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Metrics
• A metric is a function d on pairs of objects that satisfies 

the following three rules:
– d(x,x) = 0 for all x.
– d(x,y) = d(y,x) > 0 for
– For all x,y, and z,

• Let [n] = {1,2,…,n}.  Let An be the vector space 
generated by metrics on [n].  I.e., An is the space of 
symmetric matrices with zeros along the main diagonal.

( , ) ( , )  ( , )d x z d x y d y z≤ +



Tree metrics

For the purposes of this discussion, we will use the 
word “topology” to refer to a tree without branch 
lengths, and “tree” will only be used for trees with 
lengths assigned to each branch.

Let T be a tree and l be the branch length function.
For each two nodes x and y, let pxy be the unique 
path from x to y in T.
Define ( , ) ( ).
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Phylogeny estimation

• Our version of the phylogeny estimation 
problem.  Given  
– an unknown tree T1 with leaf set [n] 
– a matrix ∆ of estimates of DT1

• Find the tree T2 such that DT2 is a good 
estimator for ∆ (and thus of DT1).



Algebraic structure of tree 
metrics



Splits

• Let [n] be the leaf set of a tree T.  Every edge e
defines a split of T, Xe|Ye, a bipartition of [n] 
such that every path from Xe to Ye includes the 
edge e.  

• Let S (T) =                                  .  
)}(:|{ TEeYX ee ∈

0
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              0 otherwise
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=

•Suppose                     Define the split metric
by
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Split Metrics

nATA ⊂)(

•Any tree topology T  is determined by the set 
of splits determined by its edges.  
•Let 
be the set of split metrics for the topology T.  
•Let A(T) be the vector space generated by B0(T)    
•Note dim(A(T)) = 2n-3,while dim(An)=n(n-1)/2, 
thus
•(It is important to note that vector spaces allow 
negative branch lengths, which are biologically 
meaningless.)
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Topological matrices
We can express the tree metric dT as a vector.  
Index the branches of T : e1, e2, e3,… em.  Let 
p1, p2, …, pC(n,2) be an enumeration of the leaf-
to-leaf paths of T, where                                  
Define the matrix S by 

Let L be the vector of branch lengths.  Then 
Equivalently, 
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Average Distance Functionals

• For any A,B disjoint subsets of [n], let 

• If we let A and B range over the subtrees of 
a given tree T, this quantity can be 
calculated recursively:
– if A = {a}, and B = {b}, then 

|
,

1
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Weighted Average Distances
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Algebra

• Let Xi|Yi be the split corresponding to the edge 
ei.   Suppose we choose                       at 
random from Xi and Yi respectively.  Consider 
the edge ej.  Define

• Let P = (pij).  P relates the branch lengths of T
to the vector 

• P is invertible.  (Desper and Vingron, 2002)  
Invertibility was demonstrated by showing 
trees                such that 
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Example
Suppose e is an internal edge separating four subtrees of
the same size, with all edges in the subtrees having 
zero length, and other edges having lengths:

3
e
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The tree above is  1
| DCBA ∪∪ε



Common Phylogeny Estimation 
Methods



Least Squares Fitting

• The fit of a tree T to a matrix ∆ is defined to be 

• Least-squares fitting seeks the weighted tree (of 
any topology) minimizing fit(T).  (Fitch and 
Margoliash 1967)

• If σij = 1 for all i and j, this method is called 
ordinary least-squares, otherwise it is called 
weighted least-squares.
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Average Distances and OLS

• T is OLS tree iff  (Vach 1989)

• This observation leads to branch length 
formulae for edges in terms of average 
distances.  The formulae are used by 
Bryant and Waddell’s OLS algorithm.

| | for all | ( )T
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Least Squares Fitting

• Solving ordinary least squares is equivalent to 
minimizing                               the solution of 
which is                            (Cavalli-Sforza and 
Edwards 1967)   

• Weighted least squares requires a diagonal matrix 
W of weights.  In this case, the solution is

• Bryant and Waddell (1998) provided an O(n3) 
algorithm for solving WLS for a fixed topology.
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Minimum Evolution methods

Minimum evolution methods have two steps:
– Each* topology T is assigned edge lengths according 

to some function l, for example, the OLS function.
– We choose the topology minimizing

*In practice, not all topologies are examined; rather, a 
heuristic is used to consider likely topologies.
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Neighbor Joining

The neighbor-joining step:  We join the neighbors x and y, 
and form the new node x-y.

x

y

x

y x-y

This tree is assigned edge weights via OLS.  NJ uses a 
minimum evolution criterion to select the smallest tree 
over all pairs (x,y).



Neighbor Joining

• The length of the tree pairing x and y is 

• The neighbors x and y are joined, and a 
new node x-y is formed.  The distance from 
x-y to the node z is

( )
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FastME algorithms

OLS version



Fast ME algorithms

• The tree length formula depends only on a 
relatively small number of average distances.

• Small topological changes in a test topology lead 
to a change in the tree length expressible as a 
linear sum of a constant number of average 
distances.

• Maintaining a matrix of appropriate average 
distances allows for quick calculation of tree 
lengths for a large number of topologies.



FastNNI

•Input matrix ∆, tree topology T.

•To search the space of topologies, we’ll 
keep in memory :

•Number of taxa of each subtree 

•Matrix of average distances ∆X|Y for X,Y
disjoint subtrees 

•We update the matrix in an efficient manner 
if/when we select select a new topology.



Tree Swapping by NNI

C

e

A

D

B A

D

C

B

e

NNI swapping is a basic step in topology searching



Tree Length after NNI

Given T T ’ the tree swap in prior slide, l
the edge length function, T,T’ the OLS 
trees:  | |

' '
| |

'
| |
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where λ and λ’ are constants depending on
the topologies.  (Desper and Gascuel 2002)

(1)



OLS:FastNNI
1. Pre-compute average distances between non-

intersecting sub-trees. (O(n2) computations)
2. Loop over all internal edges, select the best swap 

using Equation (1).  (O(n))
3. If no swap improves length of the tree, stop and 

return the tree, else perform the best swap and 
update the matrix of average distances and 
repeat Step 2. (O(n) per swap; there is only one 
new split.)

Thus, if we require p swaps, the total complexity of
FASTNNI is O(n2 + pn).



FastNNI – Pros and Cons

• Using NNIs leads to a fast algorithm (O(n2)) 
(Greedy Minimum Evolution) for building an 
initial topology. 

• Even with NNI postprocessing, GME + FastNNI
is faster than Neighbor-joining

• Unfortunately, Gascuel (2000) showed that the 
minimum evolution approach using OLS branch 
lengths is inferior to NJ in estimating tree 
topologies. 



Balanced Minimum Evolution



Balanced Average 
Distance Functionals

• OLS averages are insensitive to topology: a leaf 
topologically distant is as important to the 
calculation of an average as one nearby.  

• We’ll define “balanced” averages to allow the 
topology to affect the calculation of average 
distances.  (Pauplin 2000)

• Let ∆ be a metric.  As A and B range over the 
subtrees of a given tree T, we’ll define             
recursively:
– if A = {a}, and B = {b}, then |

T
A B abδ∆ =

|
T
A B∆



Balanced Average Distances

1B

2B

A

For
subtrees of T, 
we’ll define 

1 2,B B B= ∪
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Balanced Averages
•Given ∆ and the topology T, we’ll select the 
branch lengths of T to satisfy a Vach-like set of 
equalities:
•These weights can be found (proof omitted)
by solving                                  where the weights 
are determined by                        with pT(i,j) is the 
topological length of the path in T from i to j.
•As with the OLS tree, each branch length can be 
expressed as a simply linear sum of average 
distances.  (Simply use λ = λ’ = ½ in OLS 
formulae).
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Balanced NNI 

1. Calculate balanced averages of all pairs of sub-
trees.  (O(n2))

2. Calculate improvement for each swap using 

3. If no tree swap improves length of the tree, stop 
and return tree, else update matrix of average 
distances and repeat Step 2.  (O(n diam(T)) 
per swap)

The average complexity, when performing p swaps, 
is O(n2 + pn diam(T)).

( )| | | |
1( ) ( ')
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Updating Subtree Averages

and B C D Y∪ ∪ ⊆...  Here ...X A⊆, 

If we perform 
the B-C tree 
swap, then we 
must 
recalculate

e
C

DB

yX
A

x

|
T
X Y∆

Y

A: O(n diam(T ))Q: How many recalculations?

(log )O n ( )O ndiam(T) can range from                    to    
If T is generated randomly, the expected value of



BME: its algebra and WLS 
connections 

Joint work with Olivier Gascuel



BME=BLS
•BME is a weighted least squares approach with

•Standard models of evolution (e.g. Kimura) yield a variance 
on the estimates of evolutionary distances:

•Presuming evolutionary distances are proportional to 
topological distances, the BME approach yields a better
approximation to variances of evolutionary distances than
usual WLS methods.       

( , )2 .
Tp i j

ij cσ =

ijd
ij eσ ∝



The Balanced Dual Basis

• As with the OLS setting, we can find basis vectors 
dual to balanced average distance functionals.

• With branch lengths:

2
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The Balanced Dual Basis

•For an external edge e, set l(e) = 3/2, 
l(f) = -1/2 for f incident to e, and l(g)=0 for all 
other edges g.
•Again, if

•Let Be be the tree with lengths described above or 
on the previous slide, for any edge e

i
A

B

e

| 1 if | |
        = 0 otherwise

T
X YD X Y i A B= = ∪
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Pauplin’s Formula

•Let T be a weighted tree of topology T and 
∆ be a metric.  Pauplin’s formula for the 
length of T is

•Let us decompose DT according to the dual 
basis:
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Proof of Pauplin’s formula

• By linearity,

• Observe l(Be) = 0 for e internal, and l(Be) = 
½ for e external.  Thus

|
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( ) ( ).
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Positive Branch Lengths after BNNI

A B
| | | | | |
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Consistency of BME

Modeled after OLS/ME
proof of Rzhetsky and Nei (1993)



Balanced ME consistency

• Basic idea: let l be the tree length function 
on the space of topologies.  We find a 
sequence of topologies, T=T0, T1, ... 
Tk=S such that 
– Each Ti+1 can be reached from Ti via one of 

two simple topological transformations
– l(Ti) > l(Ti+1) for all i.



Type I transformation
Color the leaves black or white according to the split metric 
given by S. A Type I transformation uses a NNI to form a larger 
monochromatic cluster.

BC A2

AAD

B

C

Ti Ti+1

This transformation reduces the size of the tree under l
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A Type II transformation

A Type II transformation uses two NNIs to form two 
monochromatic subtrees

C

A1 A1

A2

A2

C

B2 B2

B1

B1

This transformation also reduces the value of the size 
of the tree under l…



Decomposing a Type II 
transformation
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B1
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B2 B2
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C

We use two NNIs to perform a Type II transformation.  Let
Ti be the tree on the left, T*I be the tree on the right.
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where pc is the relative weight
of black nodes within C.



Simulations

Using Aldous topology generation 
and covarion model for rate variation



Simulations
• Simulated 5000 trees with 100 taxa each.
• Generated using Aldous distribution on trees, a 

distribution that includes a Yule-Harding distribution at 
one extreme and a uniform distribution at the other, with 
a paramter β determining range between -1.5 and 0.

• Branch lengths determined by a standard coalescent 
model, and perturbed from ultrametric by multiplying by 
exponential r.v.

• For each tree, we generated DNA sequences 600 base 
pairs long.  Covarion model for rate variation.

• Used dnadist to calculate Jin-Nei maximum likelihood 
distances for each set of sequences, yielding 5000 
matrices.



New results: error functions

We also consider related topological error functions 
that distinguish the very short edges that are not 
realistically recoverable.  For any          and T,T’,
define

0,δ >

|)}T(|,)(:)'({|),',(1 Σ∉>∈= ee YXelTEeTTe δδ
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1
1200

δ =With 600 bases in each sequence, we use 



Summary results

71.8577.4414.4920.0964.99NJ

71.8579.4811.2818.9162.08WLS

71.8578.3611.5918.1061.50Weighbor

71.8580.259.2517.6558.06BME

robsralge2e1RFalgorithm

RF is Robinson-Foulds sum of missed and false splits.
ralg and robs refer to the number of edges longer than 
δ in the algorithm tree and true tree,respectively



Interval tests

• For each of seven parameters, we sorted tests 
according to parameter value.  

• From sorted lists, we constructed 9 subsets of 
the data, corresponding to the intervals of the 
form [500k+1, 500k + 1000], for

• For each sub-interval, we calculate error and 
resolution statistics. 

80 ≤≤ k



Error functions vs. Beta parameter

E1 - Aldous shape parameter
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from Yule-Harding to uniform.



Error functions vs. tree diameter

E2 vs. tree diameter
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Error functions vs. departure
from molecular clock

E1 vs. observed departure 
from molecular clock
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Error functions vs. 
covarion parameter

E1 vs. Covarion Model Parameter
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Computational Times
in (MM:SS)

4000 
Taxa

1000 
Taxa96 Taxa24 Taxa

06:02.111.33900.08420.0263GME + BNNI

4.3745FITCH
26.88180.4244WEIGHBOR

20:55.921.25000.16280.0630NJ/BIONJ

03:33.113.80800.13490.0252HGT/FP

Computations done on Sun Enterprise E4500/E5500 running 
Solaris 8 on 10 400-Mhz processors with 7 Gb memory. 



Conclusions
• BME + BNNI runs in O((n2 + pn) diam(T)), outputs trees better than 

FITCH, Weighbor, or NJ.
• BNNI outputs tree without negative branch lengths.
• BME approach shown to be consistent.
• All tested methods saw errors increase as shape parameter moved 

toward uniform distribution.
• All tested methods saw errors increase with increase in divergence 

from molecular clock, and with tree diameter.
• Changes  in covarion parameter had negligible effect.
• FASTME software available at 

http://www.ncbi.nlm.nih.gov/CBBResearch/Desper/FastME.html or 
http://www.lirmm.fr/~w3ifa/MAAS/.

http://www.ncbi.nlm.nih.gov/CBBResearch/Desper/FastME.html
http://www.lirmm.fr/~w3ifa/MAAS/


References
• Bryant, D., and Wadddell, P.  1998.  Rapid evaluation of least-

squares and minimum-evolution criteria on phylogenetic trees.  Mol. 
Biol. Evol.  15:1346-1359.

• Desper, R., and Gascuel, O.  2002.  Fast and accurate phylogeny 
reconstruction algorithms based on the minimum evolution principle.  
J. Comp. Biol. 9:687-705.

• Desper, R., and Vingron, M. 2002.  J. Classification.  19:87-112.
• Fitch, W.M., and Margoliash, E.  1967.  Construction of phylogenetic 

trees.  Science 155:279-284.
• Pauplin, Y. 2000.  Direct calculation of a tree length using a distance

matrix.  J. Mol. Evol. 51:41-47.
• Rzhetsky, A., and Nei, M. 1993. Theoretical foundation of the 

minimum-evolution method of phylogenetic inference.  Mol. Biol. 
Evol. 10:1073-1095.

• Vach, W.  1989.  Least squares optimization of additive trees.  Pp. 
230-238 in O. Opitz, etd.  Conceptual and numerical analysis of data.  
Springer-Verlag, Berlin.


	Distance Methods for Phylogeny Estimation
	Outline
	Outline
	Metrics
	Tree metrics
	Phylogeny estimation
	Algebraic structure of tree metrics
	Splits
	Split Metrics
	Topological matrices
	Average Distance Functionals
	Weighted Average Distances
	Algebra
	Example
	Common Phylogeny Estimation Methods
	Least Squares Fitting
	Average Distances and OLS
	Least Squares Fitting
	Minimum Evolution methods
	Neighbor Joining
	Neighbor Joining
	FastME algorithms
	Fast ME algorithms
	FastNNI
	Tree Swapping by NNI
	Tree Length after NNI
	OLS:FastNNI
	FastNNI – Pros and Cons
	Balanced Minimum Evolution
	Balanced Average Distance Functionals
	Balanced Average Distances
	Balanced Averages
	Balanced NNI
	Updating Subtree Averages
	BME: its algebra and WLS connections
	BME=BLS
	The Balanced Dual Basis
	The Balanced Dual Basis
	Pauplin’s Formula
	Proof of Pauplin’s formula
	Positive Branch Lengths after BNNI
	Consistency of BME
	Balanced ME consistency
	Type I transformation
	A Type II transformation
	Decomposing a Type II transformation
	Simulations
	Simulations
	New results: error functions
	Summary results
	Interval tests
	Error functions vs. Beta parameter
	Error functions vs. tree diameter
	Error functions vs. departurefrom molecular clock
	Error functions vs. covarion parameter
	Computational Times
	Conclusions
	References

