A CNN adapted to time series for the classification of Supernovae

Anthony BRUNEL^{1,2}, Johanna PASQUET³, Jérôme PASQUET^{1,2} Nancy RODRIGUEZ^{1,2}, Frédéric COMBY^{1,2}, Dominique FOUCHEZ³, <u>Marc CHAUMONT^{1,4}</u> LIRMM¹, Univ Montpellier², CPPM³, Univ Nîmes⁴

Color Imaging XXIV: Displaying, Processing, Hardcopy, and Applications,

IS&T Int. Symp. on Electronic Imaging, SF, California, USA, 13 - 19 Jan. 2019.

Outline

1 Domain presentation

2 The data

3 The CNN network

4 Results

5 Conclusion

Introduction

The cosmology

Science that studies the structure, origin and evolution of the universe

The challenge

Analyze / Detect huge amounts of data

Figure: Sky image simulation as LSST will see.

The Supernovæ

Set of phenomena resulting from the explosion of a star (various types: Ia, Ib, Ic, II ...)

Marc CHAUMONT

Supernova

Supernova Ia: The standard candle

• A white dwarf accretes the matter of a companion star, and ends up exploding.

Supernova la video Video credit: ESO; Downloaded from: http://www.eso.org

Always identical explosion (intrinsic brightness)
Luminosity observed on Earth ⇒ deduction of distance

Supernova not la

• Explosion after core collapse

Identification of celestial objects

Identification methods

- Spectroscopic identification
 - Study the spectrum of the object
- Photometric identification
 - Identify the star using different filters

Photometry vs. spectroscopy

- Spectroscopy = accurate, object must be bright, expensive
- Photometry = less accurate but less expensive

 \Rightarrow LSST will provide photometric data

Large Synoptic Survey Telescope (LSST)

LSST

- Operational from 2022
- 10-year observation project
- Will survey the visible sky twice a week
- Will provide 15 Tera of data each night
- More than 10 million supernovae will be discovered

LSST Video Video credit: Guillaume Doyen; Downloaded from:

http://astrospace-page.blogspot.com

Marc CHAUMONT

Light Curves

Light Curves

• Evolution of luminous flux over time

Figure: Example of supernova la simulated

Light Curves

Problems

- Irregular temporal sampling
- Variable duration
- Extremely *sparse* (more than 70% of 0)

Figure: Example of supernovae light curves la and not la

Outline

4 Results

The data

Simulated data

- Simulated data with SNANA software and corresponding to that of the Dark Energy Survey
- Simulations generated to be as realistic as possible

Some numbers

- Curves of light: 5 000
- Supernovæ la: 2 500
- Supernovæ not la: 2 500
- Sparse: More than 70% of zeros

Representation of input data

Figure: Representation of light curves in matrix form

Outline

Domain presentation

2 The data

4 Results

5 Conclusion

CNN Network Architecture

Figure: Convolutional neural network

The CNN is donwloadable there: https://github.com/Anzzy30/SupernovaeClassification

Marc CHAUMONT

Plan

Domain presentation

2 The data

3 The CNN network

5 Conclusion

Base and Hyper-parameters

Learning Base / Test Base

- 4-Fold cross-validation
- 3 750 light curves for the learning
- 1 250 light curves for the test
- Virtual increase by crop from 40% to 80% of light curves. Reduces over-fitting and improves results
- 4500 iterations, dropout of 0.4 on the fully connected, learning rate with exponential decay from 10^{-2} to 5×10^{-4} , Adam optimizer, cross entropy loss, weight intialized with Xavier approach, batch of size 128 ...
- Learning with a NVIDIA GTX 1080

Results

Model	Training set	AUC	Accuracy
CNN	3750	0.984	94.6
SALT2	3750	0.979	92.3
FATS	3750	0.964	90.1
Siamese	3750	0.963	93.0

[Lochner et al. 2016] SALT2: Boosted decision tree (BDT) using SALT2 features (Spectral Adaptive Light curve Template 2)

[Nun et al. 2015] FATS: Boosted decision tree (BDT) using FATS (Feature Analysis for Time Series)

Marc CHAUMONT

Classification of Supernovae

Analysis

- Better than the state-of-the-art ("features + classifier")
- Deep network performance can easily be improved
- Increasing the number of examples (not shown here) improves the results of deep learning
- Results of the RNN slightly lower than the CNN (not shown here)

Improvements

- Virtual increase by noise addition
- Improvement of performance by using Ensemble, transfer learning, multi-class, use of redshift
- Extension: Better manage sparsity
- Extension: Manage the low number of samples
- Extension: Manage the mismatch between celestial objects near and far
- Extension: Manage the cadence mismatch (sparsity)

Second resubmission step: "PELICAN: deeP architecturE for the LIght Curve ANalysis" Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez. Astronomy & Astrophysics 2019

Outline

Domain presentation

2 The data

3 The CNN network

4 Results

Conclusion and perspectives

Objectives

- Binary classification of supernovae la and not la
- Manage locks due to LSST data

Contributions

- Two state-of-the-art networks
- CNN or triplet loss approaches are possible

Perspectives

- Second resubmission step: "PELICAN: deeP architecturE for the Light Curve ANalysis" Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez. Astronomy & Astrophysics 2019
- Kaggle

Kaggle Competition: Astronomical Classification Challenge

- The Large Synoptic Survey Telescope (LSST) is about to revolutionize the field, discovering 10 to 100 times more astronomical sources that vary in the night sky than we've ever known.
- The Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC) asks Kagglers to help prepare to classify the data from this new survey.
- \$25,000 in total prizes
- Timeline:
 - September 28, 2018 Lauch
 - December 10, 2018 Entry deadline and Team Merger deadline
 - December 17, 2018 Final submission deadline.
 - January 15, 2019 LSST Workshop entry deadline.
 - February 15, 2019 LSST Workshop announcement.

https://www.kaggle.com/c/PLAsTiCC-2018