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Abstract

The modelling and reformulation of constraint net-
works are recognised as important problems. The
task of automatically acquiring a constraint net-
work formulation of a problem from a subset of its
solutions and non-solutions has been presented in
the literature. However, the choice of such a subset
was assumed to be made independently of the ac-
quisition process. We present an approach in which
an interactive acquisition system actively selects a
good set of examples. We show that the number of
examples required to acquire a constraint network
is significantly reduced using our approach.

1 Introduction
Constraint Programming (CP) provides a powerful paradigm
for solving combinatorial problems. However, the specifica-
tion of constraint networks still remains limited to special-
ists in the field. An approach to automatically acquiring con-
straint networks from examples of their solutions and non-
solutions has been proposed by[Bessiereet al., 2005]. Con-
straint acquisition was formulated as a concept learning task.
The classical version space learning paradigm[Mitchell,
1982] was extended so that constraint networks could be
learned efficiently. Constraint networks are much more com-
plex to acquire than simple conjunctive concepts represented
in propositional logic. While in conjunctive concepts the
atomic variables are pairwise independent, in constraint sat-
isfaction there are dependencies amongst them.

In [Bessiereet al., 2005] the choice of the subset of solu-
tions and non-solutions to use for learning was assumed to be
made before and independently of the acquisition process. In
this paper we present an approach in which the acquisition
system actively assists in the selection of the set of exam-
ples used to acquire the constraint network through the use
of learner-generated queries. A query is essentially a com-
plete instantiation of values to the variables in the constraint
network that the user must classify as either a solution or non-
solution of her ‘target’ network. We show that the number of
examples required to acquire a constraint network is signifi-
cantly reduced if queries are selected carefully.

When acquiring constraint networks computing good
queries is a hard problem. The classic query generation strat-

egy is one in which, regardless of the classification of the
query, the size of the version space is reduced by half. There-
fore, convergence of the version space can be achieved using
a logarithmic number of queries. Furthermore, in the clas-
sic setting, a query can be generated in time polynomial in
the size of the version space. When acquiring constraint net-
works, query generation becomes NP-hard. This is further
aggravated by the fact that in constraint acquisition, while the
ordering over the hypothesis space is most naturally defined
in terms of the solution space of constraint networks, we usu-
ally learn at the constraint level, i.e. a compact representation
of the set of solutions of a hypothesis. Our main contribution
is a number of algorithms for identifying good queries for ac-
quiring constraint networks. Our empirical studies show that
using our techniques the number of examples required to ac-
quire a constraint network is significantly reduced. This work
is relevant to interactive scenarios where users are actively in-
volved in the acquisition process.

2 Constraint Acquisition using CONACQ

A constraint network is defined on a (finite) set of variablesX
and a (finite) set of domain valuesD. This common knowl-
edge shared between the learner and the user is called the
vocabulary. Furthermore, the learner has at its disposal a
constraint library from which it can build and compose con-
straints. The problem is to find an appropriate combination of
constraints that is consistent with the examples provided by
the user. For the sake of notation, we shall assume that every
constraint defined from the library is binary. However, the re-
sults presented here can be easily extended to constraints of
higher arity, and this is demonstrated in our experiments.

A binary constraintcij is a binary relation defined onD
that specifies which pairs of values are allowed for variables
xi, xj . The pair of variables(xi, xj) is called thescopeof cij .
For instance,≤12 denotes the constraint specified on(x1, x2)
with relation “less than or equal to”. Abinary constraint net-
work is a setC of binary constraints. Aconstraint biasis a
collectionB of binary constraints built from the constraint li-
brary on the given vocabulary. A constraint networkC is said
to beadmissiblefor a biasB if for each constraintcij in C

there exists a set of constraints{b1
ij, · · · , b

k
ij} in B such that

cij = b1
ij ∩ · · · ∩ bk

ij .
An instancee is a map that assigns to each variablexi in



X a domain valuee(xi) in D. Equivalently, an instancee
can be regarded as a tuple inDn. An instancee satisfiesa
binary constraintcij if the pair (e(xi), e(xj)) is an element
of cij ; otherwise we say thatcij rejectse. If an instancee
satisfiesevery constraint inC, thene is called asolutionof C;
otherwise,e is called anon-solutionof C.

Finally, a training setEf consists of a setE of instances
and a classification functionf : E → {0, 1}. An element
e in E such thatf(e) = 1 is calledpositive example(of-
ten denoted bye+) and an elemente such thatf(e) = 0 is
callednegativeexample (often denoted bye−). A constraint
networkC is said to beconsistentwith a training setEf if
every positive examplee+ in Ef is a solution ofC and every
negative examplee− in Ef is a non-solution ofC. We also
say thatC correctly classifiesEf . Given a constraint biasB
and a training setEf , theConstraint Acquisition Problemis
to find a constraint networkC admissible for the biasB and
consistent with the training setEf .

A SAT-based algorithm, called CONACQ, was presented
in [Bessiereet al., 2005] for acquiring constraint networks
based on version spaces. Informally, the version space of a
constraint acquisition problem is the set of all constraintnet-
works that are admissible for the given vocabulary and bias,
and that are consistent with the given training set. We denote
asVB(Ef ) the version space corresponding to the biasB and
the training setEf . In the SAT-based framework this version
space is encoded in a clausal theoryK. Each model of the
theoryK is a constraint network ofVB(Ef ).

More formally, if B is the constraint bias, a literal is either
an atombij in B, or its negation¬bij . Notice that¬bij is
not a constraint: it merely captures the absence ofbij in the
acquired network. A clause is a disjunction of literals (also
represented as a set of literals), and the clausal theoryK is a
conjunction of clauses (also represented as a set of clauses).
An interpretationoverB is a mapI that assigns to each con-
straint atombij in B a valueI(bij) in {0, 1}. A transforma-
tion is a mapφ that assigns to each interpretationI over B

the corresponding constraint networkφ(I) defined according
to the following condition:cij ∈ φ(I) iff cij =

⋂
{bp

ij ∈ B :

I(bp
ij) = 1}. An interpretationI is amodelof K if K is true in

I according to the standard propositional semantics. The set
of all models ofK is denotedModels(K). For each instance
e, κ(e) denotes the set of all constraintsbij in B rejectinge.
For each examplee in the training setEf , the CONACQ al-
gorithm iteratively adds toK a set of clauses so that for any
I ∈ Models(K), the networkφ(I) correctly classifies all al-
ready processed examples pluse. When an examplee is pos-
itive, unit clauses{¬bij} are added toK for all bij ∈ κ(e).
When an examplee is negative, the clause{

∨
bij∈κ(e) bij}

is added toK. The resulting theoryK encodes all candi-
date networks for the constraint acquisition problem. That
is, VB(Ef ) = {φ(m) |m ∈Models(K)}.

Example 1 (CONACQ ’s Clausal Representation)We wish
to acquire a constraint network involving 4 variables,
x1, . . . , x4, with domainsD(x1) = . . . = D(x4) =
{1, 2, 3, 4}. We use a complete and uniform bias, withL =
{≤, 6=,≥} as a library. That is, for all1 ≤ i < j ≤ 4, B con-
tains≤ij , 6=ij and≥ij . Assume that the network we wish to

Table 1: An example of the clausal representation built by
CONACQ, where each examplee?

i = (x1, x2, x3, x4).
Ef example clauses added toK

{e
+
1 } (1,2,3,4) ¬ ≥12 ∧¬ ≥13 ∧¬ ≥14 ∧¬ ≥23 ∧¬ ≥24 ∧¬ ≥34

{e
+
2 } (4,3,2,1) ¬ ≤12 ∧¬ ≤13 ∧¬ ≤14 ∧¬ ≤23 ∧¬ ≤24 ∧¬ ≤34

{e
−
3 } (1,1,1,1) ( 6=12 ∨ 6=13 ∨ 6=14 ∨ 6=23 ∨ 6=24 ∨ 6=34)

acquire contains only one constraint, namelyx1 6= x4; there
is no constraint between any other pair of variables. For each
examplee (first column), Table 1 shows the clausal encoding
constructed byCONACQ after e is processed, using the set
κ(e) of constraints in the biasB that can rejecte. N

The learning capability of CONACQ can be improved by
exploiting domain-specific knowledge[Bessiereet al., 2005].
In constraint programming, constraints are often interdepen-
dent, e.g. two constraints such as≥12 and≥23 impose a re-
striction on the relation of any constraint defined on the scope
(x1, x3). This is a crucial difference with conjunctive con-
cepts where atomic variables are pairwise independent. Be-
cause of such interdependency, some constraints in a network
can beredundant. cij is redundant in a networkC if the con-
straint network obtained by deletingcij from C has the same
solutions asC. The constraint≥13 is redundant each time
≥12 and≥23 are present.

Redundancy must be carefully handled if we want to have
a more accurate idea of which parts of the target network are
not precisely learned. One of the methods to handle redun-
dancy proposed in[Bessiereet al., 2005], was to addredun-
dancy rulesto K based on the library of constraints used to
build the biasB. For instance, if the library contains the
constraint type≤, for which we know that∀x, y, z, (x ≤
y) ∧ (y ≤ z) → (x ≤ z), then for any pair of constraints
≤ij ,≤jk in B, we add the Horn clause≤ij ∧ ≤jk→≤ik in
K. This form of background knowledge can help the learner
in the acquisition process.

3 The Interactive Acquisition Problem
In reality, there is a cost associated with classifying instances
to form a training set (usually because it requires an answer
from a human user) and, therefore, we should seek to min-
imise the size of training set required to acquire our target
constraint network. Thetarget networkis the constraint net-
workCT expressing the problem the user has in mind. That is,
given a vocabularyX, D, CT is the constraint network such
that an instance onX is a positive example if and only if it is
a solution ofCT .

During the learning process the acquisition system has
knowledge that can help characterise what next training ex-
ample would be ideal from the acquisition system’s point of
view. Thus, the acquisition system can carefully select ‘good’
training examples (which we will discuss in Section 4 in more
depth), that is, instances which, depending on how the user
classifies them, can help reduce the expected size of the ver-
sion space as much as possible. We define a query and the
classification assigned to it by the user as follows.

Definition 1 (Queries and Query Classification)A queryq
is an instance onX that is built by the learner. The user



classifies a queryq using a functionf such thatf(q) = 1 if q
is a solution ofCT andf(q) = 0 otherwise.

Angluin [Angluin, 2004] defines several classes of queries,
among which themembership queryis exactly the kind used
here. The user is presented with an unlabelled instance, and
is asked to classify it. We can now formally define the inter-
active constraint acquisition problem.

Definition 2 (Interactive Constraint Acquisition Problem)
Given a constraint biasB and an unknown user classification
functionf , theInteractive Constraint Acquisition Problemis
to find a converging sequenceQ = q1, . . . , qm of queries,
that is, a sequence such that:qi+1 is a query relative toB
andVB(Ef

i ) whereEi = {q1, . . . , qi}, and|VB(Ef
m)| = 1.

Note that the sequence of queries is built incrementally,
that is, each queryqi+1 is built according to the classifica-
tion of q1, . . . , qi. In practice, minimising the length ofQ is
impossible because we do not know in advance the answers
from the user. However, in the remainder of the paper we
propose techniques that are suitable for interactive learning.

4 Query Generation Strategies
4.1 Polynomial-time Query Generation
In practice, it can be the case that an examplee from the train-
ing set does not bring any more information than that which
has already been provided by the other examples that have
been considered so far. If we allow for queries to be gener-
ated whose classification is already known based on the cur-
rent representation of the version space,K, then we will ask
the user to classify an excessive number of examples for no
improvement in the quality of our representation of the ver-
sion space of the target network. We exemplify this problem
with a short example.

Example 2 (A Redundant Query) Consider an acquisition
problem over the three variablesx1, x2, x3, with the do-
mainsD(x1) = D(x2) = D(x3) = {1, 2, 3, 4} using the
same constraint library as in Example 1. Given the posi-
tive examplee+

1 = 〈(x1, 1), (x2, 2), (x3, 3)〉, K = ¬ ≥12

∧¬ ≥13 ∧¬ ≥23. Asking the user to classifye2 =
〈(x1, 1), (x2, 2), (x3, 4)〉 is redundant, since all constraints
rejecting it are already forbidden byK. Then any constraint
network in the version space acceptse2. N

We propose a simple (poly-time) technique that avoids
proposing such redundant queries to the user. Thisirredun-
dant queriestechnique seeks a classification only for an ex-
amplee that cannot be classified, given the current represen-
tationK of the version space. An examplee can be classified
by VB(Ef ) if it is either a solution in all networks inVB(Ef )
or a non-solution in all networks inVB(Ef ). e is a solution
in all networks inVB(Ef ) iff the subsetκ(e)[K] of κ(e), ob-
tained by removing fromκ(e) all constraints that appear as
negated literals inK, is empty. Alternatively,e is a non-
solution in all networks inVB(Ef ), if κ(e)[K] is a superset
of an existing clause ofK.

Example 3 (An Irredundant Query) Consider again Ex-
ample 2 in which the positive examplee+

1 has been consid-
ered. The querye = 〈(x1, 1), (x2, 2), (x3, 2)〉 is irredundant.

This can be seen by considering the literals that would be
added toK by this query. If the query is classified as positive,
the clauses(¬ ≥12), (¬ ≥13) and(¬ 6=23) will be added to
K, otherwise the clause(≥12 ∨ ≥13 ∨ 6=23) will be added.
Since we know from examplee+

1 that both≥12 and≥13 must
be set to false, the only extra literal this new example adds is
either(¬ 6=23) or (6=23) (indeedκ(e)[K] = {6=23}). Regard-
less of the classification ofe, something new is learned, so
this is an irredundant query. N

4.2 Towards Optimal Query Generation
The technique presented in Section 4.1 guarantees that each
newly classified querye adds something new toK. How-
ever, different irredundant examples give us different gains
in knowledge. In fact, the gain for a queryq is directly re-
lated to the sizek of κ(q)[K] and its classificationf(q). If
f(q) = 1, k unary negative clauses will be added toK, then
k literals will be fixed to0. In terms of CONACQ, we do
not have direct access to the size of the version space, unless
we wish to perform very expensive computation through the
clausal representationK. But assuming that the models ofK

are uniformly distributed, fixingk literals divides the number
of models by2k. If f(q) = 0, a positive clause of sizek
is added toK, thus removing1/2k models. We can distin-
guish between queries that can be regarded asoptimistic, or
asoptimal-in-expectation.

An optimistic queryis one that gives us a large gain in
knowledge when it is classified “in our favour”, but which
tells us very little when it is classified otherwise. More specif-
ically, in CONACQ the larger theκ(q)[K] of a queryq, the
more optimistic it is. When classified as positive, such a
query allows us to set|κ(q)[K]| literals to 0. If the query is
classified as negative we just add a clause of size|κ(q)[K]|.
Therefore, an optimistic query is maximally informative –
sets all literals it introduces to 0 – if it is classified as positive,
but is minimally informative if it is classified as negative.

The optimal query strategy is one that involves proposing
a query that will reduce the size of the version space in half
regardless of how the user classifies it. We define a query
as beingoptimal-in-expectationif we are guaranteed that one
literal will be fixed to either a 0 or a 1 regardless of the clas-
sification provided by the user. Formally, such a query will
have aκ(q)[K] of size 1, therefore, if it is classified as positive,
we can set the literal inκ(q)[K] to 0, otherwise it is set to a 1.

We illustrate a sequence of queries that are sufficient for
the version space of the problem presented as Example 1 to
converge using queries that are optimal-in-expectation.

Example 4 (Optimal-in-Expectation Queries) We want to
converge on the target network from Example 1 (i.e., the only
constraintx1 6= x4 in a network with four variables and the
complete bias of constraints{≤, 6=,≥}). Recall that hav-
ing processed the set of examplesE = {e+

1 , e+
2 , e−3 }, the

unique positive clause inK is Cl = (6=12 ∨ 6=13 ∨ 6=14

∨ 6=23 ∨ 6=24 ∨ 6=34). All other atoms inK are fixed to 0
because ofe+

1 and e+
2 . In the followingK{e

+
1 ,e

+
2 } refers to

(¬ ≥12) ∧ . . . (¬ ≥34) ∧ (¬ ≤12) ∧ . . . ∧ (¬ ≤34). Accord-
ing to this notation, the clausal theoryK built by CONACQ
having processedE is K = K{e+

1 ,e+
2 } ∧ Cl. Table 2 shows



Table 2:Optimal-in-expectationquery generation strategy on Example 4.
e κ(e)[K] f(e) K

e4 = (1, 1, 2, 3) {6=12} + K
{e

+
1

,e
+
2

}
∧ (¬ 6=12) ∧ ( 6=13 ∨ 6=14 ∨ 6=23 ∨ 6=24 ∨ 6=34)

e5 = (2, 1, 1, 3) {6=23} + K
{e

+
1 ,e

+
2 }

∧ (¬ 6=12) ∧ (¬ 6=23) ∧ ( 6=13 ∨ 6=14 ∨ 6=24 ∨ 6=34)

e6 = (2, 3, 1, 1) {6=34} + K
{e

+
1 ,e

+
2 }

∧ (¬ 6=12) ∧ (¬ 6=23) ∧ (¬ 6=34) ∧ ( 6=13 ∨ 6=14 ∨ 6=24)

e7 = (1, 3, 1, 2) {6=13} + K
{e

+
1 ,e

+
2 }

∧ (¬ 6=12) ∧ (¬ 6=23) ∧ (¬ 6=34) ∧ (¬ 6=13) ∧ ( 6=14 ∨ 6=24)

e8 = (2, 1, 3, 1) {6=24} + K
{e

+
1

,e
+
2

}
∧ (¬ 6=12) ∧ (¬ 6=23) ∧ (¬ 6=34) ∧ (¬ 6=13) ∧ (¬ 6=24)∧( 6=14)

a sequence of queries that are optimal-in-expectation on the
version space obtained after the three first examples are pro-
cessed. The goal is to reduceVB(E) to contain a single hy-
pothesis. The first column is a querye generated according to
the optimal-in-expectation strategy. The second column gives
the setκ(e)[K] of constraints still possible in a network of the
version space that could rejecte. The third column is the clas-
sification ofe by the user, and the fourth column is the update
of K. The querye4 is such that6=12 is the only constraint
still possible in the version space that can reject it. Because
it is classified as positive, we are sure6=12 cannot belong to
a network in the version space.CONACQ adds(¬ 6=12) to K

and the literal 6=12 is removed fromCl by unit propagation.
The process repeats withe5, e6 and e7, decreasing the size
of Cl by one literal at a time, and thus reducing the version
space by half. Finally,e8 is the last example required to en-
sure that the version space converges on the target network,
which contains the single constraintx1 6= x4.

Note that at the beginning of this example, the version
spaceVB(E) contained26 possible constraint networks, and
we could converge usingO(log2|VB(E)|) queries, which is
an optimal worst-case[Mitchell, 1982]. N

In Example 4, we always found an examplee with
|κ(e)[K]| = 1, as the optimal-in-expectation strategy requires.
However, redundancy can prevent us from being able to gen-
erate an examplee with a given size for itsκ(e)[K]. For in-
stance, consider the acquisition problem, using a complete
and uniform bias, withL = {≤, 6=,≥} as a library, and with
x1 = x2 = x3 as a target network. After processing an initial
positive example (for instancee+

1 = (2, 2, 2)), the possible
constraints in the version space are≤12,≤13,≤23,≥12,≥13

,≥23. Hence, every further negative examplee has either a
κ(e)[K] of size3 (if no variables equal) or aκ(e)[K] of size2
(if two variables equal). Therefore, no example with aκ(e)[K]

of size1 can be generated. Redundancy prevents us from gen-
erating such examples.

5 Implementing our Strategies
In Section 4.2, we presented two strategies for generating
queries: optimal-in-expectation and optimistic. These two
strategies are characterised by the target numbert of con-
straints still possible in the version space that reject thein-
stancesq they try to produce. However, it may be the case
that, due to redundancy between constraints, there does not
exist any network in the version space that has a solutions
with |κ(s)[K]| = t. (And it is useless to ask classification of
an instance if it is not a solution of some network in the ver-
sion space – see Section 4.1). We then must allow for some

uncertainty in the number of constraints rejecting an instance.
We implement the query generation problem as a two

step process. First, Algorithm 1 tries to find an interpre-
tation I on B such that any solutions of φ(I) is such that
t − ε ≤ |κ(s)[K]| ≤ t + ε, whereε is the variation accepted
on the size of theκ(q)[K] of the queryq we want to generate.
This algorithm takes another input parameter which is the set
L of constraints in whichκ(q)[K] must be included. We will
explain later that this is a way to monitor the ‘direction’ in
which we want to improve our knowledge of the target net-
work of the user. Second, onceI has been found, we take a
solution ofφ(I) as a query. We first present the algorithm,
then we will discuss its complexity and describe how we can
use it to implement our strategies (by choosing the valuest
andε).

Algorithm 1 : QUERY GENERATION PROBLEM

input : B the bias,K the clausal theory,L a set of
literals,t a target size andε the variation

output: An interpretationI
F← K1

foreachbij ∈ B \ {bij | (¬bij) ∈ K} do2

if bij 6∈ L then F← F ∧ (bij)3

elseF← F ∧ (bij ∨ bij)
lower ← max(|L| − t− ε, 1)4

upper← min(|L| − t + ε, |L|)5

F← F ∧ atLeast(lower, L) ∧ atMost(upper, L)6

if Models(F) 6= ∅ then return a model ofF7

elsereturn “inconsistency”8

Algorithm 1 works as follows. It takes as input the tar-
get sizet, the allowed variationε and the setL of literals
on which to concentrate. The idea is to build a formulaF

for which every modelI will satisfy the requirements listed
above.F is initialised toK to guarantee that any model will
correspond to a network in the version space (line 1). For
each literalbij not already negated inK (line 2), if bij does
not belong toL, we add the clause(bij) to F to enforce the
constraintbij to belong to the networkφ(I) for all modelsI
of F (‘ then’ instruction of line 3). Hence, any solutions of
φ(I) will be rejected either by a constraint inL or a constraint
bij already negated inK (so no longer in the version space).
Thus,κ(s)[K] ⊆ L. We now have to force the size ofκ(s)[K]

to be in the right interval. Ifbij belongs toL (‘else’ instruc-
tion of line 3), we add the clause(bij ∨ bij) to F to ensure
that eitherbij or its complementary constraintbij is in the re-



sulting network.1 bij is required because¬bij only expresses
the absence of the constraintbij . ¬bij is not sufficient to en-
forcebij to be violated. We now just add two pseudo-Boolean
constraints that enforce the number of constraints fromL vi-
olated by solutions ofφ(I) to be in the interval[t− ε .. t+ ε].
This is done by forcing at most|L| − t + ε constraints and at
least|L| − t − ε constraints to be satisfied (lines 4-6). The
‘min’ and ‘max’ ensure we avoid trivial cases (no constraint
from L is violated) and to remain under the size ofL. Line 7
searches for a model ofF and returns it. But remember that
redundancy may prevent us from computing a queryq with a
givenκ(q)[K] size (Section 4.2). So, ifε is too small,F can be
unsatisfiable and an inconsistency is returned (line 8).

The following property tells us when the output of Algo-
rithm 1 is guaranteed to lead to a query.

Property 1 (Satisfiability) Given a biasB, a clausal theory
K, and a modelI of K. If K contains all existing redundancy
rules overB, thenφ(I) has solutions.

If not all redundancy rules belong toK, Algorithm 1 can
returnI such thatφ(I) is inconsistent. In such a case, we
extract a conflict set of constraintsS from φ(I) and add the
clause

∨
bij∈S ¬bij to K to avoid repeatedly generating mod-

elsI ′ with this hidden inconsistency inφ(I ′).
The next property tells us that generating a given type of

query can be hard.

Property 2 Given a biasB, a theoryK, a setL of constraints,
a target sizet and a variationε, generating a queryq such
that: κ(q)[K] ⊂ L andt− ε ≤ |κ(q)[K]| ≤ t + ε is NP -hard.

The experimental section will show that despite its com-
plexity, this problem is handled very efficiently by the tech-
nique presented in Algorithm 1. The algorithm can be used
to check if there exists a query rejected by a set of constraints
from the version space of sizet± ε included in a given setL.
The optimal-in-expectation strategy requirest = 1 and op-
timistic requires a largert. In the following, we chose to be
“half-way” optimistic and to fixt to |L|/2. There still remains
the issue of which setL to use and which values ofε to try. ε
is always initialised to 0. ConcerningL, we take the smallest
non-unary positive clause ofK. A positive clause represents
the set of constraints that reject a negative example already
processed by CONACQ. So, we are sure that at least one of
the constraints in such a setL rejects an instance. Choosing
the smallest one increases the chances to quickly converge
on a unary clause. IfK does not contain any such non-unary
clauses we take the set containing all non-fixed literals inK.

Since Algorithm 1 can return an inconsistency when called
for a query, we have to find another set of input parameters on
which to call the algorithm.t is fixed by the strategy, so we
can changeL or ε. If there are several non-unary clauses in
K, we setL to the next positive clause inK (ordered by size).

1Not all libraries of constraints contain the complement of each
constraint. However, the complements may be expressed by a con-
junction of other constraints. For instance, in library≤, 6=,≥, ≤
does not exist but it can be expressed by(≥ ∧ 6=). If no conjunction
can express the complement of a constraint, we can post an approx-
imation of the negation (or nothing). We just lose the guarantee on
the number of constraints inL that will reject the generated query.

If we have tried all the clauses without success, we have to
increaseε. We have two options. The first one, calledclosest,
will look for a query generated with a setL instantiated to
the clause that permits the smallestε. The second one, called
approximate, increasesε by fixed steps. It first tries to find a
setL where a query exists withε = 0.25 · |L|. If not found, it
looks (repeatedly) with0.50 · |L|, 0.75 · |L| and then|L|.

We thus have four policies to generate queries: optimistic
and optimal-in-expectation combined with closest and ap-
proximate: optimistic meanst = L/2 whereas optimal-in-
expectation meanst = 1; closest finds the smallestε whereas
approximate increasesε by steps of 25%.

6 Experimental Results
We implemented CONACQ usingSAT4J2 andChoco3. In
our implementation we exploit redundancy to the largest ex-
tent possible, using both redundancy rules and backbone de-
tection[Bessiereet al., 2005].

Problem Classes. We used a mix of binary and non-binary
problem classes in our experiments. We studied random bi-
nary problems, with and without structure, as well as ac-
quiring a CSP defining the rules of the logic puzzle Sudoku.
CONACQ used a learning bias defined as the set of all edges
in each problem using the library{≤,≥, 6=}. The random
binary problems comprised 14 variables, with a uniform do-
main of size 20. We generated target constraint networks by
randomly selecting a specified number of constraints from
{<,≤, =,≥, >, 6=}, retaining only those that were soluble.
We also considered instances in which we forced some con-
straintpatternsin the constraint graph to assess the effect of
structure[Bessiereet al., 2005]. We did this by selecting the
same constraint relation to form a path in the target network.
Finally, we used a4 × 4 Sudoku as the target network. The
acquisition problem in this case was to learn the rules of Su-
doku from (counter)examples of grid configurations.

As an example of a non-binary problem, we considered
the Schur’s lemma, which is Problem 15 from the CSPLIB4.
In this case, CONACQ used the library of ternary constraints
{ALL DIFF, ALL EQUAL, NOTALL DIFF, NOTALL EQUAL}.

Results. In Table 3 we report averaged results for 100 ex-
periments of each query generation approach on each of the
problem classes we studied. In each case the initial training
set contained a single positive example. In the table the first
column contains a description of the target networks in terms
of number of variables and constraints. We report results for
each of the query generation approaches we studied.Random
is a baseline approach, generating queries entirely at random,
which may produce queries that are redundant with respect
to each other. TheIrredundantapproach generates queries at
random, but only uses those that can provide new information
to refine the version space. Finally,OptimisticandOptimal-
in-expectationrefer to approaches described in Section 5 and

2Available from:http://www.sat4j.org.
3Available from:http://choco.sourceforge.net.
4Available from:http://www.csplib.org.



Table 3: Comparison of the various queries generation approaches on different classes of problems. Time is measured in
milliseconds on a Pentium IV 1.8 GHz processor. We highlightthe smallest number of queries for each problem class in bold.

Random Irredundant Optimistic Optimal-in-expectation
Target Network approximate closest approximate closest

|X| |C| #q time #q time #q time #q time #q time #q time

Random Binary Problem
14 1 48 1 36 1 24 19 24 46 106 12 99 57
14 2 118 1 71 1 55 87 50 204 102 13 97 58
14 4 > 1000 1 729 1 101 237 94 573 81 19 75 63
14 14 > 1000 1 > 1000 1 235 412 219 918 72 23 58 67
14 40 > 1000 1 > 1000 1 298 1314 273 3048 71 27 44 66

Pattern Binary Problem
14 14 > 1000 1 > 1000 1 220 17 197 34 42 45 32 76

Sudoku 4 × 4
16 72 > 1000 1 > 1000 1 178 154 168 186 69 31 57 82

Schur’s lemma
6 6 88 1 27 1 21 167 19 382 24 198 23 432
8 12 298 1 66 1 56 274 51 772 46 218 44 563

for both we consider theapproximateand theclosestvari-
ants. Each column is divided in two parts. The left part is
the number of queries needed to converge on the target net-
work; a limit was set 1000 queries. The right part measures
the average time needed to compute a query.

With the exception of very sparse random problems and
Schur’s Lemma, generating queries withRandomis never
able to converge on the target hypothesis, even with a large
number of queries. TheIrredundantapproach is strictly bet-
ter thanRandomand successfully converged in a number of
cases. However, when the density of the target network in-
creases,Irredundantbegins to struggle to converge.

OptimisticandOptimal-in-expectationare more accurate,
since they always enable us to converge, regardless of the
target network used. Theirclosestvariants require an aver-
age computation time between 2 and 5 times longer than the
approximateones, as to be expected. However, the closest
strategies have the advantage of being able to converge on the
target network by asking up to 40% fewer queries than the ap-
proximate strategies.Optimisticis the best approach on very
sparse networks, but as the number of constraints in the tar-
get network grows,Optimal-in-expectationbecomes the best
strategy, since it requires both fewer queries to converge and
less computation time. The number of queries forOptimal-in-
expectationdecreases when density increases because redun-
dancy rules apply more frequently, deriving more constraints.
Despite this,Optimisticperformance decays when density in-
creases because the probability that a query is classified neg-
ative (unlucky case) grows with density.

7 Related Work

Recently, researchers have become interested in techniques
that can be used to acquire constraint networks in situations
where a precise statement of the constraints of the problem is
not available[Freuder and Wallace, 1998; Rossi and Sperduti,
2004]. The use of version space learning[Mitchell, 1982] as
a basis for constraint acquisition has received most attention
from the constraints community[O’Connellet al., 2003], but
the problem of query generation for acquiring constraint net-
works has not been studied.

8 Conclusion
In this paper we have tackled the question of how a constraint
acquisition system, based on CONACQ, can help improve the
interactive acquisition process by seeking fewer, but better se-
lected, examples to be proposed as queries for classification
by a user. We have provided a theoretical and empirical eval-
uation of query generation strategies for interactive constraint
acquisition, with very positive results.
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