
1

Accepted to Journal of Visual Communication and Image Representation, Elsevier, 2019 - version of september 2020.

Steganography using a 3-player game
Mehdi YEDROUDJ

LIRMM, Univ. Montpellier, CNRS, Montpellier, France, Mehdi.Yedroudj@lirmm.fr

Frédéric COMBY
LIRMM, Univ. Montpellier, CNRS, Montpellier, France, Frederic.Comby@lirmm.fr

Marc CHAUMONT
LIRMM, Univ Montpellier, CNRS, Univ. Nı̂mes, Montpellier, France, Marc.Chaumont@lirmm.fr

Abstract—Image steganography aims to securely embed secret information into cover images. Until now, adaptive embedding
algorithms such as S-UNIWARD or Mi-POD, were among the most secure and most often used methods for image steganography.
With the arrival of deep learning and more specifically, Generative Adversarial Networks (GAN), new steganography techniques have
appeared. Among them is the 3-player game approach, where three networks compete against each other. In this paper, we propose
three different architectures based on the 3-player game. The first architecture is proposed as a rigorous alternative to two recent
publications. The second takes into account stego noise power. Finally, our third architecture enriches the second one with a better
interaction between embedding and extracting networks. Our method achieves better results compared to existing works [1], [2], and
paves the way for future research on this topic.

Index Terms—Steganalysis, deep learning, CNN, GAN

F

1 INTRODUCTION

In his paper, Simmons [3] formalized the reasoning frame-
work for the steganography/steganalysis domain. It is de-
fined as a 3-player game. The steganographs, usually named
Alice and Bob, want to exchange a message without being
suspected by a third-party. They need to create a secret
communication channel in order to converse privately. So,
they use a common medium, for example, an image, and
dissimulate in this image a message. The steganalyst, usu-
ally named Eve, is observing the exchanges between Alice
and Bob. If these exchanges are images, Eve has to check
if they are natural (cover images) or if they hide a message
(stego images).

In the passive scenario, Eve does not modify the images
[3]; Eve’s role is only to make a binary decision, i.e. a two-
class classification. Usually, in laboratory conditions [4], Eve
has to be clairvoyant, meaning that she knows or has a
good estimation of all the public parameters used by Alice
and Bob, but she does not know their private parameters.
These hypotheses about Eve’s knowledge are close to the
Kerckhoffs’ principles [5] used in cryptography and are
interesting when one wants to evaluate or compare the
empirical security of steganographic embedding algorithms.

Modern embedding algorithms are adaptive, meaning
that they take into account the content of the hosting
medium (the cover) in order to better hide the message [6],
[7], [8].

Even if modern embedding approaches are the result
of almost 20 years of research using codes and adaptivity,

from a game theory point of view, these algorithms are
qualified as naive adaptive steganography [9], [10]. Indeed,
when creating an embedding algorithm, the evolution of
Eve’s steganalysis strategy is not taken into account.

It is more interesting to propose an optimal adaptive
steganography [10], also called strategic adaptive steganography.
With such a steganography algorithm, pixels that would not
have been modified by a naive approach have a chance to
be modified. In other words, in a strategic adaptive steganog-
raphy, the pixels’ modification probability is set to ensure
the Nash equilibrium in the cat-and-mouse game between
Alice/Bob and Eve.

Strategic adaptive steganography is a very nice concept,
but trying to formalize it mathematically often requires
simplifying assumptions which are far from modelling the
practical reality. Another way to obtain a Nash equilib-
rium is to “simulate” the game. Alice can play the game
alone (from her side and without interacting with Bob or
Eve) by using three algorithms: the embedding algorithm,
the extracting algorithm, and the steganalysis algorithm,
which are competing against each other. We will name these
algorithms agents; and more precisely, we will name Agent-
Alice the embedding algorithm, Agent-Bob the extracting
algorithm, and Agent-Eve the steganalysis algorithm, thus
making a distinction with the Human users Alice (sender),
Bob (receiver), and Eve (warden). Once, an equilibrium is
achieved, Alice keeps her strategic adaptive embedding algo-
rithm (Agent-Alice), and can send the extracting algorithm



2

(Agent-Bob), or any equivalent information to Bob 1.
In reference to Simmons’ formalization [3] and the com-

puter science point of view (algorithms notion), we decided
to name the approaches relying on the three agents, the
3-player game approaches. The reader should nevertheless
be aware that from a game theory point of view, there are
only two teams that are competing (Alice plus Bob from one
side, and Eve from the other side) in a zero-sum game. We
believe that the “3-player game” naming, better highlights
the difference with the other families relying on adversarial
approaches [11].

In the steganography domain, the pioneering ap-
proaches in order to find a strategic equilibrium date from
2011 and 2012, and were proposed in MOD [12] and in ASO
[13] algorithms. Each of these two embedding-approaches
iterates until a stopping criterion is reached between i) the
embedding cost map update by Alice while requesting an
Oracle (this is equivalent to an adversarial attack against
a discriminant), and ii) the Oracle’s update (update of the
discriminant).

In 2016, the authors of [14] proposed a cryptographic
toy example: an encryption algorithm using three Neural
Networks. The use of Neural Networks facilitates a strate-
gic equilibrium since the problem is expressed as a min-
max problem. Moreover, its optimization could be com-
pleted through the well-known back-propagation optimiza-
tion process. Naturally, this 3-player game concept can be
transposed in the steganography domain using deep learn-
ing.

In December 2017 [1] and September 2018 [2], two differ-
ent teams from the machine learning community proposed,
at NIPS 2017 and during ECCV 2018, to define strategic
embedding, using 3 CNNs, iteratively updated, and playing
the roles of the Agent-Alice, Agent-Bob, and Agent-Eve.
These two papers provide an overview of the 3-player game
concept, but the security notions and their evaluation are not
treated correctly. When Eve is clairvoyant, both approaches
are, in reality, very detectable.

More generally, the 3-player game approach belongs to
one of the four GAN families, used in steganography [11].
These four families are the no-modification/synthesis SWE
[15], the probability map generation ASDL-GAN [16], the
adversarial ADV-EMB [17], and finally, the 3-player game. In
this paper, we only focus on the 3-player game approach.
This approach requires the use of 3 CNNs and is totally
different from the way the other families treat the problem.
Therefore we will not compare our approach to the other
families that are emerging. The philosophy of this paper is
to clarify the 3-player game concept and propose practical
solutions.

In this paper, section 2 focuses on the steganography’s
main concept with the 3-player game. In section 3, we recall
the propositions given in [1] and [2]. In section 4, we present
three architectures in order to resolve previous unsolved
problems. In section 5, we give some experimental results
and their analysis. Finally, we conclude in section 6.

1. This initial transfer from Alice to Bob is equivalent to the key
exchange problem and will not be discussed in this paper.

2 THE 3-PLAYER GAME CONCEPT

Notations: for this document, lowercase letters in bold are
for vectors and matrices, lowercase letters in italic represent
scalars.

“×” is used to separate the dimensions of multi-
dimensional vectors and “·” represents a multiplication.

Let x ∈ {0, ..., 255}w×h be a cover matrix composed
of w×h pixels, and y ∈ {0, ..., 255}w×h be a stego matrix
with a size of w×h pixels generated by Agent-Alice. Let us
further note m a secret binary message vector of m bits that
Agent-Alice wants to send to Agent-Bob, and m’ the binary
message extracted by Agent-Bob, where m’ has the same
length as m. Let k be the shared key between Agent-Alice
and Agent-Bob, where k is a k-sized binary vector. We
note z ∈ {0, ..., 255}w×h an image with an unknown label.
We use the notation l for the image label where l ∈ {0,1},
l=0 if z is a cover, and l =1 if z is a stego.

2.1 General concept
This part of the paper introduces the general concept of the
3-player game and describes the role of each agent. The 3-
player game-based steganographic system illustrated in Fig. 1
is composed of three neural networks. These networks rep-
resent the three agents: Agent-Alice, Agent-Bob, and Agent-
Eve.

The system’s input consists of a cover image x, a secret
message m and a key k. These inputs are first introduced to
Agent-Alice’s network that generates a non-discrete-stego
ỹ∈ Rw×h. Then the discretization module receives ỹ and
generates y a stego image with discrete values. y is then
given to both Agent-Bob and Agent-Eve.

Agent-Bob tries to recover the secret message m from the
stego y using the shared secret key k. Agent-Bob inputs (y,
and k) and goes through a set of layers and mathematical
operations; the extracted message m’ is then generated.

Agent-Eve receives an image z, and returns a probability
score of z’s membership to the cover or stego classes.

2.2 Three agent’s losses
The objective of the steganographic system shown in Fig. 1
and described previously is to learn a model, so Agent-Alice
can generate a stego y by embedding the secret message
m within the cover x, and then secretly communicate it to
Agent-Bob. Given this objective a loss function is given to
each agent:

Agent-Eve’s loss: Let an image z =(zij)w×h whose label
l is unknown to Agent-Eve. Agent-Eve is modelled by a
functionAgent-Eve: z→ [0, 1], which takes the image z and
returns a real score between 0 and 1, such that 0 corresponds
to a cover and 1 corresponds to a stego.

Agent-Eve’s general loss consists in minimizing the dis-
tance between the label l and Agent-Eve’s prediction:

LEve = dist(l−Agent-Eve(z)). (1)

The distance used for Agent-Eve’s loss is usually the
cross-entropy distance; thus the loss of Eq. 1 is given as:

LEve =− l · log(Agent-Eve(z))

− (1 - l) · log(1−Agent-Eve(z)). (2)



3

Agent-Alice

Cover (x)

Message (m)

Key (k)

ỹ Discretisation Agent-Bob

Agent-Eve

stego(y)

Message (m') 

Score∈  [0,1]

Fig. 1: The overall architecture of the 3-player game.

Agent-Bob’s loss: Agent-Bob attempts to reconstruct the
secret message m from the received image y using the key
k. The reconstructed message m’ should be equal to m (m =
m’). To this end, Agent-Bob’s loss consists in minimizing a
distance between m’ and m (usually a L2 distance):

LBob = dist(m,m’). (3)

Agent-Alice’s loss: Agent-Alice’s objectives are multi-
ple. The first is to generate a stego image y that is close
enough to the cover x. The second is to allow Agent-Bob to
reconstruct the secret message m correctly from the stego
image. The third is that Agent-Eve’s accuracy should not
be better than a random guess whether a given image z
is a cover or stego (50-50 chance of making the correct
guess). The loss of Agent-Alice is then the weighted sum of
three terms: Lbob, LEve, and dist(x,y) the distance calculated
between x and y, where all coefficients λA, λB , λE belongs
to [0,1] and sum to one in order to adjust the contribution of
each term to the loss of Agent-Alice:

LAlice = λA · dist(x,y) + λB · LBob − λE · LEve. (4)

Note that pixel values from x and y are all normalized
by a division by 255. So, each of the three terms has similar
value ranges, which is a practical requirement in an opti-
mization process (see Fig. 8).

2.3 Training process

Now that we have presented the general concept of the
3-player game and the loss for each agent, we present the
algorithm used for the training process.

As shown in Algorithm 1 on line 1, the global system is
trained at the maximum for max-iter “loop”. In each loop, the
learning is completed sequentially by first, the team Agent-
Bob and Agent-Alice (line 2) and then, the Agent-Eve (line
8). Note that there is a high number of loops in order to
reach an equilibrium. Also, note that inside each loop there
is also a certain number of back-propagation iterations for
each agent.

Therefore, for the learning of Agent-Bob and Agent-Alice
(lines 2 to 7), there are it1 iterations (line 2). For an iteration,
we load a mini-batch of cover images, secret messages, and
keys (line 3), we forward-propagate all the cover images on
Agent-Bob’s and Agent-Alice’s networks (line 4), and then
we update Agent-Bob and Agent-Alice by minimizing the
LBob and LAlice thanks to the stochastic gradient descent

Algorithm 1: 3-player game training process
Result: stegos, extracted messages
Data: covers-list, messages-list, keys-list

1 while not converge OR loop ≤ max-iter do
// Alice and Bob learning

2 for iter team1 ≤ it1 do
3 get batch (covers list,

messages list,keys list,batch size);
4 forward-propagation (covers, messages,keys);
5 update Agent-Bob (LBob);
6 update Agent-Alice (LAlice);
7 end

// Eve learning
8 for iter team2 ≤ it2 do
9 get batch (covers list, stegos list);

10 forward-propagation (covers, stegos);
11 update Agent-Eve (LEve);
12 end
13 end

(lines 5 and 6). During this learning phase, the weights of
Agent-Eve are fixed.

The learning of Agent-Eve (lines 8 to 12) is similar to
the learning of Agent-Bob and Agent-Alice. There are it2
iterations (line 8). For an iteration, we load a mini-batch of
cover images and stego images (line 9), we forward-propagate
all the cover and stego images on Agent-Eve’s network (line
10), and then we update Agent-Eve by minimizing the LEve

thanks to the stochastic gradient descent (lines 11).
When the equilibrium is reached, the last agent playing

the game will not change its strategy. So, the fact to be the
last player, i.e. the last learning agent, will not impact the
performances of the other agents.

3 RELATED WORK

In this section, we recall the architectures of GSIVAT [1]
and HiDDen [2]. These two architectures were basically
proposed for steganography purposes. They belong to the
3-player game family.

3.1 Generating Steganographic Images Via Adversarial
Training (GSIVAT)
In [1], the authors propose a steganographic system (GSI-
VAT) composed of three neural networks, each one repre-



4

2x2xw.8

m bits

Cover (x) 
Cover 1d 

m bits 

Concat

w.8.4.4 4x4xw.8 8x8xw.4 16x16xw.2 32x32xw 32x32xc

w=32

h=w

w.h.c+m 
4x4xw.48x8xw.216x16xw

4x4xw.48x8xw.216x16xw 2x2xw.8

{Cover
Stego

Batch_Norm

Deconvolution
Stride= 2

Convolution
Stride= 2

Fully
connected

Relu-Act

leaky
Relu-Act

Sigmoid
-Act

Tanh-Act

Agent-Alice Agent-Bob

Agent-Eve

Concatenation

Extracted
message
Secret message

w.h.c

message (m) 
Stego (ỹ) 

message (m') 

Fig. 2: GSIVAT [1] architecture.

senting one agent (Agent-Alice, Agent-Bob, Agent-Eve). We
provide an overview of the GSIVAT architecture in Fig. 2.

Their system’s input are a cover image x, a 3D vector,
whose size is w×h×c (where c is the channel number) and a
secret message m of m bits. x is flattened to a 1D vector and
concatenated with m, the resulting vector size is w·h·c+m.
This vector is then fed to Agent-Alice.

Agent-Alice is composed of one fully connected layer
(FC) and four deConv-BN-Act blocks (see Fig. 2). Each block
is the combination of a deconvolution (deConv), a batch
normalization (BN) and one activation function (Act) layer
(ReLU, leaky-ReLU, sigmoid, tanh).

The number of neurons in the fully connected (FC) layer
is the multiplication result of w·8·4·4. The output of the
FC is reshaped to w·8 of 4×4 sized feature-maps. Then,
these feature-maps feed four deConv-BN-Act blocks. After
each block, the size of the feature-maps is up-sampled by
a factor of two, and the channel number is reduced by a
factor of two. In the end, an image of the same size as x is
obtained.

Agent-Alice outputs the stego image ỹ∈ Rw×h which is
fed to both Agent-Bob and Agent-Eve. The distance between
x and ỹ (dist(x,y) in Eq. 4) is the L2 distance.

Agent-Bob’s architecture is depicted in Fig. 2. It consists
of four Conv-BN-Act blocks and one FC layer. Each block
is made up of a fractionally-strided (stride=2) convolution
layer (Conv), a batch normalization layer and an activation
function “Leaky ReLU” [18]. The FC layer is made up of m
neurons followed by a tanh activation function.

Agent-Bob outputs the extracted message m’. The L2
distance is used to compute the loss previously given in
Eq. 3.

Agent-Eve takes as input image z, and outputs a score
determining the label of the input (cover/stego). The ar-
chitectures of Agent-Eve and Agent-Bob are similar, except
for the fully connected layer having only two neurons, and
the activation function replaced by a sigmoid. The sigmoid
cross-entropy loss is used for Eve’s loss (see Eq. 2).

3.2 HiDDeN: Hiding Data With Deep Networks

In [2], the authors propose a model for image steganogra-
phy, but also for watermarking (called HiDDen). We will
only discuss the architecture of their steganographic system.

Their system takes as input a w×h×c-sized cover im-
age x and a m-length secret message m. The system is
composed of three neural networks as illustrated in Fig. 3.
The network’s structure is generally composed of blocks
called Conv-BN-ReLU which stands for the combination of
Convolution, Batch Normalization and a ReLU activation
function.

Agent-Alice is composed of five Conv-BN-ReLU blocks
and one convolution layer with a kernel size of 1×1. Firstly,
the cover image x goes through four Conv-BN-ReLU blocks
to obtain an intermediate representation image x̃. Firstly,
the message m is replicated so that the resulting size is
w×h×m. Secondly, x̃ is concatenated with the replicated
message and fed to another Conv-BN-ReLU block with 64
output filters. A final convolution layer with a 1×1 kernel
is used to generate the stego image ỹ∈ Rw×h. The loss of
Agent-Alice is calculated using the loss of Eq. 4.

Agent-Bob is composed of seven Conv-BN-ReLU blocks,
followed by global spatial average pooling (to produce a
vector with the same size as the message). Then, a single
fully connected layer ends the architecture, as shown in
Fig. 3. Agent-Bob receives the stego image ỹ, and produces
the predicted message m’. The distance used in Agent-Bob’s
loss of Eq. 3 is the l2 distance.

Agent-Eve takes an image as input, and outputs a score
indicating whether the given image is a cover or stego.
Agent-Eve has an architecture similar to Agent-Bob, but
only has three Conv-BN-ReLU blocks instead of seven. The
last layer is a FC layer with an output size of two units (see
Fig. 3). The authors adopt the use of the cross-entropy loss
presented in Eq. 2 for Agent-Eve.



5

Cover (x) 

wxhxc  wxhx64

wxhx64+m

wxhxm

wxhx64
concat

wxhx64

wxhxc 

Stego ỹ

m bits

Stego

Cover

Agent-Alice

Agent-Eve
64x1

Convolution
kernel-size= 1

Fully
connected

Concatenation

Extracted
message
Secret message

Conv-BN-ReLU
kernel_size= 3
filters= 64

Conv-BN-ReLU
kernel_size= 1
filters=n

Global average
Pooling

Spatial
replication

wxhx64 wxhxm

Agent-Bob

nx1

m bits
Message (m) 

Message (m') 

Fig. 3: HiDDeN architecture.

3.3 Discussion
The two papers presented previously [1] [2] offer some
interesting ideas, but there are flaws in both.

Firstly, neither of the two approaches use a shared secret
key during the embedding/extracting process. The authors
of [1] and [2] suppose that the information about model
weights, architecture, and the set of images used for training
is shared between Agent-Alice and Agent-Bob. According
to the authors, this shared information can be considered
as the secret key. Besides the fact that such a hypothesis is
heavy in size (almost 70 Mb sent to Agent-Bob [1]), it is
also the equivalent of performing an embedding process
with the same secret-key. Such an embedding process is
highly discouraged in steganography as it leads to very easy
detectability [19].

Secondly, there is no discretization module for the gen-
erated images (Agent-Alice provides ỹ instead of y). In
a real-world situation [4], Bob receives an image whose
values are defined in {1,..., 255}, and has to extract the
secret message. In [1] and [2], Agent-Alice generates real-
valued images i.e. not discrete-value images, and these
images are fed to Agent-Bob. This makes both Agent-Alice
and Agent-Bob useless in practice. Alice needs to provide
Bob with images that are not suspicious, meaning images
with discrete values. Indeed, images have to be formatted in
PGM, or any lossless compressed image format. Note that
if Alice decides to round the real-value images (generated
by Agent-Alice) in order to discretize them in {1,..., 255},
Bob, when using Agent-Bob algorithm, will not extract the
message correctly, since Agent-Bob has been built for real-
value images2.

Thirdly, the computation load is a serious issue that
we need to take into account when working with deep
learning. GSIVAT authors [1] worked on 32×32-sized im-
ages while Hidden authors [2] used 16×16-sized patches.
This limitation for the size of the images is due to the use
of the FC layers, which introduce expensive memory and
computation costs. The authors suggest that working on
large images could be completed by treating bigger images
with a separate treatment for each part of the image. This is
a bad idea since statistical traces may be found at the block

2. We observed this phenomenon during our experiments.

boundaries and would lead to an easily detectable embed-
ding scheme (See for example, the discussion in section 4.2
of [20], or the dependencies preservation between blocks in
JPEG steganography [21]).

Finally, note that in both of these papers, the experimen-
tal steganalysis is performed with the algorithm ATS [22]
proposed in 2015. This algorithm is basically designed to
handle the cover-source mismatch problem, which is defi-
nitely not the appropriate scenario to evaluate the empirical
security of an embedding algorithm (especially when it is
a strategic embedding algorithm). Indeed, ATS is based on
the assumption of constant noise direction in the embed-
ding space, which may not be true for a strategic adaptive
algorithms. The empirical security is probably underval-
ued when compared to an Ensemble Classifier/Rich Model
(EC+RM) [23], [24], Yedroudj- Net [25], ReST-Net [26], or
SRNet [27]. In addition, these four steganalysis algorithms
represent the current state-of-the-art in steganalysis, so their
use makes more sense.

4 OUR STEGANOGRAPHIC SYSTEM’S ARCHITEC-
TURE

In this paper, we propose a new strategic adaptive steganog-
raphy system based on the 3-player game concept. We are
using an embedding algorithm (Agent-Alice) and an extract-
ing algorithm (Agent-Bob) which functions in practice. We
therefore:

1) Integrate a stego-key for the input of Agent-Alice
and Agent-Bob. With two different stego-keys,
Agent-Alice will generate two different stego im-
ages. Alice knows that she must change the stego-
key very often if she doesn’t want to be caught [19].
By extension, knowing that it is easier to break a
system that always uses the same key, it is important
to integrate a stego key in the input of Agent-
Alice and Agent-Bob, in order to avoid the counter-
productivity that a unique key could have on the
convergence of Agent-Alice and Agent-Bob facing
Agent-Eve. This argument is not considered at all
in [1] and [2] and can be a major flaw in their
performances.



6

2) Handle the problem of discretization in order for
Alice to be able to send to Bob, through e-mail,
memory stick, cloud storage, an image in a non-
suspicious standard format. ([1] and [2] do not deal
with this fundamental issue).

3) Guarantee a scalable (in memory and in computa-
tion) solution thanks to an architecture that consists
of only convolutions. This way, it can deal with
image dimensions usually used in deep-learning
and steganalysis by deep-learning in academic ex-
periments (255× 255 or 512× 512) [11]. The convo-
lutional architectures also allow deeper networks to
deal with harder problems modelization. GSIVAT
[1] works with 32 × 32 images and HiDDeN [2]
works with 16 × 16 images and they both use very
small networks.

Additionally, our approach offers two interesting prop-
erties. Firstly, it is “bit-rate adaptive”. Indeed, there is no
need to re-train the system each time we change the bit rate,
i.e. each time the message size is different (this is not the
case for [1] and [2]). Secondly, we adopt a strong steganalyst
for Agent-Eve, which benefits from better security, but it is
not the most up-to-date steganalysis.

We propose three different architectures for our stegano-
graphic system. These architectures illustrate three different
solutions going from a basic one, to a more appropriate
solution. On these three architectures, Agent-Eve’s remains
the same, while the design of Agent-Alice and Agent-Bob’s
changes. The first architecture is presented to illustrate the
use of a secret shared key during embedding. The second
architecture has been conceived to reduce the power of
noise introduced by embedding the hidden message into
the cover image. Finally, the third architecture tries to im-
prove the performances of message extraction while linking
Agent-Alice and Agent-Bob’s behaviour.

4.1 The training process

Looking at the three proposed architecture, the training
procedure of the system remains the same. We alternate
the training between the three agents, Agent-Alice, Agent-
Bob and Agent-Eve, where Agent-Alice and Agent-Bob are
trained jointly as a single network, and Agent-Eve is trained
separately.

First, Agent-Bob and Agent-Alice are trained on a fixed
number of mini-batches using the two models of Agent-
Alice and Agent-Bob saved previously. See Algorithm. 1.
This training process is repeated for several loops, until all
losses tend to be constant.

4.2 The proposed architecture of the Agent-Eve

Agent-Eve tries to guide both Agent-Alice and Agent-Bob
through the process of learning a strategic adaptive embedding
algorithm. If Agent-Eve is weak, the 3-agent system falls
down. Indeed, Agent-Alice and Agent-Bob will no longer
search for better solutions as Agent-Eve cannot cope with
their evolution. To this end, it is essential to adopt a strong
steganalyzer.

In 2018, the best spatial steganalyst was, Yedroudj-
Net[25][28] (first published in January 2018), ResT-Net[26]

(published in March 2018) and more recently SRNet [27]
(published in September 2018). Among these networks,
Yedroudj-Net is the shallowest network, with six convo-
lution layers compared to 25 layers for SRNet, and 30
layers for ReST-Net (3 sub-networks each containing 10
layers). Besides its affordable size, training Yedroudj-Net
does not require the use of any tricks that could increase the
computational time. This network is therefore well adapted
to Agent-Eve, especially knowing that the 3-player approach
takes a lot of time before it converges to a good solution.
Additionally, Yedroudj-Net can easily be improved in the
future, if required [29].

Yedroudj-Net architecture [25] is presented in Fig. 4.
It is composed of 7 blocks: a pre-processing block, five
convolutional blocks, and a fully connected block made of
three fully connected layers followed by a softmax 3.

Agent-Eve’s network (Yeroudj-Net) is trained by mini-
mizing the loss given in Eq. 2.

4.3 First-Architecture
The first architecture is similar in spirit to the previous
approaches of existing literature except that it contains only
convolutional layers, and integrates a stego-key.

Agent-Alice’s network receives a m-length secret mes-
sage m, a key k of k bits, and a cover x. in order to
concatenate the cover x with the message m, both should
have the same size. So, we use the key k to spread out the
secret message m in a matrix noted as s(m)∈{0, 1}w×h that
is filled with zeros and has the same size as our cover image.
The spreading of m in s(m) is obtained by using a pseudo
random number generator (PRNG) seeded by the key k.
The PRNG sequentially picks a bit of m and fills a non-used
position in the s(m) matrix. The filled positions define the
binary mask Ω∈{0, 1}w×h. Ω therefore contains exactly m
ones.

Note that with the knowledge of k, and the index
of a bit mi in our message m with i∈{1, ...,m}, we
can deduce the position (u, v)∈{0, ..w} × {0, ..h} where
this bit is stored in s(m), and inversely from a position
(u, v)∈{0, ..w} × {0, ..h}, we can deduce the bit mi with
i∈{1, ...,m} of the message m.

The cover image x is fed to a convolution layer called
SRM-F. Its weights are initialized with the 30-basic high-
pass filters of SRM [24], similarly to Yedroudj-Net [25]. The
output is then concatenated with s(m) and fed to conv Stack0
which is composed of a set of convolution layers. The output
is a w × h image which represents the stego image y (see
Fig. 5).
Agent-Bob uses the stego y and the key k to output the pre-
dicted message m’, a vector of m bits. First, the stego image
passes through a convolution layer similar to SRM-F. Next,
the obtained feature-maps from SRM-F go through another
set of convolutions in two conv Stack1, conv Stack2 (Note
that conv Stack2 shares the same construction as conv Stack0,
but not the same number of features-maps for each layer) .
The extracted message m’ is then obtained (see Fig. 5).

The back-propagation is done by minimizing both losses
of Agent-Alice and Agent-Bob. For Agent-Bob’s loss (see

3. For more details on Yedroudj-Net, the reader can view the online
code at www.lirmm.fr/∼chaumont/Yedroudj-Net.html

http://www.lirmm.fr/~chaumont/Yedroudj-Net.html


7

Fig. 4: The overall architecture of Agent-Eve [25].

Eq. 3), the Mean Square Error (MSE) distance between m
and m’ is used. It is written as:

LBob =
(∑m

i=1
(mi−m′i)2

)
/m , (5)

which is equivalent to:

LBob = ((s(m) − s(m
′))� Ω)2/m , (6)

with � the point-wise operation.
Agent-Alice uses the loss presented in Eq. 4 with dist(x,y)

calculated as:

dist(x, y) =

(∑w

i=1

∑h

j=1
(xij−yij)2

)
/w.h , (7)

and so Agent-Alice’s loss is:

LAlice = λA · dist(x, y) + λB · LBob − λE · LEve (8)

where λA, λB , λE ∈ belongs to [0,1] and sum to one in
order to adjust the contribution of each term to the loss.
In this architecture, the magnitude of modifications is not
restricted and therefore the stego noise power is too strong.
To impose stego noise power restriction, we propose a
second architecture.

4.4 Second-Architecture (noise power reduction)
The second architecture improves the first one by imposing
a stronger restriction on the magnitude of modification of
stego noise. We force Agent-Alice to make the least amount
of changes to the cover whilst still allowing Agent-Bob to re-
trieve the secret message correctly. Within this architecture,
see Fig. 6, Agent-Bob’s design remains the same as in the
previous architecture. However, the architecture of Agent-
Alice has changed. Instead of letting the network decide the
intensity of modification for each pixel in the cover image, it
is restricted to a ternary modification; the stego noise values
are {-1, 0, 1}. More precisely, during the first iterations,
values are in the range of [−1, 1] and belong to R. But at
the end of iterations, a discretization is completed in order
to have only three discrete values {-1, 0, 1}.

Said differently, Agent-Alice generates a modification
map n∈{-1, 0, 1}which is then added to the cover image x to
generate the stego y directly (see Fig. 6). The generation of n
is performed thanks to the resulting feature maps of SRM-F,
and the spread message s(m). These are both concatenated
and fed to conv Stack3; the output of the latter is n in

the range of [−1, 1] thanks to a TanH activation function,
and is one of the three discrete values {-1, 0, 1} once the
discretization is activated.

Agent-Bob’s network loss remains the same as in Eq. 5.
For Agent-Alice’s loss, we calculate the mean of the absolute
values of the modification maps n (which is equivalent to
the MSE) for the distance between the cover image x and
the stego y.

dist(x, y) =

(∑w

i=1

∑h

j=1
(|nij |)

)
/w.h , (9)

One can notice that minimizing the loss using this distance,
forces Agent-Alice to output only zeros over the map of
modifications. Agent-Bob is then no longer capable of re-
trieving the secret message. To reduce this constraint, we
introduce a constant β in Agent-Alice’s loss. This β value is
related to the change rate notion. So the loss becomes:

LAlice = λA · (dist(x,y)− β) + λB · LBob − λE · LEve,
(10)

where λA, λB , λE∈[0, 1]. Note that β controls the discretion
of the embedding network, i.e. how many pixels Agent-
Alice is allowed to alter from the cover image x.

4.5 Third-Architecture (source separation)
The architecture shown in Fig. 7 is proposed as an im-
provement to the second architecture. The embedding part
of the second architecture was changed to make as few
adjustments as possible. The extracting part, on the other
hand, remains the same from the first architecture. Never-
theless, constraining the amplitude of modifications directly
impacts the extracting part. When we limit the number
of pixels that can be modified, more errors occur during
message extraction. In other words, altering fewer pixels
means less detectability, but more errors during message-
extraction, while changing more pixels means fewer errors
when retrieving the message, but more detectability. How
can Agent-Bob extract the secret message correctly when
Agent-Alice carries out the minimal required modification?

In embedding algorithms such as S-UNIWARD [6],
WOW [7], etc, the message coding requires, in prac-
tice, the use of a Syndrome-Trellis-Codes STC [30].
The extractor (Bob) has access to the parity-check ma-
trix h∈{0, 1}w×h used by Alice during the embed-
ding process. This matrix h is then shared between



8

100000001
101000000
100001010
110010101
100000111 

1010110

1000101010100010

SRM-F 

SRM-F 

1000101010100010

100000001
101000000
100001010
110010101
100000111 

1010110

Message(m)

Message (m')

Key(k)

Key(k)

Concat

Stego(y)

Stego(y)

Cover(x)

s(m)

s(m')

Agent-Bob

Agent-Alice

conv_Stack0

conv_Stack2conv_Stack1

3*3 3*3

4*4 4*4 4*4

5*5 5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx1

3*3

4*4 4*4

5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx30 wxhx150

4*4

5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

w

h

w

h

wxhx1

3*3 Convolution layer + relu (kernel=3,stride= 1)
4*4 Convolution layer + relu (kernel=4,stride= 1)

Convolution layer + relu (kernel=5,stride= 1)
1*1 Convolution layer (kernel=1,stride= 1)

1*1

5*5 Convolution layer + relu (kernel=5,stride= 1)

wxhx30

4*4

5*5

3*3

4*4

5*5

3*3

Fig. 5: Agent-Alice and Agent-Bob with the first architecture.

Cover

100000001
101000000
100001010
110010101
100000111 

1010110

1000101010100010

SRM-F 

1000101010100010

100000001
101000000
100001010
110010101
100000111 

1010110

Message (m)

Message (m')

Key (k)

Key (k)

10-101010 
1000-1111 
1-10-1001 
10101-110 
110-10101

+

Concat

Stego (y)

Stego (y)

Agent-Alice

Agent-Bob

map (n)
Modification

 conv_Stack3

3*3 3*3

4*4 4*4 4*4

5*5 5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx1w

h

w

h

wxhx30 wxhx150
wxhx1

 conv_Stack2conv_Stack1

3*3 3*3

4*4 4*4

5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3 Convolution layer + relu (kernel=3,stride= 1)
4*4 Convolution layer + relu (kernel=4,stride= 1)

Convolution layer + relu (kernel=5,stride= 1)
1*1 Convolution layer (kernel=1,stride= 1)

1*1

5*5 Convolution layer + relu (kernel=5,stride= 1) TanH activation function

3*3 3*3

4*4 4*4 4*4

5*5 5*5 5*5

3*3

4*4

5*5

1*1

3*3

4*4

5*5

3*3

wxhx30

S(m')

S(m)

SRM-F 

Fig. 6: Agent-Alice and Agent-Bob with the second architecture.

Alice and Bob, so Bob can easily retrieve the mes-
sage from y by calculating the matrix product as:

m= h · lsb(y),
with lsb (.) the function extracting the LSB plane.

In our proposed method, no parity-check matrix is
shared between Agent-Alice and Agent-Bob, nor any related
information. If Agent-Bob has to mimic an STC to perform
the message extraction in the 3-player game, it should learn a
matrix in conjunction with Agent-Alice, in order to retrieve
the message correctly. Without any topological or mathe-
matical construction, this can be difficult, especially when
the system used has many loss terms to minimize (Nash
equilibrium issue).

A solution for this problem could be to inject a cod-
ing/decoding block inside Agent-Alice and Agent-Bob.
Nevertheless, this is not an easy task, and before trying this
solution, we preferred exploring the impact of increasing

the link between the two agents. The integration of a coding
and decoding block is postponed for future work.

We continue in the direction of increasing the link be-
tween Agent-Alice and Agent-Bob by forcing their topology
to be more anti-symmetric. Referring to Fig. 7, we draw two
blue rectangles to show where this anti-symmetry has been
injected. On one of the rectangles, we note g, the point-wise
summation block, and g’, the sources separation block. g and g’
can be seen as inverse functions such that:

g : {−1, 0,+1}w×h × Rw×h → Rw×h

g(n,x) = n + x = y

g′ : Rw×h → {−1, 0,+1}w×h × Rw×h

g′(y) = (n′,x′)

For a given cover, x, and a stego noise, n, g′((g(n,x)) gives
an estimated cover, x’, and a estimated stego noise, n’.



9

Concat conv_
Stack3

10-101010
1000-1111
1-10-1001
10101-110
110-10101

+

-
10-101010
1000-1111
1-10-1001
10101-110
110-10101

U-Net

So
urc

e
se

p

10-101010
1000-1111
1-10-1001
10101-110
110-10101

conv_
Stack1

1000101010100010

100000001
101000000
100001010
110010101

1010110

100000111
Message extracted s(m')

Key

SRM
F

Concat

100000001
101000000
100001010
110010101
100000111

1010110

1000101010100010
Message

Key

SRM
F

Message
X'

n

n'
Message spread s(m)

≈

Modification map n

Stego y

Cover x

Reconstructed cove x'Stego y

f

f'

Source separation

≈

g

g'

Fig. 7: Agent-Alice and Agent-Bob with the third architecture.

During learning, we then minimize the distance between
x and x’ (which is equivalent to minimizing the distance
between n and n’); See Eq. 11.

The sources separation block act as a denoiser. The well-
known U-Net [31] has been used and integrated into Agent-
Bob’s architecture (see Fig. 7). The goal of the U-Net is to
reconstruct the cover image x from the stego y image. The
modification map n is resulting from the subtraction of the
reconstructed cover x’ from the stego image y.

Referring to Fig. 7, on the other rectangle, we note f, the
conv Stack3 block, and f’, the conv Stack1 blocks. f and f’
can be seen as inverse functions from the point view of the
spread message s(m) and the modification map n :

f : Rw×h×30 × {0, 1}w×h → {−1, 0,+1}w×h

fr(s
(m)) = n

f ′ : Rw×h×30 × {−1, 0,+1}w×h → {0, 1}w×h

f ′r′(n
′) = s′(m

′)

with r and r’ the 30 residual images obtained by SRM-F
filtering.

For a given spread message s(m), and residual images
r and r’, f ′r′((fr(s

(m))) gives an estimated spread message
s′(m

′). During the learning, we then minimize the distance
between m and m’ (which isthe equivalent to minimizing
the distance between s(m) and s′(m

′); see Eq. 6); See Eq. 12.
Note that conv Stack1 and conv Stack3 are the same as in the
second architecture.

Therefore Agent-Bob’s loss is composed of two loss
terms:

• the cover reconstruction loss:

Lcover recons = MSE(x’, x) (11)

• the message extraction loss:

Lmessage extract = MSE(m,m’) (12)

Agent-Bob loss is given as:

LBob = 1/2(Lcover recons + Lmessage extract) (13)

5 EXPERIMENTS

5.1 Dataset and software platform

In this paper, the experiments are carried out on two image
sources. The first is the well-known database BOSSBase 1.01
[32] which contains 10,000 8-bit grayscale 512×512 pixels
sized images. This database was created for steganalysis
purposes in 2011. Images from this database offer different
texture characteristics, which explains why it is widely used
in steganalysis. BOWS2 [33] is our second database. It was
created for a watermarking contest and consists of 10,000
8-bit grayscale 512×512 pixels sized images.

Due to our GPU computing platform, time limitation
and nature of 3-player game, which takes much time to train
due to two-phase learning. We conduct all the experiments
on images of 256×256 pixels. To this end, we resampled
all images from the two databases from 512×512 pixels to
256×256 pixels, using the imresize() Matlab function with
default parameters.
We implemented the proposed architectures presented in
section 4 using TensorFlow V 1.6. As for comparison, we use
S-UNIWARD [6], and WOW [7], two well-known content-
adaptive methods for spatial domain embedding. All our
experiments were conducted on the NVIDIA Titan X GPU
platform.



10

5.2 Training, Validation, Test
We start the training phase by preparing a pre-trained
model of Agent-Eve. For this, we use the S-Uniward algo-
rithm to generate 10,000 stegos from the BOSSBase. 10,000
cover/stego pairs are then obtained. We use 4,000 pairs
to train a Yedroudj-Net network. After several epochs of
training, we obtain a learned model of Yedroudj-Net, which
we transfer to Agent-Eve; Agent-Eve does not learn from
scratch.

Once Agent-Eve is pre-trained, we start the learning
phase of the 3-players (Agent-Alice, Agent-Bob and Agent-
Eve). We use BOSSBase as the image source. The messages
are generated using a PRNG 4 with a chosen payload. We
use Adam, an adaptive optimizer, to train our system for
all three networks where the mini-batch size is set to 4. The
values of λA, λB , λE are set to 0.2, 0.4, and 0,4 respectively.
These values are chosen empirically. However, they may not
be optimum.

During training, we set the maximum number of it-
erations max-iter to 1 million iterations. The training is
alternated between Agent-Alice and Agent-Bob from one
side, and Agent-Eve from the other side. We set it1 to 50
iterations, and it2 to 1 iteration (see Algorithm.1, so Agent-
Alice and Agent-Bob are trained for 50 iterations, compared
to 1 iteration for Agent-Eve).

When the losses of the three networks appear to be
stable, we freeze their training, and we integrate the dis-
cretization module into Agent-Alice (see Fig. 1). Then, we
resume the training for several iterations (more or less
50,000 iterations), so the system learns how to generate stego
images with discrete pixel values.

We should note that activating the discretization module
at the beginning of the training phase prevents the system
from converging (as the round function is not differentiable).
So, We let the system converge towards a solution, then we
force it to work on images with discrete pixel values. Once
our system is well trained (loss curves are stable as shown
in Fig. 8), we stop the training phase.

To evaluate the performance of our method, we mea-
sure the security and the transmission errors. The security
is measured with the probability of error (Pe) of a given
steganalyzer, where Pe is computed as the average of the
false alarm rate and the missed detection rate. For the
transmission error, we use the Bit Error Rate (BER)5.

The reader should understand that Agent-Alice is em-
bedding a secret message, noted m, which is a binary vector.
You should consider that this vector m is the resulting
of, first, the encryption of a clear message, with a classical
cryptographic algorithm, and second, its encoding by an
error-correcting code6. Making this assumption is natural,
because it ensures that there are no security leaks in the
secret message, m, and that there is an equiprobability of 0
and 1 in the secret message.

4. PRNG: Pseudo-Random Number Generator. The PRNG generates
a binary vector m whose values 0 and 1 are uniformly distributed.

5. Note that the BER is not useful in a standard steganographic
scenario since no channel error should be considered during the trans-
mission of the stego image. Unfortunately, none of the architecture of
existing literature for the 3-player game are able to embed a message that
could be retrieved without errors

6. In many embedding schemes, the encoding by an error-correcting
code is optional.

So, for the evaluation of the transmission error, we use
the Bit Error Rate (BER) such that BER = dist(m,m′)/m,
with dist(.), the Hamming distance. In this paper, the BER
is thus the ratio between the number of bit errors in the
secret binary message, m’, extracted by Agent-Bob, on the
number of bits from the secret binary message, m, embedded
by Agent-Alice. SO, Agent-Bob is extracting a secret coded-
message, m’, whith a BER which is possibly not null, but the
secret decoded-message will have a null BER, because Alice
sends only stego images to Bob, whose decoded-message is
free from errors. Note that we will not integrate the error-
correcting code block, but we will discuss it. Indeed, this
paper is primarily on the 3-player concept definition and
the proposition of three architectures. The reader should
consider that m’ is an encrypted and coded binary vector.
All of this also implies that the “payload rate” (i.e. the
embedding rate), is equals to m/(w × h), and the “real
payload rate”, is equal to the size of the decoded-message
divided by w × h.

Therefore for the testing phase, Agent-Alice starts gener-
ating 10,000 Stego images from BOWS2, where a random
message is embedded in a cover image using a random
key. The generated images are used to evaluate the accuracy
of Bob’s message retrieval on the one hand and the secu-
rity of our steganographic system against the steganalyzer
Yedroudj-Net on the other. Please note that the steganalysis
with Yedroudj-Net (learning and testing) is achieved on
BOWS2Base, as is the training of the 3-players (Agent-
Alice, Agent-Bob, and Agent-Eve) it is carried out using the
different and disjointed BOSSBase. The results are presented
in the following subsection.

5.3 Results findings and discussion

5.3.1 Extraction and security comparison of the three ar-
chitectures

First architecture:
In Table 1, we report the Bit Error Rate (BER) and the

Probability of error (Pe) obtained using the first architecture.
These tests are carried out on BOWS2 database using differ-
ent payloads 0.2 bpp, 0.4 bpp and 1 bpp. The steganalyzer
used is Yedroudj-Net. Regardless of the payload, Bob, who
uses the Agent-Bob can correctly recover the secret message
with a BER equal to zero. We can observe that this architec-
ture is not at all secure since the detection accuracy obtained
using Yedroudj-Net is between 96% and almost 98%.

The first architecture offers good embedding capacity,
and we can perfectly recover the secret message even
when the payload is significant, although the low security
given by this architecture does not make it interesting for
steganography purposes.

Note that this architecture is the closest form of archi-
tecture to GSIVAT or HiDDeN since the main principle is
to spread the message in the spirit of a spread spectrum
watermarking approach. This first architecture, GSIVAT,
and HiDDeN are definitively insecure approaches since the
stego noise power is too strong. In the second architecture
We investigated a way to constrain pixels modifications to
-1 or +1.



11

Agent-Alice Agent-Bob Agent-Eve

Fig. 8: Generic loss evolution of Agent-Alice, Agent-Bob and Agent-Eve after 300000 iterations.

TABLE 1: First architecture BER and Pe for different pay-
loads.

Payload Bite Error Rate Probability of error
0.2 0 3.7%
0.4 0 3.3%
1 0 2.5%

Second architecture:
In the second architecture, we manage to control the

noise power introduced by Agent-Alice during the em-
bedding process. To do this, we have conducted several
experiments with different values of the change rate β of
the Eq. 10. In Fig. 9, we present the Bit Error Rate (BER) and
the Probability of error (Pe) of the second architecture, when
different β values are used, for a fixed payload of 0.4 bpp.
The used steganalyzer was Yedroudj-Net. We can see that,
for β equal to 0.4, Eve, the steganalyzer (Yedroudj-net) gets
a Probability of error (Pe) close to 6% when Bob makes a
5% Bit Error Rate (BER). When β is set to 0.2, the security
of our system improves with a Pe equal to 9%, although the
message extraction becomes more difficult for Bob with a
12% Bit Error Rate.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

BER Pe

β

Error 

Fig. 9: BER and Pe for the second architecture for a payload
size of 0,4 bpp in function of change rate β.

For a β value equal to or less than 0.05, the generated
images are more secure. Nevertheless, the BER increases
considerably. The BER is 32% and 40%, and the Pe is 15%
and 30% for β equals 0,05 and 0 respectively. These BER
values are very high and would be difficult to correct with a
correcting code without strongly reducing the real payload
size. The best β value is those that in the same time, maxi-
mize the detection error value (Pe), and minimize the size of
the coded message; the message has to be encoded such that

a correct extraction is ensured. Since these considerations are
a little bit of topic, we propose a rapid analysis by choosing
a particular point where there is a sudden variation of BER
(i.e. the inflection point). For this architecture and for a
payload size 0.4 bpp, the value of β corresponding to a
sudden variation of BER is around β = 0.1. At β = 0.1,
the BER=12%. Using the [7,4,3] Hamming Error Correcting
Code (ECC) ensures a correction to most 14% BER, so we
would, on average, correct all the errors. With this ECC the
real payload size is 0.23 bpp, and we measure for this point a
probability of Error of 10.2%. It is clear that this architecture
provides better results compared to the first one, where
for a payload of 0.2 bpp the Pe is 3%. Nevertheless, these
results are still not convincing, and as explained before, the
problem of the second architecture is the weak relationship
between Agent-Alice and Agent-Bob. The third architecture
aims to counter this weakness.

Fig. 10: (Left) The BOSSBase cover image. (Middle) the cor-
responding stego images with 0.4 bpp and β = 0.1 using the
second architecture. (right) the modification maps between
the cover image and the corresponding stego where black=0,
white=+/- 1.

In Fig. 10 we can observe that this architecture can
learn to concentrate the embedding on textured regions,
which are more difficult for a steganalyzer to detect. This
architecture has the capacity to learn and find interesting
zones to implement steganography.

Third architecture:
As previously mentioned, the third architecture has been

proposed to improve the extraction part of the second
architecture. However, this requires more time to converge,
but the up side is that it offers a better message retrieval
accuracy. In Fig. 11, we present the bit error rate (BER) and
the probability of error (Pe) of the third architecture as a
function of β the change rate, for a fixed payload 0.4 bpp.

Compared to the second architecture, the error of Bob
(BER) is smaller regardless of the value of β, even though
the detection accuracy remains almost the same for both
architectures. The BER obtained with the third architecture



12

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

BER Pe

β

Error

Fig. 11: BER and Pe for the third architecture for a payload
size of 0.4 bpp in function of change rate β.

and in comparison with the second architecture is 2% lower
when β = 0.4, 6% lower when we set β = 0.2, and 5% lower
when β = 0.1. By observing these results, we see that Agent-
Alice and Agent-Bob have nevertheless benefited from the
third architecture. More joint learning between Agent-Alice
and Agent-Bob seems to be the right research direction.

Looking at Fig. 11, similarly to the second architecture,
the inflection point is around β = 0.1. At this point, the BER
value is 0.06. The errors can be corrected with a Hamming
code [15,11,3].

In this case the real payload size is (0, 4 · 11)/15 =
0.293bpp ≈ 0.3 bpp. Using this payload we get a Pe of about
11%.

To provide a comparison, we run a steganalysis with
Yedroudj-Net against two steganographic algorithms S-
UNIWARD and WOW at a payload size of 0.3 bpp us-
ing the database BOWS2. The probability of error (Pe) is
27.3% (resp. 22.4%) for S-UNIWARD (resp. WOW). There
is undoubtedly a security gap with the actual embedding
schemes, but again, the objective of the paper is to define
the 3-player game concept, and to analysis, its potential
compared to other modern embedding schemes and ste-
ganalysis scheme. In this, the third architecture shows that
there is a real potential, and this paper paves the way to
many research possibility.

Fig. 12 shows the modifications zone using the third
architecture. We can observe some adaptivity, as the em-
bedding is more dense in textured zones.

Fig. 12: (Left) The BOSSBase cover image. (Middle) The
stego image with payload size 0.4 bpp and β = 0.1 using
the third architecture. (right) the modification maps between
the cover image and the corresponding stego where black=0,
white=+/- 1.

The results show that this architecture can implement
adaptive embedding. It also indicates that the link between

Agent-Alice and Agent-Bob should be reinforced in the
future to reduce the BER and eventually reduce the change
rate and increase the security level. These results should not
deter from the 3-player concept, even if the security level at
the moment is lower compared to the traditional adaptive
embedding algorithms such as S-UNIWARD and WOW.
Indeed, the paper shows real improvements compared to
GSIVAT and HiDDEeN.

5.3.2 Model’s security analysis

To further investigate the security of the proposed model
additional tests have been carried out. We list below the
points we wanted to investigate with these tests, with a brief
description for each of them:

Using a different steganalysis algorithm for the testing
phase: In previous experiments, we used the Yedroudj-
Net (for playing the role of Agent-Eve) in order to train
Agent-Alice and Agent-Bob, but also to evaluate Agent-
Alice’s security level at test time. To this end, and in order
to determine whether the embedding algorithm, Agent-
Alice, has a similar security level against other steganalysts,
we use CovPool-Net [34], which is a recent state-of-the-art
steganalyzer, that was published in July 2019. Thanks to
its deep architecture design, this network achieves a good
level of performance. The results are presented in Table 2.
As one can observe, the error probability obtained with

TABLE 2: Steganalysis error probability obtained with
Yedroudj-Net and CovPool-Net on BOWS2 base. For data
embedding, the second and third architectures are used at
payload 0.4 bpp.

Yedroudj-Net CovPool-Net
Third architecture /
real payload 0.3bpp 10.8 % 11.3 %

Second architecture /
real payload 0.23bpp 10.2 % 10.2 %

Yedroudj-Net and CovPool-Net on BOWS2, whatever the
architecture, are similar. These results show that Agent-Alice
is not specifically tuned to defeat Yedroudj-Net (Agent-
Eve), otherwise, CovPool-Net would achieve a smaller error
probability. Indeed, CovPool-Net is obtaining similar results
compared to SRNet [34], and SRNet is slightly better than
Yedroudj-Net [29]; meaning that CovPool-Net is supposed
to be slightly better than Yedroudj-Net. So, our embedding
algorithm (Agent-Alice), seems sufficiently generic and does
not show security leaks when steganalyzed with a steganal-
ysis algorithm different from Yedroudj-Net.

Using another database to evaluate the security level:
The purpose of this test is to study the influence of the
database on the security level of the embedding algorithm,
Agent-Alice. That is to say, during the test phase, instead of
using a database (BOWS2 base) that is statistically similar to
the one used during the training phase (BOSS base), we used
a database whose statistics are different. For this, we used
the ALASKA-10K base [35]. Please note that this database
is more secure than BOSS and BOWS2 i.e. more difficult to
steganalyze.

Table 3 shows that for an embedding with the same
modification rate, ALASKA-10K is a more secure database



13

TABLE 3: The BER and steganalysis error probability of
Yedroudj-Net on BOWS2 and ALASKA-10K bases, with
an embedding with Agent-Alice obtained using the third
architecture on BOSSBase with a payload 0.4 bpp.

Probability of error Bite Error Rat
BOWS2 10.8 % 6 %
ALASKA-10K 12.1 % 13 %

than BOWS2, which is consistent with previous studies
[35]. Indeed, using this database results in a 1% increase in
Pe compared to BOWS2. However, this database produces
more decoding errors. Indeed, the BER is 13% for Alaska-
10K versus 6% for BOWS2. Thus, the correction ability of a
Hamming code [15,11,3] is no more sufficient. We can, for
example, use a Hamming code [7,4,3]. In thus case, the real
payload is reduced to 0.23 bpp on ALASKA-10K, compared
to 0.3bpp on BOWS2.

Testing different payloads: The objective of this test is to
analyze the efficiency of Agent-Alice, when the embedding
payload size is not the “designed payload size”. Indeed,
Agent-Alice is trained at a given payload, and it is conceptu-
ally designed to be capable of supporting embedding at dif-
ferent payload sizes during its use in the test phase. So, the
objective of this test is to study if Agent-Alice’s embedding
algorithm obtains relatively good results when embedding
at a higher or lower payload size. To do this, we trained
Agent-Alice on a payload of 0.4 bpp, and then, thanks to
the scalability property of our model, we generated stego
images with different payload sizes (0.14 bpp, 1bpp).

TABLE 4: Steganalysis error probability of Yedroudj-Net on
BOWS2 base. For data embedding the third architecture is
used at different payloads.

Payload size (bpp) Real payload size (bpp) Pe
0.14 0.1 11.1%
0.4 0.3 10.8%
1 0.8 NaN

Table 4 illustrates that our method achieves the same
level of security for both payloads (0.14 and 0.4 bpp). How-
ever, when the payload is equal to 1, Agent-Bob is no longer
able to extract the message. This last result suggests that the
quantity of modification is insufficient. So, the change rate β
(Eq. 10) has to be modified, and the learning of Agent-Alice
has to be re-done for a higher payload. When embedding
with a lower payload, the network can successfully embed
and extract the message, but the security level remains the
same as the one obtained for the payload size used during
the training phase. For better security performances, the
change rate β (Eq. 10) should be changed, and at worst,
we should relaunch training with the target payload size.
Another solution, in order to ensure “payload scalability”
could be “transfer learning”, or to run learning with variable
payload sizes. This is postponed to future studies.

Embedding with different secret keys: A major weak-
ness of previous models lies in the use of a single secret key
for data embedding, even though it is highly discouraged to
do so in steganography, as leads to very high detectability
[19]. To avoid such a limitation, we propose a dedicated

solution that integrates the use of a different key for each
data embedding process (stego generation).

To prove that our model handles the secret key in the
way it is intended to, we run the embedding process twice
by using the same image and the same message, but with
two different secret keys.

Fig. 13: (Left) The stego image generated with secret key
1 . (Middle) The stego images generated with secret key 2.
(right) the difference between the two stego images where
black=0, white=+/- 1.

Fig. 13 demonstrates that the model was able to generate
a completely new stego image by only changing the secret
key. This proves that the proposed method makes correct
use of the shared secret key.

6 CONCLUSION AND PERSPECTIVES

In this paper, we first recalled the four different GAN fam-
ilies used in steganography. Then we presented the 3-player
game approach, and defined the general concept and how to
correctly use it for steganography. Three architectures based
on the 3-player game approach have been proposed. The first
architecture fixed the flaws made in GSIVAT and HiDDEeN.
Nevertheless, this first architecture behaves similarly to GSI-
VAT and HiDDEeN and is not adapted for steganography
purposes due to its extreme detectability. With the second
architecture, we suggested a new way to embed a message
in the cover image. Instead of directly modifying the cover
image, which implies a significant noise power signal, we
proposed to generate a modification map with values be-
longing to {-1,0,1}. The stego is then generated by adding
the modification map to the cover. This architecture is much
more secure than the first one, but it generates more errors
during message extraction. Finally, the third architecture
imposes a more joint learning approach between Agent-
Alice and Agent-Bob in order to reduce the errors during
message extraction. This third architecture takes more time
to converge, but achieves better results.

The third architecture, with a real payload size of 0,3
bpp, can perfectly retrieve an embedded message (with
the help of error-correcting code), for a security level Pe
= 10,8%. Visually speaking, see Fig. [10,12] demonstrate
that the proposed model was able to learn how to focus
the embedding on textured regions, which are known to be
more difficult to detect by a steganalyst. Thus, a better level
of security is achieved.

Even if the obtained results do not surpass current state-
of-the-art embedding algorithms, these experimental results
verify the promises of such a method. The major contribu-
tion of this paper is really to propose a formalization of
the 3-player game concept, and an end-to-end method using



14

neural networks that can learn to simulate algorithms using
human-based rules (steganography and steganalysis).

We expect this work to lead to fruitful avenues for
further research. In future work, we can study the possibility
of more synchronizing between Agent-Alice and Agent-
Bob, and therefor improving general performances. We can
also try using a more subtle loss function. This can help
the networks to converge to a better solution. Furthermore,
finding a theoretical way to compute the change rate β can
help to accelerate the learning process. The values of λA,
λB , λE could also be more extensively studied.

ACKNOWLEDGMENTS

The authors would like to thank the University of Montpel-
lier (LIRMM) and the University of Nı̂mes. We extend our
gratitude to the French Direction Générale de l’Armement
(DGA) for its support through the Alaska project ANR
(ANR-18-ASTR-0009). We would also like to thank the Al-
gerian Ministry of Higher Education / Scientific Research,
for its scholarship support.

REFERENCES

[1] J. Hayes and G. Danezis, “Generating Steganographic Images Via
Adversarial Training,” in Proceedings ofAdvances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information
Processing Systems, NIPS’2017, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Dec.
2017, pp. 1951–1960.

[2] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “HiDDeN: Hiding
Data With Deep Networks,” in Proceedings of the 15th European
Conference on Computer Vision, ECCV’2018, ser. Lecture Notes in
Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds., vol. 11219. Springer, Sep. 2018, pp. 682–697.

[3] G. J. Simmons, “The Subliminal Channel and Digital Dignatures,”
in Proceeding of Crypto’83, E. by D. Chaum, Ed. New York, Plenum
Press, Aug. 1983, pp. 51–67.

[4] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler,
J. Fridrich, and T. Pevný, “Moving Steganography and Steganaly-
sis from the Laboratory into the Real World,” in Proceedings of the
1st ACM Workshop on Information Hiding and Multimedia Security,
IH&MMSec’2013. Montpellier, France: ACM, Jun. 2013, pp. 45–
58.

[5] A. Kerckhoffs, “La Cryptographie Militaire,” Journal des Sciences
Militaires, vol. IX, pp. 5-38 Jan. 1883, pp. 161-191, Feb. 1883.

[6] V. Holub, J. Fridrich, and T. Denemark, “Universal Distortion
Function for Steganography in an Arbitrary Domain,” EURASIP
Journal on Information Security, JIS, vol. 2014, no. 1, Jan. 2014.

[7] V. Holub and J. Fridrich, “Designing Steganographic Distortion
Using Directional Filters,” in Proceedings of the IEEE International
Workshop on Information Forensics and Security, WIFS’2012, Tenerife,
Spain, Dec. 2012, pp. 234–239.

[8] V. Sedighi, R. Cogranne, and J. Fridrich, “Content-Adaptive
Steganography by Minimizing Statistical Detectability,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 2, pp.
221–234, Feb 2016.

[9] P. Schöttle and R. Böhme, “A Game-theoretic Approach to
Content-adaptive Steganography,” in Proceedings of the 14th Inter-
national Conference on Information Hiding, ser. IH’12, M. Kirchner
and D. Ghosal, Eds. Springer Berlin Heidelberg, 2012, pp. 125–
141.

[10] ——, “Game Theory and Adaptive Steganography,” IEEE Transac-
tions on Information Forensics and Security, vol. 11, no. 4, pp. 760–
773, April 2016.

[11] M. Chaumont, “Deep Learning in steganography and
steganalysis,” in Digital Media Steganography: Principles, Algorithms,
Advances, M. Hassaballah, Ed. Elsevier, Jul. 2020, ch. 14, pp.
321–349. [Online]. Available: http://arxiv.org/abs/1904.01444

[12] J. Kodovsky, J. Fridrich, and V. Holub, “On Dangers of Overtrain-
ing Steganography to Incomplete Cover Model,” in Proceedings
of the Thirteenth ACM Multimedia Workshop on Multimedia and
Security, ser. MM&MMSec’2011. New York, NY, USA: ACM, 2011,
pp. 69–76.

[13] S. Kouider, M. Chaumont, and W. Puech, “Adaptive Steganog-
raphy by Oracle (ASO),” in Proceedings of the IEEE International
Conference on Multimedia and Expo, ICME’2013, July 2013, pp. 1–6.

[14] M. Abadi and D. G. Andersen, “Learning to Protect
Communications with Adversarial Neural Cryptography,” in
ArXiv; Rejected from the 5th International Conference on Learning
Representations, ICLR’2017., vol. abs/1610.06918, 2016. [Online].
Available: http://arxiv.org/abs/1610.06918

[15] D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li, “A Novel Image
Steganography Method via Deep Convolutional Generative Ad-
versarial Networks,” IEEE Access, vol. 6, pp. 38 303–38 314, 2018.

[16] W. Tang, S. Tan, B. Li, and J. Huang, “Automatic Steganographic
Distortion Learning Using a Generative Adversarial Network,”
IEEE Signal Processing Letters, vol. 24, no. 10, pp. 1547–1551, Oct
2017.

[17] W. Tang, B. Li, S. Tan, M. Barni, and J. Huang, “CNN-based Ad-
versarial Embedding for Image Steganography,” IEEE Transactions
on Information Forensics and Security, pp. 1–1, 2019.

[18] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” in Proceedings of
ICML Workshop on Deep Learning for Audio, Speech and Language
Processing, 2013.

[19] L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont, “Deep Learning is
a Good Steganalysis Tool When Embedding Key is Reused for Dif-
ferent Images, Even if There is a Cover Source-Mismatch,” in Pro-
ceedings of Media Watermarking, Security, and Forensics, MWSF’2016,
Part of I&ST International Symposium on Electronic Imaging, EI’2016,
San Francisco, California, USA, Feb. 2016, pp. 1–11.

[20] J. Fridrich, Steganography in Digital Media. Cambridge University
Press, 2009, cambridge Books Online.

[21] T. Taburet, P. Bas, J. Fridrich, and W. Sawaya, “Computing De-
pendencies between DCT Coefficients for Natural Steganography
in JPEG Domain,” in Proceedings of the 7th ACM Workshop on In-
formation Hiding and Multimedia Security, IH&MMSec’2019. Paris,
France: ACM, Jul. 2019, pp. 57–62.

[22] D. Lerch-Hostalot and D. Megı̀as, “Unsupervised Steganalysis
Based on Artificial Training Sets,” Engineering Applications of Ar-
tificial Intelligence, vol. 50, pp. 45 – 59, 2016.

[23] J. Kodovský, J. Fridrich, and V. Holub, “Ensemble Classifiers for
Steganalysis of Digital Media,” IEEE Transactions on Information
Forensics and Security, TIFS, vol. 7, no. 2, pp. 432–444, 2012.

[24] J. Fridrich and J. Kodovský, “Rich Models for Steganalysis of
Digital Images,” IEEE Transactions on Information Forensics and
Security, TIFS, vol. 7, no. 3, pp. 868–882, June 2012.

[25] M. Yedroudj, F. Comby, and M. Chaumont, “Yedroudj-Net: An
Efficient CNN for Spatial Steganalysis,” in Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP’2018, Calgary, AB, Canada, April 15-20, 2018, 2018, pp.
2092–2096.

[26] B. Li, W. Wei, A. Ferreira, and S. Tan, “ReST-Net: Diverse Activa-
tion Modules and Parallel Subnets-Based CNN for Spatial Image
Steganalysis,” IEEE Signal Processing Letters, vol. 25, no. 5, pp. 650–
654, May 2018.

[27] M. Boroumand, M. Chen, and J. Fridrich, “Deep Residual Network
for Steganalysis of Digital Images,” IEEE Transactions on Informa-
tion Forensics and Security, pp. 1–1, 2018.

[28] M. Yedroudj, M. Chaumont, and F. Comby, “How to Augment a
Small Learning Set for Improving the Performances of a CNN-
based Steganalyzer?” in Proceedings of Media Watermarking, Secu-
rity, and Forensics, MWSF’2018, Part of I&ST International Sympo-
sium on Electronic Imaging, EI’2018, Jan. 2018.

[29] R. Zhang, F. Zhu, J. Liu, and G. Liu, “Depth-Wise Separable Con-
volutions and Multi-Level Pooling for an Efficient Spatial CNN-
based Steganalysis (previously named ”efficient feature learning
and multi-size image steganalysis based on cnn” on ArXiv),” IEEE
Transactions on Information Forensics and Security, TIFS, vol. 15, pp.
1138–1150, 2020.

[30] T. Filler, J. Judas, and J. Fridrich, “Minimizing Embedding Impact
in Steganography Using Trellis-Coded Quantization,” in Proceed-
ings of IS&T/SPIE Annual Symposium on Electronic Imaging, Security,
Steganography, and Watermarking of Multimedia Contents edited by

http://arxiv.org/abs/1904.01444
http://arxiv.org/abs/1610.06918


15

Edward J. Delp III, Ping Wah Wong, SPIE’2010, vol. 7541, Jan. 2010,
pp. 1 – 14.

[31] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in Medical Image
Computing and Computer-Assisted Intervention, MICCAI’2015, ser.
LNCS, vol. 9351. Springer, 2015, pp. 234–241.

[32] P. Bas, T. Filler, and T. Pevný, “’Break Our Steganographic System’:
The Ins and Outs of Organizing BOSS,” in Proceedings of the 13th
International Conference on Information Hiding, IH’2011, ser. Lecture
Notes in Computer Science, vol. 6958. Prague, Czech Republic:
Springer, May 2011, pp. 59–70.

[33] P. Bas and T. Furon, “BOWS-2 Contest (Break Our Watermarking
System),” organised within the activity of the Watermarking Vir-
tual Laboratory (Wavila) of the European Network of Excellence
ECRYPT, 2008, organized between the 17th of July 2007 and the
17th of April 2008. http://bows2.ec-lille.fr/.

[34] X. Deng, B. Chen, W. Luo, and D. Luo, “Fast and Effective Global
Covariance Pooling Network for Image Steganalysis,” in Proceed-
ings of the ACM Workshop on Information Hiding and Multimedia
Security, ser. IH&MMSec’2019, Paris, France, Jul. 2019, pp. 230–
234.

[35] M. Yedroudj, M. Chaumont, F. Comby, A. Oulad-Amara, and
P. Bas, “Pixels-off: Data-augmentation Complemen-tary Solu-
tion for Deep-learning Steganalysis,” in Proceedings of the ACM
Workshop on Information Hiding and Multimedia Security, ser.
IH&MMSec’2020, PNew York, NY, USA, Jul. 2020.


	Introduction
	The 3-player game concept
	General concept
	Three agent's losses
	Training process

	Related work
	Generating Steganographic Images Via Adversarial Training (GSIVAT)
	HiDDeN: Hiding Data With Deep Networks
	Discussion

	Our steganographic system's Architecture
	The training process
	The proposed architecture of the Agent-Eve
	First-Architecture
	Second-Architecture (noise power reduction)
	Third-Architecture (source separation)

	Experiments
	Dataset and software platform
	Training, Validation, Test
	Results findings and discussion 
	Extraction and security comparison of the three architectures
	Model's security analysis


	Conclusion and perspectives
	References

