Steganalysis in JPEG with unknown payload

- It assembles, via the process of gradient boosting, a large number of simpler base learners built on random subspaces of the original high dimensional feature space.
- Each *base learner* is a Regression Tree adapted to reflect the specific nature of high dimensional feature spaces in Steganalysis.

model for the base learners' projections in an Ensemble classifier.

- Each base learner is a *Fisher Linear Discriminant* (FLD) classifier:
 - Each FLD is trained on a uniformly randomly selected subset of features,
 - Its projection is cast within *hypothesis testing theory*.

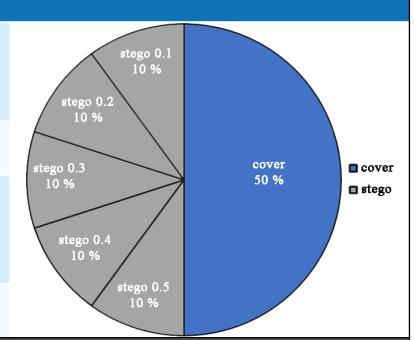

How to compare algorithms?

The results of the two algorithms are in **different forms**: cover/stego (binary), payload (float)

 \rightarrow Post-process them in order to compare QS and GLRT algorithms in Quantitative or Binary scenarios.

Binary Scenario >Quantitative Scenario • Construct two quantitative algorithms, the **GLRT-multiclass** and the **GLRT-** Construct a *Binary Steganalysis algorithm* (called QS-binary) from the QS regression from the GLRT algorithm and compare with the QS algorithm. algorithm and compare with the GLRT algorithms. Adaptation • GLRT-regression: piecewise linear regression model, trained on a set of **QS-binary**: thresholding to transform the estimated payloads given by the QS algorithm into a binary decision (cover/stego). scores given from the GLRT classifier, to estimate the payloads. • **GLRT-multiclass**: a multi-class classifier by calculating the maximum of votes given by applying the GLRT between each couple of payload classes.

Dataset of images


20,000 images, 50% cover and 50% stego. J-UNIWARD steganographic algorithm.

• 6 payloads: 0, 0.1, 0.2, 0.3, 0.4, 0.5 (same ratio)

- ~50% training & ~50% testing
- Training: 8400, Validation: 2100, Testing: 9500.

• Stegos= $\{0.1, 0.2, 0.3, 0.4, 0.5\}$ bpnzAC

• 50% training & 50% testing

17,000-dimensional feature vectors from the cover and stego images, using GFR.

Results

	Avera	age predict	ed error (A	AVG), Roo	t Mean Sq	uared Erro	or (RMSE)	I.		Probability of error P _e			e o de detection			
	an	d Mean Ab	solute Eri	ror (MAE)	for Qualit	y Factor 7	5 and 95				Quality Factor 75		5 0.9			
Payload	GLF						QS						get get			
				QF 75										0.7 0.7 0.7		
	AVG	RMSE	MAE	AVG	RMSE	MAE	AVG	RMSE	MAE					5 0.7		
0.1	0.0541 0.1334	0.096 0.1229	0.0541 0.0989	0.0692	0.1298 0.1309	0.0692 0.1017	0.1312 0.1645	0.1568	0.1312			QS-binary	GLRT	Jac		
0.2	0.1614	0.1355	0.0585	0.1876	0.1359	0.107	0.2182	0.0919	0.0749							
0.3	0.2292	0.1544	0.129	0.2868	0.1331	0.098	0.2883	0.0909	0.0745					Ξ 0.5		
0.4	0.2826	0.1858	0.1495	0.3797	0.1148	0.0809	0.3623	0.0919	0.0704			0.2479	0.2275	A, 0.6 hillion of the second o		
0.5	0.3524	0.2103	0.1477	0.4548	0.0949	0.0452	0.4251	0.1021	0.0759							
All		0.1508			0.1232			0.1071			QF 75					
	QF 95															
	AVG	RMSE	MAE	AVG	RMSE	MAE	AVG	RMSE	MAE			·		U 0.3 U 0.2 U		
0	0.0908	0.1498	0.0908	0.1494	0.2362	0.1494	0.2413	0.2506	0.2413							
0.1	0.1431	0.1566	0.1224	0.1627	0.1925	0.1527	0.2478	0.1625	0.1478					ROC curve, GLRT, QF 75		
0.2	0.1393 0.1826	0.1466 0.1967	0.1266 0.1703	0.2084 0.2619	0.1886 0.1896	0.1646 0.1589	0.2613	0.0916 0.0731	0.0736	OF 95		0.3795	0.3438			
0.3	0.1820	0.1987	0.1703	0.2019	0.1896	0.1369	0.2816	0.0731	0.0399		PFA - Probability of False Alarm					
0.5	0.2821	0.2795	0.218	0.3993	0.1874	0.1007	0.3422	0.1747	0.158							
All		0.1915			0.1963			0.1448						Empirical ROC curves for Quality Factor 75 and 95		
	C o n c l u s i o n															
• For h	nigh navlo	ads• the	OS ann	roach n	rovides	hetter re	culte the	n the G	I RT-		• For hig	h and low na	vloads• the a	letection power is better for GI RT approach		
	• For high payloads: the QS approach provides better results than the GLRT-										• For high and low payloads: the detection power is better for GLRT approach whatever the training scenario (clairvoyant, payload mixture or fixed payload)					
regre	regression and the GLRT-multiclass.															
U	e															
• For l	• For low payloads: the GLRT approach gives better results.											compared to the QS-binary approach.				
			In our	future w	ork on	pooled s	teganaly	ysis, we	will us	e the	e GLRT a	pproach, since	e it is better f	for small payloads.		
			Thi	s compa	rison co	uld also	include	a recer	nt Deen	Lea	rning-hase	ed quantitative	e steganalysi	is algorithm [5].		
												1 Turner (O and J DI			

References

[1] V. Holub, J. Fridrich, and T. Denemark, "Universal distortion function for steganography in an arbitrary domain," EURASIP Journal on Information Security, vol. 2014, no. 1, p. 1, 2014. [2] X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang, "Steganalysis of adaptive JPEG steganography using 2D Gabor filters," in 3rd ACM Workshop on Information Hiding and Multimedia Security. pp. 15–23, ACM, 2015.

[3] J. Kodovsky and J. Fridrich, "Quantitative steganalysis using rich models," in Media Watermarking, Security, and Forensics 2013, vol. 8665. International Society for Optics and Photonics, p. 0O 1-11, 2013. [4] R. Cogranne and J. Fridrich, "Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory," IEEE Trans. on Information Forensics and Security, vol. 10, no. 12, 2015. [5] M. Chen, M. Boroumand, and J. Fridrich, "Deep Learning Regressors for Quantitative Steganalysis," Proc. IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2018, February, 2018.

Corresponding author Email : ahmad.zakaria@lirmm.fr