The BWare Project

Building a Proof Platform for the Automated Verification of B Proof Obligations

David Delahaye¹ Catherine Dubois² Claude Marché³ David Mentré⁴

¹Cnam / Cedric / Inria, Paris, France

²ENSIIE / Cedric / Inria, Évry, France

³Inria Saclay - Île-de-France & LRI, CNRS, Univ. Paris-Sud, Orsay, France

⁴Mitsubishi Electric R&D Centre Europe, Rennes, France

ABZ'14 June 4, 2014 Toulouse, France

ClearSy, OCamlPro.

Goals

Mechanized framework for automated verification of B PO;

INS prog. of the French National Research Agency (ANR);

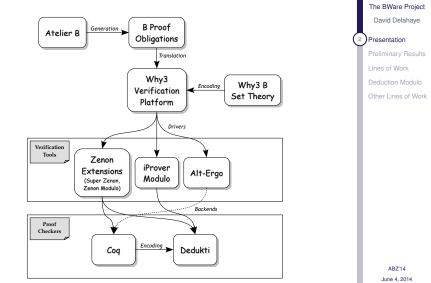
► Industrial partners: Mitsubishi Electric R&D Centre Europe,

Generic platform (based on Why3);

Academic entities: Cnam. LRI. Inria:

- ► First order ATP (Zenon, iProver Modulo);
- SMT solvers (Alt-Ergo);
- Backends (Coq, Dedukti).

The BWare Project



Other Lines of Work

BWare

The BWare Project

BWare

Toulouse, France

8

About 10,500 PO (provided by ClearSy and Mitsubishi).

mp	Alt-Ergo	iProver Modulo	Zenon
84%	58%	19%	< 1%

Observations

- Good results for Alt-Ergo, but to be improved (mp);
- Difficulties for first order tools (iProver Modulo and Zenon).

The BWare Project David Delahaye

Preliminary Results

Other Lines of Work

ABZ'14 June 4, 2014 Toulouse, France

ABZ'14 June 4, 2014 Toulouse, France

The BWare Project David Delahaye Presentation Preliminary Results

4 Lines of Work

Deduction Modulo Other Lines of Work

Lines of Work

Work over Alt-Ergo

- Improved versions of Alt-Ergo;
- ▶ 98% of the PO proved (mp superseded);
- ► Reference:

S. Conchon, M. Iguernelala. *Tuning the Alt-Ergo SMT Solver for B Proof Obligations*. ABZ (2014).

See the talk on Friday!

Extension to Deduction Modulo

- Extension of Zenon to deduction modulo;
- Integration of theories by means of rewrite systems;
- Formulation of the B set theory as a theory modulo.

ABZ'14 June 4, 2014 Toulouse, France

Extension of Zenon to Deduction Modulo

Goals

- Improve the proof search in theories;
- Reduce the proof size;
- New tool: Zenon + deduction modulo = Zenon Modulo! https://www.rocq.inria.fr/deducteam/ZenonModulo/

Benchmarks (TPTP)

- Improvement of the results of Zenon;
- About 50% in the SET category;
- Proof of about 30 difficult problems;
- Reference:

D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, O. Hermant. *Zenon Modulo: When Achilles Outruns the Tortoise using Deduction Modulo.* LPAR (2013).

See P. Halmagrand's talk yesterday (SETS 2014)!

B Set Theory Modulo

Rules

Axioms of Set Theory

$$\begin{array}{rl} x \in s \times t & \longrightarrow \pi_1 x \in s \land \pi_2 x \in t \\ s \in \mathbb{P}(t) & \longrightarrow \forall x \; (x \in s \Rightarrow x \in t) \\ s = t & \longrightarrow \forall x \; (x \in s \Leftrightarrow x \in t) \\ \text{choice}(s) \in s & \longrightarrow \exists x \; (x \in s) \end{array}$$

Set Inclusion

 $s \subseteq t \longrightarrow s \in \mathbb{P}(t)$ $s \subset t \longrightarrow s \subseteq t \land s \neq t$

Derived Constructs

$$\begin{array}{lll} x \in s \cup t & \longrightarrow x \in s \lor x \in t & x \in s \cap t & \longrightarrow x \in s \land x \in t \\ x \in s - t & \longrightarrow x \in s \land x \notin t & x \in \emptyset & \longrightarrow \bot \\ x \in \{a\} & \longrightarrow x = a & \mathbb{P}_1(s) & \longrightarrow \mathbb{P}(s) - \{\emptyset\} \end{array}$$

The BWare Project David Delahaye Presentation

Preliminary Results

Lines of Work

Deduction Modulo

Other Lines of Work

ABZ'14 June 4, 2014 Toulouse, France

8

- Verification of the proofs by Dedukti:
 - 245 proofs verified for Zenon Modulo (100%);
 - 233 proofs verified for iProver Modulo (94%).

Reference:

G. Burel, D. Delahave, D. Doligez, P. Halmagrand, O. Hermant, Automated Deduction in the B Set Theory using Deduction Modulo. Submitted (2014).

Properties of the B-Book (Chap. 2): 319 properties.

Zenon	Zenon Modulo	iProver	iProver Modulo	Vampire	E
6	245	68	248	76	48
1.9%	76.8%	21.3%	77.7%	23.8%	15%

Recent Results

Benchmarks

The BWare Project

David Delahaye

Preliminary Results

Lines of Work

Deduction Modulo

Other Lines of Work

- Application to the collection of PO;
- Extension to arithmetic (current work for Zenon);
- Alternative tools: Zipperposition with sets.

Why3 Encoding

- Consider all the provided PO;
- Add B constructs to the axiomatization;
- Modify the translator of PO from Atelier B to Why3.

The BWare Project David Delahaye Presentation Preliminary Results Lines of Work Deduction Modulo 3 Other Lines of Work

> ABZ'14 June 4, 2014 Toulouse, France

Other Lines of Work

Extensive Benchmarking

- Integration of more development projects;
- Proof coverage ratio of the platform.

Integration to Atelier B

- Dissemination and exploitation of the results;
- Multi-prover output of Atelier B.

A Full OCaml-Based Architecture

- Memory usage profiling;
- Multi-runtime OCaml.

The BWare Project David Delahaye Presentation Preliminary Results Lines of Work Deduction Modulo Other Lines of Work

> ABZ'14 June 4, 2014 Toulouse, France