Tableaux Modulo Theories using Superdeduction

An Application to the Verification of B Proof Rules with the Zenon Automated Theorem Prover

David Delahaye
David. Delahaye@cnam.fr
CPR Team / Deducteam
(CEDRIC / Inria)
CPR / Deducteam Seminar
Inria, Paris June 8, 2012

Introduction

Collaboration with Siemens (IC-MOL)

- M. Jacquel's PhD thesis, superv. by K. Berkani, D. Delahaye, C. Dubois ;
- VAL, automatic metro systems, optical guidance for buses/trolleybuses;
- Meteor line (line 14) at Paris, opened 13 years ago.

Use of the B Method

The B Method

- Defined in the B-Book (1996) by J.-R. Abrial;
- Based on a (typed) set theory;
- Generation of executable code which conforms to formal specifications;
- Notion of machines, which are refined until implementations;
- Generation of proof obligations (consistency, refinement);
- Supporting tool : Atelier B (ClearSy).

Proof Activity with Atelier B

- Automated proofs (pp);
- Interactive proofs :
- Apply some tactics;
- Add some rules (axioms).
- If the added rule is wrong then :
- The proof of the proof obligation may be unsound;
- The generated code may contain some bugs.

Use of the B Method

The B Method

- Defined in the B-Book (1996) by J.-R. Abrial;
- Based on a (typed) set theory;
- Generation of executable code which conforms to formal specifications;
- Notion of machines, which are refined until implementations;
- Generation of proof obligations (consistency, refinement);
- Supporting tool : Atelier B (ClearSy).

Figures

- Meteor : 27,800 proof obligations, 1,400 added rules;
- Currently about 5,300 rules in the rule database of Siemens.

Rule Verification

Rules

- Set formulas with metavariables and guards;
- Deduction rule : $\operatorname{InSetXY}: \operatorname{binhyp}(f \in A \rightarrow B) \wedge(a \in \operatorname{dom}(f)) \wedge(f(a) \in u) \Rightarrow\left(a \in f^{-1}[u]\right)$
- Rewrite rule :

Associativity : $a \cup(b \cup c)==a \cup b \cup c$

Verification Process

The BCARe Environment

Automated Verification of Rules

$\mathcal{L}_{\text {tac }}$ Approach

- Proof algorithm written in Coq using $\mathcal{L}_{\text {tac }}$;
- Preliminary normalization to get rid of set constructs;
- Naive and incomplete heuristic;
- No unification, no contraction.

Zenon Approach

- Use of a complete and efficient ATP;
- Preliminary normalization (as previously);
- Unreification of formulas required;
- Rereification of the generated Coq proofs.

Benchmarks

Derived Rules

Proof Times using Zenon and $\mathcal{L}_{\text {tac }}$ (in s)

Benchmarks

Figures

- Derived rules of the B-Book :
- For 71% of the rules of the graph, Zenon is faster than $\mathcal{L}_{\text {tac }}$;
- Over 200 tested derived rules, 15 of them cannot be proved using $\mathcal{L}_{\text {tac }}$.
- Added rules of the rule database of Siemens :
- 1735 tested rules (only rules with set operators);
- 1269 rules (73%) proved by the Zenon approach;
- 804 rules (46%) proved by the $\mathcal{L}_{\text {tac }}$ approach.
- See the SEFM'11 paper for more details.

Problems

- Incomplete approaches (preliminary normalization);
- Weak performances in terms of time (preliminary normalization).

Deduction Modulo and Superdeduction

Inclusion

$$
\forall a \forall b((a \subseteq b) \Leftrightarrow(\forall x(x \in a \Rightarrow x \in b)))
$$

Proof in Sequent Calculus

$$
\begin{aligned}
& \overline{\ldots, x \in A \vdash A \subseteq A, x \in A} A x \\
& \ldots \vdash A \subseteq A, x \in A \Rightarrow x \in A \Rightarrow \mathrm{R} \\
& \underbrace{\ldots \vdash A \subseteq A, \forall x(x \in A \Rightarrow x \in A)} \forall \mathrm{R} \quad \overline{\ldots, A \subseteq A \vdash A \subseteq A} \mathrm{Ax} \\
& \ldots,(\forall x(x \in A \Rightarrow x \in A)) \Rightarrow A \subseteq A \vdash A \subseteq A \\
& A \subseteq A \Leftrightarrow(\forall x(x \in A \Rightarrow x \in A)) \vdash A \subseteq A \\
& \forall a \forall b((a \subseteq b) \Leftrightarrow(\forall x(x \in a \Rightarrow x \in b))) \vdash A \subseteq A
\end{aligned}
$$

Deduction Modulo and Superdeduction

Inclusion

$$
\forall a \forall b((a \subseteq b) \rightarrow(\forall x(x \in a \Rightarrow x \in b)))
$$

Rewrite Rule

$$
(a \subseteq b) \rightarrow(\forall x(x \in a \Rightarrow x \in b))
$$

Proof in Deduction Modulo

$$
\begin{aligned}
& \frac{x \in A \vdash x \in A}{} \frac{\mathrm{Ax}}{\vdash x \in A \Rightarrow x \in A} \\
& \frac{\vdash \mathrm{R}}{\vdash A \subseteq A}
\end{aligned} \mathrm{R}, A \subseteq A \rightarrow \forall x(x \in A \Rightarrow x \in A)
$$

Deduction Modulo and Superdeduction

Inclusion

$$
\forall a \forall b((a \subseteq b) \rightarrow(\forall x(x \in a \Rightarrow x \in b)))
$$

Computation of the Superdeduction Rule

$$
\frac{\Gamma \vdash \forall x(x \in a \Rightarrow x \in b), \Delta}{\Gamma \vdash a \subseteq b, \Delta}
$$

Deduction Modulo and Superdeduction

Inclusion

$$
\forall a \forall b((a \subseteq b) \rightarrow(\forall x(x \in a \Rightarrow x \in b)))
$$

Computation of the Superdeduction Rule

$$
\frac{\frac{\Gamma, x \in a \vdash x \in b, \Delta}{\Gamma \vdash x \in a \Rightarrow x \in b, \Delta} \Rightarrow \mathrm{R}}{\frac{\Gamma \vdash \forall x(x \in a \Rightarrow x \in b), \Delta}{\Gamma \vdash a \subseteq b, \Delta}} \forall \mathrm{R}, x \notin \Gamma, \Delta
$$

Deduction Modulo and Superdeduction

Inclusion

$$
\forall a \forall b((a \subseteq b) \rightarrow(\forall x(x \in a \Rightarrow x \in b)))
$$

Computation of the Superdeduction Rule

$$
\frac{\Gamma, x \in a \vdash x \in b, \Delta}{\Gamma \vdash a \subseteq b, \Delta} \operatorname{IncR}, x \notin \Gamma, \Delta
$$

Proof in Superdeduction

$$
\frac{x \in A \vdash x \in A}{\frac{x \in A}{\vdash A}} \text { IncR }
$$

Integrating Superdeduction to Zenon

The Tableau Method

- We start from the negation of the goal (no clausal form);
- We apply the rules in a top-down fashion;
- We build a tree whose each branch must be closed;
- When the tree is closed, we have a proof of the goal.

Closure and Cut Rules

$$
\begin{array}{ccc}
\frac{\perp}{\odot} \odot_{\perp} & \frac{\neg \top}{\odot} \odot_{\neg T} & \frac{P \mid \neg P}{} \text { cut } \\
\frac{\neg R_{r}(t, t)}{\odot} \odot_{r} & \frac{P \quad \neg P}{\odot} \odot & \frac{R_{s}(a, b) \quad \neg R_{s}(b, a)}{\odot} \odot_{s}
\end{array}
$$

Integrating Superdeduction to Zenon

Analytic Rules

$$
\begin{array}{ccc}
\frac{\neg \neg P}{P} \alpha_{\neg\urcorner} & \frac{P \Leftrightarrow Q}{\neg P, \neg Q \mid P, Q} \beta_{\Leftrightarrow} & \frac{\neg(P \Leftrightarrow Q)}{\neg P, Q \mid P, \neg Q} \beta_{\neg \Leftrightarrow} \\
\frac{P \wedge Q}{P, Q} \alpha_{\wedge} & \frac{\neg(P \vee Q)}{\neg P, \neg Q} \alpha_{\neg \vee} & \frac{\neg(P \Rightarrow Q)}{P, \neg Q} \alpha_{\neg \Rightarrow} \\
\frac{P \vee Q}{P \mid Q} \beta_{\vee} & \frac{\neg(P \wedge Q)}{\neg P \mid \neg Q} \beta_{\neg \wedge} & \frac{P \Rightarrow Q}{\neg P \mid Q} \beta_{\Rightarrow} \\
\frac{\exists x P(x)}{P(\epsilon(x) \cdot P(x))} \delta_{\exists} & \frac{\neg \forall x P(x)}{\neg P(\epsilon(x) . \neg P(x))} \delta_{\neg \forall}
\end{array}
$$

Integrating Superdeduction to Zenon

γ-Rules

$$
\begin{array}{ll}
\frac{\forall x P(x)}{P(X)} \gamma_{\forall M} & \frac{\neg \exists x P(x)}{\neg P(X)} \gamma_{\neg \exists M} \\
\frac{\forall x P(x)}{P(t)} \gamma_{\forall \text { inst }} & \frac{\neg \exists x P(x)}{\neg P(t)} \gamma_{\neg \text { Jinst }}
\end{array}
$$

Relational Rules

- Equality, reflexive, symmetric, transitive rules;
- Are not involved in the computation of superdeduction rules.

Integrating Superdeduction to Zenon

Computation of Superdeduction Rules

- $\mathcal{S} \equiv$ closure rules, analytic rules, $\gamma_{\forall M}$ and $\gamma_{\neg \exists M}$ rules;
- Axiom : R : $P \rightarrow \varphi$;
- A positive superdeduction rule R (and a negative one $\neg R$) :
- We initialize the procedure with the formula φ;
- We apply the rules of \mathcal{S} until there is no applicable rule anymore ;
- We collect the premises and the conclusion, and replace φ by P.
- If metavariables, we add an instantiation rule $R_{\text {inst }}$ (or $\neg R_{\text {inst }}$).

Example (inclusion)

$$
\frac{\forall x(x \in a \Rightarrow x \in b)}{\frac{X \in a \Rightarrow X \in b}{X \notin a \mid X \in b} \beta_{\Rightarrow}} \gamma_{\forall M}
$$

$$
\begin{aligned}
& \frac{\neg \forall x(x \in a \Rightarrow x \in b)}{\neg\left(\epsilon_{x} \in a \Rightarrow \epsilon_{x} \in b\right)} \\
& \epsilon_{x} \in a, \epsilon_{x} \notin b \\
& \neg \forall \\
& \text { with } \epsilon_{x}=\epsilon(x) . \neg(x \in a \Rightarrow x \in b)
\end{aligned}
$$

Integrating Superdeduction to Zenon

Computation of Superdeduction Rules

- $\mathcal{S} \equiv$ closure rules, analytic rules, $\gamma_{\forall M}$ and $\gamma_{\neg \exists M}$ rules;
- Axiom : $R: P \rightarrow \varphi$;
- A positive superdeduction rule R (and a negative one $\neg R$) :
- We initialize the procedure with the formula φ;
- We apply the rules of \mathcal{S} until there is no applicable rule anymore;
- We collect the premises and the conclusion, and replace φ by P.
- If metavariables, we add an instantiation rule $R_{\text {inst }}$ (or $\neg R_{\text {inst }}$).

Example (inclusion)

$$
\frac{a \subseteq b}{X \notin a \mid X \in b} \text { Inc }
$$

$$
\begin{gathered}
\frac{a \nsubseteq b}{\epsilon_{X} \in a, \epsilon_{X} \notin b} \neg \text { Inc } \\
\text { with } \epsilon_{x}=\epsilon(x) \cdot \neg(x \in a \Rightarrow x \in b)
\end{gathered}
$$

Integrating Superdeduction to Zenon

Computation of Superdeduction Rules

- $\mathcal{S} \equiv$ closure rules, analytic rules, $\gamma_{\forall M}$ and $\gamma_{\neg \exists M}$ rules;
- Axiom : $R: P \rightarrow \varphi$;
- A positive superdeduction rule R (and a negative one $\neg R$) :
- We initialize the procedure with the formula φ;
- We apply the rules of \mathcal{S} until there is no applicable rule anymore ;
- We collect the premises and the conclusion, and replace φ by P.
- If metavariables, we add an instantiation rule $R_{\text {inst }}$ (or $\neg R_{\text {inst }}$).

Example (inclusion)

$$
\frac{a \subseteq b}{X \notin a \mid X \in b} \text { Inc }
$$

$$
\frac{a \subseteq b}{t \notin a \mid t \in b} \text { Inc }_{\text {inst }}
$$

$$
\begin{gathered}
\frac{a \nsubseteq b}{\epsilon_{X} \in a, \epsilon_{X} \notin b} \neg \text { Inc } \\
\text { with } \epsilon_{x}=\epsilon(x) . \neg(x \in a \Rightarrow x \in b)
\end{gathered}
$$

Superdeduction Rules for the B Set Theory

Axioms (4 over 6)

$$
\begin{aligned}
& (x, y) \in a \times b \Leftrightarrow x \in a \wedge y \in b \\
& a \in \mathbb{P}(b) \Leftrightarrow \forall x(x \in a \Rightarrow x \in b) \\
& x \in\{y \mid P(y)\} \Leftrightarrow P(x) \\
& a=b \Leftrightarrow \forall x(x \in a \Leftrightarrow x \in b)
\end{aligned}
$$

Superdeduction Rules (Comprehension and Equality)

$$
\begin{array}{cc}
\frac{x \in\{y \mid P(y)\}}{P(x)}\{\mid\} & \frac{x \notin\{y \mid P(y)\}}{\neg P(x)} \neg\{\mid\} \\
\frac{a=b}{X \notin a, X \notin b \mid X \in a, X \in b}= & \frac{a \neq b}{\epsilon_{x} \notin a, \epsilon_{x} \in b \mid \epsilon_{x} \in a, \epsilon_{x} \notin b} \begin{array}{c}
\text { with } \epsilon_{x}=\epsilon(x) \neg \neg(x \in a \Leftrightarrow x \in b)
\end{array}
\end{array}
$$

Superdeduction Rules for the B Set Theory

Axioms (4 over 6)

$$
\begin{aligned}
& (x, y) \in a \times b \rightarrow x \in a \wedge y \in b \\
& a \in \mathbb{P}(b) \rightarrow \forall x(x \in a \Rightarrow x \in b) \\
& x \in\{y \mid P(y)\} \rightarrow P(x) \\
& a=b \rightarrow \forall x(x \in a \Leftrightarrow x \in b)
\end{aligned}
$$

Superdeduction Rules (Comprehension and Equality)

$$
\begin{array}{cc}
\frac{x \in\{y \mid P(y)\}}{P(x)}\{\mid\} & \frac{x \notin\{y \mid P(y)\}}{\neg P(x)} \neg\{\mid\} \\
\frac{a=b}{X \notin a, X \notin b \mid X \in a, X \in b}= & a \neq b \\
\begin{array}{r}
\epsilon_{x} \notin a, \epsilon_{x} \in b \mid \epsilon_{x} \in a, \epsilon_{x} \notin b \\
\text { with } \epsilon_{x}=\epsilon(x) \neg \neg(x \in a \Leftrightarrow x \in b)
\end{array} & \neq \\
\end{array}
$$

Superdeduction Rules for the B Set Theory

Definitions

$$
\begin{aligned}
& E \triangleq F \\
& R: x \in E \rightarrow x \in F \\
& a \cup b \triangleq\{x \mid x \in a \vee x \in b\} \\
& a \cap b \triangleq\{x \mid x \in a \wedge x \in b\} \\
& \cup: x \in a \cup b \rightarrow x \in\{x \mid x \in a \vee x \in b\} \\
& \cap: x \in a \cap b \rightarrow x \in\{x \mid x \in a \wedge x \in b\}
\end{aligned}
$$

Superdeduction Rules (Union and Intersection)

$$
\begin{array}{cl}
\frac{x \in a \cup b}{x \in a \mid x \in b} \cup & \frac{x \in a \cap b}{x \in a, x \in b} \cap \\
\frac{x \notin a \cup b}{x \notin a, x \notin b} \neg \cup & \frac{x \notin a \cap b}{x \notin a \mid x \notin b} \neg \cap
\end{array}
$$

Superdeduction Rules for the B Set Theory

Relations

$$
\begin{aligned}
& E \triangleq F \\
& R:(x, y) \in E \rightarrow(x, y) \in F \\
& R: x \in E \rightarrow \exists y \exists z(x=(y, z) \wedge(y, z) \in F)
\end{aligned}
$$

Superdeduction Rules (Inverse)

$$
\begin{array}{cc}
\frac{(x, y) \in a^{-1}}{(y, x) \in a} a^{-1} & \frac{(x, y) \notin a^{-1}}{(y, x) \notin a} \neg a^{-1} \\
\frac{x \in a^{-1}}{x=\left(\epsilon_{y}, \epsilon_{z}\right),\left(\epsilon_{z}, \epsilon_{y}\right) \in a} a^{-1^{*}} & \frac{x \notin a^{-1}}{x \neq(Y, Z) \mid(Z, Y) \notin a} \neg a^{-1^{*}} \\
\text { with } \epsilon_{y}=\epsilon(y) \cdot\left(\exists z\left(x=(y, z) \wedge(y, z) \in a^{-1}\right)\right) \\
\text { and } \epsilon_{z}=\epsilon(z) \cdot\left(x=\left(\epsilon_{y}, z\right) \wedge\left(\epsilon_{y}, z\right) \in a^{-1}\right) &
\end{array}
$$

Benchmarks

Superdeduction vs Pre-Normalization (Time)

Benchmarks

Superdeduction vs Prawitz's Approach (Number of Nodes)

Benchmarks

Figures

- Number of rules that can be handled : 1397 rules;
- Initial approach (with Zenon) : 1145 proved rules (82\%);
- With Zenon extended to superdeduction :
- 1340 proved rules (96%);
- On average, proved 67 times faster (best ratio : 1,540).
- With Zenon à la Prawitz :
- 1340 proved rules (96%);
- On average, 1.6 times more nodes (best ratio : 6.25).
- See the IJCAR'12 paper for more details.

Remarks

- Initial approach with Zenon : problems of the preliminary normalization.
- No example due to incompleteness yet identified.

Generalization of the Approach

For any Theory

- Automated orientation of the theories;
- Not oriented axioms left as axioms;
- Superdeduction rules computed using other superdeduction rules;
- New tool : Superdeduction + Zenon = Super Zenon!

Figures

- Over 6644 FOF problems of the TPTP library;
- Zenon : 1612 proved problems;
- Super Zenon :

Super Zenon

- Next CASC competition (IJCAR'12), FOFT and FOF divisions ;
- Download :http://cedric.cnam.fr/~delahaye/super-zenon/.

Generalization of the Approach

For any Theory

- Automated orientation of the theories;
- Not oriented axioms left as axioms;
- Superdeduction rules computed using other superdeduction rules;
- New tool : Superdeduction + Zenon = Super Zenon !

Figures

- Over 6644 FOF problems of the TPTP library;
- Zenon : 1612 proved problems;
- Super Zenon : 2435 proved problems (increase of 12\%).

Super Zenon

- Next CASC competition (IJCAR'12), FOFT and FOF divisions ;
- Download:http://cedric.cnam.fr/~delahaye/super-zenon/.

Demo

