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Abstract egy is one in which, regardless of the classification of the

query, the size of the version space is reduced by half. There
fore, convergence of the version space can be achieved using
a logarithmic number of queries. Furthermore, in the clas-
sic setting, a query can be generated in time polynomial in
the size of the version space. When acquiring constraint net
works, query generation becomes NP-hard. This is further
aggravated by the fact that in constraint acquisition, evtiie
ordering over the hypothesis space is most naturally defined
in terms of the solution space of constraint networks, we usu
ally learn at the constraint level, i.e. a compact reprexemt

of the set of solutions of a hypothesis. Our main contributio

is a number of algorithms for identifying good queries for ac
quiring constraint networks. Our empirical studies shoat th
using our techniques the number of examples required to ac-
1 Introduction quire a constraint network is significantly reduced. Thiskvo

nis relevant to interactive scenarios where users are éctive
volved in the acquisition process.

The modelling and reformulation of constraint net-
works are recognised as important problems. The
task of automatically acquiring a constraint net-
work formulation of a problem from a subset of its
solutions and non-solutions has been presented in
the literature. However, the choice of such a subset
was assumed to be made independently of the ac-
quisition process. We present an approach in which
an interactive acquisition system actively selects a
good set of examples. We show that the number of
examples required to acquire a constraint network
is significantly reduced using our approach.

Constraint Programming (CP) provides a powerful paradig
for solving combinatorial problems. However, the specifica
tion of constraint networks still remains limited to spécia
ists in the field. An approach to automatically acquiringcon 2 Constraint Acquisition using CONACQ
straint networks from examples of their solutions and non-y traint network is defined finit t of variabte
solutions has been proposed [Bessiereet al, 200§. Con- cdonsf(a[n ne WO][ dIS eline |023a (TIEI e) seto ValZ'a IS
straint acquisition was formulated as a concept learnisiy ta ag a (r:nlte()j sbet 0 omra]unlva ues. és Eommon. novl\ll -d h
The classical version space learning paradigvtitchell, edge shared between the learner and the user is called the

1984 was extended so that constraint networks could bé/ocabulary. Furthermore, the learner has at its disposal a

learned efficiently. Constraint networks are much more comgonstraint library from which it can build and compose con-

plex to acquire than simple conjunctive concepts represent straints. The problemis to find an appropriate combinatfon o

in propositional logic. While in conjunctive concepts the fr?gitsrglrmlfotrht?]teligl?giﬁleor;;%tr? wgs?ﬁ(;ﬂggjrﬁgggfgvgr
atomic variables are pairwise independent, in constraitat s : ' y

isfaction there are dependencies amongst them constraint defined from the library is binary. However, the r
In [Bessiereet al, 2008 the choice of the subéet of solu- sults presented here can be easily extended to constréints o

tions and non-solutions to use for learning was assumed to t@%%r arity, and :h'.s Its demoT)s_trated '? ?ur e0>|<pf(_ar|rzer};)s.
made before and independently of the acquisition process. | Inary constraintc;; 1S a binary relation defined on

it Hwat specifies which pairs of values are allowed for varigble
system actively assists in the selection of the set of exantti> %i- :’he pilro:‘jvan?bletﬁri, zj) 'f c_alled the_'f.s_C(()jpeof Cij.-
ples used to acquire the constraint network through the us (')trhmsl atr_lce,u_lm ?r:'o esthe C()I':S,,rag; Speci 'et@i ’tIQ)t
of learner-generated queries. A query is essentially a com! kr_e a |ontcesfsb. an or equta 'Ot. /rblary for.‘strg.'” net-
plete instantiation of values to the variables in the caistr WOrK1S a Set. of binary constraints. Aonstraint biass a
network that the user must classify as either a solution ot no CCllECtionB of binary constraints built from the constraint li-
solution of her ‘target’ network. We show that the number of Prary on the given vocabulary. A constraint netwarls said
examples required to acquire a constraint network is signifit0 be adm|SS|bIefor a biasB ',f folr each 20n,8tra'ntij in C
cantly reduced if queries are selected carefully. there exists a set of constrairts;;, - - -, bj; } in B such that

When acquiring constraint networks computing goodc;; = b}j N---N bfj.

gueries is a hard problem. The classic query generation stra An instancee is a map that assigns to each variablen



X a domain value(z;) in D. Equivalently, an instance
can be regarded as a tuple i*. An instancee satisfiesa
binary constraint;; if the pair (e(z;), e(x;)) is an element
of ¢;;; otherwise we say that;; rejectse. If an instance:
satisfiesevery constraint ir, thene is called asolutionof C;
otherwiseg is called anon-solutiorof C.

Finally, atraining setE/ consists of a seE of instances
and a classification functiofi : £ — {0,1}. An element
e in E such thatf(e) = 1 is calledpositive examplgof-
ten denoted by ™) and an element such thatf(¢) = 0 is
callednegativeexample (often denoted kay'). A constraint
network C is said to beconsistenwith a training sett/ if
every positive example® in E/ is a solution ofC and every
negative example~ in E/ is a non-solution ofZ. We also
say thatC correctly classifieds/. Given a constraint biaB
and a training sek/, the Constraint Acquisition Probleris
to find a constraint network admissible for the biaB and
consistent with the training sét’ .

A SAT-based algorithm, called @vACQ, was presented
in [Bessiereet al, 200§ for acquiring constraint networks

Table 1: An example of the clausal representation built by
CONACQ, where each examplé = (1, x2, v3,4).

Ef | example | clauses added t§

{e} | 1234 = >12 A= >13 Am >14 Am >3 A >o4 A >34
{e3} | 4321)| = <12 A <13 A <14 A <o3 A <og A <za
{es} | (1LLL1) | (F12 V #13 V #1a V Fo3 V F24 V #34)

acquire contains only one constraint, namely# z,; there

is no constraint between any other pair of variables. Forteac
examplee (first column), Table 1 shows the clausal encoding
constructed byCONACQ after e is processed, using the set
(e) of constraints in the biaB that can reject. A

The learning capability of GNACQ can be improved by
exploiting domain-specific knowledgBessiereet al., 2003.
In constraint programming, constraints are often inteethep
dent, e.g. two constraints suchas, and>,3 impose a re-
striction on the relation of any constraint defined on thepsco
(z1,x3). This is a crucial difference with conjunctive con-
cepts where atomic variables are pairwise independent. Be-

based on version spaces. Informally, the version space of &yse of such interdependency, some constraints in a rietwor

constraint acquisition problem is the set of all constraitt

can beredundantc;; is redundant in a network if the con-

works that are admissible for the given vocabulary and biasgtraint network obtained by deletirg; from C has the same
and that are consistent with the given training set. We denotsg|ytions asC. The constraint>;3 is redundant each time

asVs(E/) the version space corresponding to the Iand

the training sefz/. In the SAT-based framework this version

space is encoded in a clausal theéty Each model of the
theoryK is a constraint network ofg (E7).

More formally, if B is the constraint bias, a literal is either

an atomb;; in B, or its negation-b,;. Notice that—b;; is
nota constraint: it merely captures the absence;pin the

acquired network. A clause is a disjunction of literals ¢als

represented as a set of literals), and the clausal theasya

>15 and>o3 are present.

Redundancy must be carefully handled if we want to have
a more accurate idea of which parts of the target network are
not precisely learned. One of the methods to handle redun-
dancy proposed ifBessiereet al., 200, was to addedun-
dancy rulesto K based on the library of constraints used to
build the biasB. For instance, if the library contains the
constraint type<, for which we know thatvz,y, z, (z <

YA (y < 2) — (x < 2), then for any pair of constraints

conjunction of clauses (also represented as a set of cDausegij’ <k in B, we add the Horn clausg;; A <jx—<i in

An interpretationoverB is a map/ that assigns to each con-

straint atorb;; in B a valuel(b,;) in {0,1}. A transforma-
tion is a map¢ that assigns to each interpretatibrover B
the corresponding constraint netwaskl ) defined accordin
to the following conditionc;; € ¢(I) iff c;; = ({b}; € B :
I(b};) = 1}. Aninterpretatior/ is amodelof K if K is true in

I according to the standard propositional semantics. The s

of all models ofK is denotedModels(K). For each instance
e, k(e) denotes the set of all constrairig in B rejectinge.
For each example in the training sett/, the CONACQ al-

gorithm iteratively adds t& a set of clauses so that for any

I € Models(K), the networkp(I) correctly classifies all al-
ready processed examples plusVhen an exampleis pos-
itive, unit clause—b;;} are added td for all b;; € x(e).
When an example is negative, the clausg\/, ... bi;}
is added toK. The resulting theor)K encodes all candi-

K. This form of background knowledge can help the learner
in the acquisition process.

3 The Interactive Acquisition Problem
In reality, there is a cost associated with classifyinganses

%? form a training set (usually because it requires an answer

rom a human user) and, therefore, we should seek to min-
imise the size of training set required to acquire our target
constraint network. Thearget networkis the constraint net-
work Cr expressing the problem the user has in mind. Thatis,
given a vocabulanX, D, Cr is the constraint network such
that an instance oA is a positive example if and only if it is
a solution ofC.

During the learning process the acquisition system has
knowledge that can help characterise what next training ex-
ample would be ideal from the acquisition system’s point of

date networks for the constraint acquisition problem. Thayjew. Thus, the acquisition system can carefully selecbtijo

is, Ve (E7Y) = {¢(m) | m € Models(K)}.

Example 1 (CoNACQ'’s Clausal Representation)We wish

to acquire a constraint network involving 4 variables,

Z1,...,24, With domainsD(z;1) = ... = D(z4) =
{1,2,3,4}. We use a complete and uniform bias, with=
{<,#,>}asalibrary. Thatis, foralll <i < j < 4, B con-

training examples (which we will discuss in Section 4 in more
depth), that is, instances which, depending on how the user
classifies them, can help reduce the expected size of the ver-
sion space as much as possible. We define a query and the
classification assigned to it by the user as follows.

Definition 1 (Queries and Query Classification) A queryq

tains <;;, #;; and>;;. Assume that the network we wish to is an instance onX that is built by the learner. The user



classifies a query using a functiory such thatf(q) = 1if¢  This can be seen by considering the literals that would be
is a solution ofC, and f(¢) = 0 otherwise. added toK by this query. If the query is classified as positive,

Angluin[Angluin, 2004 defines several classes of queries, (€ Clauseg—~ >12), (= >13) and (— #23) will be added to
among which thenembership querig exactly the kind used K Otherwise the clause>1, V >13 V 7#23) will be added.
here. The user is presented with an unlabelled instance, argince we know from examplg that both>1, and>1; must
is asked to classify it. We can now formally define the inter-P€ Set to false, the only extra literal this new example adds i
active constraint acquisition problem. either (— #23) Or (#23) (indeeds(e)(x) = {#23}). Regard-

_— . . i less of the classification @f something new is learned, so
Definition 2 (Interactive Constraint Acquisition Problem) this is an irredundant query N
Given a constraint biaB and an unknown user classification '

function f, thelnteractive Constraint Acquisition Probleisy 4.2 Towards Optimal Query Generation

to find a converging sequen@ = qi, ..., qm Of QUETIES,  Tne tachnique presented in Section 4.1 guarantees that each
that is, a sequence such thag;,, is a query relative tB ey classified query adds something new ts. How-
andVs(E{) whereE; = {q1,...,q:}, and|V(E],)| = 1. ever, different irredundant examples give us differenngai

Note that the sequence of queries is built incrementallyin knowledge. In fact, the gain for a quegyis directly re-
that is, each query;; is built according to the classifica- lated to the size: of «(q)k) and its classificatiorf(q). If
tion of ¢, ..., ¢;. In practice, minimising the length @ is  f(q) = 1, k unary negative clauses will be addedktpthen
impossible because we do not know in advance the answefsliterals will be fixed t00. In terms of @WNACQ, we do
from the user. However, in the remainder of the paper wenot have direct access to the size of the version space sunles
propose techniques that are suitable for interactive irgrn ~ we wish to perform very expensive computation through the
clausal representatidf. But assuming that the models léf
4 Query Generation Strategies are uniformly distributed, fixing: literals divides the number
s . of models by2*. If f(q) = 0, a positive clause of sizé
4.1 Polynomial-time Query Generation is added toK, thus removingl /2 models. We can distin-
In practice, it can be the case that an exampfem the train-  guish between queries that can be regardeopisnistic or
ing set does not bring any more information than that whichasoptimal-in-expectation
has already been provided by the other examples that have An optimistic queryis one that gives us a large gain in
been considered so far. If we allow for queries to be generknowledge when it is classified “in our favour”, but which
ated whose classification is already known based on the cutells us very little when it is classified otherwise. Moresipe
rent representation of the version spaégthen we will ask  jcally, in CoNAcQ the larger the(q) ) of a queryg, the
the user to classify an excessive number of examples for nmore optimistic it is. When classified as positive, such a
improvement in the quality of our representation of the ver-query allows us to sets(q) x| literals to 0. If the query is
sion space of the target network. We exemplify this problentassified as negative we just add a clause of bizg)|.
with a short example. Therefore, an optimistic query is maximally informative —
Example 2 (A Redundant Query) Consider an acquisition sets all literals it introduces to 0 — if it is classified asifies,
problem over the three variables,, x>, z3, with the do- butis minimally informative if it is classified as negative.
mainsD(x1) = D(z2) = D(x3) = {1,2,3,4} using the The optimal query strategy is one that involves proposing
same constraint library as in Example 1. Given the posi-a query that will reduce the size of the version space in half
tive examplee = ((z1,1), (z2,2), (z3,3)), K = = >,  regardless of how the user classifies itve define a query
A= >33 A- >93. Asking the user to classify, = as beingoptimal-in-expectatioif we are guaranteed that one
((x1,1), (z2,2), (x3,4)) is redundant, since all constraints literal will be fixed to either a 0 or a 1 regardless of the clas-
rejecting it are already forbidden bi¢. Then any constraint sification provided by the user. Formally, such a query will
network in the version space accepis A havea(q)k of size 1, therefore, if it is classified as positive,
We propose a simple (poly-time) technique that avoidsVe €an set the literal in(q)( to O, otherwise itis setto a 1.
We illustrate a sequence of queries that are sufficient for

proposing such redundant queries to the user. Fladun- h X f'th bl d |
dant queriegechnique seeks a classification only for an ex-the version space of the problem presented as Example 1 to
onverge using queries that are optimal-in-expectation.

amplee that cannot be classified, given the current represent
tationK of the version space. An examplean be classified Example 4 (Optimal-in-Expectation Queries) We want to

by Vg(E/) if itis either a solution in all networks ifis (E/)  converge on the target network from Example 1 (i.e., the only
or a non-solution in all networks ilg(Ef). e is a solution ~ constraintz; # x4 in a network with four variables and the

in all networks inVg (E7) iff the subsets(e); of x(e), ob-  complete bias of constraints<, #,>}). Recall that hav-
tained by removing fromk(e) all constraints that appear as ing processed the set of examples= {e],es,e5}, the
negated literals irK, is empty. Alternatively,e is a non-  unique positive clause iK is Cl = (#12 V #13 V #14
solution in all networks inVg(EY), if r(e) is a superset v #a3 V #a4 V #34). All other atoms inK are fixed to 0

of an existing clause df. because oty andej. In the followingK, + .+, refers to
Example 3 (An Irredundant Query) Consider again Ex- (= >12) A... (= >34) A (= <12) A ... A (= <34). Accord-
ample 2 in which the positive exampl¢ has been consid- ing to this notation, the clausal theoty built by CoNACQ
ered. The query = {(x1, 1), (z2,2), (z3,2)) isirredundant.  having processed is K = Kief ety A Cl. Table 2 shows



Table 2:Optimal-in-expectatioguery generation strategy on Example 4.

— T ow [TO] S |
es=(1,1,2,3) {#12} + K{ef,e;} A (= #12) A (#13 V #14 V #23 V #24 V #34)
es =(2,1,1,3) [| {F2s} + Kietefy N (= #12) A (= #23) A (#13 V #14 V #24 V #34)
e =(2,3,1,1) || {#Fsa} | + Kt ey NO#F12) NG F) A= #30) A (Fris VA4V #a)
er = (1,3,1,2) {#13} + K{e{r,e;} A (= #12) A (= F23) A(— #34) A (- F#13) A (F1a V #24)
es=(2,1,3,1) [ {#a} | + Kiet.efy N #12) A5 #23) A (2 #34) A (5 #13) A (5 #20)AF14)

a sequence of queries that are optimal-in-expectation en thuncertainty in the number of constraints rejecting an imsta

version space obtained after the three first examples are pro  we implement the query generation problem as a two
cessed. The goal is to redutg(E) to contain a single hy-  step process. First, Algorithm 1 tries to find an interpre-
pothesis. The first column is a quergenerated according to  tation I on B such that any solution of ¢(I) is such that
the optimal-in-expectation strategy. The second columesyi ¢ — ¢ < k(s)i| < t + ¢, wheree is the variation accepted
the s.etn(e)m of constraints still poss[ble ina net.work ofthe gn the size of the:(¢) ) of the queryy we want to generate.
version space that could reject The third column is the clas- - Thjg algorithm takes another input parameter which is the se
sification ofe by the user, and the fourth column is the update| of constraints in whichs(¢) ) must be included. We will

of K. The querye, is such that#,, is the only constraint  eypjain later that this is a way to monitor the ‘direction’ in
still possible in the version space that can reject it. B&®aU yhjch we want to improve our knowledge of the target net-
itis classified as positive, we are sufg, cannot belong o ork of the user. Second, ondehas been found, we take a
a network in the version spac€ONACQ adds(— #12) oK go|ytion of ¢(I) as a query. We first present the algorithm,
and the literal,, is removed fronC'l by unit propagation.  then we will discuss its complexity and describe how we can

The process repeats witly, s and ez, decreasing the size g it to implement our strategies (by choosing the vatues
of Cl by one literal at a time, and thus reducing the versiongnq).

space by half. Finallygg is the last example required to en-
sure that the version space converges on the target network,
which contains the single constraint # x4. Algorithm 1: QUERY GENERATION PROBLEM

Note that at tht_a begﬁinning_ of this exe_lmple, the version input_: B the biasK the clausal theory, a set of
spaceV (F) contained2® possible constraint networks, and literals,  a target size andthe variation

we could converge usin@(log2|Vs(E)|) queries, which is output: An interpretation/
an optimal worst-casgMitchell, 1983. A F K

In Example 4, we always found an examplewith 2 foreachb,; € B\ {b;; | (-b;;) € K} do
|k(e)| = 1, as the optimal-in-expectation strategy requires.3 if b;; ¢ LthenF — F A (b;;)
However, redundancy can prevent us from being able to gen- elseF « F A (b;; V by;)
erate an example with a given size for its«(e) k). For in- 4 lower «— max(|L| —t — ¢, 1)
stance, consider the acquisition problem, using a complete upper « min(|L| —t + ¢, |L|)
and uniform bias, with, = {<,#,>} as alibrary, and with ¢ F — F A atLeast(lower, L) A atMost(upper, L)
r1 = z2 = z3 as atarget network. After processing an initial 7 if Models(F) # () then return a model of
positive example (for instanag™ = (2,2,2)), the possible g elsereturn “inconsistency”
constraints in the version space ate;, <13, <23, >12, >13
,>923. Hence, every further negative exampléas either a

r(€)) of size3 (if no variables equal) or a(e) ) of size2 Algorithm 1 works as follows. It takes as input the tar-
(if two variables equal). Therefore, no example with(a);  get sizet, the allowed variatiore and the seL of literals
of sizel can be generated. Redundancy prevents us from geiyn which to concentrate. The idea is to build a forméla

erating such examples. for which every model will satisfy the requirements listed
_ _ above.F is initialised toK to guarantee that any model will
5 Implementing our Strategies correspond to a network in the version space (line 1). For

In Section 4.2, we presented two strategies for generatinﬁaCh literalb;; not already negated iK (line 2), if b;; does
queries: optimal-in-expectation and optimistic. These tw 1Ot belong tol, we add the clausgb;;) to F to enforce the
strategies are characterised by the target nummrcon- ~ constrainb;; to belong to the network(I) for all models’
straints still possible in the version space that rejectithe  ©f F (‘then’ instruction of line 3). Hence, any solutionof
stances; they try to produce. However, it may be the case®(I) will be rejected t_—:qther by a constraintliror a constraint
that, due to redundancy between constraints, there does npy @lready negated iK (so no longer in the version space).
exist any network in the version space that has a solution |"US,%(s)k) S L. We now have to force the size sfs) |
with | (s)| = . (And it is useless to ask classification of 10 b€ in the right interval. Ib;; belongs ta. (‘elsé instruc-
an instance if it is not a solution of some network in the ver-tion of line 3), we add the clausé;; v b;;) to F to ensure
sion space — see Section 4.1). We then must allow for somihat eithetb;; or its complementary constraiby; is in the re-



sulting network! b;; is required becauseb;; only expresses If we have tried all the clauses without success, we have to
the absence of the constraing. —b;; is not sufficient to en-  increase. We have two options. The first one, calleldsest
forceb;; to be violated. We now just add two pseudo-Booleanwill look for a query generated with a setinstantiated to
constraints that enforce the number of constraints ftow the clause that permits the smallesfThe second one, called
olated by solutions of(7) to be inthe intervalt —e .. t +¢].  approximateincreases by fixed steps. It first tries to find a
This is done by forcing at mo$t| — ¢ + € constraints and at  setL where a query exists with= 0.25 - |L|. If not found, it
least|L| — ¢ — e constraints to be satisfied (lines 4-6). The looks (repeatedly) witkd.50 - |L|, 0.75 - |L| and thenL]|.

‘min’ and ‘max’ ensure we avoid trivial cases (no constraint We thus have four policies to generate queries: optimistic
from L is violated) and to remain under the sizelofLine 7 and optimal-in-expectation combined with closest and ap-
searches for a model 6f and returns it. But remember that proximate: optimistic means = L/2 whereas optimal-in-
redundancy may prevent us from computing a quemnjth a  expectation means= 1; closest finds the smallestvhereas
givenk(q) k) size (Section 4.2). So, ifis too smallF canbe  approximate increasesy steps of 25%.

unsatisfiable and an inconsistency is returned (line 8).

The following property tells us when the output of Algo- 6 Experimental Results

rithm 1 is guaranteed to lead to a query. . .
g query We implemented GNACQ using SAT4J2 andChoco®. In

Property 1 (Satisfiability) Given a biasB, a clausal theory  our implementation we exploit redundancy to the largest ex-
K, and a model of K. If K contains all existing redundancy tent possible, using both redundancy rules and backbone de-
rules overB, theng(I) has solutions. tection[Bessiereet al., 20045.

If not all redundancy rules belong 9, Algorithm 1 can
return ] such thaty(I) is inconsistent. In such a case, we Problem Classes. We used a mix of binary and non-binary
extract a conflict set of constraingsfrom ¢(7) and add the  problem classes in our experiments. We studied random bi-
clause\/y, . ¢ —bi; to K to avoid repeatedly generating mod- nary problems, with and without structure, as well as ac-

els I’ with this hidden inconsistency ia(1"). quiring a CSP defining the rules of the logic puzzle Sudoku.
The next property tells us that generating a given type ofCONACQ used a learning bias defined as the set of all edges
query can be hard. in each problem using the librafy<,>,-}. The random

binary problems comprised 14 variables, with a uniform do-
a target sizet and a variatione, generating a query such main of size 20. We genera_lt_ed target constraint ne_tworks by
that: x(q)q C Landt — e < | ( Y| <t +  is N P-hard randomly selecting a spgmfled number of constraints from
- FAIK] €S IR =t Te © {<,<,=,>,>,+#}, retaining only those that were soluble.
The experimental section will show that despite its com-We also considered instances in which we forced some con-
plexity, this problem is handled very efficiently by the tech straintpatternsin the constraint graph to assess the effect of
nigque presented in Algorithm 1. The algorithm can be usedtructurelBessiereet al., 2005. We did this by selecting the
to check if there exists a query rejected by a set of consgsrain same constraint relation to form a path in the target network
from the version space of sizet e included in a given sdt. Finally, we used a x 4 Sudoku as the target network. The
The optimal-in-expectation strategy requites- 1 and op-  acquisition problem in this case was to learn the rules of Su-
timistic requires a larger. In the following, we chose to be doku from (counter)examples of grid configurations.
“half-way” optimistic and to fixt to |L| /2. There still remains As an example of a non-binary problem, we considered
the issue of which sdt to use and which values efto try. ¢ the Schur’s lemma, which is Problem 15 from the C&PL
is always initialised to 0. Concernirlg we take the smallest In this case, ©NACQ used the library of ternary constraints
non-unary positive clause &f. A positive clause represents {ALLDIFF, ALLEQUAL, NOTALLDIFF, NOTALL EQUAL}.
the set of constraints that reject a negative example ajfread
processed by GNACQ. So, we are sure that at least one of Results
the constraints in such a setrejects an instance. Choosing X
the smallest one increases the chances to quickly conver
on a unary clause. K does not contain any such non-unary
clauses we take the set containing all non-fixed literals.in
Since Algorithm 1 can return an inconsistency when calle
for a query, we have to find another set of input parameters og
which to call the algorithmt is fixed by the strategy, so we
can changé or e. If there are several non-unary clauses in
K, we setl to the next positive clause K (ordered by size).

Property 2 Given a biasB, atheoryK, a setl of constraints,

In Table 3 we report averaged results for 100 ex-

eriments of each query generation approach on each of the

Sgﬁ‘oblem classes we studied. In each case the initial trginin

set contained a single positive example. In the table the firs

olumn contains a description of the target networks in $erm

f number of variables and constraints. We report resuits fo

ach of the query generation approaches we stuiiaddom

is a baseline approach, generating queries entirely abrand

which may produce queries that are redundant with respect

to each other. Theredundantapproach generates queries at
Not all libraries of constraints contain the complement agte random, but only uses those that can provide new information

constraint. However, the complements may be expressed by-a ¢ 0 refine the version space. FinalyptimisticandOptimal-

junction of other constraints. For instance, in librafy#, >, < in-expectatiomefer to approaches described in Section 5 and

does not exist but it can be expressed byA #). If no conjunction — ]

can express the complement of a constraint, we can post amxapp Available from:ht t p: // www. sat 4j . or g.

imation of the negation (or nothing). We just lose the guararmn *Available from:ht t p: / / choco. sour cef or ge. net .

the number of constraints Inthat will reject the generated query. 4pvailable from:ht t p: / / www. cspl i b. org.



Table 3: Comparison of the various queries generation @gbes on different classes of problems. Time is measured in
milliseconds on a Pentium IV 1.8 GHz processor. We highltghtsmallest number of queries for each problem class in bold

Random Irredundant Optimistic Optimal-in-expectation
Target Network approximate closest approximate closest
| X| |C| #q  time #q time | #q time | #gq time | #gq time | #q time
Random Binary Problem
14 1 48 1 36 1 24 19 24 46 | 106 12 99 57
14 2 118 1 71 1 55 87 50 204 | 102 13 97 58
14 4 > 1000 1 729 1| 101 237 94 573 81 19 75 63
14 14 > 1000 1| > 1000 1| 235 412 | 219 918 | 72 23 58 67
14 40 > 1000 1| > 1000 1| 298 1314 | 273 3048| 71 27 44 66
[ I Pattern Binary Problem |
[ 14 14 ][ > 1000 1 ] > 1000 1] 220 171 197 341 42 451 32 76 |
[ I Sudoku 4 x 4 |
[ 16 72 ][ > 1000 1 ] > 1000 171178 1547 168 186 69 31 57 82 |
Schur’s lemma
6 6 88 1 27 1 21 167 19 382 24 198 23 432
8 12 298 1 66 1 56 274 51 772 46 218 44 563

for both we consider thapproximateand theclosestvari- 8 Conclusion

ants. Each column is divided in two parts. The left part is), this paper we have tackled the question of how a constraint

the number of queries needed to converge on the target nelyjisition system, based oEACQ, can help improve the

work; a limit was set 1000 queries. The right part measuregyieractive acquisition process by seeking fewer, buebst-

the average time needed to compute a query. lected, examples to be proposed as queries for classificatio
With the exception of very sparse random problems angyy 5 yser. We have provided a theoretical and empirical eval-

Schur's Lemma, generating queries wigandomis never ;ation of query generation strategies for interactive trairg
able to converge on the target hypothesis, even with a larggequisition, with very positive results.

number of queries. Thieredundantapproach is strictly bet-

ter thanRandomand successfully converged in a number OfAcknowIedgments
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