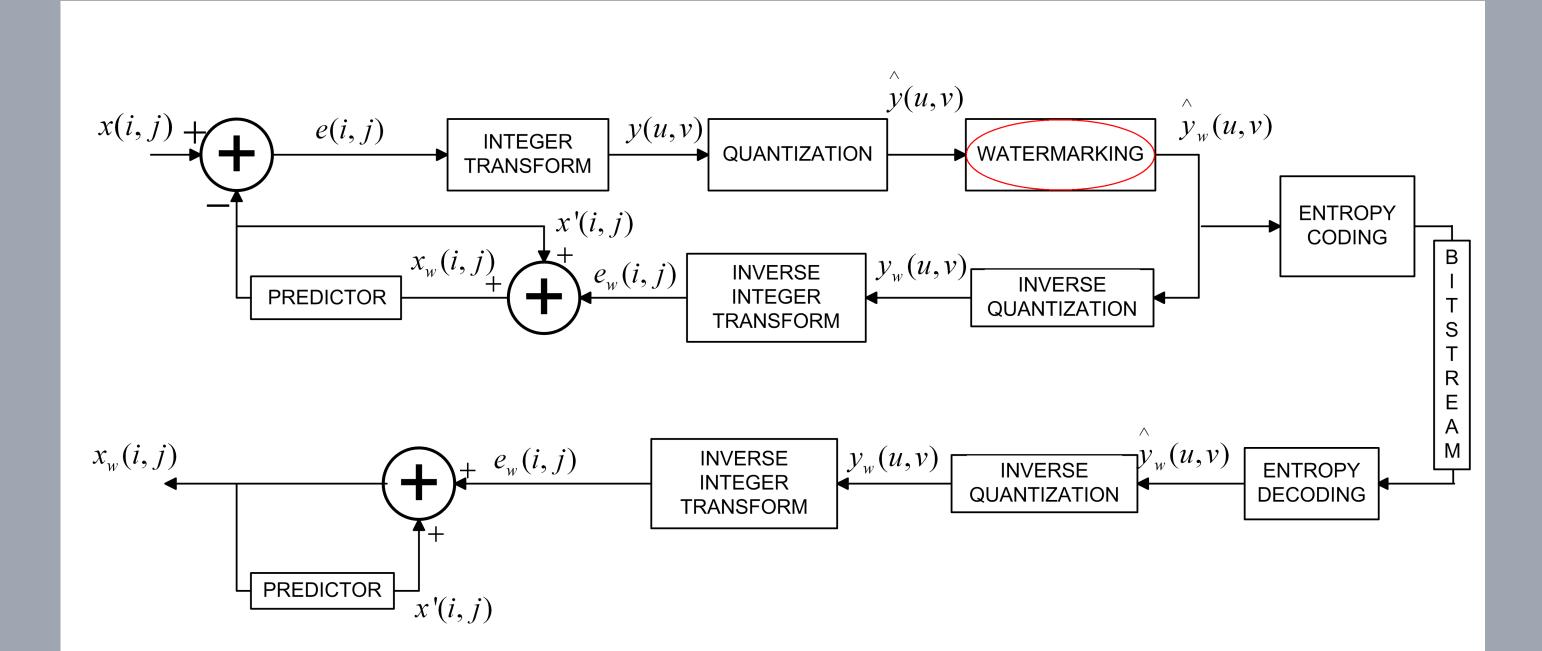


Considering the Reconstruction Loop for Watermarking of I and P Frames of H.264/AVC Zafar SHAHID, Marc CHAUMONT and William PUECH LIRMM, UMR CNRS 5506, Université Montpellier II zafar.shahid@lirmm.fr, marc.chaumont@lirmm.fr, william.puech@lirmm.fr

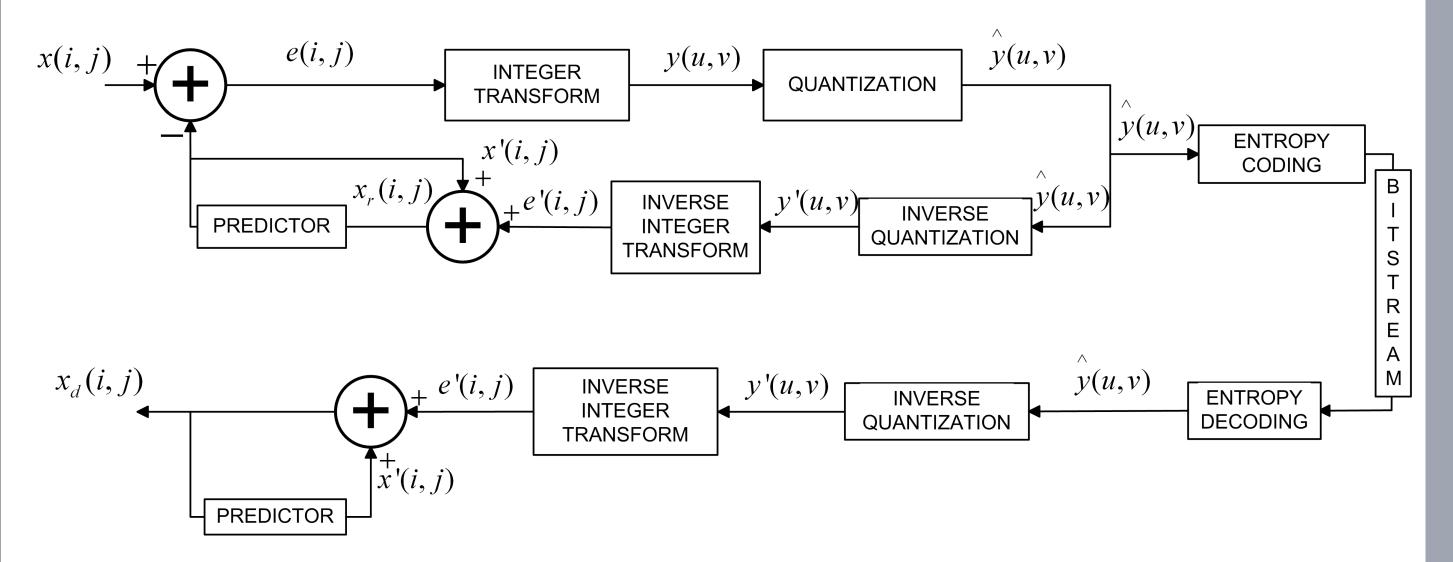
Problem Statement


THE PROBLEM:

To embed watermark in H.264/AVC quantized transformed coefficients (QTCs) while taking into account the reconstruction loop.

OUR APPROACH:

- ► Watermark is embedded into only non-zero AC QTCs: compression efficiency of Run Length Coding is preserved.
- ► QTCs which are to be watermarked should have magnitude greater than 1: CAVLC encodes many of them as Trailing ones (T1s) and changing them will affect the compression efficiency of CAVLC.
- Embedding watermark inside reconstruction loop avoids mismatch between


Watermark capable H.264/AVC

encoder and decoder and also takes into account the bitrate/quality tradeoff because of watermarking of QTCs.

H.264/AVC

- H.264/AVC is the state of the art video codec and performs better than previous standards owing to many new tools including:
- ► 4X4 integer transform.
- Better entropy coding techniques:
- CAVLC (Adaptive technique based on Huffman coding),
- CABAC (Adaptive technique based on Arithmetic coding).
- Quarter pixel motion estimation.
- Multiple block size.
- Multiple reference frames.

Experimental Results

- Overall analysis of watermark For experimental simulation, H.264/AVC JSVM 10.2 in AVC mode is used
- ▶ 150 frames in CIF resolution.
- ► Analysis at QP values of 18 & 36.
- Intra period is 15 in case of I & P frames.
- On average increase in frame size is 3.2%, 2.7% and 2.8% for I, P and I&P respectively for QP value of 18.
- embedding in intra frames for foreman sequence.

		Payload	Frame Size	PSNR	
		Kbits/frame	Kbytes	dB	
	0	0	2.815	44.883	
QP 18	LSB1	9.375	2.889	43.801	
I frames	LSB2	5.605	2.875	43.605	
	LSB1&2	12.484	2.909	42.928	
	0	0	0.377	32.628	
QP 36	LSB1	0.206	0.381	32.536	
I frames	LSB2	0.012	0.377	32.612	
	LSB1&2	0.214	0.381	32.526	

C

Overall analysis of watermark embedding in *intra* and *inter* frames for foreman sequence at QP=18.

		Payload	Frame Size	PSNR
		Kbits/frame	Kbytes	dB
	0	0	2.818	44.876
QP 18	LSB1	9.352	2.892	43.800
I frames	LSB2	5.586	2.878	43.605

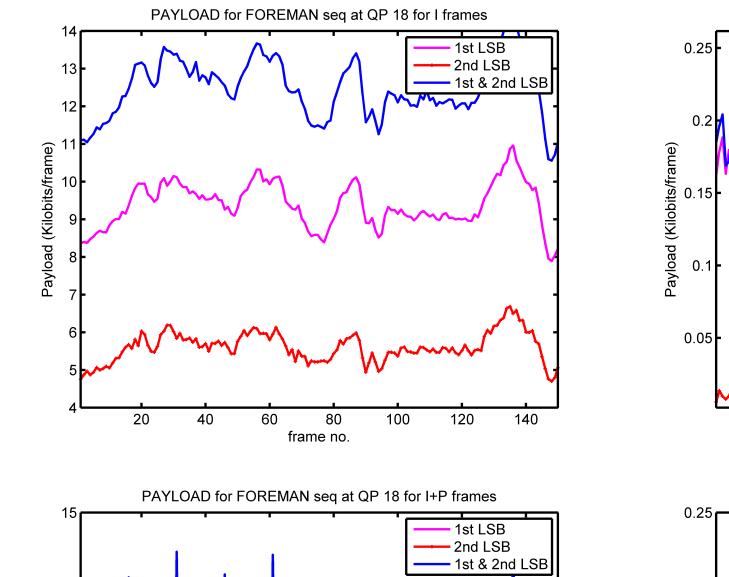
Overall analysis of watermark embedding in intra and inter frames for foreman sequence at QP=36.

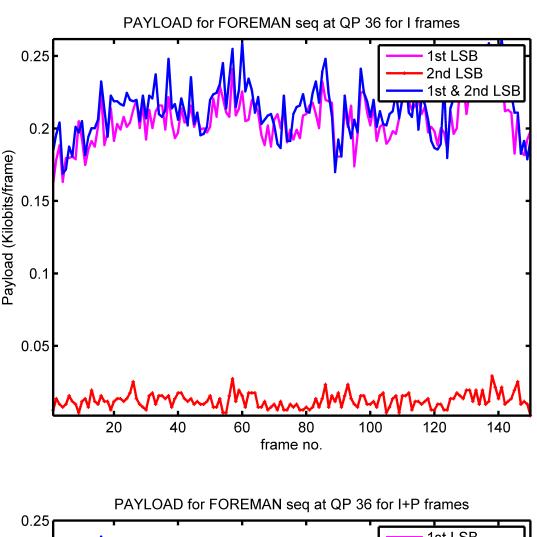
	Paylo		Frame Size	PSNR	
		Kbits/frame	Kbytes	dB	
	0	0	0.376	32.613	
QP 36	LSB1	0.198	0.380	32.523	
I frames	LSB2	0.011	0.376	32.589	
	LSB1&2	0.207	0.381	32.520	
	0	0	0.074	32.353	
QP 36	LSB1	0.005	0.074	32.315	
P frames	LSB2	$1 imes 10^{-4}$	0.073	32.336	
	LSB1&2	0.005	0.074	32.318	
	0	0	0.094	32.370	
QP 36	LSB1	0.017	0.094	32.329	
I + P	LSB2	$8 imes 10^{-4}$	0.093	32.353	
	LSB1&2	0.019	0.095	32.331	

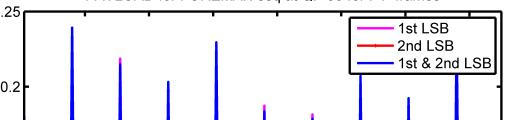
The Proposed Method

- ▶ In the proposed scheme, watermark is not embedded in the bitstream. Rather it is embedded during the encoding process.
- ► Watermark message is inserted in the AC QTCs which are above a certain threshold. The embedding is performed inside the reconstruction loop in such a way:
- ► There is no mismatch on encoder and decoder side, thus avoiding the drift.
- Since embedding a watermark in a video bitstream affects PSNR and bitrate of the picture, rate-distortion algorithm should work on the watermarked QTCs, thus taking into account the watermarking affect. So the Lagrangian rate distortion is given as: $J_w = D_w + \lambda R_w$.
- For the embedding process, let \hat{Y} be a QTC to be watermarked. The watermark is embedded as: $\hat{Y}_W = f(\hat{Y}, W, [K])$. Where W is the watermark message and [K] is the optional key.
- ▶ Watermark can be embedded in 1, 2 or '1 or 2' LSBs of QTCs. For embedding watermark in '1 or 2' LSBs, the embedding and extraction schemes are given below.

Embedding strategy in '1 or 2' LSBs:

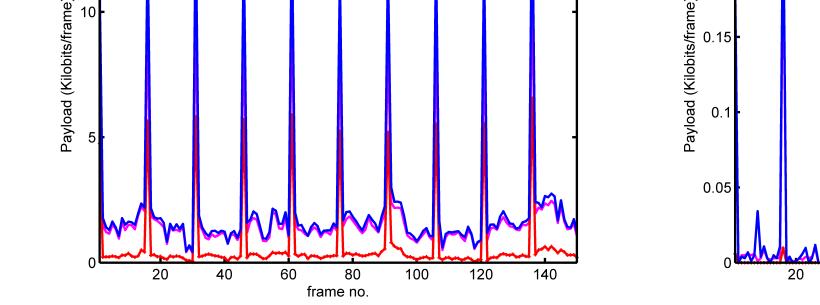

1: if |QTC| > 3 then

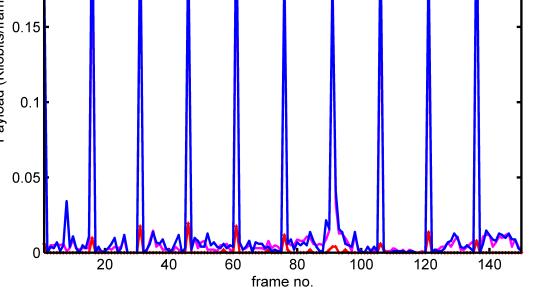

2: $|QTCw| \leftarrow |QTC| - |QTC| \mod 4 + WMBits$


	LSB1&2	12.452	2.913	42.917		LSB18
	0	0	1.317	44.541		0
QP 18	LSB1	1.378	1.343	44.302	QP 36	LSB
P frames	LSB2	0.280	1.333	44.449	P frames	LSB
	LSB1&2	1.530	1.354	44.230		LSB18
	0	0	1.417	44.563		0
QP 18	LSB1	1.909	1.446	44.269	QP 36	LSB
I + P	LSB2	0.633	1.436	44.392	I + P	LSB2
	LSB1&2	2.258	1.458	44.144		LSB18

Framewise Analysis

Framewise analysis of payload capability in I & P at QP 18 & 36.




3: **else**

4: **if** |QTC| > 1 **then** $|QTCw| \leftarrow |QTC| - |QTC| \mod 2 + WMBit$ 6: end if 7: **end if** 8: **end**

Extraction strategy using '1 or 2' LSBs:

- 1: if |QTC| > 3 then
- 2: WMBits $\leftarrow |QTC_w| \mod 4$
- 3: **else**
- 4: **if** |QTC| > 1 **then**
- $WMBit \leftarrow |QTC_w| \mod 2$
- 6: end if
- 7: **end if**
- 8: **end**

Conclusion

- Encouraging results in the following contexts:
- ► RD optimized watermark for I & P frames.
- Higher payload with :
- negligible increase in bitrate,
- minimum compromise on PSNR.
- P frames are also good for watermarking owing to motion and texture masking.

Image & Interaction

http://www.lirmm.fr/icar/

shahid@lirmm.fr