# Distance Methods for Phylogeny Estimation 

Richard Desper

NCBI/NLM/NIH/DHHS
Bethesda, MD, USA

## Outline

Metrics and Tree Metrics
Algebraic framework
Split metrics - standard basis
Split average distances - new basis
III. Common phylogeny estimation methods

Least squares methods
OLS Minimum Evolution
Neighbor Joining
IV. FastNNI and FastME

## Outline

IV. Balanced Minimum Evolution

- Topological averaging
- Pauplin's tree length formula
VI. Algebra of BME
VII. Consistency of Balanced Minimum Evolution
VIII.Simulations


## Metrics

- A metric is a function $d$ on pairs of objects that satisfies the following three rules:
$-d(x, x)=0$ for all $x$.
- $d(x, y)=d(y, x)>0$ for
- For all $x, y$, and $z$,

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

- Let $[n]=\{1,2, \ldots, n\}$. Let $\mathcal{A}_{n}$ be the vector space generated by metrics on [ $n$ ]. I.e., $\mathcal{A}_{n}$ is the space of symmetric matrices with zeros along the main diagonal.


## Tree metrics

For the purposes of this discussion, we will use the word "topology" to refer to a tree without branch lengths, and "tree" will only be used for trees with lengths assigned to each branch.

Let $T$ be a tree and $l$ be the branch length function. For each two nodes $x$ and $y$, let $p_{x y}$ be the unique path from $x$ to $y$ in $T$.
Define

$$
d^{T}(x, y)=\sum_{e \in p_{x y}} l(e)
$$

## Phylogeny estimation

- Our version of the phylogeny estimation problem. Given
- an unknown tree $T_{1}$ with leaf set $[n]$
- a matrix $\Delta$ of estimates of $\mathrm{D}^{T_{1}}$
- Find the tree $T_{2}$ such that $\mathrm{D}^{T_{2}}$ is a good estimator for $\Delta$ (and thus of $\mathrm{D}^{T_{l}}$ ).


## Splits

- Let $[n]$ be the leaf set of a tree $T$. Every edge $e$ defines a split of T, $X_{e} \mid Y_{e}$, a bipartition of [ $n$ ] such that every path from $X_{e}$ to $Y_{e}$ includes the edge $e$.
- Let $\mathcal{S}(\mathcal{T})={ }_{\left\{X_{e} \mid Y_{e}: e \in E(T)\right\}}$
-Suppose $X \mid Y \in \Sigma(T) \quad$ Define the split metric $\varepsilon_{X \mid Y}^{0}$
by

$$
\begin{aligned}
\varepsilon_{X \mid Y}^{0}(u, v) & =1 \text { if }|\{u, v\} \cap X|=1 \\
& =0 \text { otherwise }
\end{aligned}
$$

## Split Metrics

- Any tree topology T is determined by the set of splits determined by its edges.
-Let $B_{0}(\mathrm{~T})=\left\{\varepsilon_{X \mid Y}^{0}: X \mid Y \in \Sigma(\mathrm{~T})\right\}$ be the set of split metrics for the topology T .
-Let $A(\mathrm{~T})$ be the vector space generated by $\mathrm{B}_{0}(\mathrm{~T})$ - Note $\operatorname{dim}(\mathrm{A}(\mathrm{T}))=2 \mathrm{n}-3$, while $\operatorname{dim}\left(A_{n}\right)=n(n-1) / 2$, thus $\quad A(T) \subset A_{n}$
-(It is important to note that vector spaces allow negative branch lengths, which are biologically meaningless.)


## Topological matrices

We can express the tree metric $d^{T}$ as a vector. Index the branches of $T: e_{1}, e_{2}, e_{3}, \ldots e_{m}$. Let $p_{1}, p_{2}, \ldots, p_{C_{(n, 2)}}$ be an enumeration of the leaf-to-leaf paths of $T$, where $C(n, 2)=\frac{n(n-1)}{2}$
Define the matrix $S$ by $s_{i j}=1$ if $e_{i} \in p_{j}$,
$=0$ otherwise.
Let L be the vector of branch lengths. Then $D^{T}=S L$. Equivalently, $D^{T}=\sum_{i} l\left(e_{i}\right) \varepsilon_{X_{i} Y_{i}}^{0}$

## Average Distance Functionals

- For any $A, B$ disjoint subsets of $[n]$, let

$$
D_{A B B}=\frac{1}{|A||B|} \sum_{a \in A, b \in B} d_{a b}
$$

- If we let $A$ and $B$ range over the subtrees of a given tree $T$, this quantity can be calculated recursively:
- if $A=\{a\}$, and $B=\{b\}$, then $D_{A \mid B}=d_{a b}$


## Weighted Average Distances

Considering $A, B$ subtrees:

For $B=B_{1} \cup B_{2}$,


$$
\Delta_{A \mid B}=\frac{\left|B_{1}\right|}{\left|B_{1}\right|+\left|B_{2}\right|} \Delta_{A B_{1}}+\frac{\left|B_{2}\right|}{\left|B_{1}\right|+\left|B_{2}\right|} \Delta_{A B_{2}}
$$

## Algebra

- Let $X_{i} \mid Y_{i}$ be the split corresponding to the edge $e_{i}$. Suppose we choose $x \in X, y \in Y$ at random from $X_{i}$ and $Y_{i}$ respectively. Consider the edge $e_{j}$. Define $\quad p_{i j}=\operatorname{Pr}\left[e_{j} \in p_{x y}\right]$
- Let $\mathbf{P}=\left(p_{i j}\right) . \mathbf{P}$ relates the branch lengths of $T$ to the vector $\Delta_{\text {avg }}=\left(\Delta_{X_{i} \mid Y_{i}}\right)$
- $\mathbf{P}$ is invertible. (Desper and Vingron, 2002) Invertibility was demonstrated by showing trees $T^{j}=\varepsilon_{X, \mid V_{j}}^{1}$ such that $D_{X_{j} \mid Y_{j}}^{T_{j}}=1$ if $i=j$ $=0$ otherwise


## Example

Suppose $e$ is an internal edge separating four subtrees of the same size, with all edges in the subtrees having zero length, and other edges having lengths:


The tree above is $\varepsilon_{A \cup B \mid C \cup D}^{1}$

## Common Phylogeny Estimation Methods

## Least Squares Fitting

- The fit of a tree $T$ to a matrix $\Delta$ is defined to be

$$
\operatorname{fit}(T)=\sum_{i, j} \frac{\left(d_{i j}^{T}-\delta_{i j}\right)^{2}}{\sigma_{i j}^{2}}
$$

- Least-squares fitting seeks the weighted tree (of any topology) minimizing fit $(T)$. (Fitch and Margoliash 1967)
- If $\sigma_{i j}=1$ for all $i$ and $j$, this method is called ordinary least-squares, otherwise it is called weighted least-squares.


## Average Distances and OLS

- $T$ is OLS tree iff (Vach 1989)

$$
D_{X \mid Y}^{T}=\Delta_{X \mid Y} \text { for all } X \mid Y \in \mathcal{S}(T)
$$

- This observation leads to branch length formulae for edges in terms of average distances. The formulae are used by Bryant and Waddell's OLS algorithm.


## Least Squares Fitting

- Solving ordinary least squares is equivalent to minimizing $(S L-\Delta)^{t}(S L-\Delta)$, the solution of which is $L=\left(S^{t} S\right)^{-1} S^{t} \Delta$. (Cavalli-Sforza and Edwards 1967)
- Weighted least squares requires a diagonal matrix $W$ of weights. In this case, the solution is

$$
L=\left(S^{t} W S\right)^{-1} S^{t} W \Delta
$$

- Bryant and Waddell (1998) provided an $O\left(n^{3}\right)$ algorithm for solving WLS for a fixed topology.


## Minimum Evolution methods

Minimum evolution methods have two steps:

- Each* topology $\mathcal{T}$ is assigned edge lengths according to some function $l$, for example, the OLS function.
- We choose the topology minimizing

$$
l(T)=\sum_{e \in E(T)} l(e)
$$

*In practice, not all topologies are examined; rather, a heuristic is used to consider likely topologies.

## Neighbor Joining

The neighbor-joining step: We join the neighbors $x$ and $y$, and form the new node $x-y$.


This tree is assigned edge weights via OLS. NJ uses a minimum evolution criterion to select the smallest tree over all pairs $(x, y)$.

## Neighbor Joining

- The length of the tree pairing $x$ and $y$ is

$$
\frac{1}{2(n-2)} \sum_{z \neq x, y, y}\left(\delta_{x z}+\delta_{y z}\right)+\frac{\delta_{x y}}{2}+\frac{1}{n-2} \sum_{w, z \neq x, y} \delta_{w z}
$$

- The neighbors $x$ and $y$ are joined, and a new node $x-y$ is formed. The distance from $x-y$ to the node $z$ is

$$
\delta_{x-y z}=\frac{\delta_{x z}+\delta_{y z}}{2}
$$

# FastME algorithms 

OLS version

## Fast ME algorithms

- The tree length formula depends only on a relatively small number of average distances.
- Small topological changes in a test topology lead to a change in the tree length expressible as a linear sum of a constant number of average distances.
- Maintaining a matrix of appropriate average distances allows for quick calculation of tree lengths for a large number of topologies.


## FastNNI

- Input matrix $\Delta$, tree topology $\mathcal{T}$.
-To search the space of topologies, we'll keep in memory :
-Number of taxa of each subtree
- Matrix of average distances $\Delta_{X \mid Y}$ for $X, Y$ disjoint subtrees
-We update the matrix in an efficient manner if/when we select select a new topology.


## Tree Swapping by NNI



NNI swapping is a basic step in topology searching

## Tree Length after NNI

Given $\mathcal{T} \rightarrow \mathcal{T}^{\prime}$ the tree swap in prior slide, $l$ the edge length function, $T, T^{\prime}$ the OLS trees:
(1) $l(T)-l\left(T^{\prime}\right)=\frac{1}{2}\left[\begin{array}{l}-\left(\lambda^{\prime}-1\right)\left(\Delta_{A \mid B}+\Delta_{C \mid D}\right) \\ -\left(\lambda-\lambda^{\prime}\right)\left(\Delta_{A \mid D}+\Delta_{B \mid C}\right)\end{array}\right]$
where $\lambda$ and $\lambda^{\prime}$ are constants depending on the topologies. (Desper and Gascuel 2002)

## OLS:FastNNI

1. Pre-compute average distances between nonintersecting sub-trees. ( $O\left(n^{2}\right)$ computations)
2. Loop over all internal edges, select the best swap using Equation (1). $(O(n))$
3. If no swap improves length of the tree, stop and return the tree, else perform the best swap and update the matrix of average distances and repeat Step 2. ( $O(n)$ per swap; there is only one new split.)
Thus, if we require $p$ swaps, the total complexity of FASTNNI is $O\left(n^{2}+p n\right)$.

## FastNNI - Pros and Cons

- Using NNIs leads to a fast algorithm $\left(\mathrm{O}\left(n^{2}\right)\right)$ (Greedy Minimum Evolution) for building an initial topology.
- Even with NNI postprocessing, GME + FastNNI is faster than Neighbor-joining
- Unfortunately, Gascuel (2000) showed that the minimum evolution approach using OLS branch lengths is inferior to NJ in estimating tree topologies.


## Balanced Average Distance Functionals

- OLS averages are insensitive to topology: a leaf topologically distant is as important to the calculation of an average as one nearby.
- We'll define "balanced" averages to allow the topology to affect the calculation of average distances. (Pauplin 2000)
- Let $\Delta$ be a metric. As $A$ and $B$ range over the subtrees of a given tree $T$, we'll define $\Delta_{A \mid B}^{T}$ recursively:
- if $A=\{a\}$, and $B=\{b\}$, then $\Delta_{A \mid B}^{T}=\delta_{a b}$


## Balanced Average Distances

For $B=B_{1} \cup B_{2}$, subtrees of $T$, we'll define


$$
\Delta_{A \mid B}^{\mathrm{T}}=\frac{1}{2} \Delta_{A \mid B_{1}}^{\mathrm{T}}+\frac{1}{2} \Delta_{A \mid B_{2}}^{\mathrm{T}}
$$

## Balanced Averages

- Given $\Delta$ and the topology $\mathcal{T}$, we'll select the branch lengths of $T$ to satisfy a Vach-like set of equalities: $D_{A \mid B}^{\mathrm{T}}=\Delta_{A \mid B}^{\mathrm{T}}$ for all $A \mid B \in \Sigma(\mathrm{~T})$. - These weights can be found (proof omitted) by solving $L_{T}=\left(S_{T}^{t} W S_{T}\right)^{-1} S_{T}^{t} W \Delta$ where the weights are determined by $w_{(j i)}=2^{1-p^{T}(i, j)}$, with $p^{T}(i, j)$ is the topological length of the path in $T$ from $i$ to $j$. - As with the OLS tree, each branch length can be expressed as a simply linear sum of average distances. (Simply use $\lambda=\lambda^{\prime}=1 / 2$ in OLS formulae).


## Balanced NNI

1. Calculate balanced averages of all pairs of subtrees. $\left(O\left(n^{2}\right)\right)$
2. Calculate improvement for each swap using
(2) $l(T)-l\left(T^{\prime}\right)=\frac{1}{2}\left(\Delta_{A \mid B}^{\tau}+\Delta_{C \mid D}^{\tau}-\Delta_{A \mid C}^{\tau}-\Delta_{B \mid D}^{\tau}\right)$
3. If no tree swap improves length of the tree, stop and return tree, else update matrix of average distances and repeat Step 2. $(O(n \operatorname{diam}(T))$ per swap)
The average complexity, when performing $p$ swaps, is $O\left(n^{2}+p n \operatorname{diam}(T)\right)$.

## Updating Subtree Averages

Here, $X \subseteq A$...

If we perform the B-C tree swap, then we must recalculate $\Delta_{X \mid Y}^{T}$
...and $B \cup C \cup D \subseteq Y$


Q: How many recalculations? A: $\mathrm{O}(n \operatorname{diam}(T))$ If $T$ is generated randomly, the expected value of $\operatorname{diam}(T)$ can range from $O(\log n)$ to $O(\sqrt{n})$

# BME: its algebra and WLS connections 

Joint work with Olivier Gascuel

## BME=BLS

- BME is a weighted least squares approach with

$$
\sigma_{i j}=c 2^{p^{T}(i, j)}
$$

-Standard models of evolution (e.g. Kimura) yield a variance on the estimates of evolutionary distances:

$$
\sigma_{i j} \propto e^{d_{i j}}
$$

-Presuming evolutionary distances are proportional to topological distances, the BME approach yields a better approximation to variances of evolutionary distances than usual WLS methods.

## The Balanced Dual Basis

- As with the OLS setting, we can find basis vectors dual to balanced average distance functionals.
- With branch lengths:


$$
\begin{aligned}
D_{X \mid Y}^{\mathrm{T}} & =1 \text { if } X|Y=A \cup B| C \cup D \\
& =0 \text { otherwise, for } X \mid Y \in \Sigma(\mathrm{~T})
\end{aligned}
$$

## The Balanced Dual Basis

- For an external edge $e$, set $l(e)=3 / 2$,
$l(f)=-1 / 2$ for $f$ incident to $e$, and $l(g)=0$ for all
other edges $g$.
- Again, if $X \mid Y \in \Sigma(\mathrm{~T})$

$$
\begin{aligned}
D_{X \mid Y}^{T} & =1 \text { if } X|Y=i| A \cup B \\
& =0 \text { otherwise }
\end{aligned}
$$



- Let $B_{e}$ be the tree with lengths described above or on the previous slide, for any edge $e$


## Pauplin's Formula

- Let $T$ be a weighted tree of topology $\mathcal{T}$ and $\Delta$ be a metric. Pauplin's formula for the length of $T$ is $l(T)=\sum_{i<j} 2^{1-p^{T}(i, j)} \delta_{i j}$.
- Let us decompose $D^{T}$ according to the dual basis:

$$
D^{T}=\sum_{X_{d} V_{d} \in S(\mathcal{T})} D_{X_{d} Y_{e} \sum_{X_{d}}^{T}}^{T} \varepsilon_{X_{e} Y_{e}}^{T},
$$

## Proof of Pauplin's formula

- By linearity, $l(T)=\sum_{\left.X_{e}\right|_{e} \in \mathcal{S}(T)} D_{X_{e} \mid Y_{e}}^{T} l\left(B_{e}\right)$.
- Observe $l\left(\mathrm{~B}_{e}\right)=0$ for $e$ internal, and $l\left(B_{e}\right)=$ $1 / 2$ for $e$ external. Thus

$$
l(T)=\frac{1}{2} \sum_{i \in[n]} D_{i \backslash \backslash i}^{T}=\sum_{1 \leq i<j \leq n} 2^{1-p^{T}(i, j)} \delta_{i j} .
$$

## Positive Branch Lengths after BNNI


$l(e)=\frac{1}{2}\left[\frac{1}{2}\left(\Delta_{A \mid C}+\Delta_{B \mid D}+\Delta_{A \mid D}+\Delta_{B C C}\right)-\left(\Delta_{A \mid B}+\Delta_{C \mid D}\right)\right]$
We do not perform the $B \leftrightarrow C$ switch because
$l(T)-l\left(T^{\prime}\right)=\frac{1}{2}\left(\Delta_{A \mid B}^{\tau}+\Delta_{C \mid D}^{\tau}-\Delta_{A \mid C}^{\tau}-\Delta_{B \mid D}^{\tau}\right)<0$,
ie.

$$
\Delta_{A \mid C}+\Delta_{B \mid D}>\Delta_{A \mid B}+\Delta_{C \mid D} .
$$

Similarly,

$$
\Delta_{A \mid D}+\Delta_{B \mid C}>\Delta_{A \mid B}+\Delta_{C \mid D}
$$

Thus

$$
l(e)>0
$$

# Consistency of BME 

Modeled after OLS/ME proof of Rzhetsky and Nei (1993)

## Balanced ME consistency

- Basic idea: let $l$ be the tree length function on the space of topologies. We find a sequence of topologies, $T=T_{0}, T_{1}, \ldots$ $T_{k}=S$ such that
- Each $T_{i+1}$ can be reached from $T_{i}$ via one of two simple topological transformations $-l\left(T_{i}\right)>l\left(T_{i+1}\right)$ for all $i$.


## Type I transformation

Color the leaves black or white according to the split metric given by $S$. A Type I transformation uses a NNI to form a larger monochromatic cluster.


This transformation reduces the size of the tree under $l$

$$
l\left(T_{i+1}\right)-l\left(T_{i}\right)=\frac{1}{4}\left(\Delta_{B \mid C}^{T_{i}}-1-\Delta_{A_{1} \mid C}^{T_{i}}\right)<0
$$

## A Type II transformation

A Type II transformation uses two NNIs to form two monochromatic subtrees


This transformation also reduces the value of the size of the tree under $l$...

## Decomposing a Type II transformation

We use two NNIs to perform a Type II transformation. Let $T^{i}$ be the tree on the left, $T^{* I}$ be the tree on the right.

$=\frac{1}{4}\left(p_{c}-1\right), \quad \begin{aligned} & \text { where } p_{c} \text { is the relative weight } \\ & \text { of black nodes within } C .\end{aligned}$

## Simulations

Using Aldous topology generation and covarion model for rate variation

## Simulations

- Simulated 5000 trees with 100 taxa each.
- Generated using Aldous distribution on trees, a distribution that includes a Yule-Harding distribution at one extreme and a uniform distribution at the other, with a paramter $\beta$ determining range between -1.5 and 0 .
- Branch lengths determined by a standard coalescent model, and perturbed from ultrametric by multiplying by exponential r.v.
- For each tree, we generated DNA sequences 600 base pairs long. Covarion model for rate variation.
- Used dnadist to calculate Jin-Nei maximum likelihood distances for each set of sequences, yielding 5000 matrices.


## New results: error functions

We also consider related topological error functions that distinguish the very short edges that are not realistically recoverable. For any $\delta>0$, and $T, T$, define

$$
\begin{aligned}
& e_{1}\left(T, T^{\prime}, \delta\right)=\left|\left\{e \in E\left(T^{\prime}\right): l(e)>\delta, X_{e} \mid Y_{e} \notin \Sigma(\mathrm{~T})\right\}\right| \\
& e_{1}\left(T, T^{\prime}, \delta\right)=\left|\left\{e \in E(T): l(e)>\delta, X_{e} \mid Y_{e} \notin \Sigma\left(\mathrm{~T}^{\prime}\right)\right\}\right|
\end{aligned}
$$

With 600 bases in each sequence, we use

$$
\delta=\frac{1}{1200}
$$

## Summary results

| algorithm | RF | $\mathrm{e}_{1}$ | $\mathrm{e}_{2}$ | $\mathrm{r}_{\text {alg }}$ | $\mathrm{r}_{\text {obs }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BME | 58.06 | 17.65 | 9.25 | 80.25 | 71.85 |
| Weighbor | 61.50 | 18.10 | 11.59 | 78.36 | 71.85 |
| WLS | 62.08 | 18.91 | 11.28 | 79.48 | 71.85 |
| NJ | 64.99 | 20.09 | 14.49 | 77.44 | 71.85 |

RF is Robinson-Foulds sum of missed and false splits. $r_{\text {alg }}$ and $r_{\text {obs }}$ refer to the number of edges longer than $\delta$ in the algorithm tree and true tree,respectively

## Interval tests

- For each of seven parameters, we sorted tests according to parameter value.
- From sorted lists, we constructed 9 subsets of the data, corresponding to the intervals of the form [ $500 k+1,500 k+1000]$, for $0 \leq k \leq 8$
- For each sub-interval, we calculate error and resolution statistics.


## Error functions vs. Beta parameter



Errors increase as topology distribution moves from Yule-Harding to uniform.

## Error functions vs. tree diameter

E1 vs. tree diameter

$\begin{array}{lllllllll}0.161 & 0.258 & 0.356 & 0.454 & 0.551 & 0.65 & 0.75 & 0.864 & 1.056\end{array}$

| $\longrightarrow \longrightarrow$ E1 - BME | $\rightarrow-\mathrm{E} 1-$ WEIGHBOR |
| :--- | :--- |
| $\longrightarrow$ E1 - WLS | $\rightarrow$ E1 - NJ |

E2 vs. tree diameter


Errors increase with tree diameter.

## Error functions vs. departure from molecular clock

E1 vs. observed departure from molecular clock


E2 vs observed departure from molecular clock


Errors increase with departure from molecular clock.

## Error functions vs. covarion parameter



E2 vs. Covarion parameter


Change in the covarion parameter has little effect

## Computational Times

 in (MM:SS)|  |  |  | 1000 | 4000 <br> Taxa |
| :--- | ---: | ---: | ---: | ---: |
| GME + BNNI | 0.0263 | 0.0842 | 11.3390 | $06: 02.1$ |
| HGT/FP | 0.0252 | 0.1349 | 13.8080 | $03: 33.1$ |
| NJ/BIONJ | 0.0630 | 0.1628 | 21.2500 | $20: 55.9$ |
| WEIGHBOR | 0.4244 | 26.8818 |  |  |
| FITCH | 4.3745 |  |  |  |

Computations done on Sun Enterprise E4500/E5500 running Solaris 8 on $10400-\mathrm{Mhz}$ processors with 7 Gb memory.

## Conclusions

- BME + BNNI runs in $O\left(\left(n^{2}+p n\right) \operatorname{diam}(T)\right)$, outputs trees better than FITCH, Weighbor, or NJ.
- BNNI outputs tree without negative branch lengths.
- BME approach shown to be consistent.
- All tested methods saw errors increase as shape parameter moved toward uniform distribution.
- All tested methods saw errors increase with increase in divergence from molecular clock, and with tree diameter.
- Changes in covarion parameter had negligible effect.
- FASTME software available at http://www.ncbi.nlm.nih.gov/CBBResearch/Desper/FastME.html or http://www.lirmm.fr/~w3ifa/MAAS/.


## References

- Bryant, D., and Wadddell, P. 1998. Rapid evaluation of leastsquares and minimum-evolution criteria on phylogenetic trees. Mol. Biol. Evol. 15:1346-1359.
- Desper, R., and Gascuel, O. 2002. Fast and accurate phylogeny reconstruction algorithms based on the minimum evolution principle. J. Comp. Biol. 9:687-705.
- Desper, R., and Vingron, M. 2002. J. Classification. 19:87-112.
- Fitch, W.M., and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155:279-284.
- Pauplin, Y. 2000. Direct calculation of a tree length using a distance matrix. J. Mol. Evol. 51:41-47.
- Rzhetsky, A., and Nei, M. 1993. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10:1073-1095.
- Vach, W. 1989. Least squares optimization of additive trees. Pp. 230-238 in O. Opitz, etd. Conceptual and numerical analysis of data. Springer-Verlag, Berlin.

