Détection de regards de visite sur des images à THRS par une méthode d'apprentissage

COMMANDRE Benjamin, EN-NEJJARY Driss, PIBRE Lionel, CHAUMONT Marc, SUBSOL Gérard, DERUELLE Laurent, DERRAS Mustapha, **DELENNE Carole**, CHAHINIAN Nanée

Univ. Montpellier - HydroSciences Montpellier Equipe INRIA Lemon

Projet Cart'Eaux: chercheur d'avenir 2015

Récolte et fusion de données hétérogènes pour la cartographie et la modélisation des écoulements dans un réseau d'assainissement urbain.

Nanée Chahinian^{1,2}; Marc Chaumont^{3,4} Carole Delenne^{1,5}; Mustapha Derras⁶ Laurent Deruelle⁶; Gérard Subsol^{3,7}

+

Jean-Stephane Bailly (LISAH); Sandra Bringay (LIRMM); Maguelonne Teisseire et Mathieu Roche (TETIS)

Benjamin Commandré

PROJET COFINANCE PAR LE FONDS EUROPEEN DE DEVELOPPEMENT REGIONAL

Projet Cart'Eaux

Objectifs:

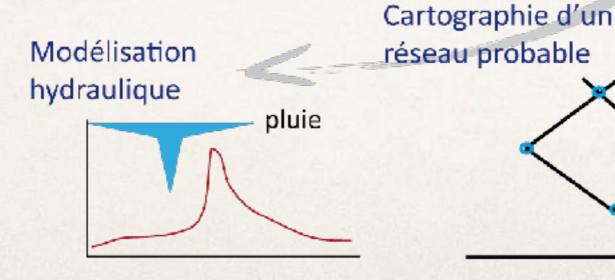
- Détection des plaques d'égout sur les images aériennes
- Fusion avec d'autres données géographiques (plan, réseau routier...)
- Fouille de données pour créer une table attributaire
- Cartographies probables du réseau
- Simulations hydrauliques (avec analyse de sensibilité aux paramètres)

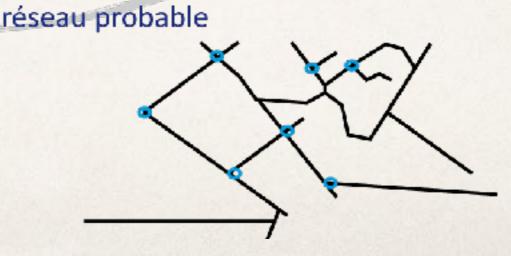
Télédétection Données géographiques Schéma directeur d'Assainissement Le Schéma Directeur régiennente les types flagannsement å instriner sin la commune. L'article 55 de la loi sur feau du 3 janvier 1992 oblice. chaque commune à se dotes d'un Schema Directeur d'Assain ssement. au plus tard le 31 décembre 2005 Fouille de données

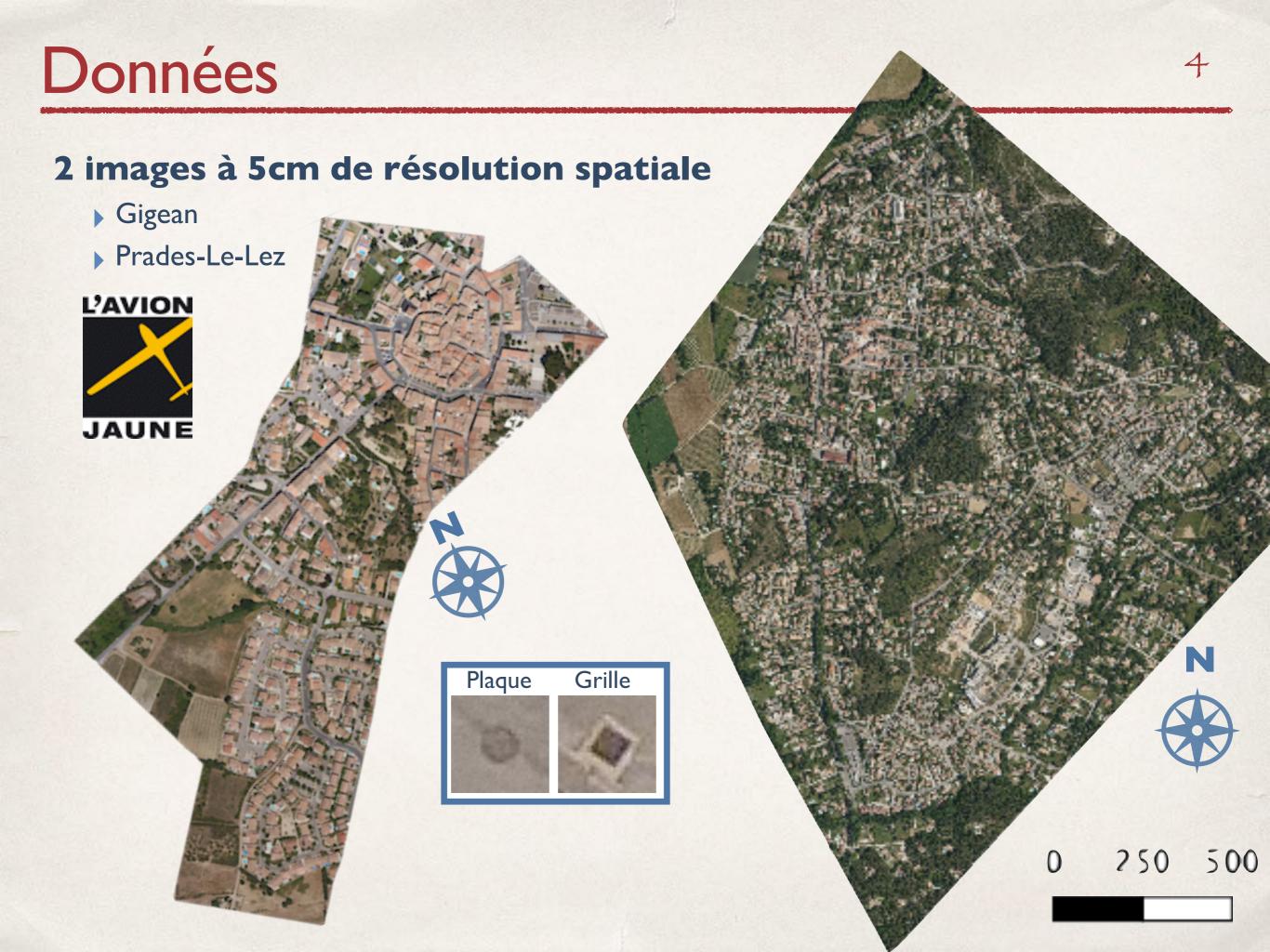
Attributs:

Positions, Cotes, Matériaux, Diamètres, Ouvrages, dates...

-1.35 -







Détection des plaques d'égout

Difficultés:

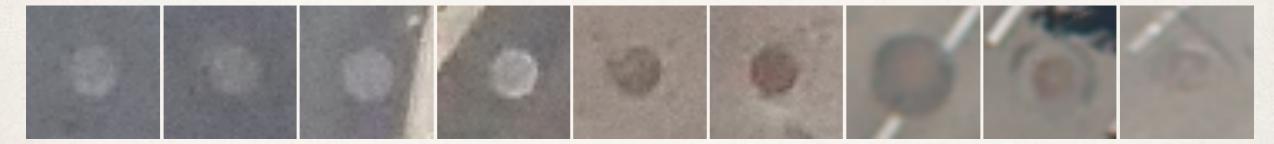
> 80cm seulement => 16 pixels maximum à une résolution de 5cm.

Détection des plaques d'égout

Difficultés:

▶ 80cm seulement => 16 pixels maximum à une résolution de 5cm.

Généralement très peu de contraste

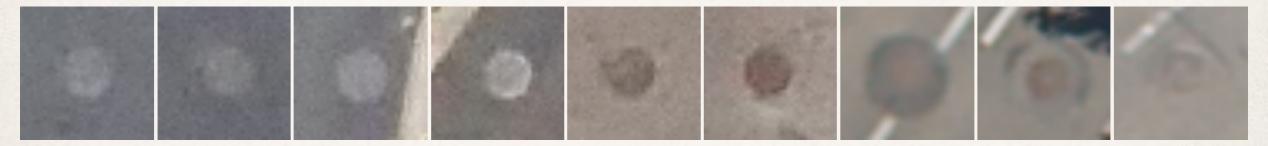


Détection des plaques d'égout

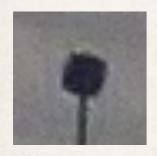
Difficultés:

▶ 80cm seulement => 16 pixels maximum à une résolution de 5cm.

Généralement très peu de contraste



De nombreux autres objets circulaires sur l'image.



Ombre de lampadaire

Cheminée

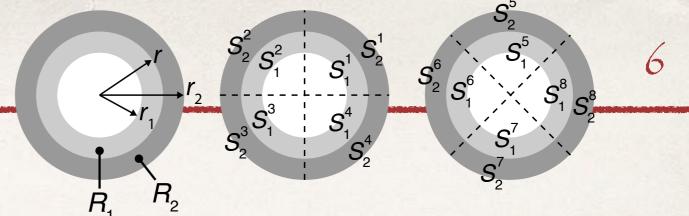
???

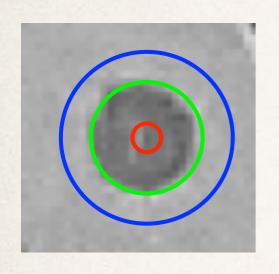
Table de jardin

Bouée ??

Parabole?

Filtre circulaire





Indices basés sur les distributions radiométriques (nécessite une image en niveaux de gris):

- S similitude entre les régions R1 et R2
- > S8: maximum des similitudes entre R1 et les sous-régions de R2 (évite la détection de linéaires)
- ▶ UI et U2: uniformité au sein de chaque région = min de la similitude entre une sous région et les autres.

Résultat = (I-max(S,S8))*UI*U2

Calcul sur fenêtre glissante puis seuillage:

- Méthode simple et directe (pas d'apprentissage).
- Très long (40h pour une image 20000x20000 soit 1km2)
- Résultats mitigés: Gigean, jusqu'à 42 plaques sur 100 détectées mais autant faux positifs!

[Bartoli et al. 2015, JURSE Lausanne]

Deep Learning (apprentissage)

Nécessite une base d'apprentissage

- Prades-Le-Lez: image RVB, 5cm de résolution spatiale
- ▶ 605 plaques disponibles pour l'entrainement => augmentation de la base de données (bibliothèque KERAS)
 - Rotation
 - Translation
 - Miroir

- Mode de remplissage: réflexion
- > => 20450 images « plaques » + 509506 images « autres »

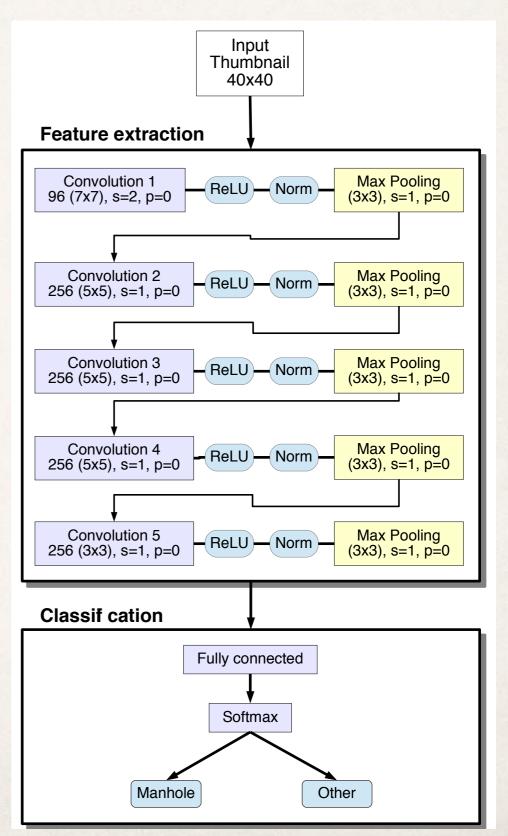
Deep Learning (apprentissage)

Nécessite une base d'apprentissage

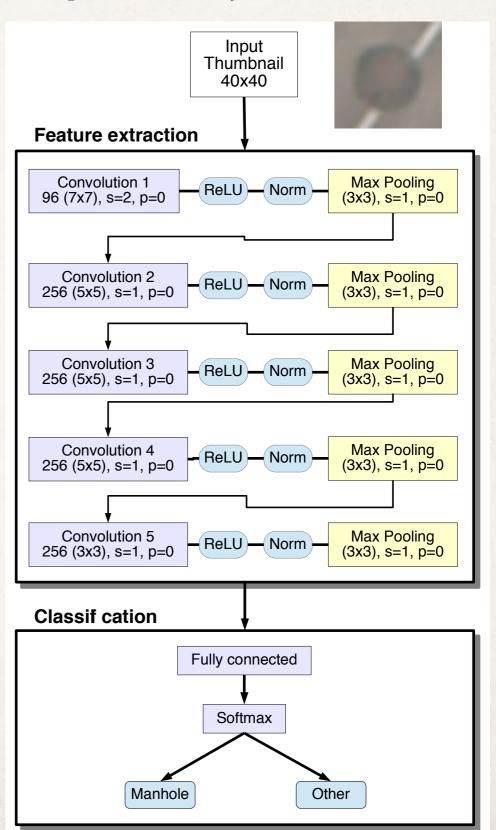
- Prades-Le-Lez: image RVB, 5cm de résolution spatiale
- ▶ 605 plaques disponibles pour l'entrainement => augmentation de la base de données (bibliothèque KERAS)
 - Rotation
 - Translation
 - Miroir

- Mode de remplissage: réflexion
- > => 20450 images « plaques » + 509506 images « autres »

AlexNet + adaptation des paramètres aux petits objets

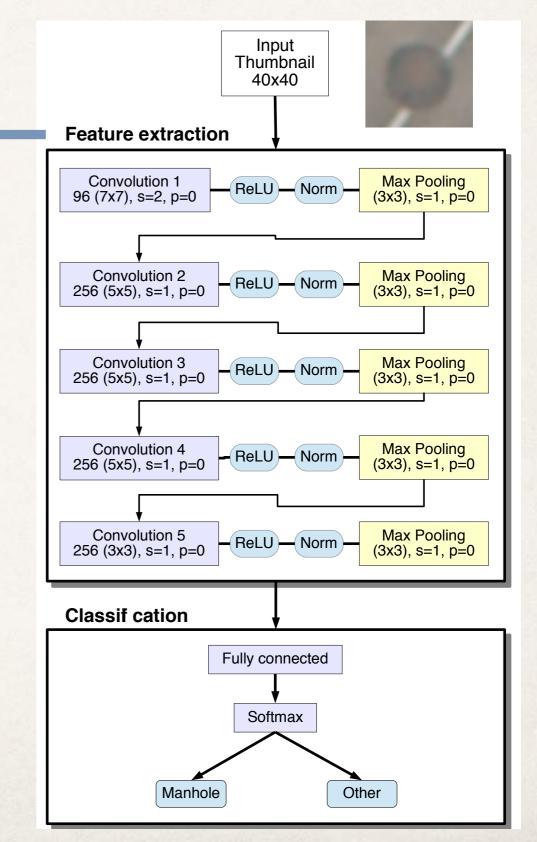


AlexNet + adaptation des paramètres aux petits objets



AlexNet + adaptation des paramètres aux petits objets

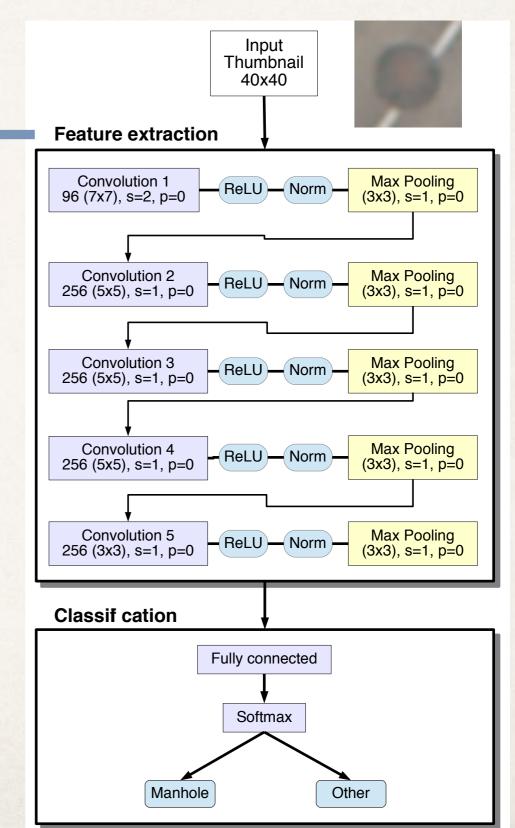
5 couches avec différents paramètres



AlexNet + adaptation des paramètres aux petits objets

5 couches avec différents paramètres

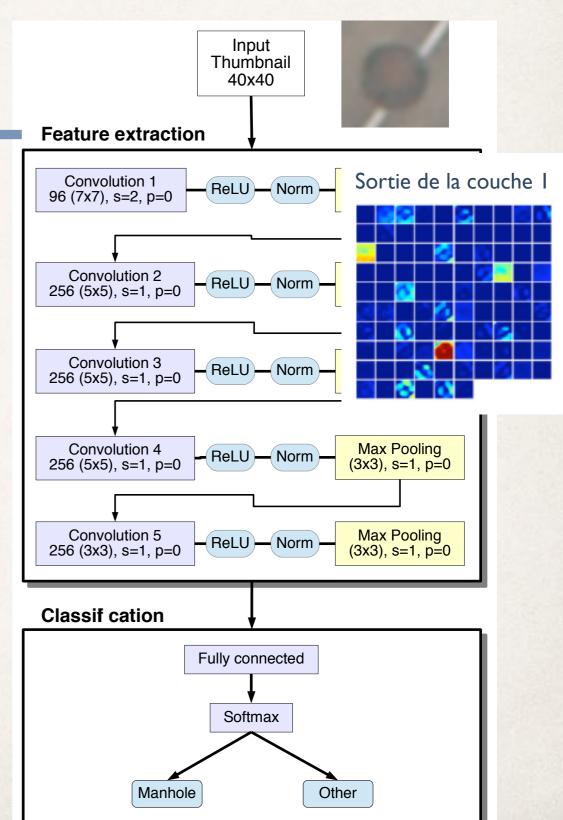
Initialisation aléatoire des valeurs des noyaux de convolution



AlexNet + adaptation des paramètres aux petits objets

5 couches avec différents paramètres

Initialisation aléatoire des valeurs des noyaux de convolution

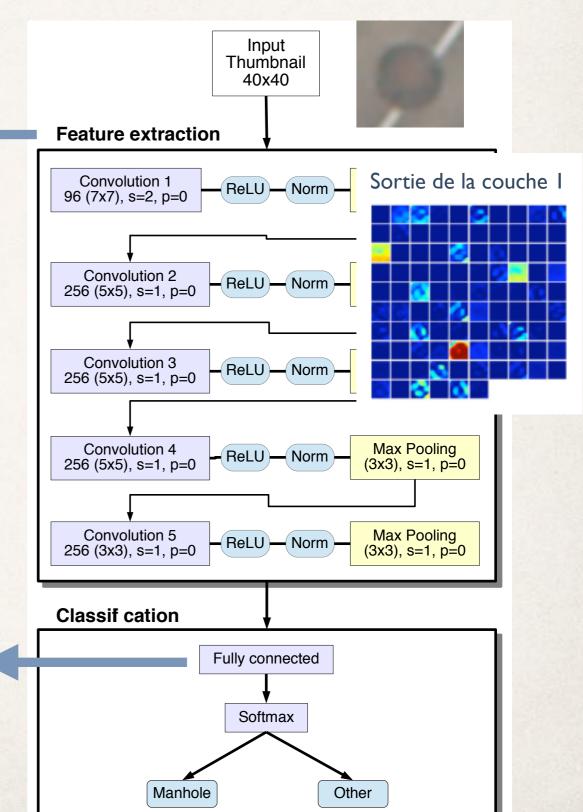


AlexNet + adaptation des paramètres aux petits objets

5 couches avec différents paramètres

Initialisation aléatoire des valeurs des noyaux de convolution

Fusion des résultats de chaque couche Comparaison avec la vérité



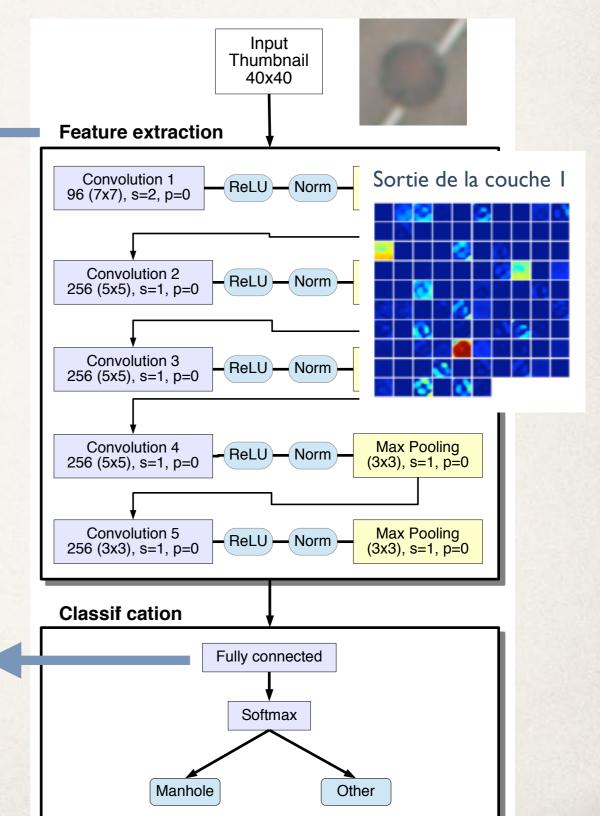
AlexNet + adaptation des paramètres aux petits objets

5 couches avec différents paramètres

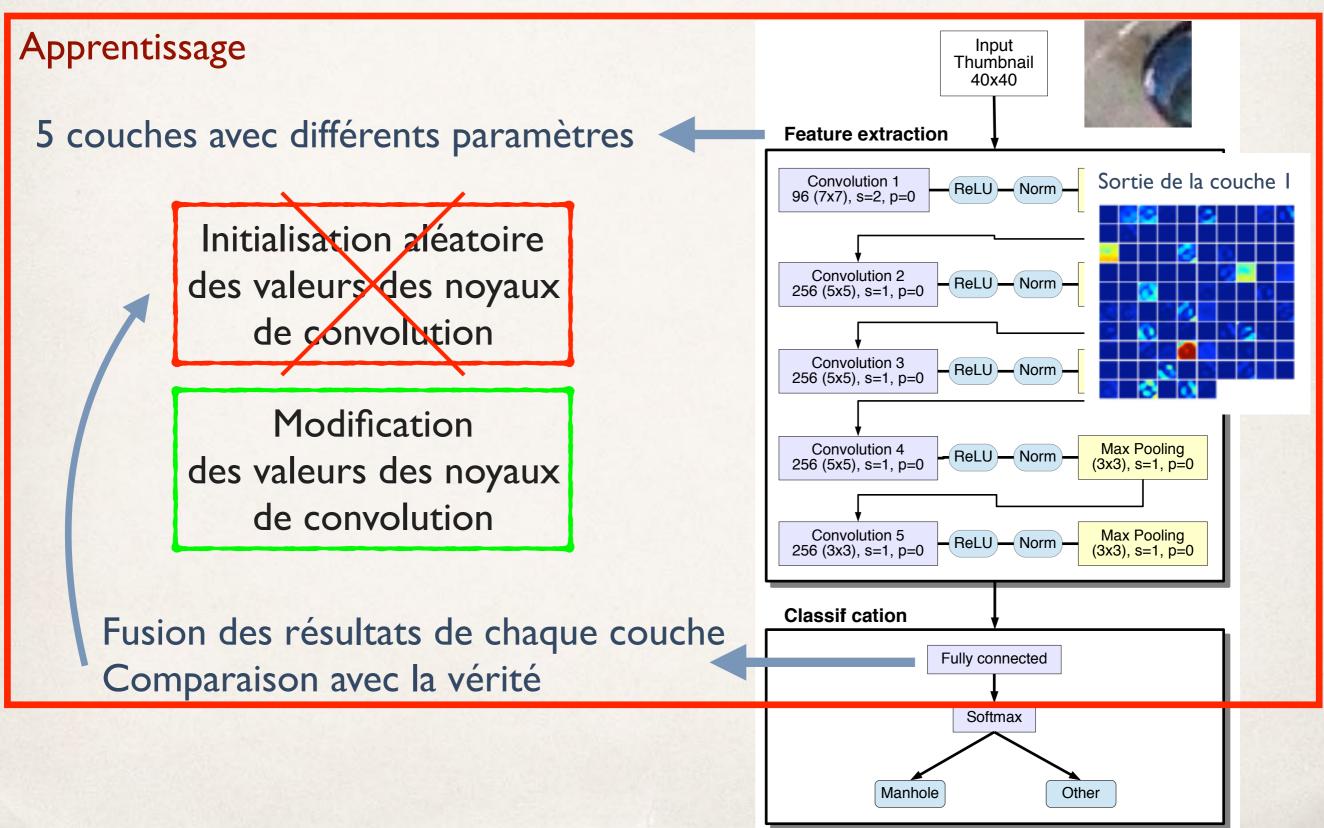
Initialisation aléatoire des valeurs des noyaux de convolution

Modification
des valeurs des noyaux
de convolution

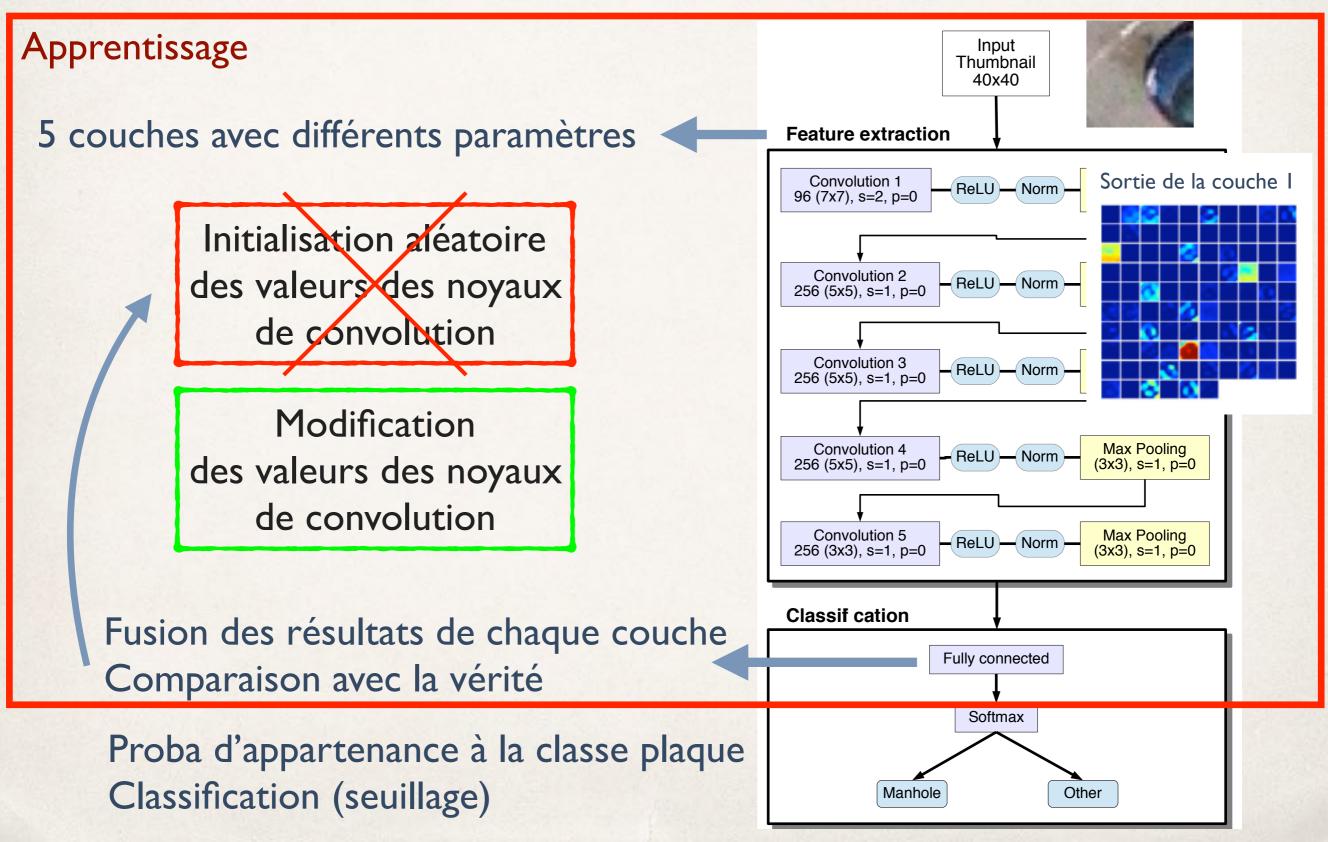
Fusion des résultats de chaque couche Comparaison avec la vérité



AlexNet + adaptation des paramètres aux petits objets

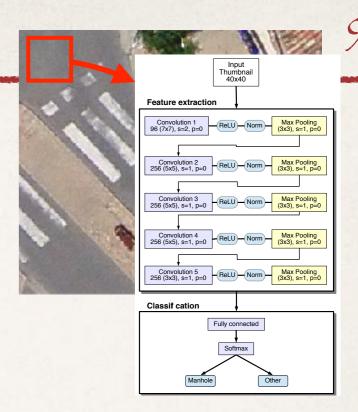


AlexNet + adaptation des paramètres aux petits objets



Méthode:

- Fenêtre glissante (pas de 4 pixels) sur toute l'image
- ▶ CNN => probabilité d'appartenance à la classe « plaque »
- Seuil sur la probabilité => classification

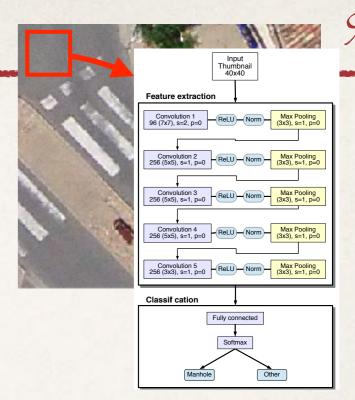


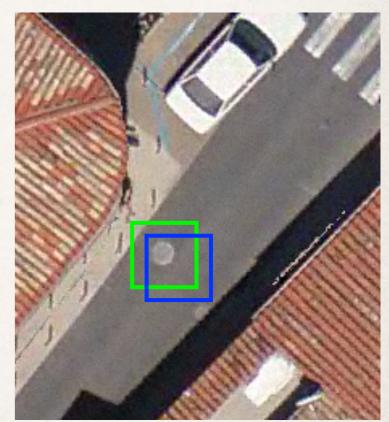
Méthode:

- Fenêtre glissante (pas de 4 pixels) sur toute l'image
- ► CNN => probabilité d'appartenance à la classe « plaque »
- Seuil sur la probabilité => classification

Comparaison avec la vérité:

$$a_0 = \frac{\operatorname{area}(B \cap B_t)}{\operatorname{area}(B \cup B_t)}$$





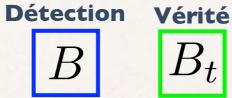
Deep Learning: validation

Méthode:

- Fenêtre glissante (pas de 4 pixels) sur toute l'image
- ▶ CNN => probabilité d'appartenance à la classe « plaque »
- Seuil sur la probabilité => classification

Comparaison avec la vérité:

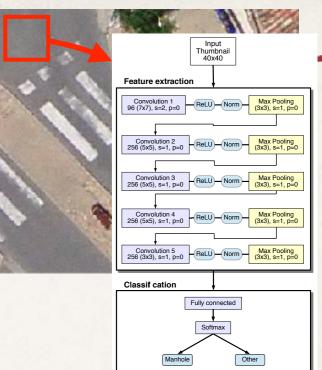
$$a_0 = \frac{\operatorname{area}(B \cap B_t)}{\operatorname{area}(B \cup B_t)}$$

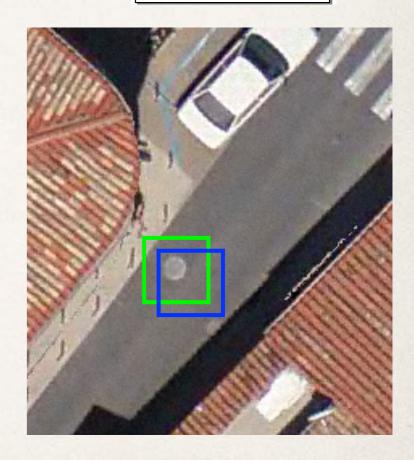


Définition précision / rappel:

- ▶ TP = True Positive = plaque correctement détectée: a₀ >50%
- FP = False Positive = imagette incorrectement classée comme « plaque »
- FN = False Negative = plaque non détectée

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$





Deep Learning: validation

Méthode:

- Fenêtre glissante (pas de 4 pixels) sur toute l'image
- ▶ CNN => probabilité d'appartenance à la classe « plaque »
- Seuil sur la probabilité => classification

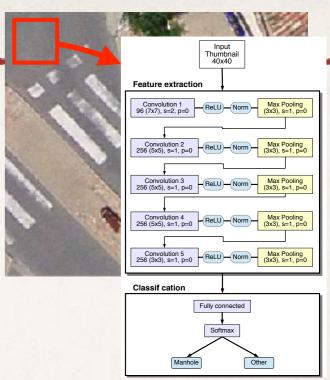
Comparaison avec la vérité:

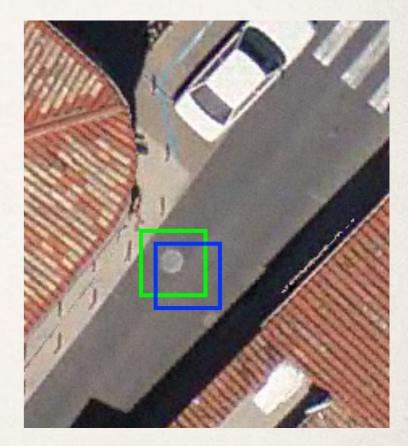
$$a_0 = \frac{\operatorname{area}(B \cap B_t)}{\operatorname{area}(B \cup B_t)}$$

Définition précision / rappel:

- ▶ TP = True Positive = plaque correctement détectée: a₀ >50%
- FP = False Positive = imagette incorrectement classée comme « plaque »
- FN = False Negative = plaque non détectée

$$\begin{array}{c} \text{TP} \\ \text{Precision} = \begin{array}{c} \text{TP} \\ \text{TP} + \text{FP} \end{array} \end{array} \quad \begin{array}{c} \text{Recall} = \begin{array}{c} \text{TP} \\ \text{TP} + \text{FN} \end{array}$$





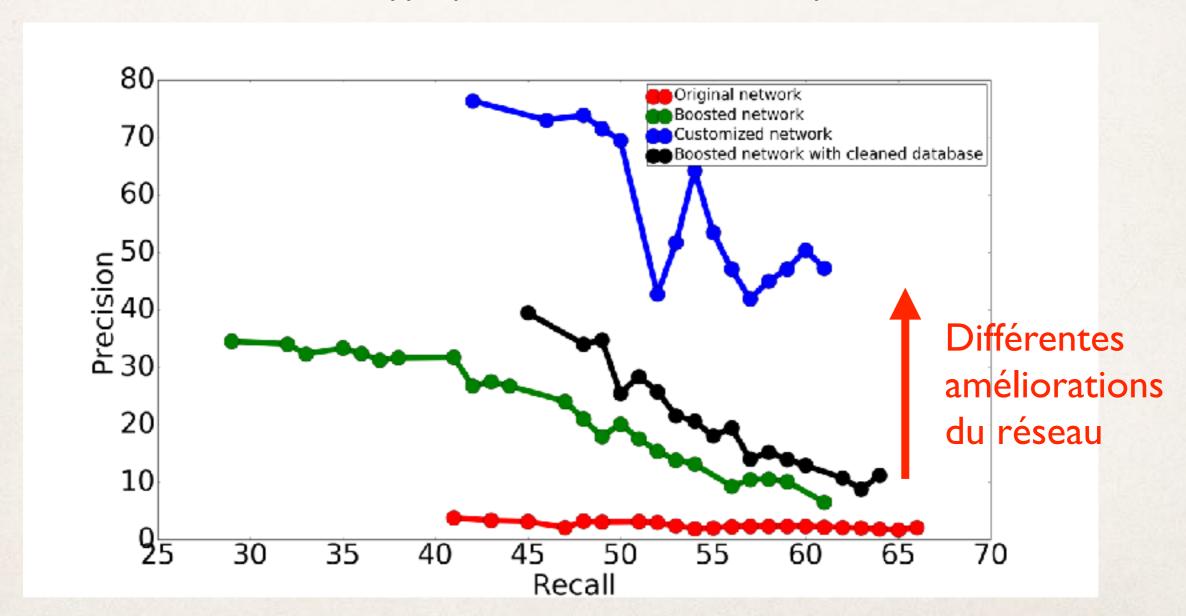
Deep Learning: validation

Validation:

Gigean: 100 plaques - image RVB acquise avec le même capteur, même résolution

Courbes ROC:

Précision en fonction du rappel pour différents seuils d'acceptation



Meilleurs taux de détection possible pour un seuil de 0.26

Rappel = 60% — Précision = 47%

- Certaines plaques ne sont pas dans la base de données (=> autre réseau? Anciennes ou nouvelles plaques?)
- Tâches sur le sol
 - => améliorer le contraste?
 - => regrouper les détections trop proches?
- Beaucoup de Faux en dehors des routes
 - Filtre sur les routes => Rappel = 54% Précision = 70%

Meilleurs taux de détection possible pour un seuil de 0.26

Rappel = 60% — Précision = 47%

- Certaines plaques ne sont pas dans la base de données (=> autre réseau? Anciennes ou nouvelles plaques?)
- Tâches sur le sol
 - => améliorer le contraste?
 - => regrouper les détections trop proches?
- Beaucoup de Faux en dehors des routes
 - Filtre sur les routes => Rappel = 54% Précision = 70%

Meilleurs taux de détection possible pour un seuil de 0.26

Rappel = 60% — Précision = 47%

- Certaines plaques ne sont pas dans la base de données
 (=> autre réseau? Anciennes ou nouvelles plaques?)
- Tâches sur le sol
 - => améliorer le contraste?
 - => regrouper les détections trop proches?
- Beaucoup de Faux en dehors des routes
 - Filtre sur les routes => Rappel = 54% Précision = 70%

Meilleurs taux de détection possible pour un seuil de 0.26

Rappel = 60% — Précision = 47%

- Certaines plaques ne sont pas dans la base de données (=> autre réseau? Anciennes ou nouvelles plaques?)
- Tâches sur le sol
 - => améliorer le contraste?
 - => regrouper les détections trop proches?
- Beaucoup de Faux en dehors des routes
 - Filtre sur les routes => Rappel = 54% Précision = 70%

Conclusion et perspectives

60% de plaques détectées sur une image à 5cm

Mieux que les relevés terrain effectués par les entreprises (1 plaque sur 3)

Mais au moins 25% de faux positifs:

- Utiliser l'information des routes (ou prétraitement d'image) pour accélérer les calculs et améliorer les résultats
- Associer un indice de confiance à la localisation des plaques (utile lors de la cartographie)

Fin de Cart'Eaux (fin 2018)

- Validation sur des images de Poitier (7,5cm de résolution)
- Mise en ligne d'un démonstrateur de la chaine complète (détection, cartographie, fouille de texte)
- Ajout d'une couche d'information issue du filtre géométrique dans l'apprentissage
- Projet MéDo de fouille de données et analyse de texte

Conclusion et perspectives

60% de plaques détectées sur une image à 5cm

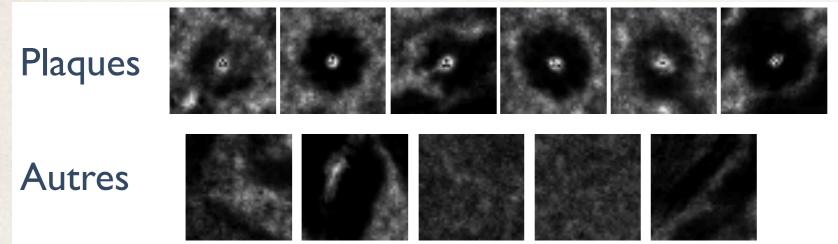
Mieux que les relevés terrain effectués par les entreprises (1 plaque sur 3)

Mais au moins 25% de faux positifs:

- Utiliser l'information des routes (ou prétraitement d'image) pour accélérer les calculs et améliorer les résultats
- Associer un indice de confiance à la localisation des plaques (utile lors de la cartographie)

Fin de Cart'Eaux (fin 2018)

- Validation sur des images de Poitier (7,5cm de résolution)
- Mise en ligne d'un démonstrateur de la chaine complète (détection, cartographie, fouille de texte)
- Ajout d'une couche d'information issue du filtre géométrique dans l'apprentissage
- Projet MéDo de fouille de données et analyse de texte



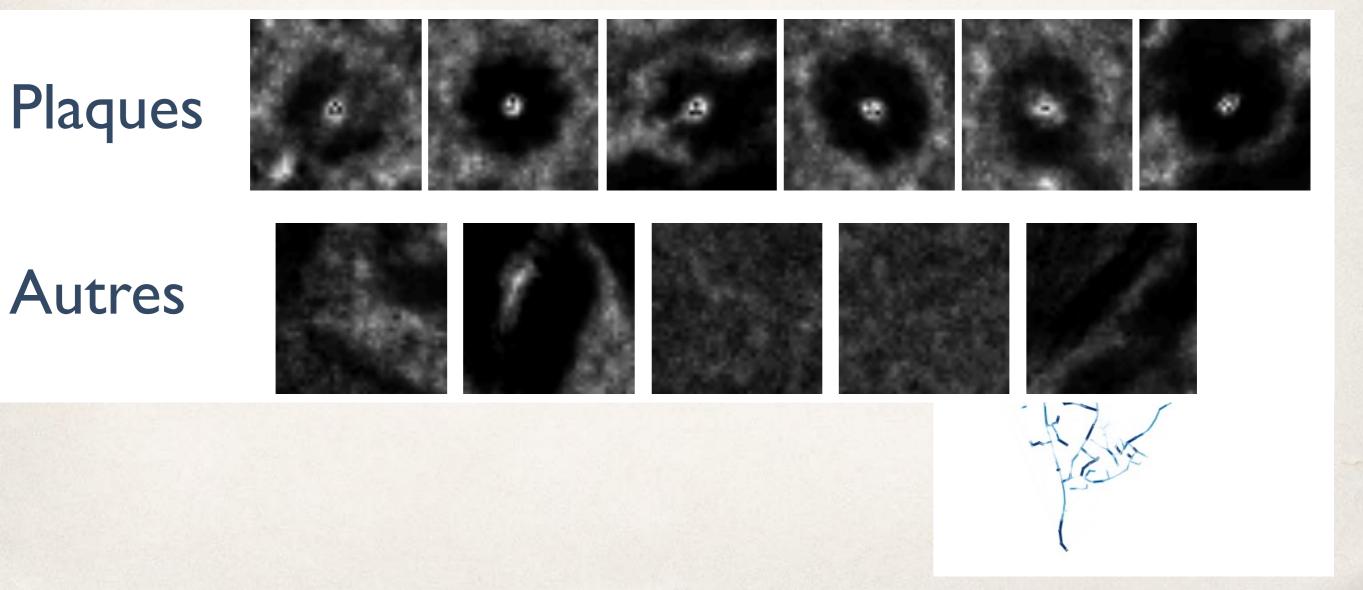
Conclusion et perspectives

60% de plaques détectées sur une image à 5cm

Mieux que les relevés terrain effectués par les entreprises (1 plaque sur 3)

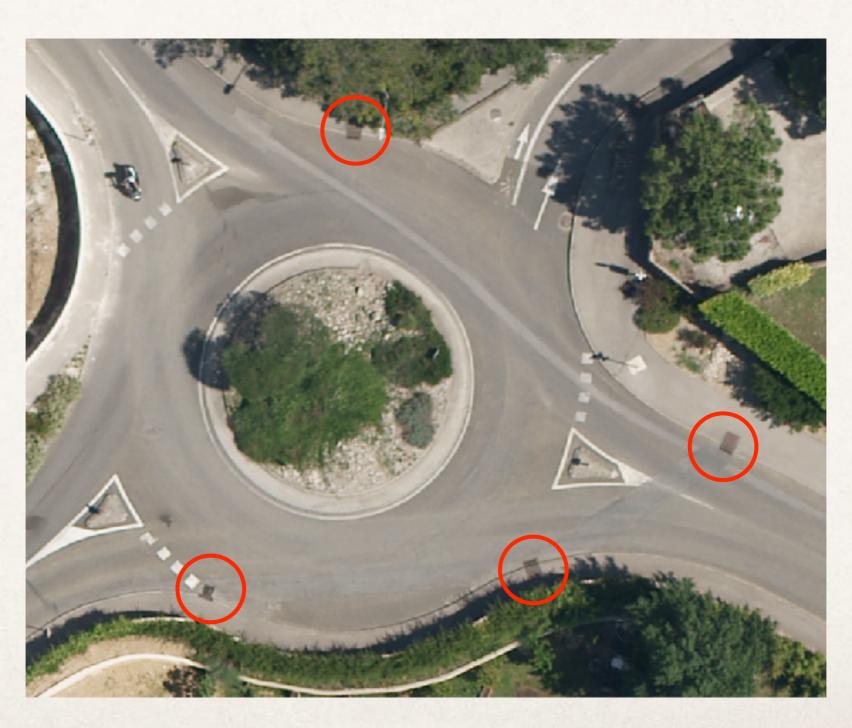
Mais au moins 25% de faux positifs:

 Utiliser l'information des routes (ou prétraitement d'image) pour accélérer les calculs et améliorer les résultats



Pour aller plus loin...

Distinction plaques / avaloirs Détection des fossés ...



Pour aller plus loin...

Distinction plaques / avaloirs Détection des fossés ...

Détection de regards de visite sur des images à THRS par une méthode d'apprentissage

COMMANDRE Benjamin, EN-NEJJARY Driss, PIBRE Lionel, CHAUMONT Marc, SUBSOL Gérard, DERUELLE Laurent, DERRAS Mustapha, **DELENNE Carole**, CHAHINIAN Nanée

Univ. Montpellier - HydroSciences Montpellier Equipe INRIA Lemon

