HOW TO DEAL WITH MULTI-SOURCE DATA FOR TREE DETECTION BASED ON DEEP LEARNING

Lionel Pibre^{a,e}, Marc Chaumont^{a,b}, Gérard Subsol^{a,c}, Dino Ienco^d and Mustapha Derras^e

^a LIRMM, Université de Montpellier, ^b Université de Nîmes, ^c CNRS, ^d IRSTEA, ^e Berger-Levrault

2017/11/14

What is our goal?

Detect and localize trees from aerial images

Why?

Manage trees in cities

How?

- With Deep Learning
- With Multi-source data

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521, no. 7553, pp. 436-444, 2015.

What is the difficulty?

- It is complex to merge several information sources
- Trees are often regrouped and occluded

Some solutions exist^[1]

But not with multi-source data

^[1] Yang, Lin, Xiaqing Wu, Emil Praun, and Xiaoxu Ma. "Tree detection from aerial imagery." In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 131-137. ACM, 2009.

Figure: AlexNet network.

Two methods are tested:

- ◎ The Early Fusion
 - Each sensor source is treated as a channel
 - Give it through a classical CNN
- ◎ The Late Fusion^[2]

• A subnet for each sensor source

^[2] J. Wagner, V. Fischer, M. Herman and S. Behnke, "Multispectral pedestrian detection using deep fusion convolutional neural networks", in European Symp. on Artificial Neural Networks (ESANN), Bruges, Belgium, 2016.

Early Fusion diagram.

Late Fusion

Late Fusion diagram.

- Database: Vaihingen
- Type of images: Red, Green and Near-Infrared (RGNIR) and Digital Surface Model (DSM). We also generated Normalized Difference Vegetation Index (NDVI) images (grayscale) from the RGNIR images.

$$NDVI = \frac{NIR - R}{NIR + R} \tag{1}$$

- Training: 6,000 "tree" thumbnails and 40,000 "other" thumbnails. The thumbnail size is 64 × 64 pixels.
- Testing: 20 images of variable size (from 125 × 150 pixels up to 550 × 725 pixels) and that contain about hundred trees.

Experimental Settings - Evaluation

$$label = \begin{cases} tree & \text{If } \frac{area(detection \bigcirc ground truth)}{area(detection \bigcirc ground truth)} > 0.5 \\ not tree & \text{If } \frac{area(detection \bigcirc ground truth)}{area(detection \bigcirc ground truth)} \le 0.5 \end{cases}$$
(2)
$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

Example when the label will be "not tree".

Experimental Settings - Evaluation

- ◎ In green: **True Positives**
- In yellow: False Positives
- ◎ In blue: False Negatives

Experimental Settings - Evaluation

$$Recall = \frac{TruePositives}{TruePositives + FalseNegatives}$$
(3)

$$Precision = \frac{TruePositives}{TruePositives + FalsePositives}$$
(4)

$$F - Measure_{max} = \frac{2Recall * Precision}{Recall + Precision}$$
(5)

- ◎ *TruePositives*: Yeah! we really found a tree
- ◎ *FalseNegatives*: Oups, we missed this one
- FalsePositives: Oh really? Did you really think THAT
 was a tree?

Results using **one** source.

Source	RGNIR	DSM	NDVI
F-Measure _{max}	60.45%	62.47%	63.97%
Recall	57.89%	57.62%	62.34%
Precision	63.44%	68.56%	67.04%

- The DSM allows to obtain the best precision
- NDVI gives better results than RGNIR and the best F-Measure_{max}

Results using multi-source data and the **Early Fusion** architecture.

Early Fusion	RGNIR+DSM	NDVI+DSM	
F-Measure _{max}	67.12%	75.30%	
Recall	65.40%	68.37%	
Precision	69.54%	84.11%	

Results using multi-source data and the Late Fusion architecture.

Late Fusion	RGNIR+DSM	NDVI+DSM	
F-Measure _{max}	62.14%	72. 57%	
Recall	62.54%	70.99%	
Precision	62.65%	74.83%	

Discussion Early Fusion and Late Fusion

- From one source to multi-source, we increase the f-measure_{max} by 11%
- No matter the architecture used, NDVI+DSM gives the best results
- The Early Fusion allows us to obtain the best performances
- We have an important increase of the precision when we use the Early Fusion
 - 74% up to 84% with NDVI+DSM
 - 62% up to 69% with RGNIR+DSM
- ◎ The recall does not increase with the Early Fusion
- We decrease the number of False Positives with the Early Fusion architecture

Results of the correlation between each source.

Sources	RGNIR/DSM		NDVI/DSM	
Correlation	47.86%		48.96%	
Distribution	26.47%	25.66%	28.75%	22.27%

- \odot 50% of the trees are found in both sources
- The remaining 50% is distributed in the two sources and thus shows us the utility of combining several sources

- The Early Fusion gives better performances than the Late Fusion
- NDVI allows us to obtain the best performances
- This highlights the importance of the data that are used to learn a model with a CNN (RGNIR is not enough)
- We show the effectiveness of CNNs in merging different information with a performance gain exceeding 10%

THE END