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Abstract—In this paper, we propose a camera model identi-
fication method based on deep convolutional neural networks
(CNNs). Unlike traditional methods, CNNs can automatically
and simultaneously extract features and learn to classify during
the learning process. A layer of preprocessing is added to the
CNN model, and consists of a high pass filter which is applied
to the input image. Before feeding the CNN, we examined the
CNN model with two types of residuals. The convolution and
classification are then processed inside the network. The CNN
outputs an identification score for each camera model. Experi-
mental comparison with a classical two steps machine learning
approach shows that the proposed method can achieve significant
detection performance. The well known object recognition CNN
models, AlexNet and GoogleNet, are also examined.

Index Terms—Camera Identification, Deep Learning, Convo-
lutional Neural Network, Fully Connected Network.

I. INTRODUCTION

Source camera identification is the process of determining
which camera device has been used to capture an image. It
is used in security and legal issue as an evidence [1]. As a
relation to prior work, researchers have proposed to use the
artifacts that exist in the camera pipeline to collect specific
features manually and use them to distinguish between camera
models or individual devices.

We can classify the camera identification approaches in two
families. The first family groups the methods that require
to compute a model (PRNU, radial distortion) to identify a
camera and then evaluate a statistical proximity (correlation)
between the model and the image to test. Lukas et al. [2]
propose a source camera device identification using the sensor
pattern noise as a fingerprint for uniquely identifying sensors.
Choi et al. [3] use the lens radial distortion. Since each camera
model expresses a unique radial distortion pattern, it is used
as a fingerprint to help on its identification. Dirik et al. [4] use
the sensor dust patterns in digital single lens reflex cameras
(DSLR) as a method for device identification.

The second family regroups the methods based on machine
learning and feature vector extraction. Here, the model is
built by the classification algorithm knowing the features. In
order to identify a camera, the classifier evaluate the proximity
(distance) between a previously learned model, and the feature
vector of the image to test. Bayram et al. [5] determine the
correlation structures presented in each color band in relation
with the CFA interpolation. Kharrazi et al. [6] extract 34
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features (color features, Image Quality Metrics (IQM), and
wavelet domain statistics) and used them to perform camera
model identification. Celiktutan et al. [7] use a subset of
Kharrazi’s feature sets and the features of binary similarity
measures to identify the source cell-phone camera. Filler et
al. [8] introduce a method of camera model identification
from features of the statistical moments and correlations of the
linear PRNU pattern. Gloe et al. [9] used Kharrazi’s feature
sets with extended color features to identify camera models.
Xu and Shi [10] also proposed the camera identification using
machine learning through Local Binary Patterns as features.
Wahab et al. [11] used the conditional probability as a single
feature set to classify camera models. Marra et al. [12] pro-
posed 338 SPAM features from the Rich Models [13] based on
co-occurrences matrices of image residuals. Tuama et al. [14]
developed a method for digital camera model identification by
extracting three sets of features: co-occurrences matrix, traces
of color dependencies features related to CFA interpolation
arrangement, and conditional probability statistics.

From the state of the art mentioned above, CNN approach
has not been used for camera identification. In the field of
digital forensics Bayar et al. [15] proposed a deep learning
approach to detect image manipulation, while Chen et al.
[16] introduced the convolutional neural networks in median
filtering forensics. The general focus of machine learning is
the representation of the input data and the generalization of
the learning patterns. Good data representation can lead to high
performance. Thus the key point is to construct features and
data representations from raw data. Feature design consumes
a large portion of the effort in a machine learning task, and is
typically domain specific.

Deep Learning algorithms are one of the promising research
fields into the automated extraction of complex data represen-
tations at high levels of abstraction. A key benefit of deep
learning is that the analysis and learning of massive amounts
of unsupervised data make it a valuable tool for Big Data
Analysis. Thus, deep learning often produces good results
[17]. Nevertheless, we must say that deep learning approaches
require high computing resources compared to more traditional
machine learning approaches. Indeed it necessitates a powerful
GPU and a big database.

However, using a CNN as a black box leads to a weak
performance in identifying camera model. Thus in this paper,
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Fig. 1. The Conventional Neural Networks Concept.

we evaluate the obtained gain to modify the CNN model
proposed by Krizhevsky [18]. We also experimentally compare
our CNN model to AlexNet [18], and to GoogleNet [19].

The rest of this paper is organized as follows. Section
IT explains the concept of CNN and its relation to general
machine learning concept. Section III presents all the details
of our best CNN architecture for camera model identification.
While in Section IV, we describe the experiments and the
results. Conclusion comes in Section V.

II. CONVOLUTIONAL NEURAL NETWORKS CNNSs

Recently, Deep learning with the use of Convolutional
Neural Networks (CNNs) have achieved wide interest in many
fields. Deep learning frameworks are able to learn feature
representations and perform classification automatically from
original images. Convolutional Neural Networks (CNNs) have
shown impressive performances in artificial intelligence tasks
such as object recognition and natural language processing
[20].

The general structure of a CNN consists of layers composed
of neurons. A neuron takes input values, does computations
and passes the result to the next layer. The general structure
of a CNN is illustrated in Figure 1 which also shows the
similarities with traditional machine learning approach. The
next subsections describe the CNNs layers.

A. Comvolutional layers & Classification layers

A conventional layer consists of three operations: convo-
lution, the activation function, and pooling. The result of
a convolutional layer is called a feature map, and can be
considered as a particular feature representation of the input
image. The convolution can be formulated as follows:

aé = Z?Zl aifl * wi;l + bé-, (D
where * denotes convolution, aé- is the j-th output map in
layer [, wé;l is convolutional kernel connecting the ¢-th output
map in layer [ — 1 and the j-th output map in layer [, bé- is
the training bias parameter for the j-th output map in layer [,
and n is the number of feature maps from layer [ — 1.

The activation function is applied to each value of the fil-
tered image. There are several types of the activation function
such as, an absolute function f(z) = |z|, a sine function
f(z) = sinus(x), or Rectified Linear Units (ReLU) function
f(z) = maz(0, x).

The next important step is the pooling. A pooling layer
is commonly inserted between two successive convolutional
layers. Its function is to reduce the spatial size of the represen-
tation and to reduce the amount of parameters and computation
in the network. During the pooling, a maximum or an average
is computed.

The last process done by a convolutional layer is the normal-
ization of the feature maps. The normalization is applied on
the feature maps in order to obtain comparable output values
for each neuron.

The classification layer consists of fully connected layers
and a softmax function. In a fully connected layer, neurons
have full connections to all activations in the previous layer.
The activations can be computed with a matrix multiplication
followed by a bias offset. The fully connected layer will
compute the class scores by the softmax function. In this way,
CNNs transform the original image from pixel values to the
final class scores [17].

B. Learning process

When the learned features pass through the fully connected
layers, they will be fed to the top layer of the CNNs, where
a softmax activation function is used for classification. The
back propagation algorithm is used to train the CNN. The
weights and the bias can be modified in the convolutional and
fully connected layers due to the error propagation process. In
this way, the classification result can be fed back to guide the
feature extraction automatically and the learning mechanism
can be established.

The CNN architecture has millions of parameters which
may arise overfitting problem. Drop out technique is used
for reducing overfitting. It consists of setting the output of
each hidden neuron with probability 0.5 to zero. The neurons
which are dropped out in this way do not contribute to the
forward pass and do not participate in backpropagation. This
technique increases robustness, since a neuron can not rely on
the presence of particular other neurons. It is, therefore, forced
to learn more robust features that are useful in conjunction
with many different random subsets of the other neurons [20].

ITII. THE PROPOSED CNN DESIGN FOR CAMERA MODEL
IDENTIFICATION

The framework of our proposed model is shown in Figure 2,
where we describe the detailed settings of the architecture. The
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Fig. 2. The layout of our Conventional Neural Networks for Camera Model Identification.

first layer is the filter layer, followed by three convolutional
layers from the first (Convl) to the third (Conv3). While the
last three layers are the fully-connected layers (FC1, FC2,
FC3) for the classification. The details of our CNN model
is illustrated in the following subsections.

A. Filter layer

The classical way for denoising an image is to apply
a denoising filter. For each image I, the residual noise is
extracted by subtracting the denoised version of the image
from the image itself as follows:

N=1-F(I), )

where F'(I) is the denoised image, and F' is a denoising filter.
This filter will be used in our experiments and applied on each
color channel separately.

Another denoising high-pass filter is used on the input image
I. This filter is the one used by Qian et al [21]. Applying this
type of filter is important in the proposed method since it can
suppress the interference caused by image edges and textures
in order to obtain the image residual as follows:

102 -2 2 -1
B
A=Ts—|-2 8 —12 8 -2 3)
1219 6 8 —6 2
102 -2 2 —1

The output of this step will fed the CNN. In our experi-
ments, we examined two types of filters as a preprocessing.
The first one is the high pass filter adopted by Qian et al [21]
and the second one is the well known wavelet based denoising
filter [22].

B. Convolutions

AlexNet Convolutional Neural Networks [18] is adapted and
modified to fit the model requirements. The first convolutional
layer (Convl) treats the residual image with 64 kernels of size
3 x 3. The size the feature maps produced is 126 x 126. Then

the second convolutional layer (Conv2) takes the output of the
first layer as the input. It applies convolutions with kernels of
size 3 x 3 and produces feature maps of size 64 x 64. The third
convolution layer applies convolutions with 32 kernels of size
3 x 3. The Rectified Linear Units (ReLUs) is a non-linearity
activation function which is applied to the output of every
convolutional layer. ReLUs is considered as the standard way
to model a neurons output and it can lead to fast convergence
with large models trained on large datasets [18].

The third convolutional layer is followed by a max pooling
operation with window size 3 x 3 , which operate on the feature
map in the corresponding convolutional layer, and lead to the
same number of feature map with decreasing spatial resolution.

C. Fully Connected layers

The fully-connected layers (FC1) and (FC2) have 256,
and 4096 neurons respectively. ReLUs activation function is
applied to the output of fully connected layer. Each of (FC1)
and (FC2) are dropped out during the learning. The output of
last fully connected layer (FC3) is fed to a softmax function.

IV. EXPERIMENTS AND EVALUATION

For the evaluation of the experiments, we used 33 camera
models from two different data sets. The first set is made of 27
camera models from Dresden database [23], and the second set
is 6 personal camera models. The list is given in Table I with
the notice that all the images of the same model came from the
same device. Using such different data sets ensure the diversity
in the used data base. Before any further manipulation, The
data set is subdivided into training and testing sets, such that
80% of the data set is chosen for the training and the rest 20%
for the testing data.

In order to fit the CNN model conditions, we sub-divided
the chosen data set images into 256 x 256 and we ignored those
of less than 256 x 256. By applying the images sub-division
step, we obtain a bigger data set which is beneficial for the
training process. When doing the training/testing subdivision
into two sets, we make sure that different parts of the same



TABLE I
CAMERA MODELS USED IN THE EXPERIMENTS, MODELS MARKED WITH *
ARE OF PERSONAL CAMERA MODELS WHILE ALL THE OTHERS ARE FROM
DRESDEN DATABASE.

Original | No. images
Seq. Brand Model Resolution | 256 X 256
1 | Agfa Photo DC-733s 3072x2304 30349
2 | Agfa Photo DC-830i 3264x2448 39204
3 | Agfa Photo Sensor 530s 4032x3024 55585
4 Canon Ixus 55 2592x1944 15680
5 Fujifilm FinePix J50 3264x2448 22680
6 Kodak M1063 3664x2748 64960
7 Nikon D200 Lens A/B 3872x2592 55800
8 Olympus MI1050SW 3648x2736 28560
9 Panasonic DMC-FZ50 3648x2736 37100
10 Praktica DCZ 5.9 2560x1920 14630
11 Samsung L74wide 3072x2304 24948
12 Samsung NVI15 3648x2736 30380
13 Sony DSC-H50 3456x2592 36920
14 Sony DSC-W170 3648x2736 28700
15 | Agfa Photo DC-504 4032x3024 10074
16 | Agfa Photo Sensor505-x 2592x1944 12040
*17 Canon EOS-1200D 3648x2736 26780
*18 Canon PowerShot SD790 IS | 3648x2736 30016
19 Canon Ixus70 3072x2304 20196
20 Canon PowerShotA640 3648x2736 26320
*21 Canon EOS7D 3648x2736 9360
22 Casio EX-7150 3264x2448 19548
23 Nikon CoolPixS710 4352x3264 37944
24 Nikon D70 3008x2000 13860
25 Nikon D70s 3008x2000 13706
*26 Nikon D5200 3648x2736 34500
27 Pentax OptioA40 4000x3000 27885
28 Pentax OptioW60 3648x2736 26880
29 Ricoh GX100 3648x2736 26880
30 Rolli RCP-7325XS 3072x2304 21384
*31 Sony DSC-HX50 3648x2736 15960
*32 Sony DSCHX60V 3648x2736 44400
33 Sony T77 3648x2736 25340

original image do not belong, in the same time, to the training
and testing sets. Table I shows all camera models with their
number of images. For each experiment, the data set is
chosen randomly and the results are averaged after running the
procedure 5 times with 5 different splitting of the database.

The experiments are done with a single GPU card of type
GeForce GTX Titan X manufactured by Nvidia, and DIGITS
training system. Many experiments were done to achieve the
design of the CNN model. We measure the efficiency of the
CNNs by looking at the minimum error rate after convergence.
Our CNN model is shown in Figure 2 and detailed in Section
III. By applying two different filters, explained in subsection
III-A, we have two different residuals which are referred to as
Residuall (high-pass filter), and Residual2 (wavelet noise
filter) in the three different experiments.

Experiment 1

The first experiment uses the first 12 camera models given
in Table I. For each image in the data set, a residuall is
extracted by applying a high pass filter [21]. Our CNN model
is trained on the resulted residuals of the 12 camera models.

TABLE II
RESULTS FOR THE FIRST 12 CAMERA MODELS CONSIDERING THE
POOLING PROCESS FOR Residuall.

Proposed Method Accuracy

Two convolutional layer without Pooling 93.88%
Two convolutional layer with max Pooling 94.23%
Three convolutional layer with max Pooling 98.0%

Then we use it to identify the source camera model of each
image in the test set to construct the identification accuracy.
The confusion matrix of the classification results are shown in
Table III. The average accuracy achieved by this experiment
is 98%. From Table III, we can see that the best identification
accuracy is recorded for the camera model Kodak — M1063
which achieves 99.89%. Agfa— Sensor —530s, Canon —55,
Fujifilm — FinePix — J50, Panasonic — DM C — F Z50,
and Samsung— L74wide also achieved semi-perfect accuracy
rates. While Praktica — DC'Z5.9 recorded the least accuracy
rate which is 90.44%.

Before going on in the experiments, it is important to
evaluate the influence of the pooling layer. By adding a
pooling layer for two convolutional layers, we achieve 94.23%,
whereas without pooling, it was 93.88% . This result increased
to 98.09% for three convolutional layers with max-pooling
layer. The results of adding a pooling layer to the model is
resumed in Table II.

The experiments reference as Residual2 is obtained by
applying a wavelet denoising filter [2] on each image in the
data set, then subtract the denoised image from the original
one. Residuals of the training set fed the CNN model to
perform the training process. This part achieves 95.1% as
total identification accuracy for the 12 camera models which
is 3% lower compared to Residuall. The confusion matrix
of this part are shown in Table IV. With Residual2, the
best identification accuracy is recorded for the camera model
Panasonic — DMC — FZ50 which achieves 99.46%. While
Praktica — DCZ5.9 recorded the least accuracy rate which
it is 81.54%. We can hypothesize that the residuals obtained
from such a filter suppress too much features related to some
characteristic of the acquisition pipeline of a given camera
model like the CFA interpolation, or lens-aberration correction
traces, and that is exactly what the CNN model need to learn
about the camera model features.

Experiment 2

The experiment is re-performed on the first 14 cam-
era models of Table I, by adding SonyDSC — H50 and
SonyDSC — W170 to the data set of experiment 1. This
experiment achieved 97.09%, and 93.23% as a total identi-
fication accuracy for residuall, and residual2 respectively.
The total identification accuracy is shown in Table V. The
identification accuracy decreased with these two models due
to the fact that the captured images from camera models of
the same manufacturer are sometimes harder to separate, such
as SonyDSC — H50 and SonyDSC — W170. This is due,



as it has been observed in [1], to the strong feature similarity
of some camera models from the same manufacturer.

Experiment 3

The proposed CNN model is performed again with all
the 33 camera models given in Table I. We achieve 91.9%
as an identification accuracy for the 33 camera models for
Residuall. As we can see, the accuracy is decreased as the
number of models is increased, and this is a known behavior
in machine learning approach, especially when increasing the
number of classes [9]. For Residual2, the experiments are less
useful since the results are lower compared to Restduall. The
results for the three data sets of camera models (12,14,33) are
shown in Table V.

Comparison with AlexNet and GoogleNet

AlexNet was developed by Alex Krizhevsky et al. [18], and
GoogleNet was designed by Szegedy et al. [19]. These two
CNNs models are trained on our data sets to be compared
with our proposed CNN model. The results are illustrated
in Table V. GoogleNet consists of 27 layers which explain
the higher score it achieves. For experiment 1, with 12
camera models, AlexNet achieves 94.5%, and 91.8% for
for Residuall, Residual2 respectively. GoogleNet achieves
98.99%, and 95.9% for Residuall, Residual2 respectively.
We achieved with 12 camera models, 98% and 95.1% for
Residuall, Residual2 respectively.

The trend is similar for the experiments with 14 camera
models. AlexNet achieves 90.5% (respectively 89.45%) for
Residuall (respectively Residual2). We achieve 97.09% (re-
spectively 93.23%) for Residuall (respectively Residual2)
and GoogleNet achieves 98.01% (respectively 96.41%) for
Residuall (respectively Residual2).

We see that our proposition improves AlexNet with 7% for
the 14 camera models and the efficiency is only 1% above
the bigger network of GoogleNet. As a complexity measure,
the time expended for training 12 camera models using our
proposed CNN model is about 5 hours and a half, while the
time expended for training the same set using GoogleNet is
about 16 hours. The time expended by our model for testing 12
camera is about 10 minutes against 30 minutes for GoogleNet.
We conclude that our CNN model has good performance for
a really smaller complexity compared to GoogleNet.

We should also add that compared to the state of the art
approaches based on classical feature extraction and machine
learning, the obtained results are similar with a proposition
such as [14]. The two methods are implemented in different
conditions since the classical machine learning approach [14]
uses the full resolution of the data set while the proposed CNN
method uses images of size 256 x 256. GoogleNet gives similar
global accuracy (98.99%) with the same set of 14 models. This
is thus a good point for CNNs approaches.

By achieving the perfect design of CNNs and well tuning
the network we can achieve more than the classical methods
listed in the state of the art.

TABLE V
IDENTIFICATION ACCURACIES FOR ALL THE EXPERIMENTS COMPARED TO
ALEXNET AND GOOGLENET.

Exp 1 Exp 2 Exp 3
(1-12) models (1-14) models (1-33) models
Method  |residual 1|residual 2 |residual 1|residual 2| residual 1
AlexNet 94.50% | 91.8% | 90.50% | 89.45% 83.5%
GoogleNet | 98.99% | 95.9% | 98.01% | 96.41% 94.5%
Proposed Net| 98.00% | 95.1% | 97.09% | 93.23% 91.9%

V. CONCLUSION

In this paper, we evaluate the efficiency of using CNNs for
source camera model identification based on deep learning
and convolutional neural networks. The contribution repre-
sents a big challenge since it is quite different from existing
conventional techniques for camera identification. We tried a
small net by tuning the AlexNet model. This small network
is nevertheless slightly less efficient (1% to 3%) than the
biggest GoogleNet model. The varying results with the two
different preprocessing filters show the important role that the
preprocessing plays in the overall classification accuracy.

Scalability has also been evaluated and the increase of the
number of models decreases the accuracy not too drastically.
Increasing the number of layers seems to be promising and
future work should explore bigger networks such as ResNet
of Microsoft [24] (which consists of more than 150 layers).
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