A Study on the Invariance in Security Whatever the Dimension of Images for the Steganalysis by Deep-Learning

Kévin PLANOLLES^{1,2}, <u>Marc CHAUMONT^{1,3}</u>, Frédéric COMBY^{1,2} LIRMM¹, Univ Montpellier², Univ Nîmes³, Montpellier, France

April 13, 2023

IEEE ICASSP'2023, International Conference on Acoustics, Speech, and Signal Processing, June 04 to June 10, 2023, Greek Island of Rhodes.

Outline

Introduction

NNID building

Experiments & Results

Steganography / Steganalysis

Scenario

The usual laboratory steganalysis scenario:

- A few state-of-the art CNN networks,
- A database with cover/stego images (splitted in learn, validation, test),
- Eve knows images size, payload size, embedding algorithm, image development, and statistics of images.

The scenario studied in this paper:

Eve does not know the images <u>sizes</u> ... She wants to keep "detection performances" constant whatever the dimension of the images.

In this paper, we propose a protocol to check this properly.

Architectures able to "accept" images of various sizes

 \rightarrow How to check finely if detection performances are constant whatever the dimension?

We need to embed to get a "same security level" whatever the dimension.

Equal security whatever the dimension? (1)

The Square Root Law (relative payload for an image of size $w \times h$):

$$\alpha = \frac{k}{wh} \times \sqrt{wh} \times \log(wh) \quad (bpp)$$

with k a positive.

 \rightarrow In practice, it does not ensure equal security whatever the dimension (i.e. CNNs accuracy is not constant when learn/test at different dimension).

Equal security whatever the dimension? (2)

Our proposition for building a proper dataset:

- ► Build a set of Nested Images → ensure same "difficulty" & same statistics,
- ► Find the relative payload for each size → ensure same "security" whatever the dimension.

 \rightarrow NNID (Nearly-Nested Image Datasets).

Outline

Introduction

NNID building

Experiments & Results

SmartCrop 2

In this paper, we only work on cropping (not resizing).

Smart crop 2 :

Take the area of the mother image that keeps the same distribution of **costs** between the mother image and the cropped one.

$$\mathcal{D}_{\mathrm{KL}}(P,Q) := \sum_{i} P(i) \log \frac{P(i)}{Q(i)} + \sum_{i} Q(i) \log \frac{Q(i)}{P(i)}, \quad (1)$$

 \rightarrow cost obtained with the SUNIWARD algorithm,

- \rightarrow use the integral histogram approach,
- \rightarrow same "difficulty" for each dataset.

SmartCrop 2: Illustration (Nearly-Nested Image Datasets)

2048x2048

1024x1024

512x512 256x256

 \rightarrow 4 datasets : NNID = UNI_2048, UNI_1024, UNI_512, UNI_256

A Study on the Invariance in Security Whatever the Dimension of Images for the Steganalysis by Deep-Learning \square NNID building

Relative payload for each dataset

Input: NNID + Algo; Output: Same "security" for each dataset

A Study on the Invariance in Security Whatever the Dimension of Images for the Steganalysis by Deep-Learning \square NNID building

Invariance in security

Definition:

A deep learning network **invariant in security** with respect to the dimension when its obtained **average accuracy is the same whatever the dimensions**.

 \rightarrow Let us test the networks!

Outline

Introduction

NNID building

Experiments & Results

Experimental protocol

- For each dataset (of NNID): 12 000 pairs for train, 2400 for validation, 3000 for test,
- S-UNIWARD for embedding,

Payload ensuring "same security" (using Yedroudj-Net):							
	Dimension	Relative payload	Accuracy (Yedroudj-Net)				
	256	0.4	76.97%				
	512	0.3204	76.38%				
	1024	0.28895	76.78%				

Two tests of the invariance in security:

- 1. learn on 1 size,
- 2. learn on several sizes.

Test 1: Learn on 1 size & Test on another size

Accuracies for SID and Dilated-Yedroudj-Net (noted DY)

· · · · · · · · · · · · · · · · · · ·					
Dim	SID-256	SID-512	SID-1024		
256 imes 256	69.48%	67.05% (↓)	60,9% (↓)		
512 imes 512	69.30%	70.7%	66.93% (↓)		
1024×1024	66 73% (1)	66 93% (1)	69.62%		
1024×1024	00.1070 (\$)	00.3070 (\$)	0010270		
1024 × 1024	DY-256	DY-512	DY-1024		
Dim 256 × 256	DY-256 77.7%	DY-512 76.25% (↓)	DY-1024 71.92% (↓)		
$\frac{1024 \times 1024}{\text{Dim}}$ $\frac{256 \times 256}{512 \times 512}$	DY-256 77.7% 75.21% (↓)	DY-512 76.25% (↓) 77.3%	DY-1024 71.92% (↓) 76.2% (↓)		

Diagonal values are close

 \rightarrow relative payload in NNID (\rightarrow difficulty/security) is correct,

- Performance decrease compared to the diagonal,
- Behavior differs in fonction of images dimension.
- \rightarrow no invariance in security.

Test 2: Learn on several sizes

Still 12 000 pairs for train, 2400 for validation, 3000 for test, with same proportion randomly picked in each dataset.

Dim	SID-MULTI	Y-MULTI	DY-MULTI
256 imes 256	66.93% (↓2.53)	73.93% (↓1.07)	75.63% (↓2.83)
512 imes 512	69.46%	75.5%	78.1%
1024 imes 1024	70.6%	75%	78.06%

- variations in accuracies are less important,
- invariance still not reached.

A Study on the Invariance in Security Whatever the Dimension of Images for the Steganalysis by Deep-Learning \Box Conclusions and perspectives

Outline

Introduction

NNID building

Experiments & Results

A Study on the Invariance in Security Whatever the Dimension of Images for the Steganalysis by Deep-Learning \Box Conclusions and perspectives

Conclusions

We propose a way to check if DL keep "detection performances" constant whatever the dimension of the images.

Proposition:

- Smart crop 2 (use of integral histogram) → same difficulty,
- Dichotomous method (to obtain a relative payload)

 → same security,
- Definition of invariance in security.

Conclusion:

- The NNID and its protocol allows fine evaluation,
- 2 representatives DL are NOT invariant.

A Study on the Invariance in Security Whatever the Dimension of Images for the Steganalysis by Deep-Learning \Box Conclusions and perspectives

Perspectives

Future work:

- Get a finer definition of invariance in security (work at the image level and no more at the data-set level),
- Propose a new architecture given the definition of invariance,
- Evaluate on unseen dimensions.