TCQ Practical Evaluation in the Hyper-Cube Watermarking Framework

Marc CHAUMONT and Dalila GOUDIA

marc.chaumont@lirmm.fr, dalila.goudia@lirmm.fr

LIRMM, UMR CNRS 5506, University of Nîmes, University of Montpellier II

The Hyper-Cube Watermarking Framework (≈P-QIM):

- → Quantized based
 - (use of QIM [Chen and Wornell 2001])
- → Robustness to valumetric attack (use of RDM principle [Perez-Gonzalez et al. 2004])
- → Psychovisual masking (use of a modified Watson Model [Watson 1993])

Substitution of QIM module by TCQ module:

New quantization formulas:

$$Q_{0}(\mathbf{x}[i], s, \Delta_{i}) = 2\Delta_{i} \times round\left(\frac{\mathbf{x}[i] - \delta}{2\Delta_{i}}\right) + \delta,$$

$$Q_{1}(\mathbf{x}[i], s, \Delta_{i}) = 2\Delta_{i} \times round\left(\frac{\mathbf{x}[i] - \Delta_{i} - \delta}{2\Delta_{i}}\right) + \Delta_{i} + \delta,$$

$$with \ \delta = \frac{\Delta_{i} \times s}{S}. \tag{1}$$

$$\mathbf{x}[i] \qquad \text{a host scalar value,}$$

$$\Delta_{i} \qquad \text{a quantization step,}$$

$$s \in \mathcal{S} \qquad \text{a state,}$$

$$S = \{0, 1, ..., S - 1\} \qquad \text{the set of states,}$$

$$\delta \qquad \text{a translation term.}$$

Viterbi algorithm is used to find the host closest codeword (best path).

Trellis associated:

Fig. 3. Lattice illustration for a 4 states trellis. Red circles represent codewords obtained using quantizer Q_0 (Equation 1) and red squares represent codewords obtained using quantizer Q_1 (Equation 1).

JPEG quality factor

Jpeg attack

Results and Conclusions:

Evaluation Protocol:

100 images 256×256 from BOWS-2 database. Payload = 1 bit embedded in 64 pixels = 1024 bits.

Four competing algorithms (SSIM = 98%):

- PR-RB-DPTC (= Fast DPTC, Treillis based),
- Turbo-TCQ (Quantized based + Turbo principle),
- Hyper-Cube (≈ P-QIM, Quantized based),
- Multi-Hyper-Cube (Hyper-Cube with TCQ).

Gaussian noise attack Gaussian filtering attack Gaussian filtering attack

Conclusion:

- Slightly better performances (than Hyper-Cube) at low power attacks,
- React equally well to four representatives attacks, (average performance are better than PR-RB-DPTC and Turbo-TCQ).

Perspectives:

scaling factor

Valumetric scaling attack

- Selection of coefficients for the embedding,
- Vectorial QIM,

0.5

- Spreading approaches,
- Better management of coders/decoders,
- Other robust psychovisual metrics.