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ABSTRACT:

Urban growth is an ongoing trend and one of its direct consequences is the development of buried utility networks. Locating these
networks is becoming a challenging task. While the labeling of large objects in aerial images is extensively studied in Geosciences,
the localization of small objects (smaller than a building) is in counter part less studied and very challenging due to the variance of
object colors, cluttered neighborhood, non-uniform background, shadows and aspect ratios. In this paper, we put forward a method for
the automatic detection and localization of manhole covers in Very High Resolution (VHR) aerial and remotely sensed images using a
Convolutional Neural Network (CNN). Compared to other detection/localization methods for small objects, the proposed approach is
more comprehensive as the entire image is processed without prior segmentation. The first experiments using the Prades-Le-Lez and
Gigean datasets show that our method is indeed effective as more than 49% of the ground truth database is detected with a precision of
75%. New improvement possibilities are being explored such as using information on the shape of the detected objects and increasing
the types of objects to be detected, thus enabling the extraction of more object specific features.

1. INTRODUCTION

Urban areas are undergoing fast and continuous growth leading
to the expansion of underground utility networks. As a result,
network management and monitoring problems may rise, espe-
cially in the case of unplanned city growth (Wang et al., 2014).
In the context of Smart Cities, planners and decision makers re-
quire information about the actual state of the urban infrastructure
(Rajendra and Chandraskaran, 2014). There is thus a strong ex-
pectation from authorities for technical solutions that may lead to
the automation of the modeling and monitoring of urban infras-
tructure.

Wastewater and stormwater networks are a perfect example of the
mislocalisation of buried utilities both in industrialized and devel-
oping countries. Over the past century it was common practice
for each service provider and district to install, operate and repair
its network separately (Rogers et al., 2012). Maps and databases
were often not well archived or centralized and as a result it is dif-
ficult nowadays to obtain accurate information on the localization
and characteristics of the buried pipes and hydraulic equipment.
The manhole covers and inlet grates which are surface elements
and thus indicators of the location of these networks, can be ob-
served on aerial images. Hence, we can rely on the automatic
detection of these objects to provide an estimation of the under-
ground utility networks’ position (Pasquet et al., 2016).

Some works have aimed to automatically detect manhole covers
based on MLS (Mobile Laser Scanning). This has the advantage
of providing a feedback about the current road conditions and
thus avoiding accidents whether it is for intelligent transporta-
tion systems, moving vehicles or pedestrians (Yu et al., 2015).
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But these approaches are extremely expensive, need considerable
post-processing and are restricted to objects located on roads.In
previous works, we have attempted to detect manhole covers us-
ing aerial images and have thus demonstrated the potential of
these low cost and efficient methods (Pasquet et al., 2016, Bar-
toli et al., 2015).

In this paper, we present an automatic recognition and local-
ization method for manhole covers using aerial images and a
Convolutional Neural Network (CNN). A custom version of the
AlexNet CNN (Krizhevsky et al., 2012) is trained on very high
spatial resolution aerial images of Prades-Le-Lez (southern France).
The validation is conducted on the town of Gigean (southern
France) using a sliding window and AlexNet classifier.

This paper is organized as follows. Section 2 is a short literature
review on manhole cover detection. Section 3 describes the pro-
posed method. Section 4 reports and discusses the experimental
results. Finally, Section 5 concludes the paper and presents new
development perspectives.

2. RELATED WORK

Several methods using various types of images have been pub-
lished in the literature to detect manhole covers.

The earliest were applied on digital photographic imagery. Tanaka
and Mouri (Tanaka and Mouri, 2000) presented a detection method
of round-shaped manhole covers based on morphological tech-
niques. First, a black top-hat operation with a disk-shaped struc-
ture element is applied to extract circular shape components. Then,
a masking operation is used to highlight the circular shaped com-
ponents with a threshold. Finally, circular shapes that match the



classical size of manhole covers are extracted. Relying on sep-
arability filters, a robust detection method for circular objects is
given in (Niigaki et al., 2012). Instead of analyzing the intensity
difference between manhole covers and their surroundings, the
separability and uniformity of the image intensity distributions
are calculated using the Bhattacharyya coefficient (Bhattacharya,
1946). Three indicators are defined and used to achieve the de-
tection of the round-shaped manhole covers: circular objects, ori-
ented separability and uniformity indicators.

The cited methods are sensitive to the thresholding level. In addi-
tion, they are prone to errors due to frequent occlusions, changes
in illumination conditions and texture variations. Hence these so-
lutions alone are not efficient in real-world conditions.

To overcome these problems, a multi-view approach combining
two and three dimensional techniques and using surface images
acquired by a moving van, was presented in (Timofte et al., 2014).
The detection process consists in suppressing the highest number
of undesirable objects (cars, shadows, trees, etc) from the rebuilt
image of the road and in detecting the shapes corresponding to
manhole covers using an improved Hough transformation (Cheng
et al., 2006). A similar idea, but using LIDAR technology, was
presented in (Tooke et al., 2011). First, road surface points are
segmented and rasterized into 2D georeferenced intensity images.
Then circular-shaped and rectangular-shaped manhole covers are
detected using a Markov Chain. This approach is also used with
rasterized 2D intensity images in (Guan et al., 2014, Yu et al.,
2015). As mentioned in the introduction, many MLS based meth-
ods have performed well in detecting manhole covers. However,
acquiring such LIDAR data at large scale remains a costly opera-
tion.

Breakthroughs in remote sensing technology have made a large
amount of very high resolution aerial images readily available.
Compared to manned vehicles, aerial surveillance has the advan-
tage of higher mobility, larger cover scope (Lin et al., 2011) and
cost-effectiveness.

Recently a circular geometrical filter based method was proposed
in (Bartoli et al., 2015) to detect round-shaped manhole covers
in very high resolution aerial images. After the segmentation of
the image to retain only the road network, colorimetric indices
are used to eliminate the vegetation and shadows. Finally, a cir-
cular filter is used to locate the manhole covers. In (Pasquet et
al., 2016) a framework is proposed to automatically detect man-
hole covers in high resolution aerial images by combining the
method based on the geometrical filter with a machine-learning
SVM based approach. Results are encouraging, combination of
the circular filter with deep-learning CNN instead of SVM can be
envisaged to obtained better results than only use RBG channels.

3. MATERIALS AND METHODS

Inspired by the previous works, we implemented a new auto-
matic detection system of manhole covers using aerial images and
deep learning. The three-step methodology consists in: i) train-
ing AlexNet (Krizhevsky et al., 2012) on a ground truth dataset
and ii) applying a sliding window on the images for the detection
purpose. In order to improve detection results, step iii) consists
in performing several iterations of boosting.

3.1 Study area and data

Two towns of Southern France have been chosen to develop and
validate the approach: Prades-Le-Lez and Gigean. Very high res-

olution aerial images (5 cm resolution) were acquired in natural
colours (RGB) in July 2014 on Gigean and June 2016 on Prades-
Le-Lez (see Figures 1 and 2).

The Prades-Le-Lez database consists of 6 20000 × 20000 pixel
georeferenced images. The exact position of the 605 manhole
covers of the wastewater network was provided by Montpellier
Métropole, the local operator. The Gigean dataset consists of one
image of 17749× 18361 pixels, and the position of 101 mahnole
covers provided by CCBT, the local operator.

Figure 1. Image of Gigean acquired at 5cm spatial resolution in
July 2014

Figure 2. Image of Prades-le-Lez acquired at 5cm spatial
resolution in June 2016.



To train the convolutional neural network, ”ground truth” thumb-
nails with a size of 40× 40 pixels, are extracted from the Prades-
Le-Lez images. Two categories are considered: ”manhole cov-
ers” and ”other objects” which groups all the thumbnails which
do not contain all or part of a manhole cover. Fig. 3 presents some
thumbnails of the two categories.

Figure 3. Examples of ground truth RGB images: manhole
covers (up) and other objects (bottom).

Different experiments were run using various image sizes ranging
from 15 × 15 pixels to 80 × 80 pixels and the best results were
obtained using a patch size of 40 × 40 pixels. Indeed, Figure 3
shows that a patch size of 40×40 is sufficient to take into account
the necessary context around the manhole covers, as their typical
size in France is 80 cm, i.e 16 pixels.

3.2 The Deep Convolutional Neural Network

Deep learning models have demonstrated high performance when
used in various technical fields, such as computer vision and speech
recognition, because of their capabilities in learning hierarchical
deep features from large amounts of data. Namely, the deep con-
volutional neural network has shown exceptional performance
in computer vision tasks such as classification (Szegedy et al.,
2015). The well-known AlexNet architecture (Krizhevsky et al.,
2012) is used in the present study. More sophisticated networks
like GoogleNet (Szegedy et al., 2015) have been envisaged. Tests
have been carried out with this network, but the results obtained
were not conclusive and very time consuming. As GoogleNet re-
quires 256×256 images, it is necessary to resize all the 40×40
thumbnails of the training database. This reduces database qual-
ity by blurring the images. Thus the results obtained with Google-
Net are not included in this work .

Figure 4 presents the customized AlexNet CNN that we have
used. The process involves two main steps: feature extraction
and classification.

3.2.1 Feature extraction. The deep CNN structure contains
five convolution layers which will extract features from the in-
put thumbnails. The spatial relationship between pixels is con-
served by convolution. The four following AlexNet parameters
(see (Krizhevsky et al., 2012) for more details) have been cus-
tomized to fit with our needs:

• numbers of outputs of the convolution layer (e.g. 96 or 256);

• kernel size (e.g. 7×7, 5×5 or 3×3);

• stride s for the kernel displacement, reduced to 1 or 2 in
order to extract more accurate features;

• padding p = 0, meaning that we do not compensate for the
pixel losses due to the kernel size.

After the convolution, the Rectified Linear Unit function (ReLU)
is used to eliminate the least informative thumbnails and the re-
maining ones are normalized.

Then the max pooling method, which is the most popular one
used in the literature, is applied to output the maximum value
in every subregion of the input data. The best results were ob-
tained for following parameters: subregion size 3×3, stride=1
and padding=0.

3.2.2 Classification. The classification process is carried out
by means of two fully connected layers, stacked at the end of the
feature extraction step:

• ”inner product” that merges all the outputs of the previous
layers.

• ”softmax” that computes the probability distribution over
the two possible outcomes: ”manhole covers” or ”other ob-
jects”.

The network is trained using a classical backpropagation scheme
(not represented in Fig 4) which, at the end of classification step,
modifies the inner weights of the convolution layers to improve
the classification results. Once the network is fully trained, it can
be used for the classification of any input image without further
modification of its parameters.

Input
Thumbnail

40x40

Convolution 1
96 (7x7), s=0, p=1

Convolution 2
256 (5x5), s=1, p=0

Convolution 3
256 (5x5), s=1, p=1

Convolution 4
256 (5x5), s=1, p=1

Convolution 5
256 (3x3), s=3, p=0

Max Pooling
(3x3), s=1, p=0ReLU Norm

Max Pooling
(3x3), s=1, p=0ReLU Norm

Max Pooling
(3x3), s=1, p=0ReLU Norm

Max Pooling
(3x3), s=1, p=0ReLU Norm

Max Pooling
(3x3), s=1, p=0ReLU Norm

Feature Learning

Classifi cation

Fully connected

Softmax

Manhole Other

Figure 4. Customized Alex convolution neural network.



3.3 Sliding-Window Object Detection

We use the classical sliding window procedure to detect the man-
hole covers in the image. The window has the same size as the
thumbnails used in the training of the CNN and is with a step
of one pixel to scan the entire image. Note that a unique slid-
ing window size can be used here as all manhole covers have the
same dimensions and the two images used have the same resolu-
tions. For each pixel position, the classifier gives its probability
that the surrounding thumbnail belongs to each category. Hence,
the problem of object detection is reduced to a set of local clas-
sification decisions, for which we will use an AlexNet customize
classifier (Krizhevsky et al., 2012). In the rest of this article, we
consider as manhole covers only the thumbnails with a likelihood
greater than 90%, all the remaining thumbnails are classified as
”other objects”.

3.4 Boosting database

In order to improve the performance of the CNN, we have tested
boosting, a greedy technique for ensemble learning (Li et al.,
2005). The idea is to train a new network that learns to fix the er-
rors of the previous one. Once a network is trained on the Prades-
Le-Lez dataset, it is applied to the Prades-Le-Lez entire image
and all the false positives i.e. objects incorrectly detected as man-
hole covers are added to the ”other objects” category in a newly
created training database. A new network is then trained with
this dataset. In this paper, we employ boosting in a straightfor-
ward manner, working iteratively with the same network. Several
iterations of boosting have been carried out and have improved
the results, as shown in section 4.

3.5 Training and Test protocol

Deep learning algorithms require very large datasets for the train-
ing phase. To overcome the lack of images (only 605 thumbnails
in the training dataset) and improve performance, a number of
data augmentation techniques can be used to enlarge the size of
the dataset. In this work, we employ the Keras library (Chollet,
2015) to increase the training database size by combining several
data augmentation methods such as rotation, translation, horizon-
tal flip, vertical and horizontal shift. From the combination of all
transformations, we can obtain fifty images for the dataset from a
single ground-truth image. Concerning the ”other objects” cate-
gory, we first choose, ten times more randomly extracted thumb-
nails from the dataset image and make sure that the thumbnails
do not contain manholes. Context of each manhole cover is also
added in this second category. As we do several boosting itera-
tions, all false positives will be added to the ”other objects” cat-
egory. Finally, number of ”manhole covers” thumbnails in the
dataset is 18 405 and the ”other objects” dataset size is 458 915.

3.6 Object Detection evaluation

To evaluate our automatic object detection system, we have fol-
lowed the procedure adopted for the Pascal VOC challenge (Ev-
eringham et al., 2010). A detection is said to be correct if the
overlapping area a0 (Eq. 1) between the predicted bounding box
Bp and the ground truth bounding box Bgt is greater than 50%,
using this formula:

a0 =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
, (1)

where (Bp ∩Bgt) denotes the intersection of the predicted and
ground truth bounding boxes and (Bp ∪Bgt) their union.

Note that, similarly to the procedure adopted for the Pascal VOC
challenge (Everingham et al., 2010), when there is a multiple
detection of the same object in an image with bounding boxes
that have an intersection area greater than 30%, the boxes are
merged with the non maximum suppression technique (Neubeck
and Gool, 2006). If the intersection area is less than 30%, only
one is counted as a correct detection; the others are all counted as
false positives.

Our system is then evaluated through the computation of preci-
sion, recall and F-measure as expressed below:

Precision =
TP

TP + FP
(2)

where TP is the number of correctly classified manhole covers
and FP the thumbnails wrongly classified as manhole covers (hence
TP+FP the total amount of thumbnails classified as manhole cov-
ers).

Recall =
TP

TP + FN
(3)

where FN is the number of manholes which has not been recog-
nized. So TP+FN is the total amount of existing manhole covers.

F−measure =
2(Precision ∗ Recall)

Precision + Recall
(4)

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Results and discussion

Four experimental networks have been applied on the aerial im-
ages: 1) the original AlexNet network with the default parameters
presented in (Krizhevsky et al., 2012), 2) the boosted version of
the network, 3) the boosted version with the cleaned database and
4) the customized version of AlexNet with the cleaned database
i.e. with the parameters presented in Figure 4.

We trained the original AlexNet network on a database which
contains the thumbnails of all the manhole covers identified in
the operator’s database. This network yields a huge number of
detections with 1575 thumbnails classified as manhole covers and
only 49% of real manhole covers detected. Most of the detections
being false positives, the precision is hardly better than 3%.

The second experiment consists in boosting this network, as ex-
plained before, by adding all the false positive detections ob-
tained on Prades-Le-Lez with the original network to the ”other
objects” category, and training it again. Five boosting iterations
have been done. At the fifth iteration, the number of detections
has greatly reduced, with 136 thumbnails classified as ”manhole

Figure 5. Examples of detected manholes covers, false positives
and non detected manhole covers by the customized network.

Green boxes correspond to detected manholes covers, red boxes
to false positives.



Network Precision Recall F-Measure
Original 3.11% 49% 5.84
Boosted 31.62% 43% 36.44

Boosted V2 32.48% 41% 38.93
Customized 68.49% 50% 57.80

Table 1. Precision, recall and F-Measure of the four networks
for a likelihood threshold of 90%.

covers”. The recall also slightly decreased to 43% while precision
reached 31.6%. The analysis of these results shows that several
real manhole covers whose locations were reported in the oper-
ator’s database were hardly visible on the image, as they were
covered by cars, shadows or vegetation.

Consequently, a third test was carried out with a cleaned training
database from which 296 thumbnails corresponding to manhole
covers that were not entirely visible on the image were retrieved.
To avoid the detection of other patterns classically encountered
near manhole covers such as pedestrian crossings or pavements,
we also added the immediate surroundings of the manhole cov-
ers to the ”other objects” category. This yielded better results as
the number of correctly detected manhole covers increased up to
51%. The total number of detected objects increased also as it
reached 162 compared to 136 with the previous network. How-
ever this increase did not deteriorate the precision which reached
32.48% because most of the added objects were true positives,
i.e. manhole covers.

Several tests were performed to customize the network by modi-
fying some parameters. Best results were obtained with the val-
ues given in Figure 4. Having noted a better recall with the
cleaned database, the customized network was trained using only
the cleaned database. The results obtained are significantly bet-
ter than in the previous two cases. Indeed, for a recall of 50%
the precision is of 68.49%. In addition, when using this network
the number of false positives becomes lower than the number of
manhole covers that are detected.

Table 1 presents the precision, recall and F-Measure of all the net-
works for a likelihood threshold of 90%. It can be seen that for
all three criteria, the customized network has the highest scores
while the original AlexNet network has the lowest scores. How-
ever, these results are specific to a given likelihood threshold and
in order to evaluate the network’s efficiency, it is necessary to
analyse its results over a larger range of likelihood values.

Fig. 6 presents all the results obtained with the four tested net-
works according to a variation of the chosen threshold. The orig-
inal AlexNet network, red dots, has the lowest precision of the
tested networks because it has the highest rate of false positives.
The boosted network, green dots, produced better results for a
similar recall. However, its maximum recall score is far lower
than the first network. The precision is further improved with the
boosted network trained using the cleaned database. In this case,
the recall does not fall below 45% for an overall higher preci-
sion that still is lower that 50%. The customized network using
the cleaned database yields the best results with a precision of
75% for a recall of 49%. Although better recall scores have been
reached using the first network (66%), the corresponding preci-
sion is lower due to the large number of false positives. This ren-
ders the first network less interesting than the remaining three. In
the case of the customized network, even if the recall does not ex-
ceed 61%, the precision can exceed 70%. For a given recall, the
customized network produces better precision scores than other

networks. The customized network detects almost 50% of the
manhole covers in the aerial images.
These results are better than those obtained by (Pasquet et al.,
2016), using a machine-learning SVM approach jointly with a
low level approach. In their case, for a precision of 66% the recall
is only of 45% with a simpler database and numerous preprocess-
ing steps, whereas for the same precision value we obtain a recall
of 54% without any additional preprocessing.

An analysis of the false positives, shows that they mostly occur
in heavily textures areas such as as shown in figure 5. To correct
this problem, we are considering combining the CNN to a circu-
lar filter presented in (Bartoli et al., 2015). Instead of training
the network with only the three RGB channels, it will be trained
on four entries with the fourth being the result obtained with the
circular filter. This will add a geometrical ”shape” information
to the RGB reflectance values. There are several ways of com-
bining these inputs such as presented in (Park et al., 2016). A
first method would consist in merging the inputs and training the
network with four channels. It is also possible to chose the ”lo-
cation” where the combination will be carried out i.e. either in
the start, middle or at the end of the network. Merging these data
should constrain the network to recognize circular patterns and
increase the recall by detecting manhole covers which are cur-
rently not detected, maybe because they do not stand out in the
surrounding context i.e. the contrast between the manhole cover
and the asphalt background is not strong enough for the identifi-
cation based solely on RGB information. Adding an information
on the shape would allow all circular objects on the ground to be
included in the network and would add the likelihood score of the
manhole covers which have low contrast.

Figure 6. Precision vs Recall curve.

5. CONCLUSION

In this work, we have put forward a procedure that automati-
cally detects manhole covers using aerial RGB images. We have
trained it on the Prades-le-Lez database and tested it on the Gigean
dataset. Four different network configurations were tested and
compared in terms of recall, precision and F-measure. The pre-
liminary results are encouraging and indicate that the model can
efficiently detect these small objects in very high resolution aerial
images with a recall that is higher than 50% and an average preci-
sion of 60%. To improve its performance, we are currently work-
ing on the combination of an information on the circular shape of
the objects. Adding information on the geometrical shape of the
objects may help in reducing false detection for objects that have
low contrast with their surroundings. This will further improve
precision. In addition, using simple preprocessing techniques
to restrict our detection to specific regions of the aerial images



where these objects are usually found, such as roads and pave-
ments, may enhance the detection rate by eliminating false posi-
tives. It is also interesting to note that these results were obtained
using only two classes of objects while it is common practice
in image processing to use several classes (Huynh et al., 2016),
mainly to help the network extract more class-specific features
and improve its detection rate. Training the network to recognize
a third class such as inlet grates, which are urban objects that have
similar size and are also located along roads and pavements, may
allow the network to optimize the learning phase and extract more
precise features. This is the work we are currently undertaking.
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