

AN EFFICIENT MULTI-RESOLUTION SVM NETWORK APPROACH

FOR OBJECT DETECTION IN AERIAL IMAGES

J. Pasquet^{1,2}, M. Chaumont^{2,3}, G. Subsol², M. Derras¹

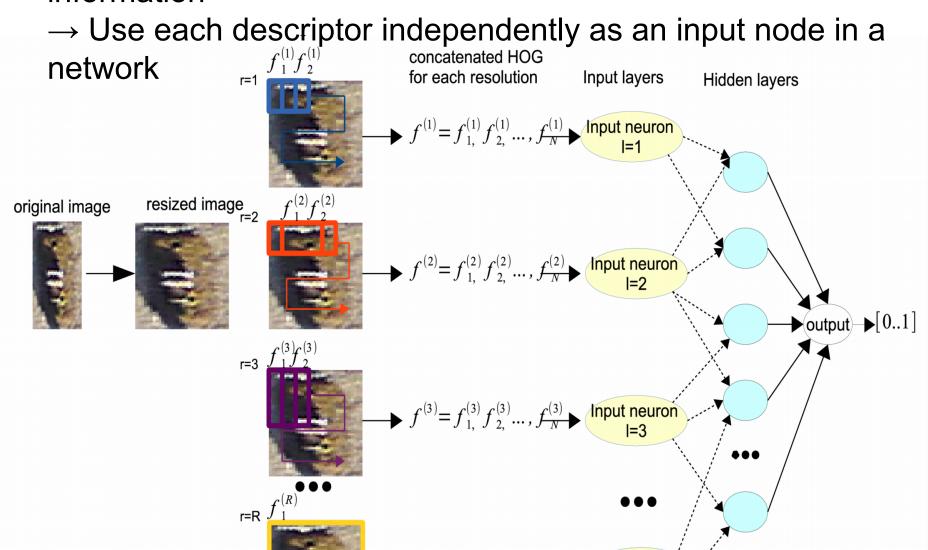
Berger Levrault, Labège, France

²LIRMM, Université de Montpellier / CNRS, France

³Université de Nîmes, France

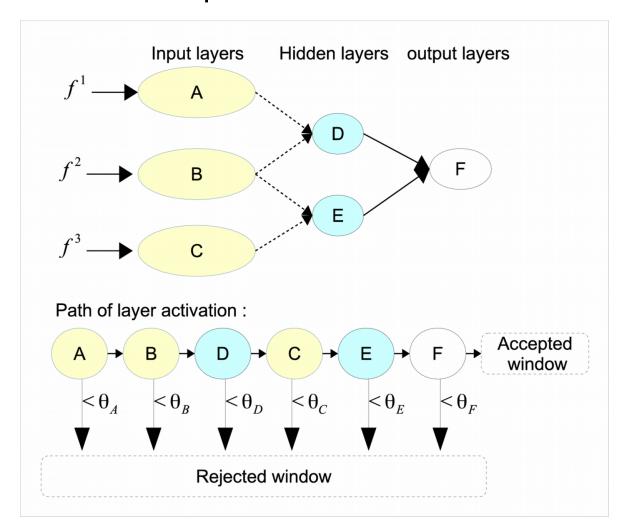
Context

- o Detection of numerous small urban objects in high-definition aerial images: tombs in a cemetery o Image database: 24 aerial image of 5,000 x 5,000 pixels (2.5 cm/pixel)
- o Object: a tomb (around 100x100 pixels, very variable in shape and appearance)



References

- [1] P. Viola and M. Jones, "Rapid object detection using aboosted cascade of simple features," CVPR 2001.
- [2] Qiang Zhu, Qiang Zhu, Shai Avidan, Shai Avidan, Mei chen Yeh, Mei chen Yeh, Kwang ting Cheng, and Kwang ting Cheng, "Fast human detection using a cascade of Histograms of Oriented Gradients," CVPR 2006.
- [3] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit Ogale, Dave Ferguson "Real-Time Pedestrian Detection With Deep Network Cascades", BMVC2015'


Network of Linear SVM

- o Requirement of multi-scale descriptors
- → Use HOG descriptors at different resolutions [2]
- o Concatenating them into a single vector may lose some information

An efficient activation scheme to speed-up processing

- o Expensive compotational cost
- → cascade reject system manner [1, 3]
- → stop exploration asap
- → Activation path

Resultats and evaluation

Approaches	Time (HH:MM)	Average precision
Single SVM	15:54	60.6%
Our SVM network	24:35	75.0%
Activation path	04:58	75.3%

Compare to a single SVM the network of linear SVM increases the precision by 17%.

However without the use of our optimisation (use of an activation path) the computational cost increase of almost 50%.

With the use of our optimisation (use of an activation path) the computational cost is reduced by a **5.5 factor**.

AN EFFICIENT MULTI-RESOLUTION SVM NETWORK APPROACH

FOR OBJECT DETECTION IN AERIAL IMAGES

J. Pasquet^{1,2}, M. Chaumont^{2,3}, G. Subsol², M. Derras¹

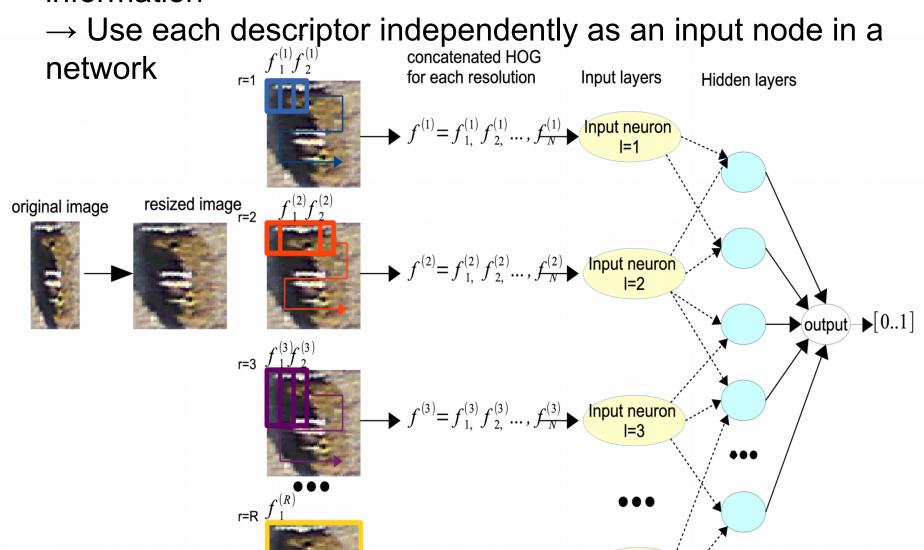
Berger Levrault, Labège, France

²LIRMM, Université de Montpellier / CNRS, France

³Université de Nîmes, France

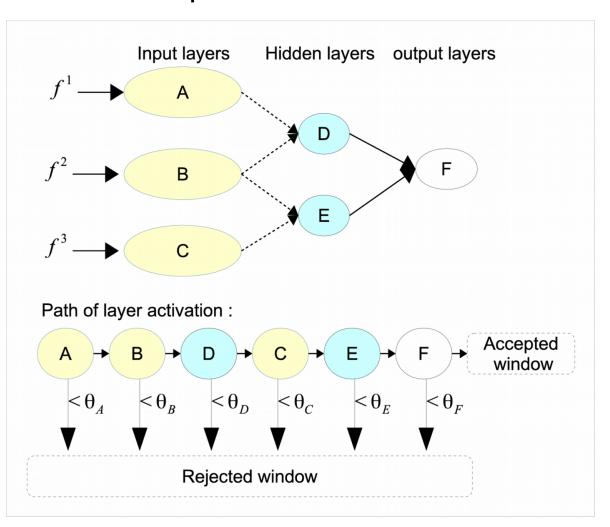
Context

- o Detection of numerous small urban objects in high-definition aerial images: tombs in a cemetery o Image database: 24 aerial image of 5,000 x 5,000 pixels (2.5 cm/pixel)
- o Object: a tomb (around 100x100 pixels, very variable in shape and appearance)

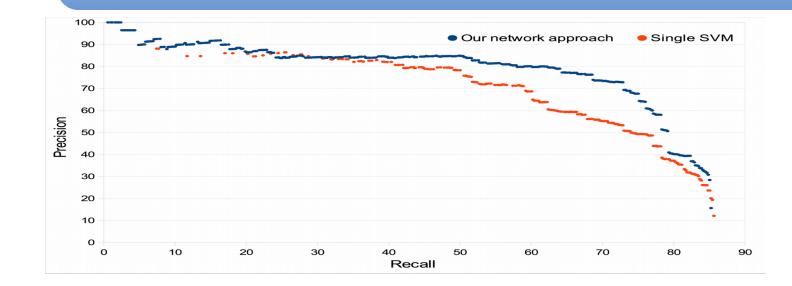


References

- [1] P. Viola and M. Jones, "Rapid object detection using aboosted cascade of simple features," CVPR 2001.
- [2] Qiang Zhu, Qiang Zhu, Shai Avidan, Shai Avidan, Mei chen Yeh, Mei chen Yeh, Kwang ting Cheng, and Kwang ting Cheng, "Fast human detection using a cascade of Histograms of Oriented Gradients," CVPR 2006.
- [3] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit Ogale, Dave Ferguson "Real-Time Pedestrian Detection With Deep Network Cascades", BMVC2015'


Network of Linear SVM

- o Requirement of multi-scale descriptors
- → Use HOG descriptors at different resolutions [2]
 Consetencting them into a single vector may less some
- o Concatenating them into a single vector may lose some information



An efficient activation scheme to speed-up processing

- o Expensive compotational cost
- → cascade reject system manner [1, 3]
- → stop exploration asap
- → Activation path

Resultats and evaluation

Compare to a single SVM the network of linear SVM increases the precision by 17%.

However without the use of our optimisation (use of an activation path) the computational cost increase of almost 50%.

With the use of our optimisation (use of an activation path) the computational cost is reduced by a **5.5 factor**.