
A Tactic Language for the System Coq

David Delahaye?

Project Coq
INRIA-Rocquencourt??

Abstract. We propose a new tactic language for the system Coq, which
is intended to enrich the current tactic combinators (tacticals). This lan-
guage is based on a functional core with recursors and matching oper-
ators for Coq terms but also for proof contexts. It can be used directly
in proof scripts or in toplevel de�nitions (tactic de�nitions). We show
that the implementation of this language involves considerable changes
in the interpretation of proof scripts, essentially due to the matching op-
erators. We give some examples which solve small proof parts locally and
some others which deal with non-trivial problems. Finally, we discuss the
status of this meta-language with respect to the Coq language and the
implementation language of Coq.

1 Introduction

In a proof1 system, we can generally distinguish between two kinds of languages:
a proof language, which corresponds to basic or more elaborate primitives and
a tactic language, which allows the user to write his/her own proof schemes.
In this paper, we do not deal with the �rst kind of language which has been
already extensively studied by, for example, John Harrison in a comparative
way ([7]), Don Syme with a declarative prover ([11]) and Yann Coscoy with a
"natural" translation of proofs ([2]). Here, we focus on the tactic language which
is essentially the criterion for assessing the power of automation of a system (to
be distinguished from automation which is related to provided tactics). In some
systems, the tactic language does not exist and the automation has to be quite
powerful to compensate for this lack. For example, this is the case for PVS ([10])
where nothing is given to extend the system. Also, Mizar ([12]), one of the oldest
provers, is based on a unique tactic by and it is impossible to automate some
parts of the proofs or more generally, some logic theories.

The tactic language must be Turing-complete, which is to say that we must
be able to build proof strategies without any limitation imposed by the language
itself. Indeed, in general, this language is nothing other than the implementation
language of the prover. The choice of such a language has several consequences
that must be taken into account:
? David.Delahaye@inria.fr, http://coq.inria.fr/�delahaye/.

?? INRIA-Rocquencourt, domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex,
France.

1 The word "proof" is rather overloaded and can be used in several ways. Here, we
use "proof" for a script to be presented to a machine for checking.

� the prover developers have to provide the means to prevent possible incon-
sistencies arising from user tactics. This can be done in various ways. For
example, in LCF ([6]) and in HOL ([5]), this is done by means of an abstract
data type and only operations (which are supposed to be safe) given by this
type can be used. In Coq ([1]), the tactics are not constrained, it is the type-
checker which, as a Cerberus, veri�es that the term, built by the tactic, is of
the theorem type we want to prove.

� the user has to learn another language which is, in general, quite di�erent
from the proof language. So, it is important to consider how much time the
user is ready to spend on this task which may be rather di�cult or at least,
tedious.

� the language must have a complete debugger because �nding errors in tactic
code is much harder than in proof scripts developed in the proof language,
where the system is supposed to assist in locating errors.

� the proof system must have a clear and a well documented code, especially
for the proof machine part. The user must be able to easily and quickly
identify the necessary primitives or he/she could easily get lost in all the
�les and simply give up.

Thus, we can notice that writing tactics in a full programmable language
involves many constraints for developers and more especially for users. In fact,
we must recognize that the procedure is not really easy but we have no alternative
if we want to avoid restrictions on tactics. However, we can wonder if this method
is suitable for every case. For example, if we want a tactic which can solve linear
equations on an Abelian �eld, it seems to be a non-trivial problem which requires
a complete programming language. But, now suppose that we want to show that
the set of natural numbers has more than two elements. This can be expressed
as follows:

` (∃x : N.∃y : N.∀z : N.x = z ∨ y = z) → ⊥

To show this lemma, we introduce the left-hand member of the conclusion
(say H) and eliminate it, then we introduce the witness (say a) and the instan-
tiated hypothesis H (say Ha), �nally, we eliminate Ha to introduce the second
witness (say b) and the instantiation of Ha (say Hb). At this point, we have the
following sequent:

..., Hb : ∀z : N.a = z ∨ b = z ` ⊥

It remains to eliminate Hb with any three natural numbers (say 0, 1 and 2).
Finally, we have three equalities (that we introduce) with a or b as the left-
hand member and 0, 1 or 2 as the right-hand member. To conclude in each
case, it is simply necessary to apply the transitivity of the equality between two
equations with the same left-hand member, then we obtain an equality between
two distinct natural numbers which validates the contradiction (depending on
the prover, this last step must be detailled or not).

Of course, the length of this proof depends on the automation of the prover
used. For example, in PVS, it may be imagined that applying the lemma of
transitivity is quite useless and assert would solve all the goals generated by the
eliminations of Hb. In Coq, the proof would be done exactly in this way and we
may want to automate the last part of the proof where we use the transitivity.
Unfortunately, even if this automation seems to be quite easy to realize, the
current tactic combinators (tacticals) are not powerful enough to make it. So,
the user has two choices: to do the proof by hand or to write his/her own tactic,
in Objective Caml2 ([8]), which will be used only for this lemma.

Thus, it is clear that a large and complete programming language is not a
good choice to automate small parts of proofs. This is essentially due to the fact
that the interfacing is too heavy with respect to the result the user wants to
obtain. Moreover, the need for small automations must not only be seen as a
lack of automation of the prover because tactics are intended to solve general
problems and sometimes, user problems are too speci�c to be covered by primi-
tive tactics. Thus, it seems that there is a gap between the proof language and
the language used for writing tactics.

Here, we want to propose, in the context of Coq, the idea of an intermediate
language, integrated in the prover and less powerful than the Turing-complete
language for writing tactics, which is able to deal with small parts of proofs we
may want to automate locally. This language is intended to be a kind of middle-
way where it is possible to better enjoy both the usual language of Coq and some
features of the full programmable language.

2 Presentation of the language

2.1 De�nition

Currently, the only way to combine the primitive tactics is to use prede�ned
operators called tacticals. These are listed in table 1.

As seen previously, no tactical given in table 1 seems to be suitable for au-
tomating our small proof. In fact, we would like to do some pattern matchings
on terms and even better, on proof contexts. So, the idea is to provide a small
functional core with recursion to have some high order structures and with pat-
tern matching operators both for terms as well as for proof contexts to handle
the proof process. The syntax of this language, we call Ltac, is given, using a
BNF-like notation, by the entry expr in table 2, where the entries nat, ident,
term and primitive_tactic represent respectively the natural numbers, the au-
thorized identi�cators, Coq's terms and all the basic tactics. In term, there can
be speci�c variables like ?n, where n is a nat or ?, which are metavariables for
pattern matching. ?n allows us to keep instantiations and to make constraints
whereas ? shows that we are not interested in what will be matched. We can
also use this language in toplevel de�nitions (Tactic De�nition) for later calls.

2 This is the implementation language of Coq.

tac1;tac2 Applies tac1 and tac2 to all the subgoals
tac;[tac1|...|taci|...|tacn] Applies tac and taci to the i-th subgoal
tac1 Orelse tac2 Applies tac1 or tac2 if tac1 fails
Do n tac Applies tac n times
Repeat tac Applies tac until it fails
Try tac Applies tac and does not fail if tac fails
First [tac1|...|taci|...|tacn] Apply the �rst taci which does not fail
Solve [tac1|...|taci|...|tacn] Apply the �rst taci which solves
Idtac Leaves the goal unchanged
Fail Always fails

Table 1. Coq's tacticals

2.2 Semantics

We do not wish to give a formal semantic here. It is not our main aim and would
be premature. We can just say that in the context of a reduction semantics (small
steps), the interpretation is almost usual. This language can give expressions
which are tactics (to apply to a goal) and others which represent terms, for
example. Thus, we must evaluate the expressions in an optional environment
which is a possible goal. This environment is used for Match Context which
makes non-linear �rst order uni�cation as well as Match. Match Context has a
very speci�c behavior. It tries to match the goal with a pattern (hypotheses are
on the left of |- and conclusion is on the right) and if the right-hand member
is a tactic expression which fails then it tries another matching with the same
pattern. This mechanism allows powerful backtrackings and we will discuss an
example of use below.

2.3 Typechecking

This language is not yet typechecked; although this might be useful in the future
for at least two reasons. First, we have some ambiguities which must be solved
by syntactic means and a consequence is the presence of a quote to mark the
application of Ltac (see table 2). Another reason for building a typechecker is
that we want to detect statically the free variables in a proof script. Experience of
proof maintainability shows that proofs are quite sensitive to naming conventions
and the idea is mainly to watch the names of hypotheses. Thus, typechecking
will be an interesting and original feature of the language and will allow robust
scripts to be built.

2.4 Implementation

To implement Ltac, we had to make some choices regarding the existing code.
First, we decided to keep an interpreted language. We are not really convinced

expr ::= expr ; expr
| expr ; [(expr |)∗ expr]
| atom

atom ::= Fun input_fun+ -> expr
| Let (let_clause And)∗ rec_clause In expr
| Rec rec_clause
| Rec (rec_clause And)∗ rec_clause In expr
| Match Context With (context_rule |)∗ context_rule
| Match term With (match_rule |)∗ match_rule
| '(expr)
| '(expr expr+)
| atom Orelse atom
| Do (int | ident) atom
| Repeat atom
| Try atom
| First [(expr |)∗ expr]
| Solve [(expr |)∗ expr]
| Idtac
| Fail
| primitive_tactic
| arg

input_fun ::= ident
| ()

let_clause ::= ident = expr

rec_clause ::= ident input_fun+ -> expr

context_rule ::= [(context_hyps ;)∗ context_hyps |- term] -> expr
| [|- term] -> expr
| _ -> expr

context_hyps ::= ident : term
| _ : term

match_rule ::= [term] -> expr
| _ -> expr

arg ::= ()
| nat
| ident
| term

Table 2. De�nition of Ltac

that we could save a signi�cant amount of time in the execution of compiled
scripts, in general run once, especially if we consider the cost of compilation time.
Compared to the previous interpretation core3, we have made great changes in
the main function which executes the tactics, by, for example, adding the new
structures we saw previously (see table 2). Also, to be able to deal with substitu-
tions coming from abstracted variables (Fun) and metavariables (Match Context,
Match), we interpret the tactic arguments in the main function. The tactics now
take already interpreted arguments rather than AST's (Abstract Syntax Trees)
coming from syntactical analysis. To be extendable, it is possible to dynamically
associate interpretation functions to speci�c AST nodes.

3 Examples

A �rst natural example is the one we discussed in the introduction. We want
to show that the set of natural numbers has more than two elements. With
the current tactic language of Coq, the proof could look like the script given in
table 3. As can be seen, after the three inductions (Elim), we have eight cases
which can be solved by eight very similar instructions which are possibly di�erent
in the equality we cut and the term used to apply transitivity. As we know that
this equality, say x=y, is such that there exist the equalities a=x and a=y in
the hypotheses, it would be easy to automate this part provided that we can
handle the proof context. This can be done by using Ltac and especially, the
Match Context structure. Table 4 shows the corresponding script. We can notice
that the proof is considerably shorter4 and this is increasingly true when we add
cases (with three, four , ... elements). Moreover, the work is much less tedious
than in the case of the proof by hand and the script can be written without the
help of the interactive toplevel loop. This results in a proof style which is much
more batch mode like.

Another example, a little less trivial, is the problem of list permutation on
closed lists. Indeed, we may be faced with this problem when we want to show
that a list is sorted and it is quite annoying to do the proof by hand when we
know it can be done automatically. To use Objective Caml5 is certainly quite
excessive compared to the di�culty of what we want to solve and Ltac seems to
be much more appropriate. To do this, �rst, we de�ne the permutation predicate
as shown in table 5, where � represents the append operation on lists. Next, we
can write naturally the tactic by using Ltac and the result can be seen in table 6.
We can notice that we use two toplevel de�nitions PermutProve and Permut.
The function to be called is PermutProve which is intended to solve goals of the
form ...|-(permut l1 l2), where l1 and l2 are closed list expressions. PermutProve
computes the lengths of the two lists and calls Permut with the length if the two
lists have the same length. Permut works as expected. If the two lists are equal, it

3 Of the last release V6.3.1.
4 In this respect, we can see that the non-linear pattern matching solves the problem
in one pattern instead of two successive patterns.

5 This is the full programmable language to write tactics in Coq.

Lemma card_nat: �(EX x:nat|(EX y:nat|(z:nat)(x=z)\/(y=z))).
Proof.

Red;Intro H.
Elim H;Intros a Ha.
Elim Ha;Intros b Hb.
Elim (Hb (0));Elim (Hb (1));Elim (Hb (2));Intros.
Cut (0)=(1);[Discriminate|Apply trans_equal with a;Auto].
Cut (0)=(1);[Discriminate|Apply trans_equal with a;Auto].
Cut (0)=(2);[Discriminate|Apply trans_equal with a;Auto].
Cut (1)=(2);[Discriminate|Apply trans_equal with b;Auto].
Cut (1)=(2);[Discriminate|Apply trans_equal with a;Auto].
Cut (0)=(2);[Discriminate|Apply trans_equal with b;Auto].
Cut (0)=(1);[Discriminate|Apply trans_equal with b;Auto].
Cut (0)=(1);[Discriminate|Apply trans_equal with b;Auto].

Save.

Table 3. A proof on cardinality of natural numbers in Coq

concludes. Otherwise, if the lists have identical �rst elements, it applies Permut
on the tail of the lists. Finally, if the lists have di�erent �rst elements, it puts the
�rst element of one of the lists (here the second one which appears in the permut
predicate) at the end if that is possible, i.e., if the new �rst element has been at
this place previously. To verify that all rotations have been done for a list, we use
the length of the list as an argument for Permut and this length is decremented
for each rotation down to, but not including, 1 because for a list of length n, we
can make exactly n − 1 rotations to generate at most n distinct lists. Here, it
must be noticed that we use the natural numbers of Coq for the rotation counter.
In table 2, we can see that it is possible to use usual natural numbers but they
are only used as arguments for primitive tactics and they cannot be handled,
in particular, we cannot make computations with them. So, a natural choice is
to use Coq data structures so that Coq makes the computations (reductions) by
Eval Compute in and we can get the terms back by Match.

Beyond these small examples, we discovered that Ltac is much more powerful
than might have been expected and, even if it was not our initial aim, this
language can deal with non-trivial problems. For example, we coded a tactic to
decide intuitionnistic propositional logic, based on the contraction-free sequent
calculi LJT* of Roy Dyckho� ([4]). There was already a tactic called Tauto and
written in Objective Caml by César Muñoz ([9]). We observed several signi�cant
di�erences. First, with Ltac, we obtained a drastic reduction in size with 40 lines
of code compared with 2000 lines. This can be mainly explained by the complete
backtracking provided byMatch Context. Moreover, we were very surprised to get
a considerable increase in performance which can reach 95% in some examples. In
fact, this is understandable since Ltac is a proof-dedicated language and we can
suppose that some algorithms (such as Dyckho�'s) may be coded very naturally.

Lemma card_nat: �(EX x:nat|(EX y:nat|(z:nat)(x=z)\/(y=z))).
Proof.

Red;Intro H.
Elim H;Intros a Ha.
Elim Ha;Intros b Hb.
Elim (Hb (0));Elim (Hb (1));Elim (Hb (2));Intros;

Match Context With
[_:?1=?2;_:?1=?3|-?] ->

Cut ?2=?3;[Discriminate|Apply trans_equal with ?1;Auto].
Save.

Table 4. A proof on cardinality of natural numbers using Ltac

Section Sort.

Variable A:Set.

Inductive permut:(list A)->(list A)->Prop:=
permut_re�:(l:(list A))(permut l l)
|permut_cons:

(a:A)(l0,l1:(list A))(permut l0 l1)->(permut (cons a l0) (cons a l1))
|permut_append:(a:A)(l:(list A))(permut (cons a l) (l�(cons a (nil A))))
|permut_trans:

(l0,l1,l2:(list A))(permut l0 l1)->(permut l1 l2)->(permut l0 l2).

End Sort.

Table 5. De�nition of the permutation predicate

Finally, readibility has been greatly improved so that maintainability has been
made much easier (even if there is no debugger for Ltac yet).

We dealt with another important example which was to verify equalities
between types and modulo isomorphisms. We chose to use the isomorphisms
of the simply typed λ-calculus with Cartesian product and unit type (see, for
example, [3]). Again, the code, we wrote by using Ltac, was quite short (about
80 lines with the axiomatization) and quite readable so that extensions to more
elaborated λ-calculi can be easily integrated.

4 Conclusion

We have presented a language (Ltac) which is intended to make a real link
between the primitive tactics and the implementation language (Objective Caml)
used to write large tactics. In particular, it deals with small parts of proofs that

Tactic De�nition Permut n:=
Match Context With

[|-(permut ? ?1 ?1)] -> Apply permut_re�
|[|-(permut ? (cons ?1 ?2) (cons ?1 ?3))] ->

Let newn=Eval Compute in (length ?2)
In

Apply permut_cons;'(Permut newn)
|[|-(permut ?1 (cons ?2 ?3) ?4)] ->

'(Match Eval Compute in n With
[(1)] -> Fail
|_ ->

Let l0'=(?3�(cons ?2 (nil ?1)))
In

Apply (permut_trans ?1 (cons ?2 ?3) l0' ?4);
[Apply permut_append|
Compute;'(Permut (pred n))]).

Tactic De�nition PermutProve ():=
Match Context With

[|-(permut ? ?1 ?2)] ->
'(Match Eval Compute in ((length ?1)=(length ?2)) With

[?1=?1] -> '(Permut ?1)).

Table 6. Permutation tactic in Ltac

are to be automated. It can be seen that this language has some interesting
features:

� it is in the toplevel of Coq. We do not need a compiler or any speci�cation
of the implementation of Coq to write tactics in this language. Moreover, to
learn this small language would be certainly easier than tackling the manual
of the implementation language. Of course, these remarks must be considered
with regard to small tactics.

� the code length is, in general, quite short compared to the same proofs made
by hand (see tables 3 and 4) and, even when solving non-trivial problems,
we still have reductions in size, which are sometimes very impressive (as in
the case of Tauto seen previously). Thus, the scripts are more compact and
much simpler.

� the scripts are more readable. This is already the case with small proofs but
even more so with large tactics (as with Tauto again).

� the scripts are more maintainable, as a direct consequence of the increase in
readibility.

It is important to carefully de�ne the scope of Ltac compared to Objec-
tive Caml. We must not be tempted to enrich Ltac too much in order to write

tactics which are more and more complex. Even if we can at present deal with
some complex examples, this must be considered as a bonus and not as a goal.
We must make sure that Coq does not draw too much upon Objective Caml and,
for the moment, we think that Ltac is complete enough. However, we plan to
enable Objective Caml to enjoy the advantages of Ltac by a quotation or a syn-
tax extension. With this system, we could use Ltac in Objective Caml like a true
Application Programming Interface (API for short) with speci�c calls, as seen
previously, so that we could write tactics more easily and without any limitation.

From the user point of view, it could be a tricky problem to decide which
language is the most appropriate to solve his/her problem. The user must know
whether the problem in hand can be coded with Ltac. There is no general rule but
we can identify several criteria by which Objective Caml must be used rather than
Ltac. First, Ltac is not suitable for tactics which handle the environment. For
example, searching the global context is only possible by using Objective Caml
and certain functions of Coq's code. Another indicator that Ltac is not suitable
is the use of data structures. The more we use data structures, the more complex
the problem is, as is the tactic to build. As shown previously with the example
of list permutation (see tables 5 and 6), we can use data structures in Ltac by
means of Coq's data structures6 which can be handled by Match (and possibly
Match Context) and the number of data structures we need is a good indication
of the di�culty of the tactic we want to write. Moreover, if you are concerned
about performances, it is better to use Objective Caml's data structures which
are much more e�cient than those of Coq. Finally, there are more libraries
implementing usual data structures in Objective Caml than in Coq and this may
be a decisive argument in some cases. Thus, in general, the use of data structures
must be limited in Ltac and the user must make choices. For example, the use
of natural numbers in the previous example concerning list permutation seems
to be quite reasonable and we may consider that this is also the case for other
data structures such as booleans or lists.

References

1. Bruno Barras et al. The Coq Proof Assistant Reference Manual Version 6.3.1.
INRIA-Rocquencourt, May 2000.
http://coq.inria.fr/doc-eng.html.

2. Yann Coscoy. A natural language explanation for formal proofs. In C. Retoré,
editor, Proceedings of Int. Conf. on Logical Aspects of Computational Liguistics
(LACL), Nancy, volume 1328. Springer-Verlag LNCS/LNAI, September 1996.

3. Roberto Di Cosmo. Isomorphisms of Types: from λ-calculus to information re-
trieval and language design. Progress in Theoretical Computer Science. Birkhauser,
1995. ISBN-0-8176-3763-X.

4. Roy Dyckho�. Contraction-free sequent calculi for intuitionistic logic. In The
Journal of Symbolic Logic, volume 57(3), September 1992.

5. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

6 This can be seen as a step towards a bootstrapped system.

6. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: a mechanised
logic of computation. In Lectures Notes in Computer Science, volume 78. Springer-
Verlag, 1979.

7. John Harrison. Proof style. In Eduardo Giménez and Christine Paulin-Mohring,
editors, Types for Proofs and Programs: International Workshop TYPES'96, vol-
ume 1512 of LNCS, pages 154�172, Aussois, France, 1996. Springer-Verlag.

8. Xavier Leroy et al. The Objective Caml system release 3.00. INRIA-Rocquencourt,
April 2000.
http://caml.inria.fr/ocaml/htmlman/.

9. César Muñoz. Démonstration automatique dans la logique propositionnelle in-
tuitionniste. Mémoire du DEA d'informatique fondamentale, Université Paris 7,
Septembre 1994.

10. Sam Owre, Natarajan Shankar, and John Rushby. PVS: A prototype veri�cation
system. In Proceedings of CADE 11, Saratoga Springs, New York, June 1992.

11. Don Syme. Declarative Theorem Proving for Operational Semantics. PhD thesis,
University of Cambridge, 1998.

12. Andrzej Trybulec. The Mizar-QC/6000 logic information language. In ALLC
Bulletin (Association for Literary and Linguistic Computing), volume 6, pages
136�140, 1978.

