FAST PROTECTION OF H.264/AVC BY SELECTIVE ENCRYPTION OF CABAC

Zafar SHAHID, Marc CHAUMONT, William PUECH (zafar.shahid@lirmm.fr) LIRMM, UMR CNRS 5506, Université Montpellier II

IRMM

✓ Problem Statement

- ✓ CABAC
 - ✓ Block diagram
 - ✓ Binarization
- Proposed Approach
 - ✓ Proposed scheme in H.264/AVC
 - Proposed scheme for non-zero coefficients
 - Encryption process
 - Results
 - Visual comparison of encrypted frames at different QPs
 - ✓ Foreman sequence encryption at different QPs
 - \checkmark Nine benchmark video sequences results at same QP.
 - Conclusions

Problem Statement

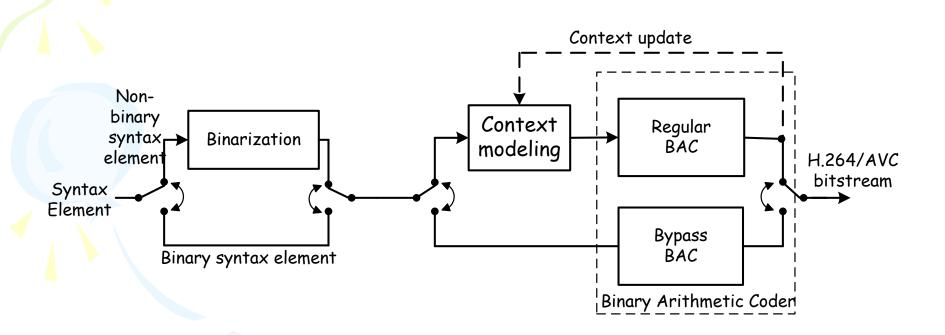
To perform selective encryption (SE) of CABAC for real-time protection of H.264/AVC bitstream.

Constraints:

✓ Same bitrate
✓ No increase in processing power
✓ Browseable bitstream

Our Approach

- 1. SE is performed in Context-based Adaptive Binary Arithmetic Coding (CABAC) module.
- Same bitrate is achieved through scrambling of only equal length binarized code words.
- 3. Encrypted bitstream is completely compliant to H.264/AVC format. (ONLY MB data is encrypted.)


IRWW

✓ Problem Statement

✓ CABAC

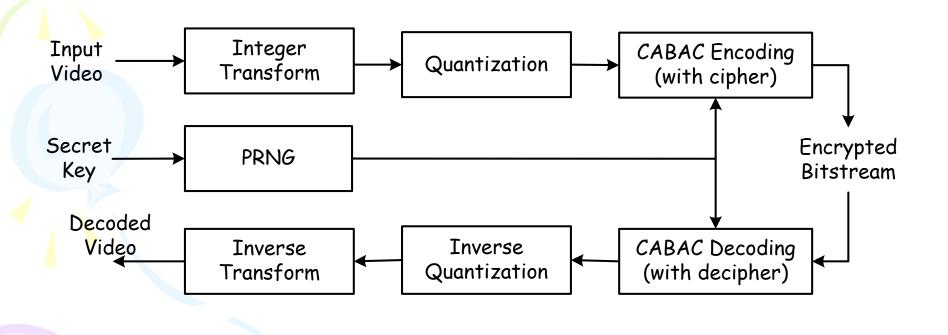
- ✓ Block diagram
- ✓ Binarization
- Proposed Approach
 - ✓ Proposed scheme in H.264/AVC
 - Proposed scheme for non-zero coefficients
 - Encryption process
 - Results
 - Visual comparison of encrypted frames at different QPs
 - ✓ Foreman sequence encryption at different QPs
 - \checkmark Nine benchmark video sequences results at same QP.
 - Conclusions

CABAC

CABAC codes the input data in the following steps: 1. Binarization

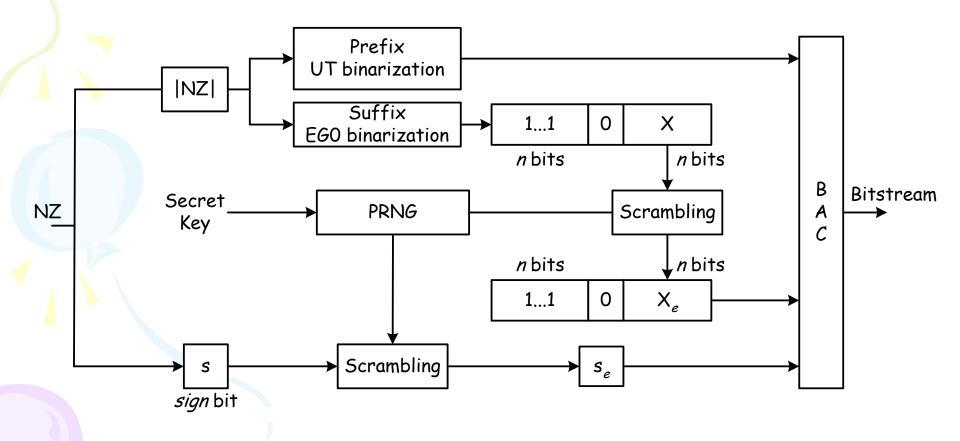
- It is performed in one of the following ways:
- 1. The unary code
- 2. The truncated unary code
- 3. The kth order Exp-Golomb code
- 4. The fixed length code
- 2. Context modeling
- 3. Binary Arithmetic Coding

IRMM


- ✓ Problem Statement
- ✓ CABAC
 - ✓ Block diagram
 - ✓ Binarization

✓ Proposed Approach

- Proposed scheme in H.264/AVC
- Proposed scheme for non-zero coefficients
- Encryption process
- Results
 - Visual comparison of encrypted frames at different QPs
 - ✓ Foreman sequence encryption at different QPs
 - \checkmark Nine benchmark video sequences results at same QP.
- Conclusions



Proposed Algorithms

Proposed Algorithms

Encryption Process

- Exp-Golomb code) codes have the same length.
 - For encryption process:
 - Let X be a suffix part of absolute level of NZ. It is encrypted with the encrypted coefficient Y:

$$y = (x + \gamma) \mod \log 2 (x + 1),$$

✓ Where

$$\checkmark \gamma = rand() \mod \log 2 (x + 1).$$

- For decryption process:
 - For the decryption of NZs in H.264/AVC decoder:

 $\checkmark x = (y + \log 2 (n + 1) - \gamma)) \mod \log 2 (y + 1).$

IRMM

- ✓ Problem Statement
- ✓ CABAC
 - ✓ Block diagram
 - ✓ Binarization
- Proposed Approach
 - ✓ Proposed scheme in H.264/AVC
 - Proposed scheme for non-zero coefficients
 - ✓ Encryption process

Results

- Visual comparison of encrypted frames at different QPs
- ✓ Foreman sequence encryption at different QPs
- \checkmark Nine benchmark video sequences results at same QP.
- Conclusions

Results: Foreman 1st Frame at diff. QPs

#0 - decoded_18.0_FOREMAN


QP = 18

#0 - decoded_30.0_FOREMAN

QP = 30

#0 - decoded_24.0_FOREMAN

QP = 24

#0 - decoded_36.0_FOREMAN

QP = 36

Results – Foreman seq. at diff. QPs

LIRMM

	PSNR (Y) (dB)		PSNR (U) (dB)		PSNR (V) (dB)	
QP	Without	With	Without	With	Without	With
	SE	SE	SE	SE	SE	SE
18	44.43	8.42	45.62	23.87	47.42	22.14
24	39.40	8.38	41.70	24.87	43.86	22.70
30	34.93	8.92	39.38	24.60	40.99	22.71
36	30.80	8.89	37.33	24.65	38.10	22.90

Results – Nine seq. at QP = 18

LIRMM

	PSNR (Y) (dB)		PSNR (U) (dB)		PSNR (V) (dB)			
Seq.	Without	With	Without	With	Without	With		
	SE	SE	SE	SE	SE	SE		
bus	44.26	7.73	45.22	25.19	46.50	26.86		
city	44.28	11.52	45.83	30.50	46.76	31.86		
crew	44.81	9.39	45.81	23.80	45.66	19.90		
football	44.59	11.46	45.70	15.79	45.98	23.10		
foreman	44.43	8.42	45.62	23.87	47.42	22.14		
harbour	44.10	9.48	45.60	23.82	46.63	31.20		
ice	46.56	10.37	48.70	25.42	49.19	19.73		
mobile	44.45	8.42	44.14	13.47	44.04	11.11		
soccer	44.26	10.84	46.59	19.69	47.82	24.83		

IRMM

- ✓ Problem Statement
- ✓ CABAC
 - ✓ Block diagram
 - ✓ Binarization
- Proposed Approach
 - Proposed scheme in H.264/AVC
 - Proposed scheme for non-zero coefficients
 - ✓ Encryption process
 - Results
 - Visual comparison of encrypted frames at different QPs
 - ✓ Foreman sequence encryption at different QPs
 - \checkmark Nine benchmark video sequences results at same QP.

Conclusions

Conclusions

LIRMM

Encouraging results in the following contexts:

- Equally efficient algorithm over whole range of QP values.
- Real-time constraints successfully handled for:
 - Heterogeneous networks (exactly the same birate),
 - ✓ Handheld devices (minimal set of computational requirements),
 - Encrypted bitstream browsing (H.264/AVC compliant bitstream).
- ✓ The work can be extended for:
 - ✓ Protection of ROI,
 - ✓ Medical image transmission,
 - \checkmark Protection of P and B frames in H.264/AVC.