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ABSTRACT
This article deals with color images steganalysis based on
machine learning. The proposed approach enriches the fea-
tures from the Color Rich Model by adding new features
obtained by applying steerable Gaussian filters and then
computing the co-occurrence of pixel pairs. Adding these
new features to those obtained from Color-Rich Models al-
lows us to increase the detectability of hidden messages in
color images. The Gaussian filters are angled in different
directions to precisely compute the tangent of the gradient
vector. Then, the gradient magnitude and the derivative of
this tangent direction are estimated. This refined method
of estimation enables us to unearth the minor changes that
have occurred in the image when a message is embedded.
The efficiency of the proposed framework is demonstrated
on three stenographic algorithms designed to hide messages
in images: S-UNIWARD, WOW, and Synch-HILL. Each al-
gorithm is tested using different payload sizes. The pro-
posed approach is compared to three color image steganal-
ysis methods based on computation features and Ensemble
Classifier classification: the Spatial Color Rich Model, the
CFA-aware Rich Model and the RGB Geometric Color Rich
Model.
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1. INTRODUCTION
Steganography is the art and science of hiding messages inside a

digital medium in such a way that only the sender and the receiver,
can view the hidden message. The goal of steganalysis is to detect
the presence of hidden messages in digital media. The practical
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performance (i.e. security) of different steganographic techniques
is rated by the detectability (for example the average testing error
of the steganalyser) for a given relative payload size; additionally
the computational complexity could be taken into account [17].

In 2015, color steganalysis has been studied by integrating the
modern adaptive embedding method in an experimental evaluation.
Previous steganalysis methods did not use recent grey-level em-
bedding algorithms [7], [25], [15], [19] or did not use a machine
learning approach with Rich-Model features [11], [24].

Three color image steganalysis methods, based on a machine
learning approach fed with rich model features are now well es-
tablished. For these three methods, the machine learning algorithm
is the Ensemble Classifier [16], and the rich features are: the Spa-
tial Color Rich Model abbreviated to CRM [10], the CFA-aware
Rich Model abbreviated to CFARM [9], and the RGB Geomet-
ric Color Rich Model abbreviated to GCRM (RGB for the Red,
Green and Blue channels) [2]. Note that among these three fea-
tures, the GCRM which is an extension of the CCRM (Correlation
Color Rich Model [1]) seems to be the equivalent or better than the
CRM and CFARM when recent adaptive grey-level embedding al-
gorithms are used for embedding independently in each color chan-
nel. Additionally, note that a recent independent study has shown
that CCRM was the most reliable method in every case, even when
the algorithm was embedding adaptively with a synchronization of
the embedding between the color channels [23].

At the beginning of 2016, GCRM is the natural choice for
computing features that will be used for a color steganalysis (ma-
chine learning approach) for modern color embedding algorithms.

The rest of this paper is organized as follows. Section 2 describes
the latest recent methods in color steganalysis by recalling the CRM
[10], the CFARM [9] and the GCRM [2]. Then, we present a de-
tailed description of our proposed method in Section 3; the steer-
able Gaussian filters computation is demonstrated and the feature
set is presented. Experimental results and comparisons are given in
Section 4. In this section, we also present the databases and show
the performance of the proposed method. Finally, Section 5 gives
some conclusions and perspectives.

2. COLOR STEGANALYSIS METHODS
Over the last ten years, most of the steganalysis methods are

dealing with grayscale images [14], there exist very few steganal-
ysis methods dealing with color images. The most recent methods



in color image steganalysis are explained in detail in the three fol-
lowing subsections.

2.1 Color rich model method
Goljan et al. [10] have introduced very efficient color image fea-

tures, the CRM, which is an extension of the Spatial Rich Model
[6], produced from two different sets of features.

In order to compute these features, firstly they extracted the noise
residual from each color channel separately: the red (R), green (G),
and blue (B) channels. On each channel they applied the same
computation, as a grayscale image I . Let us note I(x, y) a pixel
value of an 8-bit grayscale cover image at coordinates (x, y). Then,
the noise residual is computed using the following formula:

R(x, y) = Î(x, y)(N (x, y))− c · I(x, y), (1)

where: c ∈ N, is the residual order, N (x, y) is a local neigh-
borhood of pixel I(x, y) and Î(x, y)(·) represents a predictor of
c · I(x, y), with I(x, y) 6∈ N (x, y) and I(x, y) ∈ {0, ...., 255}.
All of the submodels R(x, y) ∈ Rn1×n2 are formed from noise
residual images using a size of m ×m, with n1, n2 and m ∈ N∗,
by applying a rounding and a truncation:

R(x, y)← trancT

(
round

(
R(x, y)

q

))
, (2)

where,
• R(x, y) =

{
trancT (u) = u, for u∈ [−T,T ], u ∈ R
trancT (u) = T · sign(u) otherwise.

• q represents the quantization step,

• round is a function for rounding to an integer value.

Moreover, the color noise residuals are computed as in Eq.1 on
the demosaiced image for the CRM features. Secondly, spatial co-
occurrence are computed and the inter-channel co-occurrence ma-
trices, as a feature set.

On the one hand, the Spatial Rich Model (SRMQ1) [6] with a
fixed quantization q = 1 and a truncation T = 2 yields a dimen-
sionality of 12, 753 features. These features are computed from
eachR,G andB color channel separately. On the other hand, from
the same noise residuals (i.e. SRMQ1), a collection of 3D color co-
occurrence matrices are built (CRMQ1), taking three color values
at the same position and computing co-occurrence matrices across
the three channels. With a fixed truncation T = 3 and a quanti-
zation q = 1, CRMQ1 produces 5404 features. Finally, for this
method, the two sets of features are gathered in a one dimensional
vector to produce 18, 157 features as a final set of features.

2.2 CFA-aware features method
Goljan et al. introduced in [9] the CFA-aware Color Rich Model,

noted CFARM, for color image steganalysis. The features are made
up of two parts, the first one is the CRM explained in the previous
Section, with T ∈ {2, 3}. The second part is the CFA-aware fea-
ture, consisting of three combinations: RB/GG split, R/B/GG
split and NII/INI split. Then, in order to capture the inter-channel
and intra-channel dependencies, four 3D co-occurrence matrices
are built to extract features from and between the color channels,
according to the structure of the Bayer CFA. In the CFARM ap-
proach [9], the authors assume that the upper left pixel corresponds
to a non-interpolated pixel from the blue channel of the Bayer CFA.

Four index sets are introduced, corresponding to the geometric
structure of the CFA map:

IB = {(x, y)|x even, y even}, IR = {(x, y)|x odd, y odd},
IG1 = {(x, y)|x odd, y even}, IG2 = {(x, y)|x even, y odd}.

Three combinations of features are generated to form the total
number of features with the CRM set:

1) RB/GG split produces 4146 features,
2) R/B/GG split produces 10,323 features,
3) NII/INI split produces 5514 features.

Finally, all four sets of features are gathered in a one dimensional
vector, which are ready to enter to the classifier.

2.3 RGB channel geometric method
Abdulrahman et al. [2] proposed the RGB Geometric Color Rich

Model (GCRM). The authors show that if one channel has been af-
fected by a steganography method, the inter channel correlation
will measure the local modifications. On this basis, they proposed
two types of features computed between color image channels. The
first types of features reflects local Euclidean transformations through
the computation of the cosine of the angle between channel gradi-
ents called∇R,∇G and∇B (for red, green and blue). For exam-
ple, the cosine of the rotation angle, between the red and the green
channel gradients:

CRG =
∇R · ∇G
|∇R| |∇G| . (3)

The second gives complementary information on the angle through
the computation of the sine of the angle between channel gradi-
ents. Indeed, computing the horizontal and vertical image deriva-
tives of all channels allows us to increase the steganalysis by com-
puting local deformations between channels. For the red and green
channels, let us note these derivativesRx,Gx for the horizontal and
Ry , Gy for the vertical ones. Thus, for the red and green channels,
the sine is given by the following formula:

SRG =
Rx ·Gy −Ry ·Gx
|∇R| |∇G| . (4)

At the end, they obtained 4 geometrical measures: CRG , cosine
between R and G, CRB , cosine between R and B, SRG , sine be-
tween R and G, and SRB between R and B. Those geometrical
measurements allow to generate 6000 features, based on local Eu-
clidean and mirror transformations, when using co-occurrence ma-
trices with a fixed truncation T=1 and different values for the quan-
tization q ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1}. Concatenate these features
with those from CRM [10] increases the detectability of hidden
messages in color images [2], [23].

3. THE PROPOSED METHOD
In order to be less visible, most of the steganographic methods

modify the pixel values in the texture/edge areas [22], [13], [18]. . .
Our proposition is to enrich the CRM method by introducing new
sets of features obtained by applying steerable Gaussian filters and
then computing the co-occurrence of pixel pairs in eight different
directions.

The proposed features are composed of two distinctive sets. The
first set, produced by [10], is made of 18, 157 features. The second
is made of 4406 features. In the first step, we computed a tangent
vector to contour for each pixel and for each channel. This tan-
gent vector corresponds to the edge direction and is orthogonal
to the gradient vector. Then, in the second step, the co-occurrence
matrices are computed, firstly, on the three gradient magnitude im-
ages and afterwards, on the three derivative images related to the
tangent vectors.

3.1 Steerable Gaussian filters
In the domain of image analysis, the estimation of a precise gra-

dient is crucial, and is often based on the computation of local
derivatives.
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(a) A set of steerable Gaussian (b) Features extraction: the image derivatives are extracted (c) θm and η
filters Gσ,θ with (σ=0.7). at orientation (θm + 90◦) [180◦] in each channel separately. directions.

Figure 1: Steerable filters are used to compute a gradient and to estimate precise edges directions.

When using filters with image derivatives in only two directions,
the x and y (i.e 0◦ and 90◦), the gradient estimation is not accurate
enough to describe the geometrical structures in the image. Using
an orientation filter bank can improve the quality of the gradient
estimation; indeed, its orientation and its magnitude are far more
accurate.

Due to multiple orientations, a filter bank allows us to better de-
tect image features such as edges. One of the most popular fil-
ter banks is the steerable filters. As a solution to the above stated
problem, Freeman and Adelson [5] introduced an elegant way for
steerable filters that can be directed at specific angles using a linear
combination of isotropic filters like Gaussian derivatives. Let us
note the basic derivatives of Gaussian filters ∂Gσ/∂x and ∂Gσ/∂y
along the x-axis and y-axis respectively, for example:

∂Gσ(x, y)

∂x
=
−x

2πσ4
· e
−
x2 + y2

2σ2

∂Gσ(x, y)

∂y
=
−y

2πσ4
· e
−
x2 + y2

2σ2 ,

(5)

with σ the standard-deviation of the Gaussian filter.
Freeman and Adelson have shown that the first order directional

Gaussian derivative Gσ,θ at an angle θ can be generated by a lin-
ear combination of a rotation of the basic derivatives of isotropic
Gaussian filters (illustrated in Fig. 1 (a) and (b)):

Gσ,θ(x, y, σ) = cos(θ) · ∂Gσ
∂x

(x, y) + sin(θ) · ∂Gσ
∂y

(x, y). (6)

The image derivative Iσ,θ is obtained by convolving the original
grayscale image I with the oriented Gaussian kernels Gσ,θ:

Iσ,θ(x,y) = (I ∗ Gσ,θ) (x, y). (7)

Finally, the gradient magnitude ‖∇I(x, y)‖ is calculated as the
maximum absolute value response to the oriented operator Gσ,θ:

‖∇I(x, y)‖ = max
θ∈[0,180[

(|Iσ,θ(x, y)|), (8)

θm = arg max
θ∈[0,180[

(|Iσ,θ(x, y)|) . (9)

Note that θm, represents the kernel angle and it differs from the
gradient angle which is equal to (θm + 90◦) [180◦].

In this work, the Gaussian filters are angled in different direc-
tions to compute the more precise gradient magnitude ‖∇I‖ and
its associated kernel angle θm. Thus, ‖∇I‖ corresponds to the ab-
solute value of the image derivative for the kernel angled at θm,
as illustrated in Fig. 1(c). Note that ‖∇I‖ and θm are different
for each pixel of I . These techniques are applied to the three color

channels R, G and B to obtain three gradient magnitude images
‖∇R‖, ‖∇G‖ and ‖∇B‖ (see Fig. 1(b)).

As pointed out previously, the steganographic methods essen-
tially modifies the pixel values in the textures and edge areas. For
the edge areas, the embedding modifications have to be detected
along the "isophote" lines i.e. along the curves of constant inten-
sity when considering an image as a surface. This led us to con-
sider the orthogonal vector to the gradient named the tangent vec-
tor, instead of the gradient; this means that the derivative along the
edge must be computed. This derivative corresponds to the result
of the convolution of the image with the steerable kernel angled at
(θm + 90◦) [180◦] and is orthogonal to the kernel used for the gra-
dient estimation (as illustrated in Fig. 2). The derivative image is
named Iσ,(θm+90)[180◦].

For a color image, each channel is considered separately. The
tangent derivatives1, as illustrated in Fig. 1 (b), are respectively
computed for each pixel at position (x, y) of each channel and
named: Rσ,(θm+90)[180◦](x, y) for the red ,Gσ,(θm+90)[180◦](x, y)
for the green, andBσ,(θm+90)[180◦](x, y) for the blue channel. Fig.
1 (b) shows an example of steerable Gaussian filters used to com-
pute these new features. In our method, the Gaussian filters are

Figure 2: Positions of the steerable filters at the
level of the edges to build the gradient image ‖∇I‖
and image derivative Iσ,(θm+90)[180◦](x, y).

angled in different directions to compute a precise gradient and a
precise derivative along isophote lines. In order to detect the slight
changes in the images, our experiments (see Section 4.2) leads to
a σ = 0.7, with a filter support for the size 3×3 pixels, a rotation
step for the filters bank ∆θ = 10◦, and a rotation range such as
θ ∈ {0◦, ..., 180◦ −∆θ} (it leads to 18 filter orientations as repre-
sented in Fig. 1 (a)).

3.2 Complete feature set
As explained in Fig.1 (b), Eq.8 and detailed above, the co-occurrence

matrices are completed from the three gradient magnitude images

1As these three images are derivatives, pixel values can be
positives or negatives.



and also the three derivative images using their edge directions:{
‖∇R‖, ‖∇G‖, ‖∇B‖,
Rσ,(θm+90)[180◦], Gσ,(θm+90)[180◦], Bσ,(θm+90)[180◦].

Before we make the co-occurrence computation, different trun-
cations are applied. For the gradient magnitude images, the trun-
cation T ∈ {2, 3}, and for the derivative images, T ∈ {1, 2, 3}.
Thus this leads to 2 triplets of quantized-truncated gradient mag-
nitude images, and 3 triplets of quantized-truncated derivative im-
ages. Then, the pairs co-occurrence matrices are computed, like
the Subtractive Pixel Adjacency Model (SPAM) [21], with eight
directions for the scan images. These direction feature subsets are
as follows: F→h , F←h , F ↑v , F ↓v , F↗d , F↙d , F↖md and F↘md. 2808 fea-
tures are created by the gradient magnitude and 1598 by the deriva-
tive images. All features are gathered in to a one dimension vector
to erect a dimensionality of 4406 features. As a final set for the
proposed method, 22, 563 features are obtained, by concatenating
these features with those obtained from CRM [10].

4. EXPERIMENTAL RESULTS
All the experiments were carried out on 10, 000 color images of

size 512×512. All detectors were trained as binary classifiers im-
plemented using the ensemble classifier2 [16] with default settings.

4.1 Setup database
In order to build our image database, the full-resolution raw im-

ages were collected from two subsets which are the most stan-
dard (i.e. 3500 full-resolution Nikon digital camera raw color im-
ages from the Dresden Image Database [8] and 1000 Canon dig-
ital camera raw color images from the Break Our Steganographic
System (BOSSbase13) [3]). Afterwards, the RGB color images
are obtained by using the Patterned Pixel Grouping (PPM) de-
mosaicking algorithm named "dcraw"4. Finally, from each color
RGB image, we randomly extracted five cropped images measur-
ing 512×512. Finally, the cropped images having the higher vari-
ation correspond to those exploited in the used steganography al-
gorithms. As a result, the final number of RGB cropped images is
10, 000. Moreover, in this last process, the cropped images are ex-
tracted carefully so that the CFA map layout always stays the same,
as illustrated in Fig. 3.

Three spatial domain steganography algorithms are used to pro-
duce stego images:
• Spatial UNIversal WAvelet Relative Distortion

(S-UNIWARD5) [13],
• Wavelet Obtained Weights (WOW6) [12],
• Synchronizing Selection Channel (Synch-HILL7) [4].

As explained in [20], the steganography methods have an impor-
tant impact on the performance of the general methodology. These
algorithms are used to embed messages into color images by de-
composing the R, G and B channels like three gray-scale images
2The Ensemble classifier is available at http://dde.
binghamton.edu/download/ensemble.
3BOSSbase can be accessed at http://www.agents.cz/boss/
BOSSFinal.
4dcraw code is available at http://www.cybercom.net/
defin/dcraw.
5The Matlab version of S-UNIWARD is available at http:
//dde.binghamton.edu/download/stego algorithms.
6The Matlab version of WOW is available at http://dde.
binghamton.edu/download/stego algorithms.
7The Matlab version of Synch-HILL is available at http:
//dde.binghamton.edu/download/stego algorithms.
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Figure 3: The preprocessing steps for building our
database depend on the CFA idea.

and embedding the same proportion payload into each channel. Fi-
nally, 10, 000 color images were used to test each of the seven dif-
ferent payload sizes: {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} Bit Per
Channel (BPC).

4.2 Performance of the proposed method
To evaluate the performance of the proposed method, all stegan-

alyzers were implemented as binary classifiers using the ensem-
ble classifier [16]. In this paper, the detection accuracy is mea-
sured by using the average of testing errors under equal priors:
P̄E = minP

FA

1
2

[PFA + PMD (PFA)], where, PFA represents
the false alarm probability and PMD the missed detection proba-
bility. 5000 cover images are randomly chosen from the database
for the training sets and 5000 stego images for the testing sets. The
ensemble classifiers apply a vote to estimate the error of detection.
This process is repeated 10 times to obtain P̄E which quantify the
detectability and are collected for each method and each payload in
order to evaluate the steganalysis method.

As explained in Section 3.1, the experiments were run in such
a way as to find the best filter bank parameters: the scale of the
steerable filters σ (Eq. 6) and the rotation step (∆θ) with angles
evenly drawn from 0◦ to 180◦. These experiments have been led
using S-UNIWARD with a payload size of 0.3 bpc with the use
of the 22, 563 features obtained by concatenating the CRM with
the gradient features. Table 1 shows that σ = 0.7 with ∆θ =
10◦ corresponds to the optimal parameters for the steerable filters
operation in this steganalysis work because, compared to the other
parameters, they bring the best detection rate.

Table 1: The probability of error P̄E to determine
the efficient standard deviation (σ) and angle step
(∆θ) employed for steerable Gaussian filters using S-
UNIWARD steganography method payload 0.3 bpc.

∆θ σ Mask size P̄E Detection rate

10◦ 0.7 3×3 0.1559 ± 0.0022 84.41 %
10◦ 1 5×5 0.1896 ± 0.0031 81.04 %
10◦ 2 10×10 0.2028 ± 0.0037 79.72 %
10◦ 3 15×15 0.2539 ± 0.0036 76.41 %

5◦ 0.7 3×3 0.1768 ± 0.0026 82.32 %
10◦ 0.7 3×3 0.1559 ± 0.0022 84.41 %
15◦ 0.7 3×3 0.1602 ± 0.0026 83.98 %
20◦ 0.7 3×3 0.1653 ± 0.0019 83.47 %
30◦ 0.7 3×3 0.1854 ± 0.0027 81.46 %
45◦ 0.7 3×3 0.1893 ± 0.0012 81.07 %
90◦ 0.7 3×3 0.1996 ± 0.0031 80.04 %



Table 2: Error probability P̄E and the detection rate PD% for four steganography methods.

Steganography Payload Proposed 22,563 Dim CRM 18,157 Dim CFARM 27,460 Dim GCRM 24,157 Dim

Method (bpc) Method P̄E PD% P̄E PD% P̄E PD% P̄E PD%

0.01 0.4664 53.36 0.4841 51.59 0.4863 51.37 0.4680 53.20
0.05 0.3835 61.65 0.4045 59.55 0.4072 59.28 0.3859 61.41
0.1 0.2984 70.16 0.3298 67.02 0.3194 68.06 0.3037 69.63

S-UNIWARD 0.2 0.2164 78.36 0.2498 75.02 0.2317 67.83 0.2191 78.09
0.3 0.1559 84.41 0.1947 80.53 0.1806 81.94 0.1623 83.77
0.4 0.1202 87.98 0.1599 84.01 0.1429 85.71 0.1289 87.11
0.5 0.1117 88.83 0.1386 86.14 0.1239 87.61 0.1124 88.76
0.01 0.4687 53.13 0.4850 51.50 0.4875 51.25 0.4753 52.47
0.05 0.3854 61.46 0.4092 59.08 0.4174 58.26 0.3906 60.94
0.1 0.3091 69.09 0.3397 66.03 0.3275 67.25 0.3161 68.39

WOW 0.2 0.2269 77.31 0.2654 73.46 0.2440 75.60 0.2381 76.19
0.3 0.1685 83.15 0.2081 79.19 0.1895 81.05 0.1793 82.07
0.4 0.1377 86.23 0.1783 82.17 0.1487 85.13 0.1384 86.16
0.5 0.1206 87.94 0.1473 85.27 0.1296 87.04 0.1207 87.93
0.01 0.4651 53.49 0.4893 51.07 0.4843 51.57 0.4687 53.13
0.05 0.3647 63.53 0.3991 60.09 0.4030 59.70 0.3720 62.80
0.1 0.2946 70.54 0.3311 66.89 0.3189 68.11 0.3086 69.14

Synch-HILL 0.2 0.2113 78.87 0.2595 74.05 0.2394 76.06 0.2269 77.31
0.3 0.1536 84.64 0.1997 80.03 0.1753 82.47 0.1607 83.93
0.4 0.1294 87.06 0.1684 83.16 0.1478 85.22 0.1311 86.89
0.5 0.1125 88.75 0.1475 85.25 0.1258 87.42 0.1193 88.07
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Figure 4: Error probability P̄E as a function of the payload for four steganography methods.

The experimental results are given in Table 2. Three algorithms
have been tested: S-UNIWARD, WOW and Synch-HILL with dif-
ferent relative payloads sizes: {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
Furthermore, the proposed method is tested against three other ap-
proaches: CRM [10], CFARM [9] and GCRM [2].

Table 2 demonstrates that the proposed method registered the
highest performance. As an example, detection rates for, at a time,
S-UNIWARD, WOW and Synch-HILL for a payload of 0.5 bpc
are 88.83%, 87.94% and 88.75% respectively using the proposed
approach, to the contrary of the other three compared methods.
The CRM method [10] achieved 86.14%, 85.27% and 85.25% re-
spectively. The CFARM method [9] achieved 87.61%, 87.04%
and 87.42% respectively. Additionally, the GCARM method [2]
achieved 88.76%, 87.93% and 88.07% respectively. This perfor-
mance is due to the Gaussian filters bank, created by the steerable
filters, which allow a more precise estimation of the gradient and
its associated tangent vector.

In order to increase the detectability rate of the GCRM method
[2], another experiment has been performed by concatenating the
GCRM [2] features with the new proposed features in one dimen-

sional vector to produce 28, 563 features. These new dimensional
vectors achieved 85.03% for S-UNIWARD, and 85.07% for Synch-
HILL steganography methods payload 0.3 bpc as a detection rate.
It obtains a difference of 1.26%, 1.14% respectively more than
GCRM [2] alone and this result is close (slightly better) to our pro-
posed approach results (less than 1%).

5. CONCLUSIONS
This article presents new features for color image steganalysis.

Applying a Gaussian filters bank, to an order of 1, in different direc-
tions, enabled us to detect the slight changes in the images which
occurred as a result of embedding the message.

The proposed approach treats the three color channels separately.
Firstly, as steerable filters estimate precisely the edge directions in
images, features correspond to the three image derivatives along the
edges and the three gradient magnitude images. Secondly, features
are extracted from these six images using the co-occurrence matri-
ces of pixel pairs. Finally, our proposed features are integrated with
the CRM features [10] to get the new approach. To evaluate the per-



formance of the new approach, the embedding algorithms used are
S-UNIWARD, WOW, and Synch-HILL at different payloads.

Experimental results show that fusing proposed features with
those obtained by CRM allows in the majority of cases, the de-
tectability of hidden messages in the color images. Additionally,
the new approach achieved higher detection rates than the three re-
cent steganalysis approaches: CRM, CFARM, and GCRM. This
observed detection improvement is due to a fine estimation of the
tangent vector which is used for the estimation of the image deriva-
tives in the edges directions. The proposed features allow the En-
semble Classifier to reveal the hidden message between the stego
and cover images.

Eventually, future works consist of better understanding WOW-
CMD-C or HILL-CMD-C [23] embedding algorithms, which syn-
chronize the color selection channel during the embedding process.
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