
A Declarative Approach to View Selection

Modeling

Imene Mami, Zohra Bellahsene, and Remi Coletta

University Montpellier 2, LIRMM, France
{mami,bella,coletta}@lirmm.fr

Abstract. View selection is important in many data-intensive systems
e.g., commercial database and data warehousing systems. Given a database
(or a data warehouse) schema and a query workload, view selection is
to choose an appropriate set of views to be materialized that optimizes
the total query cost, given a limited amount of resource, e.g., storage
space and total view maintenance cost. The view selection problem is
known to be a NP-complete problem. In this paper, we propose a declar-
ative approach that involves a constraint programming technique which
is known to be e�cient for the resolution of NP-complete problems. The
originality of our approach is that it provides a clear separation between
formulation and resolution of the problem. For this purpose, the view
selection problem is modeled as a constraint satisfaction problem in an
easy and declarative way. Then, its resolution is performed automatically
by the constraint solver. Furthermore, our approach is �exible and ex-
tensible, in that it can easily model and handle new constraints and new
heuristic search strategies to reduce the solution space. The performance
results show that our approach outperforms the genetic algorithm which
is known to provide the best trade-o� between quality of solutions in
terms of cost saving and execution time.

keywords: Database design, modeling and management, query process-
ing and optimization, view selection, materialized views.

1 Introduction

Selecting the best set of views to materialize for a given query workload, un-
der certain resource constraints, is one of the most common problems in com-
mercial database management systems and data warehousing systems. In many
applications, and in particular in a data warehouse application, queries need to
be answered over massive amounts of data. Materializing and exploiting previ-
ous query results (views) can be important for e�cient processing of queries by
avoiding re-computation of expensive query operations. Consequently, answering
queries using materialized views is signi�cant for improving query performance.
To support view selection process, di�erent related issues have to be considered.
One of the challenging issues is the view maintenance which is the process of
updating a materialized view. Indeed, whenever a data source is changed, the
materialized views built on it have to be updated (or at least have to be checked

whether some changes have to be propagated or not) in order to compute up-to-
date query results. The view maintenance cost constraint is very important in
the view selection process and cannot be ignored. Otherwise, the cost of the view
maintenance may o�set the performance advantages provided by the view mate-
rialization. Besides the view maintenance issue, each materialized view requires
additional storage space which must be taken into account when deciding which
and how many views to materialize. Hence, there is a need for selecting a set
of views to materialize by taking into account three important features: query
cost, view maintenance cost and storage space. The problem of choosing which
views to materialize that minimize the total query cost given a limited amount
of resource such as total view maintenance cost and storage space is known as
the view selection problem. This is one of the most complex problem solving: it
is known to be a NP-complete problem [11]. Moreover, the number of possible
view combinations to materialize grows exponentially with the number of queries
and with the numbers of columns, join predicates and grouping clauses.

There has been much work on materialized view selection. A naive method
is to apply an algorithm which �nds the optimal set of materialized views by
browsing through all sets of considered views to materialization. However, an
exhaustive search cannot be applied due to the complexity of the problem. The
most e�cient method for deciding which views to be materialized for a given
workload is a randomized method which uses the genetic algorithm [5,18,33].
The main di�erence between the genetic algorithm and previously designed al-
gorithms, i.e., greedy algorithms [7,8,24,28,32] is that it can be applicable on the
large search space. It can �nd a reasonable solution within a relatively short pe-
riod of time by trading executing time for quality. However, there is no guarantee
of performance because the probabilistic behavior of the genetic algorithms does
not insure to �nd the global optimum. Besides, the quality of the solution (i.e.,
the quality of the obtained set of materialized views in terms of cost saving) de-
pends on the set-up of the algorithm as well as the extremely di�cult �ne-tuning
of the algorithm that must be performed during many test runs.

In this paper, we have proposed a constraint programming based approach.
Constraint programming is a general framework which relies on a combination
of techniques that deal with reasoning. It has been applied with success to many
domains such as scheduling, planning, vehicle routing, con�guration, networks
and bioinformatics. More recently, constraint programming has been considered
as bene�cial in data mining setting [25]. Our motivation to use constraint pro-
gramming in solving the view selection problem is that it is known to be e�cient
for the resolution of NP-complete problems and a powerful method for modeling
and solving combinatorial optimization problems [26]. To solve a given problem
by means of constraint programming, the problem must be represented as a con-
straint satisfaction problem. This part of the problem solving is called modeling.
Then, the resolution of the modeled problem is performed automatically by the
constraint solver in the solving stage. The originality of our approach is that it
provides a clear separation between formulation and resolution of the problem.
Indeed, constraint programming is a declarative programming paradigm: instead

of specifying how to solve the problem, the user has only to specify the problem
itself.
Our Goals. Based on the application workload, we select a set of views to
materialize over a database (or data warehouse) schema, such that the cost of
evaluating queries is minimal, subject to space and maintenance cost constraints.
Our goal is to provide better solution quality (i.e., the quality of the obtained
set of materialized views in terms of cost saving) with respect to the currently
most e�cient approach (genetic algorithm). The focus of this study is also to
enable optimal view selection by using constraint programming techniques.
Our Contributions. We propose a novel and e�cient approach to address
the view selection problem. Our approach is based on constraint programming
techniques and consists in modeling in a declarative way the view selection as a
constraint satisfaction problem. We formalize and study the view selection prob-
lem under a limited amount resource, e.g., storage space and view maintenance
cost. The contributions of this paper are based on the extension of our previous
work [23].

� We include further explanations and illustrations through the paper, i.e.,
how the constraint programming can be applied to decide which views to
materialize (see section 3.2).

� We propose a heuristic search strategy to e�ciently search the solution space
(see section 5.2.2). We prove that the time that a constraint solver incurs
for �nding near optimal and optimal solutions is signi�cantly reduced (see
section 6.2).

� We also show the e�ectiveness of our heuristic based search strategy which
improves in several magnitudes the quality of the solution provided by the
previous version [23]. Hence, our approach achieves signi�cant performance
gains compared with the genetic algorithm in terms of cost saving (see section
6.3.1 and 6.3.2). While in our previous work [23] we achieved only a slight
improvement.

� We design new and various experiments to prove the e�ciency of our ap-
proach when we simulate diverse query workloads by generating di�erent
query and update distribution and query complexity. The results show that,
over all the experiments, the performance of our approach is much better
than that of the genetic algorithm (see section 6.3.3 and 6.3.4).

� We perform real experiments on MySQL server in order to measure the real
query runtime (see section 6.4). The results of these experiments have shown
that queries using our proposed views are evaluated faster in comparison with
those found by the genetic algorithm. These experiments also con�rm the
robustness of our approach toward simpli�ed cost models. This requirement
is very important for database optimization as it is based on cost estimations.

Paper Outline The rest of this paper is organized as follows. After review-
ing and classifying prior work in the view selection context, Section 3 contains
the background related to understand the view selection problem and discusses
the settings for the problem. In Section 4, we present the framework that we
have used for representing views to materialize in order to exhibit common sub-
expressions. Section 5 describes how to model the view selection problem as a

constraint satisfaction problem as well as the heuristic search strategy that we
have designed for optimization purpose. Section 6 gives a performance analy-
sis comparing our approach with the genetic algorithm. The paper ends with a
summary and future works in Section 7.

2 Related work

In this section, we review the view selection methods based on what kind of algo-
rithms they use to address the view selection problem. The best-known heuristic
algorithms proposed in literature to tackle the problem of �nding an appropriate
set of views to materialize can be classi�ed into three major groups: deterministic
algorithms, randomized algorithms and hybrid algorithms. For a deeper review
of the existing view selection approaches, we refer the reader to the survey that
we have done in our previous work [21].

Deterministic Algorithms Based MethodsMuch research work on view
selection uses deterministic strategies to address the view selection problem. [27]
is the �rst paper that provides a solution for materializing view indexes which
can be seen as a special case of the materialized views. The solution is based
on A* algorithm. An exhaustive approach is also presented in [16] for �nding
the best set of views to materialize. Nevertheless, an exhaustive search cannot
compute the optimal solution in a reasonable time.

The authors in [9] present and analyze algorithms for view selection in case
of OLAP-style queries. They provide a polynomial-time greedy algorithm to
select a set of views to materialize that minimizes the query cost subject to a
space constraint. However, this approach does not consider the view maintenance
cost. The work in [32] is dealing with more general SQL queries which include
select, project, join, and aggregation operations. A greedy algorithm has been
designed to select a set of materialized views so that the combined query and
view maintenance cost is minimized. However, the view maintenance cost has
been overrated since the maintenance cost for a materialized view is the cost
used for constructing this view. Besides, the view selection is done without any
resource constraint.

A theoretical framework for the view selection problem in data warehousing
setting has been developed in [7]. Their work provides a near-optimal polynomial
time greedy algorithm for the cases of AND view graph, where each query (or
view) has a unique evaluation, and OR view graph, in which any view can
be computed from any one of its related views. For the most general case of
AND-OR view graph which allows a single query to be answered and updated
from multiple paths, they have designed a near-optimal exponential time greedy
algorithm. This approach was extended in [8] to study the view selection under
a maintenance cost constraint.

The view selection has been studied in [19,30,31] under the condition that
the input queries can be answered using exclusively the materialized views. An
exhaustive algorithm has been designed in [31] to select a set of materialized
views while minimizing the combination of the query and view maintenance cost.
This work was extended in [19] by developing greedy algorithms that expand only

a small fraction of the states produced by the exhaustive algorithm. The view
selection problem in [30] is addressed under a space constraint. However, their
view selection algorithm is still in exponential time.

The system designed in [3] runs a greedy enumeration algorithm to pick a set
of views and indexes to materialize by taking into account the space constraint.
Nevertheless, this approach does not take into account the view maintenance
cost.

The authors in [28] demonstrate that using multi-query optimization tech-
niques in conjunction with a greedy heuristic provides signi�cant bene�t. The
greedy heuristic is used to iteratively pick from the AND-OR view graph the set
of views to materialize that minimizes the query cost. This study was extended
in [24] to consider how to optimize the view maintenance cost. However, the
view selection has been studied without any resource constraint.

In order to improve the query performance as well as save the storage space,
the study in [29] aims at materializing only a part of the relations instead of
considering all tuples in the relations. An e�cient algorithm has been designed
which uses clustering techniques to select the set of views to be materialized.

The above methods take a deterministic approach either by exhaustive search
or by some heuristics such as greedy. However, greedy search is subjected to
the known caveats, i.e., sub-optimal solutions may be retained instead of the
globally optimal one since initial solutions in�uence the solution greatly. As a
result, other algorithms have been developed to improve the solutions of the
view selection problem, namely: randomized algorithms and hybrid algorithms
which we describe in next sections.

Randomized Algorithms Based Methods Typical randomized algorithms
are genetic or use simulated annealing. Genetic algorithms generate solutions
using techniques inspired by the natural evolution process such as selection, mu-
tation, and crossover. The search strategy for these algorithms is very similar to
biological evolution. Genetic algorithms start with a random initial population
and generate new populations by random crossover and mutation. The �ttest
individual found is the solution. The algorithms terminate as soon as there is no
further improvement over a period.

A genetic algorithm has been used in [33] to solve the view selection problem.
The materialized views have been selected according to their reduction in the
combined query and view maintenance cost. However, because of the random
characteristic of the genetic algorithm, some solutions can be infeasible. For
example, in the maintenance cost constrained model, when a view is selected,
the bene�t will not only depend on the view itself but also on other views that
are selected. One solution to this problem is to add a penalty value as part of the
�tness function to ensure that infeasible solutions will be discarded. For instance,
a penalty function has been applied in [18] which reduces the �tness each time
the maintenance cost constraint is not satis�ed. This approach minimizes the
query cost given varying upper bounds on the view maintenance cost, assuming
unlimited amount of storage space. In order to let the genetic algorithm converge
faster, they represent the initial population as a favorable con�guration based

on external knowledge about the problem and its solution rather than a random
sampling, i.e., the views with a high query frequency are most likely selected for
materialization.

The approach proposed in [10] use simulated annealing algorithms to address
the view selection problem. These algorithms are motivated by an analogy to
annealing in solids. Simulated Annealing algorithms start with an initial con�gu-
ration, generate new con�gurations by random walk along the di�erent solutions
of the solution space according to a cooling schedule and terminate as soon as
no applicable ones exist or lose all the energy in the system. The view selection
problem is solved in [10] under the case where either the space constraint or
the maintenance cost constraint is considered. Further, randomized search has
been applied to solve two more issues. First, they considered the case where both
space and maintenance constraints exist. Next they applied a randomized search
in the context of dynamic view selection.

In contrast with simulated annealing algorithms, genetic algorithms use a
multi-directional search which allows to e�ciently search the space and �nd bet-
ter solution quality. For more details about this observation we refer the reader to
[18]. Randomized algorithms can be applied to complex problems dealing with
large or even unlimited search spaces. Recent works [13,14] have shown that
randomized search heuristic techniques, in comparison to greedy techniques, are
able to select comparatively better quality views for higher dimensional data
sets. However, they may have a tendency to converge toward local optima due
to their random characteristics. Besides, their successes often depend on the set-
up of the algorithm as well as the extremely di�cult �ne-tuning of algorithm
that must be performed during many test runs.

Hybrid Algorithms Based Methods Hybrid algorithms combine the
strategies of deterministic and randomized algorithms in their search in order to
provide better performance in terms of solution quality. Solutions obtained by
deterministic algorithms are used as initial con�guration for simulated annealing
algorithms or as initial population for genetic algorithms.

A hybrid approach has been applied in [34] which combines heuristic al-
gorithms i.e., greedy algorithms and genetic algorithms to solve three related
problems. The �rst one is to optimize queries. The second one is to choose
the best global processing plan from multiple processing plans for each query.
The third problem is to select materialized views from a given global process-
ing plan. Their experimental results con�rmed that hybrid algorithms provide
better performance than either genetic algorithms or heuristic algorithms i.e.,
greedy algorithms used alone in terms of solution quality. However, their algo-
rithms are more time consuming and may be impractical due to their excessive
computation time.

3 Background

3.1 View Selection Problem and Cost Model

View Selection Problem The problem of view selection that we consider in this
paper is to select a set of views to be materialized in order to speed up a given set

of queries constrained by a storage space capacity and maintenance costs to keep
the materialized views in synchronization with the underlying base relations.

More precisely, the view selection problem can be de�ned as follows: Given a
query workload Q = {q1, q2, ..., qq} and their query frequency fQ = {fq1 , fq2 , ..., fqq}
over a given database (or data warehouse) schema R = {r1, r2, ..., rr}, a set
of updates U = {u1, u2, ..., uu} on base relations and their update frequency
fU = {fur1 , fur2 , ..., furr} and a limited amount of resource, e.g., storage space
Spmax and view maintenance cost limit Umax, the problem is to �nd a set of
views to materialize MV = {v1, v2, ..., vv} such as the cost of evaluating the
query workload is minimal.

Cost Model The cost model assigns an estimated cost e.g., query cost or
maintenance cost to any view (or query) in the search space. In our approach,
we use a cost model similar to [6,20]. Hence, the query and view maintenance
costs are estimated with respect to CPU and IO costs. In this paper we consider
selection-projection-join (SPJ) queries that may involve aggregation and a group
by clause as well. The formulas used for cost operations estimation are given
below with the following assumptions:

� Formulas to estimate the cost of executing every relational operation take
into account its implementation, e.g., we consider sequential scans and nested
loop joins.

� The CPU cost is estimated as the time needed to process each tuple of the
relation e.g., checking selection conditions.

� The IO cost estimation is the time necessary for fetching each tuple of the
relation.

� The costs are estimated according to the size of the involved relations and
in terms of time.

Estimated cost of relational operations.

� Estimated cost of unary operations
• cost(op) = (IO ∗ card ∗ length) + (CPU ∗ card ∗ lengthP) where op is a
selection operation

• cost(op) = (IO ∗ card ∗ log(card) ∗ length) + (CPU ∗ card ∗ log(card) ∗
lengthP) where op is a projection operation

• cost(op) = (IO ∗ card ∗ length)+ (CPU ∗ card ∗ lengthA) where op is an
aggregation operation

� Estimated cost of binary operations
• cost(op) = (IO ∗ lcard ∗ rcard ∗ (llength + rlength)) + (CPU ∗ lcard ∗
rcard ∗ lengthP) where op is a join operation

Where card is the number of tuples of the operand, length is the length
(in bytes) of a tuple, lengthP is the length of columns checked by predicates,
lengthA is the length of the tuples being aggregated, lcard and rcard are respec-
tively the number of tuples of the left and right operands (the same for llength
and rlength).

Fig. 1: Search tree using constraint propagation

3.2 Constraint Programming Notions

Constraint programming has been successfully applied in numerous combina-
torial search problems [26] such as scheduling and timetabling. Constraint pro-
gramming allows to solve combinatorial problems modeled as a Constraint Satis-
faction Problem (CSP). Indeed, the principle idea of constraint programming is
to solve problems by stating constraints which must be satis�ed by the solution.

Formally, a CSP is de�ned by a triplet (VAR;DOM;CST):

� Variables. V AR = {var1, var2, ..., varn} is the set of variables of the problem.
� Domains. DOM = {dvar1 , dvar2 , ..., dvarn} is the set of possible values that
can be assigned to each variable vari.

� Constraints. CST = {c1, c2, ..., cn} is the set of constraints that describes
the relationship between subsets of variables. Formally, a constraint Cijk

between the variables vari, varj , vark is any subset of the possible combi-
nations of values of vari, varj , vark, i.e., Cijk ⊂ dvari × dvarj × dvark . The
subset speci�es the combinations of values that the constraint allows.

A feasible solution to a CSP is an assignment of a value from its domain
to every variable, so that the constraints on these variables are satis�ed. For
optimization purpose some cost expression on these variables takes a maximal
or minimal value.

Most algorithms for solving CSPs usually use constraint propagation to re-
duce the size of the search space to be explored [15]. When a value of a variable is
�xed, constraint propagation is applied to restrict the domains of other variables
whose values are not currently �xed. This means that when a value is assigned to

the current variable, any value in the domain of a future variable which con�icts
with this assignment is removed from the domain.

Let us now illustrate this in the context of view selection problem. Fig-
ure 1 shows the domain reduction of four variables Matv1 , Matv2 , Matv3 and
Matv4 where Matvi denotes for each view vi if it has been materialized or has
not been materialized. It is a binary variable, dMatvi

={0,1} (0: vi has not
been materialized, 1: vi has been materialized). The problem is to select a set
of views to materialize subject to a space and maintenance cost constraints.
The space constraint ensures that the total space occupied by the material-
ized views is less than Spmax. Let as assume that Spmax=3MB, size(v1)=4MB,
size(v2)=2MB, size(v3)=1MB and size(v4)=1MB; where size(vi) is the size of
the view vi. While, the maintenance cost constraint guarantees that the time to
update the set of materialized views is less than Umax. Note that Umax = 3sec,
Mc(v1)=1sec, Mc(v2)=2sec, Mc(v3)=2sec and Mc(v4)=5sec; where Mc(vi) de-
notes the cost of maintaining the view vi.

At the beginning, the initial variable domains, dMatv1
=dMatv2

=dMatv3
=dMatv4

={0,1}, are represented by four columns of white squares. Considering the space
and maintenance cost constraints, it appears thatMatv1 andMatv4

cannot take
the value 1 because otherwise the total space and maintenance cost of the ma-
terialized views will be respectively greater than Spmax and Umax. In the stage

(1), red
Matv1
size(v1)>Spmax

and red
Matv4
Mc(v4)>Umax

�lters respectively the inconsistent

value 1 from dMatv1
and dMatv4

. The deleted values are marked with a black
square. After this stage some variable domains are not reduced to singletons,
the constraint solver takes one of these variables and tries to assign to it each
of the possible values in turn. For example, if the solver selects the view v2 to

be materialized (Matv2
= 1, see stage (2)), red

Matv3
Mc(v2)+Mc(v3)>Umax

eliminates

the value 1 from dMatv3
. Otherwise, if the view v3 is selected to be materialized

(Matv3 = 1, see stage (3)), red
Matv2
Mc(v2)+Mc(v3)>Umax

withdraws the value 1 from

dMatv2
. This enumeration stage leads in our example to two solutions. These

solutions are of various quality or cost.
In addition to providing a rich constraint language to model a problem as a

CSP and techniques such as constraint propagation to reduce the search space by
excluding solutions where the constraints become inconsistent, constraint pro-
gramming o�ers facilities to control the search behavior. This means that search
strategies can be de�ned to decide in which order to explore the created child
nodes in an enumeration tree which can signi�cantly reduce the execution time.
Furthermore, constraint programming provides ways to limit the tree search re-
garding di�erent criteria. For instance performing the search until reaching a
feasible solution in which all constraints are satis�ed, or until reaching a search
time limit or until reaching the optimal solution.

4 Framework for detecting common views

In our approach, the task of a view selection module is to recognize possibilities
of shared views and then to apply a strategy that use constraint programming

(a) AND view graph (b) AND-OR view graph

Fig. 2: DAG representation of two queries q1 and q2

techniques for deciding which views to materialize. The �rst task involves setting
up the search space by identifying common sub-expressions between the di�er-
ent queries of workload. This feature can be exploited for sharing computation,
updates and storage space. The most commonly used frameworks in the context
of representing SQL queries in order to exhibit common sub-expressions are the
AND view graph and the AND-OR view graph. In what follows, we start by
giving a formal de�nition of these representations.

De�nition 4.1 (AND View Graph) An AND view graph is formed from the
union of individual AND-DAG representations of each query. An AND-DAG
representation for a query or a view v is a directed acyclic graph having the base
relations as leaf nodes and the node v as a root node and consists of a set of
operation nodes (Op-Nodes) and equivalence nodes (Eq-Nodes). The Op-nodes
have only Eq-nodes as children and Eq-nodes have only Op-nodes as children.
Each Op-Node corresponds to an algebraic expression (Select-Project-Join) with
possible aggregate function. It represents the expression de�ned by the operand
and its inputs. An Eq-Node represents an expression that is de�ned by the child
operation node and its inputs. Each Eq-Node represents a view that could be
selected for materialization. In an AND-DAG representations, each Op-node opi
has associated with it an AND arc which is indicated by drawing a semicircle,
through the edges (opi,vc1),(opi,vc2),...,(opi,vci). This dependence means that
all the views vc1 , vc2 ,...,vci that are the child nodes of opi are needed to compute
the view vp which is the parent node of opi.

De�nition 4.2 (AND-OR View Graph) A graph is called an AND-OR view
graph if for each query or a view v, there is an AND-OR-DAG representation. All
the possible AND-DAG representations for v, described in the previous de�nition,

become the AND-OR DAG which consists of all possible execution plans for v. If
a parent view vp has outgoing edges to children operation nodes op1,op1,...,opi,
then vp can be computed from any one of its children. This dependence is indi-
cated by drawing a semicircle, called an OR arc. The AND-OR view graph can
be constructed by merging the AND-OR DAG for each query where the common
sub-expressions are represented once.

The DAG representation of the queries q1: P on PS on S and q2: PS on S on
N, are shown in �gure 2. The subscripts P, PS, S and N denote respectively the
base relations of TPC-H benchmark: Part, PartSupp, Supplier and Nation. In
the AND view graph (see �gure 2a), there is only one way to answer or update
a view (or query). Indeed, the views P-PS-S and PS-S-N, corresponding respec-
tively to the result of the query q1 and q2, can be computed or updated on only
one way (it consider optimal query plans):

q1:((P on PS) on S)
q2:((PS on S) on N)

However, all possible ways for evaluating the queries have been considered
in the AND-OR view graph (see �gure 2b). For simplicity, we represent only
two execution plans for the view P-PS-S which is the query result of q1 and one
execution plan for the view PS-S-N that is the query result of q2:

q1:{((P on PS) on S), (P on (PS on S))} // two execution plans
q2:((PS on S) on N) // one execution plan

The remaining execution plans are just indicated in �gure 2b by dashed lines.
In this paper, we use the AND-OR view graph to compactly represent alter-

native query plans and exhibit common subexpression. For more details about
constructing the AND-OR view graph for the queries of workload, we may refer
the reader to [28].

Our motivation to use the AND-OR representation rather than the AND
representation since the latter makes local optimal choices, and may miss global
optimal plans. The choice of materialized views must be done in conjunction
with choosing execution plans for queries. For instance, a plan that seems quite
ine�cient could become the best plan if some intermediate result of the plan is
chosen to be materialized and maintained as the following example demonstrates
it.

Example. Let us consider the views P-PS-S and PS-S-N which are respec-
tively computed by using the plan ((P on PS) on S) and the plan ((PS on S) on N),
as it is shown in �gure 2a. These execution plans represent the optimal plans
for q1 and q2. However, if we choose the alternative plan (P on (PS on S)) to
compute the view P-PS-S, the view PS-S becomes a common subexpression (see
�gure 2b). It can be computed once and used for both queries q1 and q2. This
alternative with sharing of the view PS-S may be the global optimal choice.

In the context of view maintenance, common sub-expressions can be exploited
to �nd an e�cient plan for maintenance of a set of views. Indeed, the view P-PS-

S may also be used for sharing updates and hence reducing the view maintenance
cost.

Note that in the AND-OR view graph, each equivalence node, which rep-
resents a candidate view vi to materialization, has the following parameters
associated to it: Query cost Qc (the evaluation cost of the cheapest embedded
expression AND-DAG for vi), maintenance cost Mc (the cost required for up-
dating vi when the related base relations are changed), reading cost Rc, query
frequency fq (if the equivalence node is a root node) and the update frequency
fu (the frequency of updating vi in response to change to the underlying data).
To each operation node opi, that represents a relational operator, a cost is asso-
ciated with it which is the cost incurred during the computation of the parent
node of opi from the children nodes of opi.

The view selection problem for AND-OR view graphs can be formulated
as follows: Given an AND-OR view graph G, a maximum storage space Spmax

(available space), a total view maintenance limit Umax(available maintenance
time), the problem is to select a set of views to be materialized MV , a subset
of the equivalence nodes of G, that minimizes the total query cost, under the
constraint that the total space occupied by MV is less or equal than Spmax and
the total maintenance time of MV (i.e., view maintenance cost) is less or equal
than Umax.

5 Our view selection approach

Let us now introduce the constraint satisfaction model that we have proposed
for the view selection problem. We then present the search strategy that we have
de�ned within the constraint solver for optimization purpose.

5.1 Modeling View Selection Problem as a Constraint Satisfaction
Problem (CSP)

This section describes how to model the view selection problem as a CSP. Then,
its resolution is supported automatically by the constraint solver. In the follow-
ing, we de�ne all the symbols as well as the variables that we have used in our
constraint satisfaction model.

� G. The AND-OR view graph described in the previous section.
� Q(G). The views which correspond to the query results (the root nodes in
the AND-OR view graph G).

� V (G). The set of views in G which are candidate to materialization.
� U(vi). The set of updates on vi in response to changes of the associated base
relations.

� δ(vi, u): The di�erential result of view vi with respect to update u.
� fq(vi). The access frequency or importance of the associated view (or query)
vi.

� fu(vi). The frequency of propagating the changes of each associated base
relation to the view vi.

� Spmax. The maximum storage space that can be used to view materializa-
tion.

� Umax. The time that can be allotted to keep up to date the materialized
views.

� size(vi). The size of the view vi in terms of number of bytes.

CSP variables and their domains

� Matvi . The materialization variable which denotes for each view vi (equiv-
alence node in the AND-OR view graph G), if it is materialized or not
materialized. It is a binary variable, dMatvi

={0,1} (0: vi is not materialized,
1: vi is materialized).

� Qc(vi). The query cost corresponding to the view vi. The domain is a �nite
subset of N∗ such as dQc(vi) ⊂ N∗.

� Mc(vi). The maintenance cost corresponding to a view vi, where dQc(vi) ⊂
N∗.

The view selection problem can be formulated by the following constraint sat-
isfaction model. It consists in specifying in a declarative way the CSP variables,
their domains, and the constraints that are over them.

minimize
∑

vi∈Q(G)

(
fq(vi) ∗Qc(vi)

)
(1)

subject to
∑

vi∈V (G)

(
Matvi ∗ size(vi)

)
≤ Spmax (2)

∑
vi∈V (G)

(
Matvi ∗ fu(vi) ∗Mc(vi)

)
≤ Umax (3)

In our approach, the main objective is the minimization of the total query
cost. It is computed by summing over the cost of processing each input query
rewritten over the materialized views. Constraints (2) and (3) state that the
views are selected to be materialized under a limited amount of resources. Con-
straint (2) ensures that the total space occupied by the materialized views is less
than or equal to the maximum storage space capacity. Constraint (3) guarantees
that the total maintenance cost of the set of materialized views is less than or
equal to the total view maintenance cost limit.

The query and maintenance costs corresponding to a view are implemented
by using a depth-�rst traversal of the AND-OR view graph. We have been in-
spired by the formulas described in [24,28] to compute these two costs. Note that
the query and maintenance costs corresponding to a base relation are equal to
zero. They may be formulated as follows.

Query cost

Qc(vi) =

{
CCost(vi) if Matvi = 0
Rc(vi) otherwise

(4)

where

CCost(vi) = min
opj∈child(vi)

(
cost(opj) +

∑
vk∈child(opj)

Qc(vk)

)
(5)

Constraint (4) states that the query cost corresponding to each given view
in the AND-OR view graph is the minimum cost paths from the view to its
related base relations or views. The reading cost is considered if the view has
been materialized. Constraint (5) ensures that the minimum cost path is selected
for computing a given view. Each minimum cost path includes all the cost of
executing the operation nodes on the path and the query cost corresponding to
the related bases relations or views.

View maintenance Cost

Mc(vi) =

{
0 if Matvi = 0∑

u∈U(vi)
Mcost(vi, u) otherwise

(6)

where

Mcost(vi, u) = min
opj∈child(vi)

(
cost(opj , u)

+
∑

vk∈child(opj)

UCost(vk, u)

)
(7)

UCost(vk, u) =

{
Mcost(vk, u) if Matvk = 0
δ(vk, u) otherwise

(8)

Constraint (6) guarantees that there is no maintenance cost if the view has
not been materialized. Otherwise, the view maintenance cost is computed by
summing the number of changes in the base relations from which the view is
updated. We assume incremental maintenance to estimate the view maintenance
cost. Therefore, the maintenance cost is the di�erential results of materialized
views given the di�erential (updates) of the bases relations. Constraints (7) and
(8) insure that the best plan with the minimum cost will be selected to maintain
a view. The view maintenance cost is computed similarly to the query cost, but
the cost of each minimum path is composed of all the cost of executing the
operation nodes with respect to the updates on the path and the maintenance
cost corresponding to the related base relations or views.

5.2 Search strategy

A key ingredient of any constraint satisfaction approach is an e�cient search
strategy. As mentioned in Section 3.2, the search is organized as an enumera-
tion tree, where each node corresponds to a subspace of the search. The tree is
progressively constructed by applying series of branching strategies that de�ne
the way to branch from a tree search node. In the constraint solver, branching
has been applied to decision variables. In our constraint satisfaction model, the
materialization variable Matvi is the decision variable since the aim of the view
selection problem is to decide which views to materialize. The most common
branching strategies in the constraint solver are based on the assignment of a se-
lected variable to one or several selected values (one assignment in each branch).
Variable selector de�nes the way to choose a non instantiated variable on which
the next decision will be made. Once the variable has been chosen, the solver
has to compute its value.

5.2.1 The default search strategy The default search strategy is applied
to the decision variables of the solver when no search strategy is speci�ed. The
default strategy selects the decision variables to be instantiated by using the
following branching strategies.

Variable selection heuristic: DomOverWDeg. The strategy selects the variable
Matvi with the smallest ratio r:

r =
dom

w ∗ deg

where dom is the current domain size, deg is the current number of non instan-
tiated constraints involving the variable, and w the sum of the counters of the
failures caused by each constraint from the beginning of the search. To each
variable Mat(vi) are associated, at any time the dom, deg and w values.

Value selection heuristic: MinVal. The variable Matvi which has been chosen
(by applying the variable selection heuristic) is then assigned, in the �rst branch,
to its smallest value:

val = min(dMatvi
)

In the next branch, the value val is removed from the variable domain dMatvi
.

5.2.2 Our own search strategy As mentioned in Section 3.2, constraint pro-
gramming o�ers facilities to control the search behavior. De�ning our own search
strategy is very important since a well-suited search strategy can reduce the num-
ber of expanded nodes and hence the time that the solver takes to �nd solutions
to the view selection problem. In the following we describe the variable and value
selection heuristics that we have de�ned in the search strategy.

Variable and value selection heuristics. Our aim is to minimize the query
cost with a constraint on update time (maintenance cost constraint) and storage
space (space constraint). Low query cost can be obtained by materializing all the
queries of the workload (materializing the root level in the AND-OR view graph).
In this case the view maintenance cost will be high. Low view maintenance cost
can be achieved by leaving all the views virtual and in this case the query cost
will be high (replicating the base relations which are in the leaf level of the AND-
OR view graph). For this matter, our strategy consists in �nding an intermediary
level for each query tree in the AND-OR view graph that optimizes the query
cost without violating the maintenance cost and space constraints. Therefore,
our strategy is based on the notion of level in the AND-OR view graph [4].
For this purpose, each view (equivalence node) is associated to a level, which is
de�ned as follows:

level(baserelation) = 0

level(view) = max
vc∈child(view)

level(vc) + 1

As presented in the code below, we explain how to compute for each query
the relative query cost reduction associated to the di�erent levels in the query
tree.

levels = ∅ //set of levels with their cost saving
for each q in Q(G) do
levelCS = ∅//Map : key = level; val = cost saving
// each view in the query tree is associated to a level
for each l in AllLevels(q) do
space = 0
maint = 0
for each v in AllV iews(l) do
space = space+ size(v)
maint = maint+Mc(v)

end for
if space ≤ SpMax and maint ≤ UMax then
LevelCostSaving(q, l)
//LevelCostSaving is defined as the relative
//query cost reduction when the views associated
// to level l are materialized

else
LevelCostSaving(q, l) = −1

end if
levelCS.put(l, LevelCostSaving)

end for
levels = levels ∪ {levelCS}

end for

In order to guide the search to the optimal solution, the variable selector
has to start by instantiating the materialization variables of the recommended
views. These views are those associated to the levels that minimize the query
cost subject to space and maintenance cost constraints. For this purpose, we sort
the query levels according to their LevelCostSaving in descending order (as it
is presented below). We iterate over the sorted set starting with the levels which
have the highest query cost reduction. We then store each view associated to
these levels in the variable MV .

//sort the levels according to their LevelCostSaving in
//descending order
LSort = SortLevels(levels)
for each ls in LSort do
for each vs in ls do
MV =MV ∪ {Matvs}

end for
end for

Finally, the variable selector will choose the materialization variables to be
instantiated in the order they appear inMV . Once the variable has been chosen,
the value selector will assign the materialization variable to its highest value:
max(dMatvi

). Note that these variable and value heuristics do not inhibit the
solver to compute solutions in which it will start by materializing another set of
views. By de�ning these heuristics in the search strategy, we expect the solver
to converge faster to the optimal solution and avoid browsing a large number of
inferior solutions.

6 Performance Evaluation

In this section, we evaluate the performance of our approach through experimen-
tations over the database schema of the TPC-H benchmark [2]. Our approach
takes as input a set of selection-projection-join (SPJ) queries that may involve
aggregation and group by clause as well. For each query, we consider all possible
execution plans which represent its execution strategies. Then, all the queries
are merged into the same graph (see Section 4) in order to detect the overlapping
and capture the dependencies among them. Our approach produces as output
the set of materialized views. The performance of our approach was evaluated
by measuring the gain in solution quality obtained by the materialized views.

The rest of this section is organized as follows. In Section 6.1, we describe our
experimental setup, and the randomized method used for comparison. In Section
6.2, we study the impact of variable and value selection heuristics on the search
space explored by our approach. In Section 6.3, we �rst report experimental
results when the view selection is decided under resource constraints and we
present the results on performance by increasing the number of queries. Then,

we evaluate the e�ect of the frequency of queries and updates as well as the
query complexity on performance. In Section 6.4, we study the bene�t of using
materialized views to improve query performance. Finally, we summarize the
performance results in Section 6.5.

6.1 Experimental Setup

We have implemented our approach and compared it with a randomized method
i.e., genetic algorithm . The latter was chosen for comparison since it has been
argued that the genetic algorithm provides a good balance between the comput-
ing costs that an algorithm incurs for �nding the materialized views and the gain
to be realized in query processing by materializing these views (see Section 2).
All the algorithms are implemented in Java and all the experiments were carried
out on an Intel Core 2 Duo P8600 CPU @ 2.40 GHz machine running with 3GB
of RAM and Windows XP Professional SP3.

In order to solve the view selection problem as a constraint satisfaction prob-
lem, we have used the latest powerful version of CHOCO [1] (knowing that the
constraint solvers are structured around annual competitions [17]). For the ge-
netic algorithm, we have implemented the one presented in [5] by incorporating
space and maintenance cost constraints into the algorithm and without taking
into account the data placement. In order to let the genetic algorithm con-
verge quickly, we generated an initial population which represents a favorable
view con�guration rather than a random sampling. Favorable view con�guration
such as the views which minimize the query cost without violating space and
maintenance cost constraints are most likely selected for materialization.

To evaluate the performance of view selection methods, we measure the fol-
lowing metric.

1. Solution Quality. The performance of view selection methods was eval-
uated by measuring the solution quality which results from evaluating the
quality of the obtained set of materialized views in terms of cost saving. In
the experimental results, the solution quality denoted by Qs is computed as
follows:

Qs =
WM −

∑
vi∈Q(G)

(
fq(vi) ∗Qc(vi)

)
WM −ALLM

(9)

Where WM is the total query cost obtained using the "WithoutMat" ap-
proach which does not materialize views and always recomputes queries,
AllM is the "AllMat" approach which materializes the result of each query
of the workload. The "WithoutMat" and "AllMat" approaches are used as
a benchmark for our normalized results. As de�ned in Section 5, Qc(vi) is
the query cost corresponding to the view vi and fq(vi) is the frequency of
the view vi.

2. Space constraint. In the case where the view selection problem is decided
under a space constraint, the total space occupied by the materialized views

has to be less than or equal to the maximum storage space Spmax . Similar
to [10] Spmax is computed as a function of the size of the associated query
workload.

Spmax = α ∗ SpAllM (10)

where SpAllM is the size of the whole workload and α is a constant. In our
experiments, we assume the case where the view selection is studied under
restrictive constraints and hence we set α to 10%. We also examine the case
where the constraints are not very tight and at that case α was set to 30%.

3. Maintenance Cost Constraint. In the maintenance cost constrained model,
the total maintenance cost of the set of materialized views has to be less than
or equal to the total view maintenance cost limit Umax. As in previous work
[10], Umax is calculated as a function of the total maintenance cost when all
the queries are materialized.

Umax = β ∗McAllM (11)

where McAllM is the total maintenance cost when the result of each query
of the workload is materialized and β is a constant. The value of β was set
similar to α (see above).

4. Runtime. The Runtime which we consider here is the time that MySQL
server takes to compute query results using materialized view. This metric
has been used in Section 6.4 to measure the running time of the query
workload given a set of materialized views. Thus, the runtime is a good
metric to study the bene�t that materialized views found by our approach
bring to query evaluation. It is also a good indicator for comparing the
performance of our approach to those of the genetic algorithm.

6.2 Impact of variable and value selection heuristics

Here, we study the impact of variable and value selection heuristics that we
have presented in Section 5.2.2, on the search space explored by our approach.
To evaluate this, we attempted to compare the solution quality found by the
constraint solver in the case where (i) the default search strategy is used and
(ii) the variable and value selection heuristics that we have de�ned in Section
5.2.2 are implemented in the search strategy. As mentioned in Section 3.2, the
constraint solver (CHOCO Solver) can �nd a set of feasible solutions in which
all the constraints are satis�ed before reaching the optimal solution. In this case,
we use timeout condition to evaluate the quality of the di�erent solutions found
by the solver. A workload of 20 queries su�ces to illustrate this. α and β, which
de�ne respectively the storage space and the view maintenance cost limits, was
set to 30%. The results are shown in �gure 3. The solver is left to run until
reaching the optimal solution. default search denotes the default search strategy

Fig. 3: Impact of heuristics on the search

(a) β=10% (b) β=30%

(c) α=10% (d) α=30%

Fig. 4: Solution quality while varying the space or the maintenance cost con-
straint

while custom search requires the variable and value selection heuristics that we
have de�ned in the search strategy. We can observe from �gure 3 that the time
that a solver incurs in the presence of custom search for �nding near optimal
and optimal solutions is signi�cantly reduced. This is because the variable and
value selection heuristics that we have de�ned in the search strategy reduce
signi�cantly the search space explored by the CHOCO solver. Consequently, our
approach can provide high solution quality in a short time. In the following
experiments, we use the custom search in the constraint satisfaction model.

6.3 Solution quality: Our approach versus Genetic algorithm

In this section, we examined the e�ectiveness of our approach by measuring
the gain in solution quality obtained by using our approach versus the genetic
algorithm. First, we compare the performance of our approach to those of the
genetic algorithm for various values of storage space and maintenance cost limits
and then we present the impacts on performance by increasing the number of
queries. We also evaluate the solution quality found by view selection methods
with respect to di�erent query and update distributions. Finally, we evaluate
our approach and the genetic algorithm according to query complexity. In order
to allow a fair comparison with the genetic algorithm and since our approach is
able to provide a solution at any time, the CHOCO solver was left to run until
the convergence of the genetic algorithm in the following experiments. More
precisely, the timeout condition was set to the time required by the genetic
algorithm to solve the view selection problem. Since the heuristic based search
strategy allows the solver to �nd a high solution quality very fast (as described
in the previous section) and the genetic algorithm requires an amount of time
to converge, we expect to achieve signi�cant performance gains in comparison
with the genetic algorithm in terms of cost saving.

6.3.1 Resource constraints In this experiment, we �rst examine the impact of
space and maintenance cost constraints on solution quality. For this evaluation,
we consider a workload of 50 queries. Recall that for each query, we consider all
possible execution plans which represent its execution strategies. The query and
update frequencies are at scale 1. The values of α and β which de�ne respectively
the storage space capacity and the view maintenance cost limit are varied from
10% to 100%. All the results are shown in �gure 4.

Figure 4a and Figure 4b investigate respectively the in�uence of space con-
straint on solution quality for each value of α where β was set to 10% and 30%,
while �gure 4c and �gure 4d examine respectively the impact of maintenance
cost constraint on solution quality for each value of β where α was set to 10%
and 30%. We note from these experiments that the quality of the solutions pro-
duced by our approach and genetic algorithm improves when α (see �gure 4a
and �gure 4b) or β (see �gure 4c and �gure 4d) increases. However, there is
no improvement in the solution quality from certain values of α or β because
the maintenance cost constraint or the space constraint becomes the signi�cant
factor.

We also observe from �gure 4 that our approach provides better solution
quality in the case where the view selection is decided under a maintenance cost
constraint (i.e., Qs ≈ 0.8 when α=100% and β=30% in �gure 4b while Qs ≈ 0.7
when β=100% and α=30% in �gure 4d). The reason is the maintenance cost of a

(a) α=10% (b) β=10%

(c) α=10% and β=10% (d) α=30%

(e) β=30% (f) α=30% and β=30%

Fig. 5: Solution quality on large workloads under di�erent resource constraints

view may decrease with selection of other views for materialization. Hence, there
is time to update more views. This non monotonic nature of view maintenance
cost is formally de�ned in [8].

Finally, we conclude from these experiments that our approach outperforms
the genetic algorithm for di�erent values of α and β in terms of cost saving.
Indeed, we can see that our approach generates solutions with cost saving up to
2 times more than the genetic algorithm.

6.3.2 Large query workload Let us now evaluate the performance of our
approach and the one of genetic algorithm on larger query workload. For this
purpose, we generated workloads of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100
queries. The solution quality of our approach and the genetic algorithm is eval-
uated when the view selection is decided under the case where (i) only the space
constraint is considered (see �gure 5a and �gure 5d); (ii) the limiting factor is the
view maintenance cost(see �gure 5b and �gure 5e); and (iii) both maintenance
cost and space constraints exists (see �gure 5c and �gure 5f). On each of these
cases, we consider the case where the resource constraints become very tight (α
and/or β = 10%) as well as the case where we relax them (α and/or β = 30%).

For this collection of experiments, we make the following observations. Our
approach provides in all the cases better performances in terms of the solution
quality while varying the number of queries. For example for a workload of 100
queries where α and β was set to 30% (see �gure 5f), our approach provides
a cost saving of 24% more than the genetic algorithm (QsCSP = 0.512 while
QsGeneticAlgorithm = 0.27). Another remark based on �gure 5 is that in our

qrandom The values of the query frequencies have been

assigned randomly to each query of the workload.

quniform All the queries of the workload have the same query

frequency

qgaussian Queries from certain levels have higher probability

to be queried. The frequency distribution is normal

with µ = 1/2 and σ = 1.

urandom The values of the update frequencies have been

assigned using a random distribution.

uuniform All the views in the AND-OR view graph have the

same update frequency

ugaussian The views which are at the lower level of the

AND-OR view graph have higher probability to be

updated than those which are on the upper level

(guassian distribution with µ = 1/2 and σ = 1).

Table 1: Distribution of query and update frequencies

approach the gain in solution quality tends to be relatively more signi�cant when
we have more resource constraints. For instance, the gain in solution quality
obtained by our approach is up to 10% (in �gure 5a) and 16% (in �gure 5b)
more than the genetic algorithm. While this gain is up to 18% in �gure 5c. This

(a) qrandom, α=10% and β=10% (b) quniform, α=10% and β=10%

(c) qgaussian, α=10% and β=10% (d) qrandom, α=30% and β=30%

(e) quniform, α=30% and β=30% (f) qgaussian, α=30% and β=30%

Fig. 6: Solution quality for di�erent query distributions

is because the idea of constraint programming is to solve problems by stating
constraints and the search space is reduced when there are more constraints.
This result is similar to the case where we relax the constraints (see �gures 5d,
5e and 5f).

6.3.3 Query and update distributions We now study the behavior of view
selection methods while varying the query and update frequencies. For this pur-
pose, we generated di�erent query and update distribution to simulate various
workloads (see table 1). The random distribution assigns random values to query
or update frequencies. While, the uniform distribution simulates cases where all
views (or queries) have equal probability to be queried and updated. The last dis-
tribution which is the gaussian distribution favors views (or queries) from lower
levels in the AND-OR view graph that have higher probability to be queried
or updated. For example, queries of the TPC-H benchmark which contain less
relational operators have higher probability to be queried.

Figures 6 illustrates the quality of the solutions produced by the two meth-
ods for di�erent query distributions (qrandom, quniform, qgaussian). In the �rst
combination, α and β were set to 10% (see �gures 6a, 6b and 6c). While, for
the other combination, α and β were set to 30% (see �gures 6d, 6e and 6f).
The update frequencies are at scale 1. We have made the same experiments for
di�erent update distributions in which the query frequencies was at scale 1 (see
�gure 7).

We can see that the quality of the solutions found by our approach is always
better than those of the genetic algorithm for di�erent query and update distri-
butions. For example, in �gure 6 and in the worst case which arises at the random
workload (qrandom;α=10%;β=10%), our approach provides solutions with a cost
saving of 4% more than the genetic algorithm. While, in the best case which
arises at the gaussian workload (qgaussian;α=30%;β=30%), the cost saving is
35% more than the genetic algorithm.

6.3.4 Query complexity We study the e�ect of query complexity on view
selection performance. More speci�cally, we evolved the number of join operators
NJoinOp

for each query of the workload since the complexity of binary operators
is more important than the one of unary operators. This results to three di�erent
workloads: (i) c_query_01 (NJoinOp

< 2); (ii) c_query_02, (2 ≤ NJoinOp
< 4);

and (iii) c_query_03, (NJoinOp
≥ 4). We run experiments with a workload of

50 queries and we measure the gain in solution quality according to the set of
the obtained materialized views. The frequencies for access and update are at
scale 1. Figure 8 shows the cost saving found by our approach and the genetic
algorithm for both cases: (i) α and β was set to 10% (see �gure 8a) and (ii) α
and β was set to 30% (see �gure 8b). We can see that our approach produce
the best results. Indeed, our approach provides a cost saving up to 27.2% when
α and β was set to 10% and 63.3% when α and β was set to 30%. While the
genetic algorithm achieve a cost saving of only 12.9% when α and β was set to
10% and 29.3% when α and β was set to 30%. We also observe, in the graphic

(a) urandom, α=10% and β=10% (b) uuniform, α=10% and β=10%

(c) ugaussian, α=10% and β=10% (d) urandom, α=30% and β=30%

(e) uuniform, α=30% and β=30% (f) ugaussian, α=30% and β=30%

Fig. 7: Solution quality for di�erent update distributions

depicted in �gure 8, that the quality of the solutions produced by our approach
slightly decrease with an increasing complexity of the query workload. Hence,
we con�rm that the performance of our approach is not signi�cantly in�uenced
by an increasing of query complexity.

(a) α=10% and β=10% (b) α=30% and β=30%

Fig. 8: Query complexity on view selection performance

6.4 Query performance using materialized views

In this section, we study the bene�t of using materialized views to improve
query performance. For a workload involving 10, 20, 30, 40, 50, 60, 70, 80, 90
and 100 queries, we materialized the views proposed by our approach and the
genetic algorithm. Then, we run the query workload using these views. We also
consider the two basic strategies that we have de�ned above: the "WithoutMat"
and the "AllMat" approaches. Recall that the "WithoutMat" approach does not
materialize views and always recomputes queries. While the "AllMat" approach
materializes the result of each query without any resource constraint. The fre-
quencies for access and update are at scale 1. In order to measure the query
runtime, the experiments were performed on MySQL server through JDBC in-
terface. The query runtime is expressed in seconds (sec).

(a) α=10% and β=10% (b) α=30% and β=30%

Fig. 9: Query runtime using materialized views

The results are shown in �gure 9. The view selection has been decided under
space and maintenance cost constraints: (i) α and β was set to 10% in �gure 9a
and (ii) α and β was set to 30% in �gure 9b. The results indicate that the bene�t

of using materialized views is signi�cant. Indeed, queries using our proposed
views or those of the genetic algorithm are evaluated faster in comparison with
the "WithoutMat" approach. We can also see that our approach provides the
better quality of the obtained set of materialized views. For instance as can be
seen in �gure 9b, when comparing the runtimes of the workload of 100 queries,
our approach requires ≈ 16seconds while genetic algorithm takes ≈ 24seconds.
According to the equation (9) in section 6.1,

QsCSP = 0.518 =
32.86(WM)− 16.297(CSP)

32.86(WM)− 0.892(ALLM)
(12)

QsGeneticAlgorithm = 0.273 =
32.86(WM)− 24.126(GeneticAlgorithm)

32.86(WM)− 0.892(ALLM)
(13)

This result con�rms our expectation in section 6.3.2 that for a workload of 100
queries where α and β was set to 30%, our approach provides a cost saving of 24%
more than the genetic algorithm (QsCSP = 0.512 while QsGeneticAlgorithm =
0.27). Another important remark is that our approach is able to provide materi-
alized views that produce higher cost savings even if the underlying cost model
is simpli�ed (see section 3). Thus, our approach is robust toward simpli�ed cost
models which is an important requirement for a practical solution to the view
selection problem.

6.5 Concluding remarks

Our experiments show that our approach outperforms the genetic algorithm in
many cases. We achieve impressive cost saving factors when (i) we study the
view selection under resource constraints, (ii) we increase the number of queries
and (iii) we simulate various query workloads. We also show the e�ciency of our
approach when we run the query workloads on MySQL server i.e., queries using
our proposed views are evaluated faster in comparison with those found by the
genetic algorithm. The experiment results con�rm our expectation that our own
search strategy allows our approach to achieve signi�cant performance gains in
comparison with the genetic algorithm.

7 Conclusion

The most e�cient algorithm proposed so far for deciding which views to mate-
rialize is the genetic algorithm that provides the best trade-o� between quality
of solutions and execution time. However, there is no guarantee of performance
because the probabilistic behavior of the genetic algorithms does not insure to
�nd the global optimum. Besides, the quality of the solution depends on the
set-up of the algorithm as well as the extremely di�cult �ne-tuning of algorithm
that must be performed during many test runs.

In this paper, we proposed a declarative approach which simply modeled the
view selection problem as a CSP without the need of being interested in the
way the problem is solved. Indeed, its resolution was supported automatically
by the constraint solver. We also designed a heuristic search strategy within the
constraint solver to reduce the solution space and hence the execution time. The
experiment results con�rm our expectation that our own search strategy allows

our approach to achieve signi�cant performance gains in comparison with the
genetic algorithm.

More recently, the view selection has been investigated in data placement
in a distributed setting [5]. For this purpose, we have extended our constraint
satisfaction model to deal with the distributed setting. The formulation of the
view selection problem in a distributed context can be found in our recent work
[22]. As a future work, we are planning to solve the view selection problem in
a large scale distributed environments such as peer to peer or cloud computing
environments.

In our proposals, all queries are assumed to be known and given in advance
and there is a frequency of occurrence associated with each query. One line of
recent research [12] has explored the problem of identifying subject area speci�c
queries from which frequent queries are selected. As a result, they obtain signi�-
cant performance improvements when processing queries. However, the proposed
approach is based on a given workload and chooses accordingly the set of views
to materialize. In order to respond to the changes in the query workload over
time, views need to be selected continuously. Consequently, the dynamic view
selection issue will be a part of our planned future work while studying the view
selection in large scale distributed environments.

References

1. Choco, open-source software for constraint satisfaction problems.
http://www.emn.fr/z-info/choco-solver.

2. The TPC benchmark H (TPC-H). http://www.tpc.org/tpch/spec/tpch2.14.3.pdf.
3. Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection

of materialized views and indexes in sql databases. In VLDB, pages 496�505, Cairo,
Egypt, 2000.

4. Xavier Baril and Zohra Bellahsene. Selection of materialized views: A cost-based
approach. In CAiSE, pages 665�680, Klagenfurt, Austria, 2003.

5. Leonardo Weiss F. Chaves, Erik Buchmann, Fabian Hueske, and Klemens Böhm.
Towards materialized view selection for distributed databases. In Proceedings of
the 12th International Conference on Extending Database Technology: Advances
in Database Technology, EDBT '09, pages 1088�1099, New York, NY, USA, 2009.
ACM.

6. Weimin Du, Ravi Krishnamurthy, and Ming chien Shan. Query optimization in
heterogeneous dbms. In In Proc. of VLDB, pp 277�91, ancouver, British Columbia,
Canada, 1992.

7. Himanshu Gupta. Selection of views to materialize in a data warehouse. In ICDT,
pages 98�112, Delphi, Greece, 1997.

8. Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize
under a maintenance cost constraint. In ICDT, pages 453�470, Jerusalem, Israel,
1999.

9. Venky Harinarayan, Anand Rajaraman, and Je�rey D. Ullman. Implementing data
cubes e�ciently. In SIGMOD Conference, pages 205�216, Montreal, Canada, 1996.

10. Panos Kalnis, Nikos Mamoulis, and Dimitris Papadias. View selection using ran-
domized search. Data Knowl. Eng., 42(1):89�111, 2002.

11. Howard J. Karlo� and Milena Mihail. On the complexity of the view-selection
problem. In PODS, pages 167�173, Philadephia, Pennsylvania, USA, 1999.

12. T. V. Vijay Kumar, Gaurav Dubey, and Archana Singh. Frequent queries selection
for view materialization. In ACITY (2), pages 521�530, 2012.

13. T. V. Vijay Kumar and Santosh Kumar. Materialized view selection using genetic
algorithm. In IC3, pages 225�237, 2012.

14. T. V. Vijay Kumar and Santosh Kumar. Materialized view selection using iterative
improvement. In ACITY (3), pages 205�213, 2012.

15. Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Mag-
azine, 13(1):32�44, 1992.

16. Wilburt Labio, Dallan Quass, and Brad Adelberg. Physical database design for
data warehouses. In Proceedings of the Thirteenth International Conference on
Data Engineering, ICDE '97, pages 277�288, Washington, DC, USA, 1997. IEEE
Computer Society.

17. Christophe Lecoutre, Olivier Roussel, and Marc R. C. van Dongen. Promoting
robust black-box solvers through competitions. Constraints, 15(3):317�326, 2010.

18. Minsoo Lee and Joachim Hammer. Speeding up materialized view selection in
data warehouses using a randomized algorithm. Int. J. Cooperative Inf. Syst.,
10(3):327�353, 2001.

19. Spyros Ligoudistianos, Dimitri Theodoratos, and Timos K. Sellis. Experimental
evaluation of data warehouse con�guration algorithms. In DEXA Workshop, pages
218�223, Vienna, Austria, 1998.

20. Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance
evaluation for local queries. In Proceedings of the 1986 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD '86, pages 84�95, New York,
NY, USA, 1986. ACM.

21. Imene Mami and Zohra Bellahsene. A survey of view selection methods. SIGMOD
Record, 41(1):20�29, 2012.

22. Imene Mami, Zohra Bellahsene, and Remi Coletta. View selection under multiple
resource constraints in a distributed context. In DEXA (2), pages 281�296, Vienna,
Austria, 2012.

23. Imene Mami, Remi Coletta, and Zhora Bellahsene. Modeling view selection as a
constraint satisfaction problem. In DEXA (2), pages 396�410, Toulouse, France,
2011.

24. Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. Material-
ized view selection and maintenance using multi-query optimization. In SIGMOD
Conference, pages 307�318, Santa Barbara, California, USA, 2001.

25. Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming for
itemset mining. In KDD, pages 204�212, Las Vegas, USA, 2008.

26. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Arti�cial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

27. Nick Roussopoulos. The logical access path schema of a database. IEEE Trans.
Software Eng., 8(6):563�573, 1982.

28. Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. E�cient and ex-
tensible algorithms for multi query optimization. In SIGMOD Conference, pages
249�260, Dallas, Texas, USA, 2000.

29. Jong-Soo Sohn, Jin-Hyuk Yang, and In-Jeong Chung. Improved view selection
algorithm in data warehouse. In ICITCS, pages 921�928, 2012.

30. Dimitri Theodoratos, Spyros Ligoudistianos, and Timos K. Sellis. View selection
for designing the global data warehouse. Data Knowl. Eng., 39(3):219�240, 2001.

31. Dimitri Theodoratos and Timos K. Sellis. Data warehouse con�guration. In VLDB,
pages 126�135, Athens, Greece, 1997.

32. Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materialized view
design in data warehousing environment. In VLDB, pages 136�145, Athens, Greece,
1997.

33. Chuan Zhang and Jian Yang. Genetic algorithm for materialized view selection in
data warehouse environments. In DaWaK, pages 116�125, Florence, Italy, 1999.

34. Chuan Zhang, Xin Yao, and Jian Yang. An evolutionary approach to materialized
views selection in a data warehouse environment. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 31(3):282�294, 2001.

