Tableaux Modulo Theories using Superdeduction

An Application to the Verification of B Proof Rules with the Zenon Automated Theorem Prover

David Delahaye

David.Delahaye@cnam.fr

CPR Team / Deducteam (CEDRIC / Inria)

CPR / Deducteam Seminar

Inria, Paris June 8, 2012

Introduction

Collaboration with Siemens (IC-MOL)

- M. Jacquel's PhD thesis, superv. by K. Berkani, D. Delahaye, C. Dubois;
- VAL, automatic metro systems, optical guidance for buses/trolleybuses;
- Meteor line (line 14) at Paris, opened 13 years ago.

Use of the B Method

The B Method

- Defined in the B-Book (1996) by J.-R. Abrial;
- Based on a (typed) set theory;
- Generation of executable code which conforms to formal specifications;
- Notion of machines, which are refined until implementations;
- Generation of proof obligations (consistency, refinement);
- Supporting tool : Atelier B (ClearSy).

Proof Activity with Atelier B

- Automated proofs (pp);
- Interactive proofs :
 - Apply some tactics;
 - Add some rules (axioms).
- If the added rule is wrong then :
 - The proof of the proof obligation may be unsound ;
 - The generated code may contain some bugs.

The B Method

- Defined in the B-Book (1996) by J.-R. Abrial;
- Based on a (typed) set theory ;
- Generation of executable code which conforms to formal specifications;
- Notion of machines, which are refined until implementations;
- Generation of proof obligations (consistency, refinement);
- Supporting tool : Atelier B (ClearSy).

Figures

- Meteor : 27,800 proof obligations, 1,400 added rules ;
- Currently about 5,300 rules in the rule database of Siemens.

Rule Verification

Rules

- Set formulas with metavariables and guards;
- Deduction rule : InSetXY : binhyp(f ∈ A → B) ∧ (a ∈ dom(f)) ∧ (f(a) ∈ u) ⇒ (a ∈ f⁻¹[u])
- Rewrite rule : Associativity : a∪ (b∪c) == a∪b∪c

Verification Process

The BCARe Environment

\mathcal{L}_{tac} Approach

- Proof algorithm written in Coq using \mathcal{L}_{tac} ;
- Preliminary normalization to get rid of set constructs;
- Naive and incomplete heuristic;
- No unification, no contraction.

Zenon Approach

- Use of a complete and efficient ATP;
- Preliminary normalization (as previously);
- Unreification of formulas required;
- Rereification of the generated Coq proofs.

Benchmarks

Derived Rules

Proof Times using Zenon and \mathcal{L}_{tac} (in s)

Figures

- Derived rules of the B-Book :
 - ▶ For 71% of the rules of the graph, Zenon is faster than *L*_{tac};
 - Over 200 tested derived rules, 15 of them cannot be proved using L_{tac}.
- Added rules of the rule database of Siemens :
 - 1735 tested rules (only rules with set operators);
 - 1269 rules (73%) proved by the Zenon approach;
 - ▶ 804 rules (46%) proved by the *L_{tac}* approach.
- See the SEFM'11 paper for more details.

Problems

- Incomplete approaches (preliminary normalization);
- Weak performances in terms of time (preliminary normalization).

Inclusion

$$\forall a \forall b ((a \subseteq b) \Leftrightarrow (\forall x (x \in a \Rightarrow x \in b)))$$

Proof in Sequent Calculus

$$\frac{\overline{\dots, x \in A \vdash A \subseteq A, x \in A} \quad Ax}{\dots \vdash A \subseteq A, x \in A \Rightarrow x \in A} \Rightarrow R} \xrightarrow{Ax} \\
\frac{\overline{\dots} \vdash A \subseteq A, \forall x \ (x \in A \Rightarrow x \in A)} \quad \forall R \quad \underline{\dots, A \subseteq A \vdash A \subseteq A} \quad Ax}{\dots, (\forall x \ (x \in A \Rightarrow x \in A)) \Rightarrow A \subseteq A \vdash A \subseteq A} \quad Ax} \xrightarrow{Ax} \\
\frac{\overline{\dots, (\forall x \ (x \in A \Rightarrow x \in A)) \Rightarrow A \subseteq A \vdash A \subseteq A} \quad AL}{A \subseteq A \Rightarrow (\forall x \ (x \in A \Rightarrow x \in A)) \vdash A \subseteq A} \quad \forall L \times 2$$

Deduction Modulo and Superdeduction

Inclusion

$$\forall a \forall b ((a \subseteq b) \rightarrow (\forall x (x \in a \Rightarrow x \in b)))$$

Rewrite Rule

$$(a \subseteq b)
ightarrow (\forall x \ (x \in a \Rightarrow x \in b))$$

Proof in Deduction Modulo

$$\frac{\overbrace{x \in A \vdash x \in A}^{Ax}}{\vdash x \in A \Rightarrow x \in A} \stackrel{Ax}{\Rightarrow R} \\ \frac{A \Rightarrow x \in A}{\vdash A \subseteq A} \forall R, A \subseteq A \rightarrow \forall x (x \in A \Rightarrow x \in A)$$

Inclusion

$$\forall a \forall b ((a \subseteq b) \rightarrow (\forall x (x \in a \Rightarrow x \in b)))$$

Computation of the Superdeduction Rule

$$\frac{\Gamma \vdash \forall x \ (x \in a \Rightarrow x \in b), \Delta}{\Gamma \vdash a \subseteq b, \Delta}$$

D. Delahaye (CPR / Deducteam, CEDRIC / Inria) Tableaux Modulo Theories & Superdeduction

Inclusion

$$\forall a \forall b ((a \subseteq b) \rightarrow (\forall x (x \in a \Rightarrow x \in b)))$$

Computation of the Superdeduction Rule

$$\frac{\frac{\Gamma, x \in a \vdash x \in b, \Delta}{\Gamma \vdash x \in a \Rightarrow x \in b, \Delta} \Rightarrow R}{\frac{\Gamma \vdash \forall x \ (x \in a \Rightarrow x \in b), \Delta}{\Gamma \vdash a \subseteq b, \Delta}} \forall R, x \notin \Gamma, \Delta$$

Deduction Modulo and Superdeduction

Inclusion

$$\forall a \forall b ((a \subseteq b) \rightarrow (\forall x (x \in a \Rightarrow x \in b)))$$

Computation of the Superdeduction Rule

$$\frac{\Gamma, x \in a \vdash x \in b, \Delta}{\Gamma \vdash a \subseteq b, \Delta} \text{ IncR, } x \notin \Gamma, \Delta$$

Proof in Superdeduction

$$\frac{\overline{x \in A \vdash x \in A}}{\vdash A \subseteq A} \operatorname{IncR}^{\operatorname{Ax}}$$

The Tableau Method

- We start from the negation of the goal (no clausal form);
- We apply the rules in a top-down fashion ;
- We build a tree whose each branch must be closed;
- When the tree is closed, we have a proof of the goal.

Closure and Cut Rules

$$\frac{\perp}{\odot} \odot_{\perp} \qquad \frac{\neg \top}{\odot} \odot_{\neg \top} \qquad \overline{P \mid \neg P} \text{ cut}$$

$$\frac{\neg R_r(t, t)}{\odot} \odot_r \qquad \frac{P \quad \neg P}{\odot} \odot \qquad \frac{R_s(a, b) \quad \neg R_s(b, a)}{\odot} \odot_s$$

Analytic Rules

γ -Rules

$$\frac{\forall x \ P(x)}{P(X)} \gamma \forall M \qquad \frac{\neg \exists x \ P(x)}{\neg P(X)} \gamma_{\neg \exists M}$$
$$\frac{\forall x \ P(x)}{P(t)} \gamma \forall \text{inst} \qquad \frac{\neg \exists x \ P(x)}{\neg P(t)} \gamma_{\neg \exists \text{inst}}$$

Relational Rules

- Equality, reflexive, symmetric, transitive rules;
- Are not involved in the computation of superdeduction rules.

Computation of Superdeduction Rules

- $S \equiv$ closure rules, analytic rules, $\gamma_{\forall M}$ and $\gamma_{\neg \exists M}$ rules;
- Axiom : $\boldsymbol{R} : \boldsymbol{P} \to \varphi$;
- A positive superdeduction rule R (and a negative one $\neg R$) :
 - We initialize the procedure with the formula φ ;
 - We apply the rules of S until there is no applicable rule anymore;
 - We collect the premises and the conclusion, and replace φ by *P*.
- If metavariables, we add an instantiation rule R_{inst} (or $\neg R_{inst}$).

Example (inclusion)

$$\frac{\forall x \ (x \in a \Rightarrow x \in b)}{X \in a \Rightarrow X \in b} \gamma_{\forall M}$$
$$\frac{\forall x \ (x \in a \Rightarrow X \in b)}{X \notin a \ | \ X \in b} \beta_{\Rightarrow}$$

$$\frac{\neg \forall x \ (x \in a \Rightarrow x \in b)}{\neg (\epsilon_x \in a \Rightarrow \epsilon_x \in b)} \delta_{\neg \forall} \\
\frac{\neg (\epsilon_x \in a \Rightarrow \epsilon_x \in b)}{\epsilon_x \in a, \epsilon_x \notin b} \alpha_{\neg \Rightarrow} \\
\text{with } \epsilon_x = \epsilon(x). \neg (x \in a \Rightarrow x \in b)$$

Computation of Superdeduction Rules

- $S \equiv$ closure rules, analytic rules, $\gamma_{\forall M}$ and $\gamma_{\neg \exists M}$ rules;
- Axiom : $\boldsymbol{R} : \boldsymbol{P} \to \varphi$;
- A positive superdeduction rule *R* (and a negative one $\neg R$) :
 - We initialize the procedure with the formula φ ;
 - We apply the rules of S until there is no applicable rule anymore;
 - We collect the premises and the conclusion, and replace φ by *P*.
- If metavariables, we add an instantiation rule R_{inst} (or $\neg R_{inst}$).

Example (inclusion)

$$\frac{a \subseteq b}{X \notin a \mid X \in b} \text{ Inc } \qquad \frac{a}{\epsilon_x \in A}$$
with $\epsilon_x = \epsilon_y$

$$\frac{a \not\subseteq b}{\epsilon_x \in a, \epsilon_x \notin b} \neg \text{Inc}$$

with $\epsilon_x = \epsilon(x) \cdot \neg (x \in a \Rightarrow x \in b)$

Computation of Superdeduction Rules

- $S \equiv$ closure rules, analytic rules, $\gamma_{\forall M}$ and $\gamma_{\neg \exists M}$ rules;
- Axiom : $\boldsymbol{R} : \boldsymbol{P} \to \varphi$;
- A positive superdeduction rule R (and a negative one $\neg R$) :
 - We initialize the procedure with the formula φ ;
 - ▶ We apply the rules of S until there is no applicable rule anymore ;
 - We collect the premises and the conclusion, and replace φ by *P*.
- If metavariables, we add an instantiation rule R_{inst} (or $\neg R_{\text{inst}}$).

Example (inclusion)

$$\frac{a \subseteq b}{X \notin a \mid X \in b} \operatorname{Inc} \qquad \frac{a \subseteq b}{t \notin a \mid t \in b} \operatorname{Inc}_{\operatorname{inst}} \qquad \frac{a \not\subseteq b}{\epsilon_x \in a, \epsilon_x \notin b} \neg \operatorname{Inc}_{\operatorname{with} \epsilon_x = \epsilon(x), \neg(x \in a \Rightarrow x \in b)}$$

Axioms (4 over 6)

$$egin{aligned} &(x,y)\in a imes b&\Leftrightarrow x\in a\wedge y\in b\ a\in\mathbb{P}(b)&\Leftrightarrow orall x\,(x\in a\Rightarrow x\in b)\ x\in\{\ y\mid P(y)\ \}&\Leftrightarrow P(x)\ a=b&\Leftrightarrow orall x\,(x\in a\Leftrightarrow x\in b) \end{aligned}$$

Superdeduction Rules (Comprehension and Equality)

$$\frac{x \in \{ y \mid P(y) \}}{P(x)} \{ | \} \qquad \frac{x \notin \{ y \mid P(y) \}}{\neg P(x)} \neg \{ | \}$$

$$\frac{a = b}{\epsilon_x \notin a, X \notin b \mid X \in a, X \in b} = \frac{a \neq b}{\epsilon_x \notin a, \epsilon_x \in b \mid \epsilon_x \in a, \epsilon_x \notin b} \neq$$
with $\epsilon_x = \epsilon(x) \cdot \neg (x \in a \Leftrightarrow x \in b)$

Superdeduction Rules for the B Set Theory

Axioms (4 over 6)

$$egin{aligned} &(x,y)\in a imes b o x\in a\wedge y\in b\ a\in \mathbb{P}(b) o orall x\ (x\in a\Rightarrow x\in b)\ x\in\{\ y\mid P(y)\ \} o P(x)\ a=b o orall x\ (x\in a\Leftrightarrow x\in b) \end{aligned}$$

Superdeduction Rules (Comprehension and Equality)

$$\frac{x \in \{ y \mid P(y) \}}{P(x)} \{ | \} \qquad \frac{x \notin \{ y \mid P(y) \}}{\neg P(x)} \neg \{ | \}$$

$$\frac{a = b}{\epsilon_x \notin a, X \notin b \mid X \in a, X \in b} = \frac{a \neq b}{\epsilon_x \notin a, \epsilon_x \in b \mid \epsilon_x \in a, \epsilon_x \notin b} \neq$$
with $\epsilon_x = \epsilon(x) \cdot \neg (x \in a \Leftrightarrow x \in b)$

Superdeduction Rules for the B Set Theory

Definitions

$$E \triangleq F$$

$$R : x \in E \to x \in F$$

$$a \cup b \triangleq \{ x \mid x \in a \lor x \in b \}$$

$$a \cap b \triangleq \{ x \mid x \in a \land x \in b \}$$

$$\cup : x \in a \cup b \to x \in \{ x \mid x \in a \lor x \in b \}$$

$$\cap : x \in a \cap b \to x \in \{ x \mid x \in a \land x \in b \}$$

Superdeduction Rules (Union and Intersection)

$$\frac{x \in a \cup b}{x \in a \mid x \in b} \cup \qquad \frac{x \in a \cap b}{x \in a, x \in b} \cap$$
$$\frac{x \notin a \cup b}{x \notin a, x \notin b} \neg \cup \qquad \frac{x \notin a \cap b}{x \notin a \mid x \notin b} \neg \cap$$

Superdeduction Rules for the B Set Theory

Relations

$$E \triangleq F$$

$$R : (x, y) \in E \to (x, y) \in F$$

$$R : x \in E \to \exists y \exists z \ (x = (y, z) \land (y, z) \in F)$$

Superdeduction Rules (Inverse)

$$\frac{(x,y)\in a^{-1}}{(y,x)\in a} a^{-1} \quad \frac{(x,y)\notin a^{-1}}{(y,x)\notin a} \neg a^{-1}$$

$$\frac{X \in a^{-1}}{X = (\epsilon_y, \epsilon_z), (\epsilon_z, \epsilon_y) \in a} a^{-1*}$$

with $\epsilon_y = \epsilon(y).(\exists z \ (x = (y, z) \land (y, z) \in a^{-1}))$
and $\epsilon_z = \epsilon(z).(x = (\epsilon_y, z) \land (\epsilon_y, z) \in a^{-1})$

$$\frac{x \notin a^{-1}}{x \neq (Y,Z) \mid (Z,Y) \notin a} \neg a^{-1^*}$$

Benchmarks

Superdeduction vs Pre-Normalization (Time)

Superdeduction vs Prawitz's Approach (Number of Nodes)

Benchmarks

Figures

- Number of rules that can be handled : 1397 rules ;
- Initial approach (with Zenon) : 1145 proved rules (82%);
- With Zenon extended to superdeduction :
 - 1340 proved rules (96%);
 - On average, proved 67 times faster (best ratio : 1,540).
- With Zenon à la Prawitz :
 - 1340 proved rules (96%);
 - On average, 1.6 times more nodes (best ratio : 6.25).
- See the IJCAR'12 paper for more details.

Remarks

- Initial approach with Zenon : problems of the preliminary normalization.
- No example due to incompleteness yet identified.

For any Theory

- Automated orientation of the theories;
- Not oriented axioms left as axioms;
- Superdeduction rules computed using other superdeduction rules;
- New tool : Superdeduction + Zenon = Super Zenon !

Figures

- Over 6644 FOF problems of the TPTP library;
- Zenon : 1612 proved problems ;
- Super Zenon :

Super Zenon

- Next CASC competition (IJCAR'12), FOFT and FOF divisions;
- **Download**:http://cedric.cnam.fr/~delahaye/super-zenon/.

For any Theory

- Automated orientation of the theories;
- Not oriented axioms left as axioms;
- Superdeduction rules computed using other superdeduction rules;
- New tool : Superdeduction + Zenon = Super Zenon !

Figures

- Over 6644 FOF problems of the TPTP library;
- Zenon : 1612 proved problems ;
- Super Zenon : 2435 proved problems (increase of 12%).

Super Zenon

- Next CASC competition (IJCAR'12), FOFT and FOF divisions;
- **Download**:http://cedric.cnam.fr/~delahaye/super-zenon/.

Demo