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Abstract Real environments in which agents operate are inherently dynamic — the
environment changes beyond the agents’ control. We advocate that, for multi-agent
simulation, this dynamism must be modeled explicitly as part of the simulated envi-
ronment, preferably using concepts and constructs that relate to the real world. In
this paper, we describe such concepts and constructs, and we provide a formal frame-
work to unambiguously specify their relations and meaning. We apply the formal
framework to model a dynamic RoboCup Soccer environment and elaborate on how
the framework poses new challenges for exploring the modeling of environments in
multi-agent simulation.
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1 Introduction

Simulation is the imitation of the operation of a real-world system or process over time
[3]. A simulation model is a representation of a real-world system that incorporates
time and the changes that occur over time [6].

In multi-agent simulation, the operation of a real-world system over time is imi-
tated by means of executing a multi-agent model, i.e. a model comprised of a number
of agents situated in a simulated environment. The agents represent the original
actors present in the real-world system. The simulated environment represents the
real environment the actors of the real-world system are situated in. The agents as
well as the environment are essential parts of the model of a multi-agent simulation
[18]. Consequently, both agents and environment must be supported explicitly in the
development of a multi-agent model.

In case of a multi-agent system, the real environment is typically dynamic. A
dynamic environment is an environment that changes in ways beyond the agents’
control [23]. Each agent experiences dynamism in the environment that originates
from various other sources. Dynamism in the environment can originate from other
agents that are acting autonomously, or from various non-agent entities evolving on
their own. Moreover, as all dynamism happens in a shared environment, it can inter-
fere in complex ways, resulting for example in situations where actions do not yield
their intended result [12, 27].

Modeling the environment has recently gained a lot of attention in multi-agent
simulation. We advocate that for dynamic environments in multi-agent simulation,
dynamism should be modeled explicitly as part of the simulated environment. In this
paper, we propose a domain-specific formalism to model dynamic environments in
multi-agent simulation. The concepts and constructs of the formalism are specifically
aimed at modeling dynamic environments. The formalism represents the simulated
environment as a dynamic system that encapsulates and regulates its own dynamism.
The formalism provides concepts and constructs (1) to reify all dynamism in the sim-
ulated environment, (2) to delineate the way agents manipulate dynamism in the
environment, and (3) to define how dynamism in the environment can interfere. As
the concepts and constructs are complemented with a formal description, their mean-
ing and relations are specified unambiguously. The formalism is applied to model a
dynamic RoboCup Soccer environment. We elaborate on how the formalism poses
new challenges for exploring the modeling of environments in multi-agent simulation
to further extent.

This paper is structured as follows. In Sect. 2, we give an overview of related work
and motivate our approach. In Sect. 3 we introduce concepts to model the structure
of the environment, which serve as starting point to describe dynamism in the next
sections. Section 4 describes the concepts to reify dynamism as first-class abstrac-
tion in the simulated environment. Section 5 focusses on concepts to specify the way
agents manipulate dynamism in the environment and Sect. 6 on concepts to describe
how dynamism in the environment interferes. Section 7 integrates the main concepts
in a graphical overview and specifies the way a model based on the formalism can
be executed. In Sect. 8, we discuss the added value of the formalism for modeling
and simulation. Finally, Sect. 9 presents challenges for future research and we draw
conclusions in Sect. 10.
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2 Related work and motivation

Recent research puts forward that the environment in multi-agent simulation com-
prises two parts: the simulated environment and the simulation environment [18]. The
simulated environment is part of the model and represents the real environment the
agents are situated in. The simulation environment on the other hand, is the infra-
structure for executing the simulation, for example a discrete event simulation engine.
Making an explicit decoupling between the simulated environment (the model) and
the simulation environment (the infrastructure) is a prerequisite for good engineering
practice.

The simulated environment is an explicit building block at a modeling level.
Research on environments in multi-agent simulation devotes a lot of attention to
developing domain-specific constructs, i.e. constructs specifically aimed at modeling
environments. For example, to support spatial and social structures of the environ-
ment, AGRE [11] relies on spaces as an explicit representation of physical (i.e. geo-
metrical areas) as well as social structures (i.e. groups); MMASS [2] introduces a
multi-layered model of the environment, with each layer an explicit representation of
a particular spatial or conceptual structure of the real environment. To support inter-
action between agents, MIC∗ [13] introduces interaction objects and interaction spaces
in the model of the environment; ELMS [22] is an environment description language
with explicit support for specifying perception and interaction of cognitive agents. To
present relevant information of the physical world to agents, Chang et al. [7] model a
cognitive middle layer in the simulated environment that employs a shared ontology
to present environmental information to the agents. To support actions in dynamic
environments that change beyond the agents’ control, the influence–reaction model
[12] introduces the constructs influences and reactions. Influences model the attempts
of agents, whereas reactions model the reaction of the environment in response to
a set of simultaneously performed influences. In the influence–reaction model, the
original attempt of the agent is decoupled from the actual outcome, which is essential
in case of dynamic environments. To support interference in dynamic environments,
in particular collisions of moving physical bodies, rigid body simulation [19] relies
on very fine-grained models, expressed in terms of constructs from physics, such as
masses, forces, rotational inertia, momentum and friction. Collisions are described in
terms of interacting forces between bodies.

To execute a model, simulation environments typically require the model to be
described in a particular simulation formalism. A simulation formalism provides con-
structs to specify a model as well as its evolution over time. For example, discrete-
event simulators support the execution of models described in terms of the constructs
state and events [4]. Hybrid simulators [20] support models expressed in terms of
state variables, equations, time events and state events. Consequently, a model that
is described in terms of domain-specific concepts must be translated into the con-
structs of a simulation formalism before it can be executed in a particular simulation
environment.

The difficulty is that a simulation formalism typically fails to provide domain-
specific support, i.e. it is not expressed in terms of concepts specifically aimed at mod-
eling one particular domain. Simulation formalisms employ general constructs, such
as state and events, which can be applied in a broad range of domains. Consequently,
there is a lack of support for translating a model described in terms of domain-specific
constructs into a general simulation formalism to allow model execution.
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In this paper, we propose a simulation formalism that provides domain-specific
support for modeling dynamic environments in multi-agent simulation. On the one
hand, the formalism provides the modeler with a set of constructs that facilitate the
modeling of dynamic environments. On the other hand, the formalism specifies how
these constructs can be supported in an executable simulation. The formalism pro-
vides constructs for (1) representing in an explicit manner dynamism that happens in
the environment, (2) specifying how dynamism in the environment is related to the
agents, and (3) specifying how dynamism in the environment may arise, interfere and
terminate. The formalism presents the simulated environment as a dynamic system
that encapsulates and regulates its own dynamism.

The influence–reaction model also proposes a domain-specific simulation formal-
ism for actions. The main difference between our formalism and the influence–reaction
model is that our formalism employs a first-class representation of dynamism in the
environment to express reactions.

3 Structure of the simulated environment

In this section, we introduce the basic concepts that are used to represent the struc-
tural parts of the environment. We deliberately kept this part of the formalism simple,
as this suffices to discuss dynamism in the next sections.

The concepts, together with their formal description, are introduced in Sect. 3.1.
Section 3.2 defines their state and Sect. 3.3 expresses their relation to the agents.

3.1 Environmental entities and properties

We represent the parts that constitute the simulated environment by means of two
concepts: environmental entities and environmental properties. We do not address
methodological issues on how to apply these concepts in practice, as this is highly
dependent upon the objective of the simulation study [25].

– Environmental entities. Environmental entities represent entities characterized by
their own, distinct existence in the real environment. The real environment typ-
ically contains numerous entities of different kinds that can be incorporated as
environmental entities in the simulated environment. We define:

E = {e1, e2, . . . , en} the set of environmental entities.

Environmental entities can be partitioned into a set of disjoint subsets, with each
subset grouping entities of the same kind. Formally:

PartE = {E1, E2, . . . , Ek} a partition of environmental entities
with:
Ei ⊆ E
E = ⋃

i=1...k Ei
Ei ∩ Ej = φ, ∀i �= j

For example, consider Fig. 1, depicting a part of a RoboCup Soccer environment
[21]. The environmental entities we distinguish are two robots, a ball, a field and a
goal:
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Fig. 1 A representation of a RoboCup Soccer environment

E = {robot1, robot2, ball, field, goal} the set of entities.
PartE = {Robot, Ball, Field, Goal} a partition into four

kinds of entities.
Robot = {robot1, robot2} the set of robots.
Ball = {ball} the set of balls.
Field = {field} the set of fields.
Goal = {goal} the set of goals.

– Environmental properties. An environmental property is a distributed quantity
that represents a measurable, system-wide characteristic of the real environment.
Environmental properties can be directly represented in the simulated environ-
ment if needed. We define:

P = {p1, p2, . . . , pm} the set of environmental properties.
PartP = {P1, P2, . . . , Pl} a partition of properties in different

kinds.

Examples of environmental properties are gravitation and magnetic fields in the
environment. In the RoboCup Soccer environment, the environmental properties
we distinguish are temperature and humidity:

P = {temp, hum} the set of environmental
properties.

PartP = {Heat, Humidity} a partition in two kinds of
properties.

Heat = {temp} the set of temperature properties.
Humidity = {hum} the set of humidity properties.

The set of all constituents is defined as the union between the set of environmental
entities and properties: C = E ∪ P. Constituents can be partitioned according to their
kind, respecting the partitions of entities and properties: PartC = PartE ∪PartP. After
relabeling: PartC = {C1, C2, . . . , Ck+l}.
3.2 The state of the constituents

The state of the simulated environment is implicitly defined by the state of all its
constituents, i.e. the state of all environmental entities and properties. We describe
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the state of a constituent of the simulated environment as a list of values that are
sufficient to define the status of the constituent at any point in time. We introduce the
following definitions to describe the state of constituents:

SCi the set of all possible states of
constituents of kind Ci.

sc ∈ SCi = 〈v1, v2, . . . , vr〉 the actual state of a particular
constituent c ∈ Ci, represented as a tuple
of values vj ∈ Vj, with Vj a value domain.

S = ⋃
Ci∈PartC SCi the set of all possible states of

constituents of any kind.

To specify the initial state of each constituent, we define a function Init which maps a
constituent on its initial state:

Init : C → S
Init(c) = sc

For the RoboCup Soccer environment we have for example:

SRobot = R
2 the set of all possible states for a

robot.
srobot1 ∈ SRobot = 〈−→pos〉 with −→pos ∈ R

2 a coordinate in the two
dimensional space that indicates the
actual position of robot1.

SBall = R
2 the set of all possible states for a ball.

sball ∈ SBall = 〈−→pos〉 with −→pos ∈ R
2 a coordinate in the two

dimensional space that indicates the
position of the ball.

In the rest of the paper, we use the shorthand notations sr|pos to select position of a
robot r ∈ Robot, and sb|pos to select the position of a ball b ∈ Ball.

3.3 Agents embodied as environmental entities

Embodiment is central in describing the relation between agents and the environment
[5]. Agents are not external to the simulated environment [8]; agents are embodied
as environmental entities. The environmental entity represents the tangible part, i.e.
body [10], by means of which an agent exists in a particular environment.

Let Ag = {ag1, ag2, . . . , agn} be the set of agents that live in the simulated environ-
ment. The embodiment of agents as environmental entities is defined as the Embody
function that maps an agent to the environmental entity that embodies the agent:

Embody : Ag → E
Embody(ag) = e

For the RoboCup Soccer environment, we consider Ag = {alice, bob} and:

Embody(alice) = robot1
Embody(bob) = robot2
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Embodiment of an agent determines the way the agent can affect the environment
(see Sect. 5) and vice versa (see Sect. 6).

4 Dynamism in the simulated environment

Starting from the basic model of the structure of the environment, we now elaborate
on dynamism.

Dynamism is the evolution of the simulated environment over time. Agents are
embodied in a dynamic environment where they experience dynamism happening
beyond their own control. For example, an agent embodied as a robot in a RoboCup
Soccer environment may experience the ball rolling in front of it and another robot
moving on its side. To support the modeler in describing dynamism, we provide a
first-class representation of dynamism in the simulated environment.

In this section, we describe the concepts for capturing dynamism in the simulated
environment (Sect. 4.1), explain how they can be used to describe scenarios (Sect.
4.2) and how they specify the state (Sect. 4.3). Currently, we make abstraction from
the way dynamism is initiated or how it interferes, as these will be the topics of the
next two sections.

4.1 Activities

Dynamism in the environment comprises the evolution of environmental entities and
properties over time. We introduce activities as a construct for representing dyna-
mism in the simulated environment in an explicit manner. An activity describes a
well-specified evolution of a particular constituent of the simulated environment, that
is active over a specific time interval. An example of an activity in the RoboCup Soc-
cer environment is a robot that is driving during a particular time interval. An activity
comprises the following: the constituent involved, the time interval of occurrence and
the evolution strategy.

– The constituent involved. Dynamism has an impact on particular parts of the sim-
ulated environment. Each activity is associated with the environmental entity or
property it describes the evolution of. For example, in Fig. 2, the activity a3 repre-
sents the rolling of the ball. The activities a1 and a2 represent the driving of one
of the robots.

– The time interval of occurrence. Dynamism occurs over time. Consequently, each
activity is characterized by a specific time interval. The time interval of an activity
specifies the point in time the activity starts and the time its evolution completes.
In case the activity never ends, the time interval is infinitely long. For example,
in Fig. 2, activity a1 representing the driving of a RoboCup robot robot1, starts at
time t = 3 after the start of the game, until t = 5. Activity a2 starts at time t = 6
after the start of the game, until t = 10. Activity a3 represents the rolling of the
ball, starting at time t = 7, until the moment it stops rolling, at time t = 9.

– The evolution strategy. Dynamism evolves in a particular way. Consequently, activ-
ities are characterized by an evolution strategy that describes the specific way the
status of the involved constituent changes over the time interval of occurrence. For
example, for activity a2 in Fig. 2, this could correspond to a change of the position
of the robot according to a constant velocity vector.
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Fig. 2 Activities a1, a2 and a3 in a RoboCup Soccer environment

Before giving a formal description of activities, we first introduce a number of
general definitions:

t ∈ T a particular time instant, with T
the time domain.

�t ∈ �T : t + �t = t′ a particular duration, with �T
the set of all possible durations,
including ∞.

�sc ∈ �SCk a state change for a constituent c
of kind Ck, with �SCk the set
of all possible state changes for
constituents of kind Ck.

�S = ⋃
Ci∈PartC �SCi the set of all possible state changes of

constituents of any kind.
⊕ : S × �S → S the state-composition operator ⊕
s ⊕ �s = s′ defines a new state from a given state

and a state change.
Note that the operator is overloaded
for each kind of constituent.

An activity a is defined as tuple:

a = 〈c, t, �t, par, F〉 an activity with the following characteristics:
c ∈ C: the constituent involved.
t ∈ T: the starting time.
�t ∈ �T: the duration until completion.
par = 〈v1, . . . , vr〉 ∈ V1 × · · · × Vr: the
parameters of the evolution strategy.
F : V1 × · · · × Vr × �T → �S: the
state change function, returning a state
change �s ∈ �S relative to the
start of the activity, given a tuple of
parameters and any duration not greater
than the duration �t of the activity.

In the rest of the paper, we use the following shorthand notations: a|c denotes the
constituent, a|t and a|�t denote the begin time and duration of activity a, respectively.
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Furthermore, a|par denotes the parameters and a|F denotes the state change function
of activity a.

For the RoboCup Soccer scenario in Fig. 2, consider the following activity as an
example:

a1 = 〈robot1, 3, 2, 〈−→v1 〉, Driving〉
Activity a1 represents that constituent c = robot1 starts driving at time t = 3 for

a duration of �t = 2. The state change is defined by the velocity vector −→v1 and the
function Driving.

The function Driving is defined as:

Driving : R
2 × �T → �SRobot

Driving(
→
v , �t) = 〈→

v ∗ �t〉
Driving returns a state change �s ∈ �SRobot for robots that drive with a given
velocity vector

→
v ∈ R

2 during a given duration �t ∈ �T. As the state of a robot is a
tuple 〈−→pos〉 (see Sect. 3.2), the state change returned by Driving is the change of the
position −→pos. The change of the position −→pos is expressed as the function

→
v ∗ �t with

�t the duration since the robot started driving with velocity
→
v .

As another example, consider the following activity from the RoboCup Soccer
scenario in Fig. 2:

a3 = 〈ball, 7, 2, 〈−→v3 ,
−→
d3〉, Rolling〉

Activity a3 represents that constituent c = ball starts rolling at time t = 7 for a dura-
tion of �t = 2. The state change is defined by velocity vector −→v3 and deceleration
vector

−→
d3 , and the function Rolling.

The function Rolling is defined as:

Rolling : R
4 × �T → �SBall

Rolling(
→
v ,

→
d, t) = 〈→

v ∗ �t −
→
d
2 ∗ �t2〉

The function Rolling returns a state change for a ball that rolls with a initial velocity
vector

→
v ∈ R

2 and deceleration
→
d ∈ R

2 during a given duration �t ∈ �T. The state of
a ball is a tuple 〈−→pos〉 (see Sect. 3.2). The change of the position returned by Rolling is

expressed as the function
→
v ∗�t −

→
d
2 ∗�t2 with �t the duration since the ball started

rolling with velocity
→
v and deceleration

→
d.

4.2 Scenarios

We now focus on how scenarios can be described. Scenarios describe a particular evo-
lution of the environment and can be expressed in terms of activities for the various
constituents. We define:

a ∈ A� A� is the set of all possible activities.
2A�

the powerset of A�, i.e. the set
of all possible subsets of A�

A = {a1, a2, . . . , ar} a scenario described by a set of activities,
with A ∈ 2A�
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The scenario for the RoboCup Soccer environment depicted in Fig. 2, can be ex-
pressed as:

A = {a1, a2, a3}, with:
a1 = 〈robot1, 3, 2, 〈−→v1 〉, Driving〉
a2 = 〈robot1, 6, 4, 〈−→v2 〉, Driving〉
a3 = 〈ball, 7, 2, 〈−→v3 ,

−→
d3〉, Rolling〉

4.3 Dynamism and state

So far, we introduced activities and illustrated how activities can be used to describe
scenarios. We now elaborate on how a scenario specifies the state of each constituent
at any point in time.

We first define a function Active that checks whether an activity is active for a given
constituent and a given time instant:

Active : A� × C × T → Boolean
Active(a, c, t) = (a|c = c) ∧ (a|t < t ≤ (a|t + a|�t)

For an activity to be active, it is required that the given constituent c is the con-
stituent involved in the activity, and that the given time instant t is situated between
the begin and end of the activity.

For a given initial state and a given scenario, we define a function State that cal-
culates in a recursive manner the state of any constituent at any particular point in time.

State : 2A� × (C → S) × C × T → S
State(A, Init, c, t) =⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

State(A, Init, c, a|t) ⊕ a|F(a|par, t − a|t)
if ∃a ∈ A : Active(a, c, t);

State(A, Init, c, tx) with:
tx = max{tk ∈ T|(tk < t) ∧ (∃a ∈ A : Active(a, c, tk))}

if (∀a ∈ A : ¬Active(a, c, t)) ∧
(∃tk ∈ T; ∃a ∈ A : tk < t ∧ Active(a, c, tk));

Init(c, t)
otherwise;

For a particular scenario A and initial state Init, the state of a constituent c at time
t can be derived in the following way. Note that in the formalism, we assume that at
most one activity can be active for any constituent at any time. We explain the three
cases in the domain of the State function:

1. In the first case, there exists an activity a that is active for the given constit-
uent c and time t. In this case, the state is recursively defined as the state
State(A, Init, c, a|t) at the start a|t of the activity, composed with the state change
specified by the activity. This state change is obtained by applying the function
a|F with the following arguments: on the one hand, the parameters a|par specified
by the activity, and on the other hand the duration t − a|t, i.e. the time elapsed
from the time a|t the activity started, until time t.
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2. In the second case, there is no activity that is active for constituent c and time t;
however, there exists an earlier time instant tk at which there is an activity that is
active for c. In this case, the state of the constituent c at time t is the same as the
state of the constituent c at time tx, where tx is the latest time instant before t at
which an activity was active for constituent c.

3. Otherwise, i.e. when there is no activity active for constituent c and time t, and
there are no earlier activities that describe the evolution of c, then the state of c
at time t is the initial state of c.

We illustrate the State function by means of the scenario in the RoboCup Soccer
environment depicted in Fig. 2. We expand the recursion for:

State(A, Init, robot1, 9)

= State(A, Init, robot1, 6) ⊕ Driving(
−→v2 , 3)

= (State(A, Init, robot1, 5)) ⊕ Driving(
−→v2 , 3)

= (State(A, Init, robot1, 3) ⊕ Driving(
−→v1 , 2)) ⊕ Driving(

−→v2 , 3)

= ((Init(robot1)) ⊕ Driving(
−→v1 , 2)) ⊕ Driving(

−→v2 , 3)

We explain the four expansions:

1. In the first expansion, State(A, Init, robot1, 9) is expressed in terms of State(A, Init,
robot1, 6). At time t = 9, activity a2 is active, indicating the robot1 is driving.
Consequently, the expansion is obtained by applying the first case of the State
function.

2. In the second expansion, State(A, Init, robot1, 6) is expressed in terms of State(A,
Init, robot1, 5). At time t = 6, activity a2 is not active yet, i.e. robot1 is not driving.
However, there exists an earlier time at which another activity, i.e. activity a1, is
active. As the robot is not driving between t = 5, i.e. the end of a1, and t = 6, i.e.
the beginning of a2, State(A, Init, robot1, 6) is the same as State(A, Init, robot1, 5),
according to the second case of the State function.

3. For State(A, Init, robot1, 5), the first case of the State function applies, and it is
expanded in terms of State(A, Init, robot1, 3).

4. For State(A, Init, robot1, 3), only the third case of the State function applies, which
specifies that State(A, Init, robot1, 3) is equal to the initial state Init(robot1).

5 Agents manipulating dynamism

We now focus on the way scenarios arise by relating activities to agents.
Dynamism in the real environment is manipulated by the various actors present in

that environment. In multi-agent simulation, the actors in the environment are repre-
sented as embodied agents. For example, in a RoboCup Soccer game, the agents alice
and bob playing the soccer game are embodied as robot1 and robot2, respectively. It
is clear that an agent must have a means to manipulate the entity it embodies, as the
agents can make their robot start driving around, stop driving, etc.

However, not only agents can initiate activities, as entities not embodying any
agent can also be involved in activities. For example, it is obvious that a ball can roll.
Such activities are typically initiated indirectly, i.e. by other activities. For example, a
ball rolls because it is hit by a robot. Indirect initiation of activities, i.e. by means of
interference, is not considered for now, as it is dealt with in Sect. 6.
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5.1 Influences

An environmental entity embodying an agent, mediates that agent’s access to the envi-
ronment (see Sect. 3.3). The influence–reaction model [12] introduces influences and
reactions to model the agents’ mediated access. Agents can only perform influences.
An influence represents the attempt of the agent to manipulate the environment.
The reaction models what actually happens in the environment in response to the
attempts. In contrast to the influence–reaction model, we express the reaction of the
environment in terms of manipulation of activities. Influences initiate and terminate
dynamism in the environment.

Each agent autonomously decides at what time to perform an influence. The
amount of time it takes an agent to decide upon what to do, results in a cost, i.e.
a delay for all its subsequent influences. To determine the time instant an influ-
ence occurs, an explicit mapping between the internal process of an agent and time
is necessary so as to determine how long an agent has been thinking or waiting
[1,15].

We define an influence as a tuple:

f ∈ Inf � = 〈ag, t, name, 〈v1, . . . , vr〉〉 an influence performed
by agent ag ∈ Ag at
time t ∈ T, with name
name and parameters
〈v1, . . . , vr〉 ∈ V1 × · · · × Vr.
The set of all possible
influences is Inf �.

In the rest of the paper, we use shorthand notations f |ag, f |t, f |n and f |vi to refer
to the agent, time, name and a parameter, respectively.

For the RoboCup Soccer environment, consider the following influences as an
example:

f1 ∈ Inf � = 〈alice, ta, startDriving, 〈−→v0 〉〉
f2 ∈ Inf � = 〈alice, tb, stopDriving, 〈〉〉

The influence f1 represents agent alice attempting to start driving with velocity vector−→v0 at time ta. The influence f2 represents agent alice attempting to stop driving at time
tb.

From the point of view of the simulated environment, influences are external in-
puts, generated by executing the agents. Let Ag� be the set of all possible agents, 2Ag�

is the powerset, i.e. the set of all subsets of all possible agents, and 2Inf �
the powerset

of all possible influences. We define a function ExecAgents which executes all agents
in the simulation until the next time instant ta at which one or several agents perform
an influence:

ExecAgents : 2Ag� → 2Inf �

ExecAgents(Ag) = { 〈ag1, ta, name0, 〈v1, . . . , vr〉〉,
〈ag2, ta, name1, 〈v1, . . . , vu〉〉,
. . . ,
〈agk, ta, nameq, 〈v1, . . . , vw〉〉 }
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5.2 Reaction laws

Because an agent’s access to the environment is mediated, an influence can lead to a
different result than the one intended by the agent. For example, consider an agent
embodied as a robot, that performs an influence at a particular point in time to start
moving with a particular velocity in a particular direction. The activity that is initiated
in response to this influence, represents the robot moving forward. However, the pre-
cise characteristics of the activity are determined by the characteristics of the robot
that embodies the agent. For example, due to jitter in the hardware, the direction
and velocity of the activity can slightly differ from the ones specified in the influence.
Moreover, a robot is not able to travel at a higher velocity than the one it is physically
able to achieve, even if an agent attempts to travel faster by performing an influence
specifying a higher velocity.

To capture the agents’ mediated access in a model, we introduce reaction laws.
A reaction law is a rule that specifies the reaction of the environment in response
to an influence. To determine a reaction, a reaction law takes into account (1) the
characteristics of the influence the agent performed and (2) the characteristics of the
environmental entity that embodies the agent. The reaction specified by a reaction
law manipulates the activities that involve the environmental entity that embodies
the agent. Note that a reaction law does not take into account other constituents, nor
does it manipulate activities of other constituents. Dealing with interference between
several constituents is the topic of Sect. 6.

5.2.1 Formal description of reaction laws

To formalize reaction laws, we first define a transformation of activities:

trans ∈ Trans� = 〈t, Rem, Add〉 an activity transformation at
time t ∈ T, which removes the
activities of set Rem ∈ 2A�

and
adds the activities of
set Rem ∈ 2A�

. The set of all
possible transformations
is Trans�.

In the rest of the paper, the shorthand notation trans|t will be used to select the
time of an activity transformation trans.

We define a function ApplyTrans which returns a set of activities representing the
result of applying a given transformation on a given set of activities:

ApplyTrans : 2A� × Trans� → 2A�

ApplyTrans(A, 〈t, Rem, Add〉) = (A \ Rem) ∪ Add

Reaction laws determine the way the environment reacts to the influences per-
formed by the agent. We define:

Rlaw : 2A� × (C → S) × Inf � → Inf � × Trans�

Rlaw(A, Init, f ) = 〈f , trans〉
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A reaction law Rlaw is represented as a function that, for a given scenario A, a
given Init function and a given influence f , returns a tuple containing the influence
and the transformation in response to the influence.

In addition, we define:

Rlaw ∈ Rlaws� Rlaws� is the set of all possible
reaction laws.

Rlaws = {Rlaw1, Rlaw2, . . . , Rlawr} a set of reaction laws,
Rlaws ∈ 2Rlaws�

We define a function ApplyRlaws that applies a set of reaction laws to a given set
of influences to determine a set of reactions to the influences:

ApplyRlaws : 2A� × (C → S) × 2Rlaws� × 2Inf � → 2Inf �×Trans�

ApplyRlaws(A, Init, Rlaws, {f1, . . . , fr}) = {〈f1, trans1〉, . . . , 〈fk, transk〉}

5.2.2 RoboCup Soccer: reaction laws

In the RoboCup Soccer environment, we consider the following reaction law as
example. The reaction law StartDriveLaw is responsible for initiating, in response to
an influence, an activity that represents a robot driving in the environment.

StartDriveLaw : 2A� × (C → S) × Inf � → Inf � × Trans�

StartDriveLaw(A, Init, f ) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈f , 〈f |t, φ, {a}〉〉
a = 〈Embody(f |ag), f |t, ∞, 〈Jitter(f |−→v0

)〉, Driving〉
if (f |n = startDriving) ∧

(Embod(f |ag) ∈ Robot) ∧
(∀a ∈ A : ¬Active(a, Embod(f |ag), f |t)) ∧
(‖f |−→v0

‖ ≤ vmax);

undefined
otherwise;

The law StartDriveLaw can be understood as follows. The outcome of the law is
undefined, unless the condition, described after if , is valid. This condition is a con-
junction of four subconditions:

1. The first subcondition expresses that the name f |n of the influence f must be equal
to startDriving.

2. The second subcondition expresses that the agent f |ag that performed the influ-
ence, must be embodied as a robot.

3. The third subcondition states that the robot that embodies the agent, i.e. Embody
(f |ag) may not yet be driving at the time f |t the influence is performed. The con-
dition states that no activity is active for the robot at the time the influence is
performed.

4. The fourth subcondition states that the length (expressed by the vector norm ‖.‖)
of the velocity vector f |−→v0

of the influence must be smaller than or equal to the
maximum velocity vmax the robot can achieve. Otherwise the robot will not start
driving.



Auton Agent Multi-Agent Syst

If all these conditions are valid, the robot starts driving. This is expressed in the out-
come of the reaction law StartDriveLaw. The outcome is a tuple consisting of the
influence f , and an activity transformation 〈f |t, φ, {a}〉 in response to f . The activity
transformation occurs at the time f |t of the influence, and results in an extra activ-
ity a that is initiated. This activity describes the driving of the robot that embodies
the agent. The activity starts at the time f |t, i.e. the same time as the influence, and
never ends (its duration is ∞), as the robot will continue driving until instructed
otherwise. The velocity of the robot while driving corresponds to the velocity f |−→v0

de-
scribed in the influence, after applying a stochastic perturbation, as described by the
Jitter-function:

Jitter : R
2 → R

2

Jitter(
→
v) = →

v ′

We consider a second reaction law StopDriveLaw that stops a driving robot in
response to an influence:

StopDriveLaw : 2A� × (C → S) × Inf � → Inf � × Trans�

StopDriveLaw(A, Init, f ) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈f , 〈f |t, {a1}, {a2}〉〉
with: a2 = 〈a1|c, a1|t, f |t − a1|t, a1|par, a1|F〉
if (f |n = stopDriving) ∧

(Embody(f |ag) ∈ Robot) ∧
(∃a1 ∈ A : Active(a1, Embody(f |ag), f |t) ∧

a1|F = Driving)

undefined
otherwise;

The law StopDriveLaw can be understood as follows. The outcome of the law is
undefined, unless the condition described after if is valid. This condition is a conjunc-
tion of three subconditions:

1. The first subcondition expresses that the name f |n of the influence f must be equal
to stopDriving.

2. The second subcondition expresses that the agent f |ag that performed the influ-
ence, must be embodied as a robot.

3. The third subcondition states that the robot that embodies the agent performing
the influence, i.e. Embody(f |ag) is driving at the time f |t the influence is performed.
The condition states that there exists an activity a1 such that a1 is active for the
robot at that time, and such that a1 is a Driving activity.

If all these conditions are valid, the law StopDriveLaw stops the robot from driving
any further: the original driving activity a1 is removed, and a new one a2 is inserted
that ends at the time the influence with name stopDriving is performed. Consequently,
this outcome of the law is a tuple consisting of the influence f , and an activity trans-
formation 〈f |t, {a1}, {a2}〉 in response to f . This transformation removes the activity a1
that represents the driving of the robot. An extra activity a2 is added. a2 is the same
activity as a1, i.e. the elements in its tuple correspond to the elements of a1, except for
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its duration. The duration of a2 is such that the robot stops driving at time f |t, i.e. the
time the influence made it stop.

5.2.3 RoboCup Soccer: scenario

As an example of both laws, we illustrate how an agent can generate the scenario of
the moving robot in Fig. 2. We start from the initial situation where both robots are
standing still on their initial position, as defined by Init: we have A = φ, i.e. no robot
is moving yet. The agents are executed:

ExecAgents({alice, bob}) = { f1 }
f1 = 〈alice, 3, startDriving, 〈−→v′

1 〉〉
By means of this influence, alice indicates it wants to start driving. ApplyRlaws deter-
mines and applies all reaction laws that are applicable. In response to this influence,
StopDriveLaw is undefined, but StartDriveLaw is applicable, and returns:

StartDriveLaw(φ, Init, f1) = 〈f1, 〈3, φ, {a0}〉〉
a0 = 〈robot1, 3, ∞, 〈−→v1 〉, Driving〉

We apply the proposed transformation on A = φ:

ApplyTrans(φ, 〈3, φ, {a0}〉) = {a0}

This represents the situation in Fig. 3, where robot1 is driving infinitely long.
The agents are executed again:

ExecAgents({alice, bob}) = { f2 }
f2 = 〈alice, 5, stopDriving, 〈〉〉

By means of this influence, alice indicates it wants to stop driving. ApplyRlaws deter-
mines and applies all reaction laws that are applicable. To this influence, StartDriveLaw
is undefined, but StopDriveLaw is applicable, and returns:

StopDriveLaw({a0}, Init, f2) = 〈f2, 〈5, {a0}, {a1}〉〉
a1 = 〈robot1, 3, 2, 〈−→v1 〉, Driving〉

We apply the proposed transformation on A = {a0}:

ApplyTrans({a0}, 〈5, {a0}, {a1}〉) = {a1}

The scenario now corresponds to Fig. 4, where the robot stops driving at time t = 5.

6 Interference of dynamism

Interference is the interaction of dynamism in the environment, which typically implies
a discontinuity in its evolution [26].

Dynamism can interfere in complex ways. Interference of dynamism can be un-
wanted by the agents, typically because it causes an agent’s actions not to yield the in-
tended result [12,27]. For example, a robot that has started to drive forward in a straight
line, hits an obstacle or is pushed aside by another robot. The result is that the robot
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a0

3

Fig. 3 Reaction of the environment: activity a0 initiated in response to influence f1

a1

Fig. 4 Reaction of the environment: activity a0 replaced by activity a1 in response to influence f2

reaches a position different from the one it intended to reach. However, interference
of dynamism can also be desired by agents. For example, a robot moves forward into
the path of a rolling ball, because it wants to deviate the ball in the direction of the goal.

Interference of dynamism plays a crucial role, particularly in multi-agent scenarios.
Supporting the modeler to cope with interference of dynamism, requires an adequate
means to represent interference at the modeling level.

In Sect. 6.1, we describe an example scenario of interference that will be used
throughout the whole section. The concepts to support interference at a modeling
level, are introduced in Sect. 6.2.

6.1 An example scenario

We illustrate interference of dynamism in the context of the RoboCup Soccer scenario
in Fig. 5. In this scenario, it is clear that the robot driving with activity a3 interferes
with the ball. A robot and a ball are not allowed to penetrate: the robot kicks the ball
when both come into contact, which happens at time t = 5. As a result of this contact,
the ball will start rolling, denoted by activity a4. At time t = 8, the rolling ball makes
contact with the other robot, which is at that time driving according to activity a2.
As a result of this contact, the ball will be deviated towards the goal, as indicated by
activity a5.
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Fig. 5 An scenario with interference between robots and a ball

6.2 Interference laws

Whereas a reaction law determines a transformation of activities related to one
environmental entity, without taking into account any others, an interference law
determines the way several environmental entities can interact.

An interference law conceptualizes a domain-specific rule that specifies a way enti-
ties can interfere. As such, interference laws can be used to constrain dynamism in
the simulated environment according to what is possible in the real environment. The
description of an interference law comprises the following:

– Interference conditions. An interference condition specifies the circumstances for
interference to occur. Interference conditions are used to check whether an activ-
ity interferes with other entities. An example of an interference condition is the
penetration of a moving robot and the ball.

– Activity transformations. In case interference is detected at a particular time in a
given scenario, the interference law specifies how the interaction affects the evo-
lution described by the activities involved. An activity transformation specifies a
particular transformation to be applied on the scenario.

Interference laws provide a modeler with an explicit means to define what kinds of
interactions between entities are relevant for the simulation, as well as to specify the
desired level of detail to describe the outcome of the interactions.

6.2.1 Formal description of interference laws

We define an interference law as a function that returns an activity transformation in
case its interference conditions are met:

ILaw : 2A� × (C → S) → Trans�

Ilaw(A, Init) = trans
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In addition, we define:

Ilaw ∈ Ilaws� Ilaws� is the set of all possible
interference laws.

Ilaws = {Ilaw1, Ilaw2, . . . , Ilawr} a set of interference laws,
Ilaws ∈ 2Ilaws�

We define a function ApplyIlaws that applies a set of interference laws to a given
scenario to determine a set of transformations:

ApplyIlaws : 2A� × (C → S) × 2Ilaws� → 2Trans�

ApplyIlaws(A, Init, Ilaws) = {trans1, . . . , transk}

6.2.2 RoboCup Soccer: interference laws

For the RoboCup Soccer Environment, we give two examples of an interference law:
KickBallLaw and DeviateBallLaw. The interference law KickBallLaw only applies
to the case in which a stationary ball is hit by a moving robot. KickBallLaw enforces
that the ball starts rolling by returning a transformation that initiates a new activity.

KickBallLaw : 2A� × (C → S) → Trans�

KickBallLaw(A, Init) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈t, φ, {a}〉
a = 〈b, t, �t, 〈→

v ,
→
d〉, Rolling〉

if ∃b ∈ Ball; ∃t ∈ T; ∃�t ∈ �T; ∃r ∈ Robot; ∃a1 ∈ A; ∃→
v ,

→
d ∈ R

2 :
Active(a1, r, t) ∧
∀ai ∈ A : ¬Active(ai, b, t) ∧
‖State(A, Init, b, t)|pos − State(A, Init, r, t)|pos‖ = ε ∧
‖State(A, Init, b, t + dt)|pos − State(A, Init, r, t + dt)|pos‖ < ε ∧
→
v = Y1(A, Init) ∧→
d = Y2(A, Init) ∧
�t = Y3(

→
v ,

→
d, Rolling)

undefined
otherwise;

The expression of the law can be understood as follows. The condition states that
the law is applicable in case there is a ball b, a time instant t, a duration �t, a robot r,
an activity a1 and velocity and deceleration vectors

→
v and

→
d such that:

1. The robot r is driving at time t, expressed by activity a1.
2. The ball b is not rolling at time t, i.e. none of the activities is active for the ball at

time t.
3. The distance between the position of the ball and the robot at time t is ε. ε repre-

sents the distance at which the bodies of the ball and the robot make contact.
4. The distance at time t + dt, with dt an infinitesimal small amount of time, between

robot r and ball b is smaller than ε. This means that the robot would actually
penetrate the ball after time t. This condition is not satisfied in situations where
the robot stops driving right when it touches the ball.
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5. The vectors
→
v and

→
d are determined by functions Y1 and Y2. We make abstraction

on how their precise values are determined.
6. The duration �t is determined by function Y3, and corresponds to the time that

elapses until the ball’s speed reaches zero.

If all these conditions are satisfied, KickBallLaw proposes an activity transformation
at time t. The transformation represents the addition of an activity a to the scenario.
a describes the ball b rolling after time t. Note that according to KickBallLaw, the
robot is not affected by hitting the ball.

In analogy with KickBallLaw, we define an interference law DeviateBallLaw that
determines the outcome in case a rolling ball is hit by a robot that is driving:

DeviateBallLaw : 2A� × (C → S) → Trans�

DeviateBallLaw(A, Init) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈t, {a1}, {a2, a3}〉
a2 = 〈b, a1|t, t − a1|t, 〈a1|→v , a1|→d 〉, a1|F〉
a3 = 〈b, t, �t, 〈→

v ,
→
d〉, Rolling〉

if ∃b ∈ Ball; ∃t ∈ T; ∃�t ∈ �T; ∃r ∈ Robot; ∃a1, a4 ∈ A; ∃→
v ,

→
d ∈ R

2 :
Active(a1, b, t) ∧
Active(a4, r, t) ∧
‖State(A, Init, b, t)|pos − State(A, Init, r, t)|pos‖ = ε ∧
‖State(A, Init, b, t + dt)|pos − State(A, Init, r, t + dt)|pos‖ < ε ∧
→
v = Y1(A, Init) ∧→
d = Y2(A, Init) ∧
�t = Y3(

→
v ,

→
d, Rolling)

undefined
otherwise;

The expression of the law can be understood as follows. The condition states that
the law is applicable in case there is a ball b, a time instant t, a duration �t, a robot r,
an activity a1 and a4, and velocity and deceleration vectors

→
v and

→
d such that:

1. The ball b is rolling at time t, expressed by activity a1.
2. The robot r is driving at time t, expressed by activity a4.
3. The distance between the position of the ball and the robot at time t is ε. ε repre-

sents the distance at which the bodies of the ball and the robot make contact.
4. The distance at time t + dt, with dt an infinitesimal small amount of time, between

robot r and ball b is smaller than ε. This means that the bodies of the robot and
the ball would actually penetrate at time t.

5. The vectors
→
v and

→
d are determined by functions Y1 and Y2. We make abstraction

on how their precise values are determined.
6. The duration �t is determined by function Y3, and corresponds to the time that

elapses until the ball’s speed reaches zero.

If all these conditions are satisfied, DeviateBallLaw proposes an activity transforma-
tion at time t. The transformation performs two things. One the one hand, it removes
the original activity a1 of the ball, and replaces it with an activity a2 which is iden-
tical to a1, except that a2 now stops at the moment ball and robot make contact.
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Consequently, ball and robot no longer penetrate. On the other hand, the transfor-
mation adds a new activity a3 that represents the new, deviated trajectory of the ball
after the time t it hits the robot. Note that according to DeviateBallLaw, the robot is
not affected by hitting the rolling ball.

From the definitions of KickBallLaw and DeviateBallLaw, it is clear that the inter-
ference scenario of Fig. 5 can be supported. In analogy to the KickBallLaw and
DeviateBallLaw, laws can be defined to determine what happens in case a rolling ball
hits a robot standing still, in case two robots collide, etc.

7 Towards a computational model

We now present the various parts in one integrated view and describe the evolution
of the model as a whole.

In Sect. 7.1, we present a graphical overview that integrates all parts of the model.
A formal way to specify the evolution of the model is described in Sect. 7.2.

7.1 Overview of dynamism in the simulated environment

Figure 6 gives a graphical overview that presents and relates the main concepts of
the formalism. Depending on their purpose, the concepts to describe the simulated
environment are organized in three main groups: concepts representing the structure
of the environment, concepts to represent dynamism in the environment and concepts
to control dynamism in the environment.

The concepts Environmental Entity and Environmental Property are
used to model the structure of the environment. The association between Envi-
ronmental Entity and Agent expresses that some environmental entities are
embodied by an agent.

An Activity is used to represent dynamism in the simulated environment in an
explicit manner. The association between Activity andEnvironmental Entity
and the association between Activity and Environmental Property expresses
that an activity describes the evolution of a particular environmental entity or property.

Activities themselves are subjected to evolution. We employ anActivity Trans-
formation to reify how activities in the environment change. The association be-
tween Activity Transformation and Activity expresses that an activity trans-
formation manipulates activities in the environment. The associations betweenActiv-
ity Transformation andReaction Law on the one hand, and betweenActiv-
ity Transformation and Interference Law on the other hand, express that
activity transformations are controlled by reaction laws and interference laws. A
Reaction Law is used to specify how dynamism in the environment is affected
by influences performed by agents. This is represented by the association between
Reaction Law and Influence. An Influence is used to capture the attempt
of an agent to affect dynamism going on in the environment. The association be-
tween Agent and Influence represents that agents can only manipulate activities
indirectly, i.e. by means of performing influences in the environment. Finally, an
Interference Law specifies a way in which several entities can interfere.

7.2 Evolution of the model

The evolution of the model is defined formally by means of the Evol function:
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Fig. 6 Overview of the main concepts in the model and their associations

Evol : 2Ag� × 2A� × (C → S) × 2Rlaws� × 2Ilaws� → ⊥
Evol(Ag, A, Init, Rlaws, Ilaws) =

Evol(Ag, Cycle(Exec(Ag), Rlaws, Ilaws, A, Init), Init, Rlaws, Ilaws)

The evol function is an infinite recursive function (denoted by the ⊥). In each
recursion, the Exec function executes all agents until the next time instant one or sev-
eral agents perform an influence. Subsequently, the Cycle function returns an updated
scenario A in reaction to this set of newly performed influences, by applying all trans-
formations specified by the reaction laws and interference laws in the correct temporal
order.
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The Cycle function is defined as follows:

Cycle : 2Inf � × 2Rlaws� × 2Ilaws × 2A� × (C → S) → 2A�

Cycle(Inf , Rlaws, Ilaws, A, Init) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cycle(Inf \ {f }, Rlaws, Ilaws, ApplyTrans(A, trans), Init)
if ∃f ∈ F; ∃trans ∈ Trans� :

(〈f , trans〉 ∈ ApplyRlaws(A, Init, Rlaws, Inf )) ∧
(� ∃〈fi, transi〉 ∈ ApplyRlaws(A, Init, Rlaws, Inf ) :

transi|t < trans|t) ∧
(∀transj ∈ ApplyIlaws(A, Init, Ilaws) :

trans|t < transj|t)

Cycle(Inf , Rlaws, Ilaws, ApplyTrans(A, trans), Init)
if ∃trans ∈ Trans� :

(trans ∈ ApplyIlaws(A, Init, Ilaws)) ∧
(� ∃transi ∈ ApplyIlaws(A, Init, Ilaws) :

transi|t < trans|t) ∧
(∀〈fj, transj〉 ∈ ApplyRlaws(A, Init, Rlaws, Inf ) :

trans|t ≤ transj|t)

A
otherwise;

The Cycle function takes as input a set of newly performed influences, the set of
reaction laws and the set of interference laws, the actual scenario and a function that
returns the initial state. The Cycle function then determines the updated scenario by
applying laws in a recursive manner. There are three possible cases:

1. The first law that is applicable, is a reaction law. This is the case if there exists
an influence f and an activity transformation trans for which the following three
conditions are satisfied:

(a) One of the reaction laws proposes the given transformation trans in reaction
to the influence f of the set of influences. In other words, the tuple 〈f , trans〉
is an element of the set that is produced by the ApplyRlaws function.

(b) There does not exist another transformation transi that is also proposed by
the ApplyRlaws function and that occurs earlier in time than trans.

(c) All transformations transj that are proposed by the interference laws occur
later than the transformation trans.

If all these conditions hold, the transformation trans in response to f is applica-
ble before any other transformation. Consequently, the function Cycle is called
recursively. The parameters reflect the outcome of the reaction law that proposed
trans: (1) in the set of influences for which the reactions have yet to be deter-
mined, the influence f is removed, and (2) the scenario is now the one in which
the transformation trans is already applied.

2. The first law that is applicable, is an interference law. This is the case if there
exists an activity transformation trans for which the following three conditions
are satisfied:
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(a) One of the interference laws proposes the given transformation trans for the
given scenario A. In other words, trans is an element of the set of transfor-
mations that is produced by the ApplyIlaws function.

(b) There does not exist another transformation transi that is also proposed by
the ApplyIlaws function and that occurs earlier in time than trans.

(c) All transformations transj that are proposed by the reaction laws occur at
the same time or later than the transformation trans.

If all these conditions hold, the transformation trans is applicable to A before any
other transformation. Consequently, the function Cycle is called recursively. The
parameters reflect the outcome of the interference law that proposed trans, i.e.
the scenario is now the one in which the transformation trans is already applied.

3. No laws are applicable. The current scenario A is returned, as it already reflects
all changes.

Note that all activity transformations are applied in increasing temporal order, which
is required. With respect to activity transformations that occur at the same time, the
Cycle function specifies the following arbitrary conventions. For activity transforma-
tions proposed by reaction laws that occur concurrently, the order is not specified. For
activity transformations proposed by interference laws that occur concurrently, the
order is not specified. Finally, in case an activity transformation proposed by a reaction
law occurs concurrently with an activity transformation proposed by an interference
law, the transformation of the interference law is applied first.

8 Discussion

In this section, we elaborate on the added value of the formalism for multi-agent sim-
ulation. We focus on the way the formalism provides support for describing a model
in Sect. 8.1 and for executing a model in Sect. 8.2. In Sect. 8.3, we reflect upon factors
that affect the computational cost.

8.1 Support for modeling

The concepts of the formalism offer domain-specific support to the modeler, i.e.
they are aimed at facilitating the modeling of dynamic environments in MAS sim-
ulations. The concepts facilitate modeling not by hiding the complexity of dynamic
environments, but by capturing this complexity in a clear and comprehensive way. The
domain-specific nature of the concepts raises the abstraction level for the modeler,
making it easier for the modeler to reason about dynamic environments.

For example:

– Activities support the modeler by representing in an explicit manner all dynamism
that is happening in the environment.

– Embodiment, influences and reaction laws support the modeler in disentangling
the complex relation between agents and the environment. The embodiment func-
tion specifies the way agents are associated with environmental entities. Influ-
ences reify the way an agent attempts to affect dynamism in the environment,
whereas reaction laws specify the actual impact of influences on dynamism in the
environment.
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– Interference laws provide the modeler with a means for defining complex interac-
tions in the environment.

8.2 Support for executing a model

The formalism provides support for translating a model described in terms of the
domain-specific concepts into an executable simulation. The formalism specifies the
functionality that is necessary to support the modeling concepts in an executable
simulation. For example:

– The formalism unambiguously defines how each of the concepts can be expressed.
– The formalism defines how the state of any environmental constituent can be

derived at any time in a given scenario (see Sect. 4.3).
– The formalism specifies the evolution of models that are expressed in terms of

its concepts. In particular it specifies the synchronization between (1) the execu-
tion of the agents, (2) the enforcement of reaction laws and (3) the enforcement
interference laws in the simulated environment (see Sect. 7.2).

Without the formalism, the translation of a model based on the concepts into an
executable simulation would have to be reinvented from scratch for each simulation
study. Consequently, the formalism promotes reuse, is less error-prone and accelerates
the development of an executable simulation.

8.3 Computational cost

The formalism supports the modeler by providing a specification, without committing
to specific algorithmic solutions to underpin it. As such, the formalism enables the use
of custom algorithmic solutions that are optimized for a specific simulation study. The
computational cost of executing a model that is based on the formalism, is dependent
upon the following:

– Complexity of the model. The inherent complexity of the model has a significant
impact on the computational cost to execute it. The complexity of a model is
determined by the granularity of the activities, the quantity and complexity of the
laws, etc.

– Characteristics of the experiments. For a particular model, the experimental setting
can have an impact on the computational cost. For example, the initial position
and the density of robots can have an impact on the frequency at which collisions
occur.

– Algorithmic solutions. For a particular model and experiment, the chosen algo-
rithmic solutions can have an impact on computational cost. Examples are fast
collision detection algorithms, efficient mechanisms for matching reaction laws
with influences, excluding activities that can never interfere from checks by the
interference laws, etc.

A measurement of the computational cost, in the context of a specific simulation study
based on the core ideas of this paper, is reported upon in [14]. The simulation study
consists of building a simulation for testing the control software that steers automated
guided vehicles (AGVs) in a dynamic warehouse environment.
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9 Challenges

We discuss how the proposed formalism poses new challenges in the domain of
multi-agent simulation. We concentrate on two main directions for future research:
methodological challenges and engineering challenges.

9.1 Methodological challenges

Methodological challenges focus on using the formalism for a simulation study. The
formalism presents a set of integrated concepts. Nevertheless, there are various pos-
sibilities for mapping a particular domain of interest on the concepts. The formalism
provides a common ground for discussion, but future research is necessary to gain
further insight on the various trade-offs when applying the formalism for modeling.
Specific directions for future research include:

– How to devise an appropriate subset of relevant concepts for a particular simula-
tion study? Not all concepts are necessarily needed when building a model for a
simulation study. For example, not in all environments, activities can interference
with each other.

– How well can the formalism be applied to more complex representations of the
structure of the environment? We employed a simple model for representing the
structure of the simulated environment, i.e. in terms of entities and properties.
An interesting issue is investigating to what extent the formalism can be used to
describe dynamism in an environment with a complex structure, for example an
environment with an explicit spatial and social structure.

– How well is the formalism suited to describe dynamism other than physical move-
ments? For example, activities could be used to represent the transmission of
communication messages. In this case, interference laws could be used to model
the quality of service of a communication channel, enforcing longer transmission
durations in case of many transmissions. Further investigation is needed to explore
the trade-offs in such settings.

– How to decide upon a suitable level of abstraction for applying the formalism?
The concepts can be applied on various levels of abstraction, from very course
grained to fined grained. Using a fine grained way to model activities and laws, will
lead to more realistic scenarios, but will significantly increase the modeling effort
and the computational cost to execute the model. Future research can focus on
integrating experiences for gaining more insight on determining an appropriate
trade-off.

9.2 Engineering challenges

The formalism defines the various concepts and relations with respect to dynamism,
and specifies the functionality to support the concepts in an executable simulation.
Engineering focusses on the design and development of a simulation environment
according to the formal specification.

Developing a simulation environment that supports the formalism to its full extent
is a substantial engineering challenge. We indicate two possible tracks that can serve
as a basis for future research.

A first track is designing a special-purpose simulation environment based on the
formal specification. The formal description defines the concepts in an unambiguous
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way and specifies the evolution of simulation models that are expressed in terms of
these concepts (see Sect. 7.2). As such, the formal specification provides guidance to
the developer for building a special-purpose simulation environment for executing
multi-agent simulations involving dynamic environments.

A second research track is investigating how the domain-specific constructs pro-
vided by the formalism can be translated into abstractions supported by mainstream
simulation formalisms. Such a model translation would enable the reuse of general-
purpose simulation environments. As a guideline for future research, we give a first
indication on possible ways to relate the formalism to discrete event simulation and
hybrid simulation.

9.2.1 Discrete event simulation

In discrete event simulation [4], models are described in terms of state and events. The
state is a list of values that are sufficient to describe the state of the system at any
point in time. An event is defined as a change of the state that occurs instantaneously
at a specific point in time [24].

To support the formalism in discrete event simulation, we need to devise a way for
mapping the concepts of the formalism onto state and events. There are various design
choices. We briefly indicate two possible alternatives.

In a first alternative, the constituents are considered to form a state. Activities can
be represented as a combination of state and events: the parameters of an activity
are described as a state, attributed to a particular constituent, whereas the start and
the end of each activity are translated into two successive events. Supporting activity
transformations that result from the laws, is less trivial, as this requires additional
infrastructure for inspecting and manipulating the event queue.

In a second alternative, the set of activities is considered to form a state, and
the activity transformations proposed by the laws are represented as events. Con-
sequently, the state of the constituents is defined implicitly, and the State function
specified in Sect. 4.3 has to be implemented to derive it.

9.2.2 Hybrid simulation

In hybrid simulation [9,20], the evolution of the system is mixed, i.e. continuous phases
alternated by discrete events. In a continuous phase, time advances, and the values
of the state variables are determined by equations as a function of time. When a dis-
crete event occurs, the equations and the state variables are altered in a discontinuous
manner.

Events can be of two kinds:

– Time events. Time events are scheduled at a predetermined time.
– State events. State events are scheduled at the occurrence of a particular condition,

i.e. when the continuous phase exceeds certain thresholds. As such, it is not known
a priori at what time a state event occurs. Consequently, the simulation engine
has to detect whether state events occur, and at what time their occurrence takes
place.

To support the formalism in hybrid simulation, we need to devise a way for map-
ping the concepts of the formalism onto state variables, equations, time events and state
events. We give some further indications.
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The state of the constituents could be translated into state variables, and activities
represented by equations. As interference laws represent conditions on the continu-
ous phase, they can be represented as state events. Supporting reaction laws requires
further investigation. Reaction laws are triggered by influences, performed by the
agents. However, agents autonomously decide when to perform an influence, whereas
time events are predetermined. Moreover, state events are expressed as conditions on
the continuous phase, whereas the agents are typically modeled in a discrete manner.

An efficient treatment of interference laws, represented as state events during con-
tinuous simulation, provides an interesting challenge. Existing approaches to detect
state events are based on retroactive detection [17], i.e. checking after each integrated
time step whether a state event occurred, or by conservative advancement [16], i.e.
advancing the simulation conservatively by chosing the time step so that no colli-
sion will occur during it. Moreover, fast collision detection algorithms, impact models
and methods to enforce general motion constraints — especially the non-penetra-
tion constraints — have been developed [19]. This illustrates the rich body of research
results that can be exploited for building support to simulate interference in simulated
environments in an accurate and efficient manner.

10 Conclusions

Research on environments in multi-agent simulation devotes a lot of attention to mod-
eling environments, exploring new directions. In this paper, we proposed a formalism
to model dynamic environments in multi-agent simulation. In contrast to general sim-
ulation formalisms, the formalism is domain-specific, i.e. it employs concepts that are
specifically aimed at modeling dynamic environments in multi-agent simulation. This
domain-specific nature enables the formalism to present and support in an explicit
manner a number of relations that are pertinent for modeling dynamic environments
in multi-agent simulation:

– A dynamic environment encapsulates its own dynamism. Activities are part of the
simulated environment and model dynamism in the environment in an explicit
manner.

– A dynamic environment regulates its own dynamism. By means of reaction laws,
the environment governs how dynamism is affected in response to influences by
the agents. By means of interference laws, a dynamic environment constrains
dynamism according the domain.

– The relation between agents and dynamic environment is twofold. On the one
hand, agents are inherently part of the environment, as they are embodied as
environmental entities. On the other hand, however, agents are restricted in their
ability to affect dynamism in the environment. Agents can only affect dynamism
in an indirect manner, using influences.

For multi-agent simulation, the contribution of the formalism is twofold. On the
one hand, the formalism provides the modeler with a set of unambiguously defined
concepts that facilitate the modeling of dynamic environments. On the other hand,
the formalism provides support for executing a model by specifying how the concepts
can be supported in an executable simulation.

We illustrated the formalism by applying it for modeling dynamism in a Robo-
Cup Soccer environment. We elaborated on how the formalism poses new challenges
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to the multi-agent simulation community and hope that the formalism provides an
interesting point of view to explore the modeling of environments for multi-agent
simulation to further extent.
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