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Abstract. Lexicographic constraints are commonly used to break vari-
able symmetries. In the general case, the number of constraint to be
posted is potentially exponential in the number of variables. For injec-
tive problems (AllDiff), Puget’s method[11] breaks all variable symme-
tries with a linear number of constraints.

In this paper we assess the number of constraints for “almost” injec-
tive problems. We propose to characterize them by a parameter µ based
on Global Cardinality Constraint as a generalization of the AllDiff con-
straint. We show that for almost injective problems, variable symmetries
can be broken with no more than

`
n
µ

´
constraints which is XP in the

framework of parameterized complexity. When only ν variables can take
duplicated values, the number of constraints is FPT in µ and ν.

1 Introduction

The importance of symmetry is now widely recognized in Constraint Satisfaction
Problems. Many methods have been devised to break symmetry especially for
variables. Most of them require to post a number of constraints which is equal
to the number of symmetries. This is the case of lexicographic constraints [6] or
dynamic constraints in SBDS [8].

Unfortunately, the number of variable symmetries can be exponential in the
general case. Even so, Puget [11] has shown that, for injective problems, sym-
metry can be broken with a linear number of constraints.

Between these two extreme, the aim of this paper is to use a parameterized
complexity approach in order to evaluate the number of constraints required to
break variable symmetries.

Parameterized complexity [7] offers a measure of complexity for NP-complete
problems which is based on an isolate parameter k independent from the size n.
The complexity of a problem is XP if it is in the form O(nk) or FPT if it is in
O(f(k)nc) where c is a constant and f any function, even exponential.

Many problems in Artificial Intelligence, especially CSP, have been analyzed
with parameterized complexity [9]. For instance, breaking value symmetries has
a fixed-parameter complexity in O(2knd), where k is the potentially exponential
number of value symmetries [2].
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By analogy, we can claim that variable symmetry can be broken with number
of lexicographic constraints which is FTP in the number of symmetries. In this
paper we try to propose new parameters to measure the number of required
constraints.

2 Breaking Variable Symmetry

A variable symmetry is a permutation σ on the set of variables {xi}i∈1..n that
maps solutions onto solutions. More formally, any assignment (xi = vi)i∈1..n is
a solution if and only if (xσ(i) = vi)i∈1..n is also a solution.

The general method for breaking variable symmetry is to add lexicographical
constraints [6]. Given an order xi1 , . . . xin

on variables, we post, for any symmetry
σ, the lexicographical ordering constraint:

xi1 , . . . , xin ≤lex xσ(i1), . . . , xσ(in) (1)

Unfortunately, the number of variable symmetries can be exponential. It
is equal to the size of the corresponding permutation group G. This group is
generally given as a set S of generators. For instance, Nauty [10] or Saucy are well
known programs to compute the permutation group of a graph (automorphisms).
Even if their theoretical worst-case time complexity is exponential, they are very
efficient in practice.

For injective problems, Puget[11] has shown that equation (1) can be simpli-
fied into xik

≤ xσ(ik), where ik is the smallest index such that σ(ik) 6= ik. Hence
there are less than n2 such constraints for all variable symmetries.

Given a variable index ik, any symmetry σ for which we post the constraint
xik

≤ xσ(ik) is a stabilizer of i1, .., ik−1. So σ belongs to the stabilizer subgroup
G[ik] = {σ ∈ G | ∀z < k, σ(iz) = iz}. More precisely, we need to compute the
image (orbit) of ik by any symmetry that leaves i1, .., ik−1 invariant. This set is
defined by ∆[ik] = {σ(ik)|σ ∈ G[ik]}

This approach is interesting because it is possible to compute all sets ∆[ik]

without enumerating G, thanks to Schreier-Sims’ algorithm.

2.1 Schreier-Sims’ algorithm

In 1970, Sims introduced the notion of base for a permutation group. A sequence
B = (β1, β2, ..., βm), where m ≤ n, is a base for G if the only permutation which
fixes each of the points in B is the identity.

The word “base” is used because an element σ of the group G is uniquely
determined by the image σ(B) = (σ(β1), σ(β2), ..., σ(βm)).

A base B induces a stabilizer chain G = G[β1] ≥ G[β2] ≥ . . . ≥ G[βm] ≥ {id.}
since G[βk+1] (the permutations that fix β1, .., βk) is a subgroup of G[βk].

If every G[βk+1] is a proper (not included) subgroup of G[βk], the base B is
called nonredundant and 2|B| ≤ |G| thus |B| ≤ log2(|G|).

Given any set S of generators of the group G, the Schreier-Sims’s algorithm
computes incrementally a nonredundant base B. This approach is analogous
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to Gaussian elimination in Algebra. The algorithm adds new generators to S
such that S ∩ G[βk] is a generator of G[βk]. The resulting base is called a strong
generating set.

For each βk in B, the algorithm computes the orbit ∆[βk] and chooses, for
each value γ in ∆[βk], one representative permutation uγ

βk
∈ G[βk] such that

uγ
βk

(βk) = γ. Thanks to this set of representatives, one can easily enumerate G.
Let U [k] = {uγ

βk
|γ ∈ ∆[βk]} be the set of representatives for βk.

Then G = {υβ1 ◦ υβ2 ◦ . . . ◦ υβm | ∀k ∈ 1..m, υβk
∈ U [k]}.

There exists several variants of Schreier-Sims’ algorithm and a vast literature
on this topic[5, 13]. The simplest deterministic version has a time complexity in
O(n2 log3 |G|+ |S|n2 log |G|) and O(n2 log |G|+ |S|n) in space.

If we choose B = (1, 2, ..., n), the Jerrum’s variant has a time complexity in
O(n5) and O(n2) in space.

2.2 A polynomial number of constraints

With Schreier-Sims’ algorithm one can enumerate in polynomial time all orbits
∆[βk] from a given3 generating set of G.

Since any symmetry σ must belong to a subgroup G[βk], each constraint (1)
is equivalent to an inequality xβk

< xσ(βk) with σ(βk) ∈ ∆[βk]. Hence all variable
symmetries can be broken with the following constraints:

∀βi ∈ B, ∀γ ∈ ∆[βi], γ 6= βi, we post xβi < xγ (2)

The total number of inequalities is
∑

βi∈B(|∆[βi]|− 1) so it is in O(n log2|G|)
or in O(n2).

In [11], Puget has shown that equation (2) can be reduced to one inequality
for each γ in ∆[βi]. The principle is to associate each γ to the larger βi (different
from γ) such that γ ∈ ∆[βi].

Formally, let Rγ = {βi ∈ B \ {γ} | γ ∈ ∆[βi]}. If Rγ 6= ∅ let us define
r(γ) = max(Rγ) otherwise r(γ) = γ.

One can prove4 that equation (2) is equivalent to the following linear number
of constraints:

∀γ ∈ 1..n such that r(γ) 6= γ, we post xr(γ) < xγ (3)

3 Gcc : a relaxation of Alldiff for almost injective
problems

A constraint network that involves an Alldiff constraint is injective and we
showed in Section 2 that the number of constraints required to break all vari-
ables symmetries is polynomial. The Alldiff imposes that each value be taken at

3 or computed with Nauty potentially in exponential time
4 by transitivity, xβi < xγ is derived from xβi=r(...r(r(γ))) < . . . < xr(r(γ)) < xr(γ) < xγ
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most 1 time, which is quite restrictive in terms of modelisation. In many prac-
tical applications, we may want to impose that a value should appear at least l
and/or at most u times. With this purpose, the Global Cardinality Constraint
Gcc has been introduced in [12] to deal globally with a conjunction of AtLeast
(stating that a value has to appear at least a given number of times) and AtMost
(stating that a value has to appear at most a given number of times). The Gcc is
widely used to model industrial problems and is available in almost all existing
constraints solvers.

Definition 1 (Global Cardinality Constraint). A Gcc constraint, denoted
Gcc(X, lb, up) involves a set of variables X and two functions lb, ub :

⋃
x∈X D(x) →

N . The Gcc constraint is satisfied if for each value v ∈
⋃

x∈X D(x) the number
of variables in X assigned to v is between lb(v) and ub(v).

This constraint does not guarantee the problem to be injective, but in the
remainder of this section we show that a problem with Gcc constraint may be
almost injective. To measure the distance of a given problem N to a perfectly
injective problem, we introduce the parameter µ(N), maximum number of vari-
ables that can be equal simultaneously. If µ(N) = 0, then the problem N is
perfectly injective. If µ(N) is small we call the problem N almost injective.

We provide below a first upper bound of µ(N) for a constraint network N
which contains a Gcc constraint, by considering in a static way the different
upper bounds of the values.

Property 1. Let N =< X,D, C > be a constraint network, with Gcc(X, lb, ub) ∈
C. µ ≤

∑
v∈D s.t. ub(v)>1 ub(v).

This bound does not takes into account neither the overlap between variables
domains nor the lower bound of values. To deal with both the lower bounds and
the variables domains and then achieve a better upper bound of µ, we have to
look at the implementation of the Gcc.

The Gcc constraint propagation algorithm proposed in [12] consists in finding
a flow in a bipartite graph, such that one of Figure 1. The set of the set of nodes
is the union of the variables involved in the Gcc and their values and the two
special nodes s and t. The flow between the source s and a variable x is exactly 1,
stating that each variable has to be assigned to a single value. The flow between
a variable x and a value v in its domain is either 0 or 1, depending if x is assigned
to v or not. The flow between a value v and s is constrained by the lower and
upper bounds of the value in the Gcc.

Property 2. Given a constraint network N =< X,D,C > with Gcc(X, lb, ub) ∈
C, µ(N) is bounded by the number of variables minus the minimal number of
values which can be assigned to exactly one variable while respecting the Gcc.

Computing this minimal number of values is more complex than establishing
the upper bound of Prop. 1. We propose to compute it using the CSP encoding
described below. As described above the underlying algorithm of the Gcc relies on
a flow problem. But, the flow problem itself has been encapsulated in a constraint
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Fig. 1. The network used for GCC propagation

in [4], allowing to solve problems involving flow and additional constraints, for
instance large workforce scheduling problems [1] . In this flow constraint, the
flow allowed to an edge (i, j) is expressed as a CSP variable xflow(i,j).

To compute the minimal number of values which can be assigned to exactly
one variable while respecting the Gcc, we propose to reuse the encoding of the
Gcc enriched with extra variables nb occ(vi)to count the number of occurrences
of a value. nbocc(vi) is the variable expressing the flow between vi and t. Minimize∑

vi∈D(nb occ(vi) = 1) is equivalent to compute the minimal number of values
which can be assigned to exactly one variable while respecting the Gcc.

Lemma 1. The problem of determining if
∑

vi∈D(nb occ(vi) = 1) ≤ N is NP-
hard.

Proof (sketch of): Consider a Gcc(X, lb, up) with lb(v) = 0, ub(v) = |X|, find-
ing

∑
vi∈D(nb occ(vi)≥1) ≤ N exactly fits the definition of the atmostNvalues(X, N)

constraint, which was shown NP-hard in [3] by a reduction to 3 − SAT . For∑
vi∈D(nb occ(vi)≥1) ≤ N the proof is identical except the point 3-SAT is re-

placed by exactly-1 3SAT (also called 1-in-3 SAT).

4 Generalization to “almost injective” problems

Suppose that an almost injective problem admits no more than µ simultaneous
pairs of equal variables.

For each variable symmetry σ ∈ G[βk], constraint (1) is no longer equivalent
to xβk

< xσ(βk) because xβk
can be equal to xσ(βk). In such a case, checking

the lexicographical constraint involves to find the next βz > βk such that xβz 6=
xσ(βz) and so σ(βz) 6= βz.

Given any symmetry σ ∈ G[βk], consider the increasing sequence i1σ, i2σ, . . . itσ
of the elements5 of B for which σ(i) 6= i. Since σ ∈ G[βk] we have i1σ = βk.

For injective problems we have seen that lexicographic constraint (1) can be
replaced by the constraint xi1σ

< xσ(i1σ). For almost injective problem with no
more than µ simultaneous pairs of equal variables, constraint (1) simplifies in:

xi1σ
, xi2σ

, . . . , xiρ
σ
≤lex xσ(i1σ), xσ(i2σ), . . . , xσ(iρ

σ) (4)

5 If |B| < n we can add missing values at the end of the base. It does not affect the
strong generating set computed with Schreier-Sims’ algorithm.
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where ρ = min(µ + 1, t).

Because there are no more than
(

n
2µ

)
constraints (4) for all symmetries in G

and
(
n
k

)
< nk, we have the following lemma:

Lemma 2. Given a CSP where no more than µ variables can be equal simul-
taneously, all variable symmetries can be broken with a number of constraints
which is XP in µ.

To compute constraints (4), we have to enumerate the whole group G. This
can be done inO(n|G|) thanks to sets U [k] computed by Schreier-Sims’ algorithm.

By definition, constraint (4) is equivalent to the following constraints:
xi1σ

≤ xσ(i1σ) (5a)

xi1σ
= xσ(i1σ) → xi2σ

≤ xσ(i2σ) (5b)

· · ·
xi1σ

= xσ(i1σ) ∧ . . . ∧ xiρ−1
σ

= xσ(iρ−1
σ ) → xiρ

σ
≤ xσ(iρ

σ) (5c)

There are
∑

βi∈B(|∆[βi]| − 1) constraints of type (5a), no more than
(
n
4

)
constraints (5b) and finally no more than

(
n

µ+2

)
constraints (5c). It is a crude

upper bound in the worst case. In practice some constraints can be discarded.
For instance, if we post a constraint (5a) like xa ≤ xb, it is unnecessary to post
any constraint that ends with “→ xa ≤ xb”. Moreover, constraints (5a) are
equivalent to a linear number of constraints of the form xr(j) ≤ xj .

The total number of constraints required to break symmetry also depends
on the ordering of the variables in base B. For instance, suppose that δ is the
first index in B such that xδ takes a duplicate value. For each σ ∈ G[βk] such
that i1σ = βk < δ, the lexicographic constraint is equivalent to xi1σ

< xσ(i1σ).
All these inequalities can be reduced to a linear number of constraints of the
form xr(j) ≤ xj . The special case when δ > |B| (with |B| < n) is completely
equivalent to injective problems.

Therefore, we can try to rearrange base B in order to set, at the end of the
list, the indexes of the variables that take duplicate values.

A dynamic rearrangement could be expensive because permuting a single
pair of contiguous indexes has a complexity in O(n4)[5].

Let us assume that there are only ν variables that take can a duplicate value.
We can chose B in order that the indexes of these variables are placed at the end
of the list. Then all the symmetries in G \ G[βn−ν ] can be broken with a linear
number of constraints as in injective problems. Lexicographic constraints (4)
are only required for symmetries that belong to G[βn−ν ]. All the scopes of these
constraints are included in a set of ν variables. Hence there are at most

(
ν
µ

)
and

the total number of constraints is in O(
(

ν
µ

)
+ n). This prove the following:

Lemma 3. Given a CSP where no more than µ simultaneous variables can be
equal, and only a subset of ν variables can take duplicates values, all variable
symmetries can be broken with a number of constraint which is FPT in ν and µ.
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equivalent to an inequality xβk
< xσ(βk) with σ(βk) ∈ ∆[βk]. Hence all variable

symmetries can be broken with the following constraints:
∀βi ∈ B, ∀γ ∈ ∆[βi], γ 6= βi, we post xβi < xγ (6)

The total number of inequalities is
∑

βi∈B(|∆[βi]|− 1) so it is in O(n log2|G|)
or in O(n2).

In [11], Puget has shown that equation (2) can be reduced to one inequality
for each γ in ∆[βi]. The principle is to associate each γ to the larger βi (different
from γ) such that γ ∈ ∆[βi].

Formally, let Rγ = {βi ∈ B \ {γ} | γ ∈ ∆[βi]}. If Rγ 6= ∅ let us define
r(γ) = max(Rγ) otherwise r(γ) = γ.

One can prove6 that equation (2) is equivalent to the following linear number
of constraints:

∀γ ∈ 1..n such that r(γ) 6= γ, we post xr(γ) < xγ (7)

The case of heterogeneous domains

In Section 4, we provide a theoretical bound of number of constraints to be
posted. As shown in example 1, this bound does not take into account initial
domains of variables, when they are not all equal.

Example 1. Let xi1σ
and xσ(i1σ) be two variables involved in a symmetry. If

D(xi1σ
) ∩ D(xσ(i1σ)) = ∅, the constraint 5b is useless and can be discarded (not

posted) as well as all constraints containing xi1σ
= xσ(i1σ) in their left part.

The conjunction of the Gcc constraint and the initial domains of variables may
also forbid combinations of equalities between pairs of variables:

Example 2. Let D(x1) ∩D(x2) = {v} = D(x3) ∩D(x4) and ub(v) = 3. The Gcc
forbids to have simultaneously x1 = x2 and x3 = x4. Then, all constraints 5c,
within x1 = x2 ∧ x3 = x4 in their left part may be discarded.

More generally, during the generation of symmetry breaking constraints of
the constraint network N =< X,D, C >, we propose the following technique:
Before posting the constraint xi1σ

= xσ(i1σ)∧ . . .∧xiρ−1
σ

= xσ(iρ−1
σ ) → xiρ

σ
≤ xσ(iρ

σ)

we propose to solve the subproblem N =< X,D, C ′ > with C ′ = {xi1σ
=

xσ(i1σ), . . . , xiρ−1
σ

= xσ(iρ−1
σ )} ∪ {Gcc}, the sub-problem of N restricted to both

the Gcc constraint and the equality constraints of the left part of this constraint.
If N ′ is not soluble, the constraint is discarded.

Lemma 4. The satisfiability problem of the class of constraint networks involv-
ing only a Gcc and some equality constraints is polynomial.

The idea of the proof relies on a slight modification of the Gcc encoding as
flow problem. For each pair of variable (xi, xj) involved in an equality constraint,

6 by transitivity, xβi < xγ is derived from xβi=r(...r(r(γ))) < . . . < xr(r(γ)) < xr(γ) < xγ
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we replace them by a merged node xi,j The flow between the source s and this
new node variable xi,j is exactly 2 to enforce both xi and xj to be assigned. The
flow between xi,j and any value v in D(xi) ∩ D(xj) is either 0 or 2 to count 2
uses of v when xij (in fact both xi and xj) is assigned to v.

In addition of theoretical results in terms parametrized complexity, this tech-
nique provides a practical way to restrict the number of constraints to be posted
for breaking symmetries in almost injective problems.

5 Conclusion

We have introduced a characterization of “almost injective” problems which is
based on the number µ of variables that can be equal simultaneously. We showed
that variable symmetry can be broken with no more than

(
n
µ

)
constraints which

is XP in the framework of parameterized complexity.
When only ν variables can take duplicated values, the number of constraints

is FPT in µ and ν.
In case of heterogeneous domains, we presented a polynomial method (based

on Gcc) for eliminating unnecessary constraints.
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12. Régin, J.C.: Generalized arc consistency for global cardinality constraint. Proc.
AAAI’96 pp. 209–215 (1996)
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