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Outline

• Genome Rearrangement Evolution
- The GNT Model

• Distribution of evolutionary distances
- Breakpoint distance
- Inversion distance

• Simulation study: accuracy of tree reconstruction
• Future work
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Genomes As Signed Permutations

1 –5  3  4  -2  -6
or

5 –1  6  2  -4  -3
etc.
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Genomes Evolve by Rearrangements

1  2  3  4  5  6 7  8  9  10

1  2 –6 –5 -4 -3 7  8  9  10

1  2  7  8  3  4  5  6  9  10

1  2  7  8 –6 -5 -4 -3 9  10

Inversion:

Transposition:

Inverted Transposition:
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Our Model: the Generalized 
Nadeau-Taylor Model [STOC’01]

• Three types of events: 
- Inversions (INV)
- Transpositions (TRP)
- Inverted Transpositions (ITP)

• Events of the same type are equiprobable
• Probabilities of the three types have fixed ratio

• We focus on signed circular genomes in this talk.
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Edit Distances Between Genomes

• (INV) Inversion distance [Hannenhalli & Pevzner 1995]
- Computable in linear time [Moret et al 2001]

• (BP) Breakpoint distance [Watterson et al. 1982]
- Computable in linear time
- NJ(BP): [Blanchette, Kunisawa, Sankoff, 1999]

1  2  3  4  5  6  7  8  9  10

1  2  3 -8 -7 -6  4  5  9  10

A =

B =

BP(A,B)=3
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Quantifying Error

FN: false negative      (missing edge)

1/3=33.3% error rate
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NJ(BP) and NJ(INV)

120 genes, 160 leaves
Uniformly Random Trees

Transpositions/
inverted transpositions only

Inversion only
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Additive Distance Matrix and 
True Evolutionary Distance (T.E.D.)

S2 S3 S4 S5
S1     0    9  15  14  17
S2           0  14  13  16
S3                 0  13  16
S4                       0  13 13

7
5

4

5
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S1

S2

S3

S4

S5

S1

S5                             0

Theorem [Waterman et al. 1977] Given an m×m
additive distance matrix, we can reconstruct a tree 
realizing the distance in O(m2) time.
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Error Tolerance of Neighbor Joining

Theorem [Atteson 1999]
Let {Dij} be the true evolutionary distances, and 
{dij} be the estimated distances for T.  
Let      be the length of the shortest edge in T. 
If for all taxa i,j, we have

then neighbor joining returns T.

ε
2
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|| <− ijij dD
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BP and INV

INV vs K(120 genes)

(K: Actual number of inversions) (Inversion-only evolution)

BP/2 vs K
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(1)

(2)

Estimate True Evolutionary Distances
Using BP

BP/2 vs K (120 genes)

(K: Actual number of inversions) (Inversion-only evolution)

To use the scatter plot to 
estimate the actual number 
of events (K):

1. Compute BP/2

2. From the curve, look up 
the corresponding value
of K

BP/2

KBP/2

K
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Using Breakpoints to Estimate 
T.E.D.

• Compute fn(k)= E[BP(G0,Gk)]
(i.e. the expected number of breakpoints after 
k random events; n is the number of genes)

• Given two genomes G and G’:
- Compute breakpoint distance d=BP(G,G’)
- Find k so that fn (k) is closest to d

• Challenge: finding fn (k)
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True Evolutionary Distance (t.e.d.) 
Estimators for Gene Order Data

EmpiricalAnalyticalAnalyticalDerivation

Inversion-
only

RequiredRequiredModel 
knowledge

Inversion 
distance 
(Approx.)

Breakpoint 
distance 
(Approx.)

Breakpoint 
distance 
(Exact)

Based on the 
Expectation of

EDE
[ISMB’01]

Approx-IEBP 
[STOC’01]

Exact-IEBP 
[WABI’01]

T.E.D. 
Estimator

IEBP: Inverting the Expected BreakPoint distance
EDE: Empirically Derived Estimator
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1 2 * * *

1 -2 * * *

1 * 2 * *

1 * -2 * *

1 * * * 2

1 * * * -2

Breakpoint

1 * * 2 *

1 * * -2 *

Exact-IEBP [WABI’01]

• Breakpoints are identically distributed: use linearity

1 2 3 4 5      =>     1 -4 -3 -2 5



16

1 2 * * *

1 -2 * * *

1 * 2 * *

1 * -2 * *

1 * * * 2

1 * * * -2

Breakpoint

1 * * 2 *

1 * * -2 *

State Notation

• The sign and position of gene 2 with respect to gene 1 
(at pos 1) is {-n, -(n-1), … , -2, 2, 3, … , n}.  

1 2 3 4 5      =>     1 -4 -3 -2 5

2 3 4 5

-2 -3 -4 -5
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Markov Chain for a Breakpoint

• Let n be the number of genes
• Each breakpoint (in particular, bp between genes 1 and 2) is a 

Markov process with 2(n-1) states
• We have

gene 2
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• The probability trasitional matrix is easily obtained:
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36  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1
 0 29  0  0  0  0  0  0  0  1  2  2  2  2  2  2  2  1
 0  0 24  0  0  0  0  0  0  1  2  3  3  3  3  3  2  1
 0  0  0 21  0  0  0  0  0 

1
10
2

M I = ×
 
 
 

 1  2  3  4  4  4  3  2  1
 0  0  0  0 20  0  0  0  0  1  2  3  4  5  4  3  2  1
 0  0  0  0  0 21  0  0  0  1  2  3  4  4  4  3  2  1
 0  0  0  0  0  0 24  0  0  1  2  3  3  3  3  3  2  1
 0  0  0  0  0  0  0 29  0  1  2  2  2  2  2  2  2  1
 0  0  0  0  0  0  0  0 36  1  1  1  1  1  1  1  1  1
 1  1  1  1  1  1  1  1  1 36  0  0  0  0  0  0  0  0
 1  2  2  2  2  2  2  2  1  0 29  0  0  0  0  0  0  0
 1  2  3  3  3  3  3  2  1  0  0 24  0  0  0  0  0  0
 1  2  3  4  4  4  3  2  1  0  0  0 21  0  0  0  0  0
 1  2  3  4  5  4  3  2  1  0  0  0  0 20  0  0  0  0
 1  2  3  4  4  4  3  2  1  0  0  0  0  0 21  0  0  0
 1  2  3  3  3  3  3  2  1  0  0  0  0  0  0 24  0  0
 1  2  2  2  2  2  2  2  1  0  0  0  0  0  0  0 29  0
 1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0 36
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Exact-IEBP

• There are 2(n-1) states.
• The transitional matrix has dimension 2(n-1) ×2(n-1).
• To compute E[BP(G0,Gk)] for k up to 2n takes O(n3)-

time. (2n matrix-vector multiplications)
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Exact-IEBP [WABI’01]:
• Markov process with 2(n-1) 

states (n: # genes)
• No simple closed-form formula
• Needs O(n3) time to compute

Exact-IEBP [WABI’01]:
• Markov process with 2(n-1) 

states (n: # genes)
• No simple closed-form formula
• Needs O(n3) time to compute

1 2 * * *

1 -2 * * *

1 * 2 * *

1 * -2 * *

1 * * * 2

1 * * * -2

Breakpoint

1 * * 2 *

1 * * -2 *

1 2 * * * Breakpoint

s

u

1-s

1-u

Approx-IEBP [STOC’01]:
• 2 states
• Not a Markov process
• Simple closed-form formula

with provable error bound

Approx-IEBP [STOC’01]:
• 2 states
• Not a Markov process
• Simple closed-form formula

with provable error bound

Reducing the State Space 
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Lower and Upper Bounds

• Under the GNT model, s is constant
• u is not constant, but has good lower and 

upper bounds: umax and umin
• Parameter u is small with respect to s

1 2 * * * Breakpoint

s

u

1-s

1-u
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Inversion-Only Evolution

• Unsigned genome: umin=umax -> Markov Process [Caprara & 
Lancia, 2000]

• Signed genome: 

• The two Markov chains (s,umin) and (s,umax) give lower and 
upper bounds to the expectation of breakpoint distance.

1 2 * * * Breakpoint

s
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1-s

1-u
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GNT Model

• 1

• 2

• 3
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max ,max ,max ,max

(1 )
(1 )

(1 )

I T IT

I T IT

I T IT

s s s s
u u u u

u u u u

α β α β
α β α β

α β α β

= − − + +
= − − + +

= − − + +

1 0Pr( ( | ) 1)L H
k k kP B G G P≤ = ≤ ,    where

max

max

1 (1 )
1 (1 )

k
L

k
s u

P s
s u

− − −
=

− − −
min

min

1 (1 )
1 (1 )

k
H

k
s u

P s
s u

− − −
=

− − −

( ) ~ [ ( , )]02
L H

k k
n

P P E BP G Gk k= +F



25

Approx-IEBP
[Wang & Warnow, STOC’01]
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True Evolutionary Distance Estimators

Exact-IEBP vs K(120 genes)

(K: Actual number of inversions) (Inversion-only evolution)

BP vs K
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Variance of True Evolutionary 
Distance Estimators

• There are new distance-based 
phylogeny reconstruction 
methods (though designed for 
DNA sequences) 

- Weighbor [Bruno et al. 2000]

uses the variance of good 
t.e.d.s, and yield more 
accurate trees than NJ.

• Variance estimates for the t.e.d.s
[Wang WABI’02]

- Weighbor(IEBP), 
Weighbor(EDE) K vs Exact-IEBP (120 genes)
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Deriving Var(BP)

• Difficulties in deriving Var(BP):
- Even E(BP) is only in the form of unsimplified sums 

[RECOMB ‘99, WABI ‘01].
- Breakpoints are not independent.

• We will use an approximating model to examine all 
breakpoints simultaneously
- Idea: once two adjacent genes are separated, it is 

hard to bring the two genes back again (especially 
when there are many genes).
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Approximating Model

• Approximating box model: boxes correspond to 
breakpoints.

• An approximation (using n boxes) can be obtained in 
the following way:

- Every inversion chooses two boxes and put a ball in 
them if they are empty.

- The BP distance is approximated by the number of 
nonempty boxes.

1 2 3 4 5 n-1 n
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Approximating Model

• Notations:
- Let Bi=1 if box i is not empty, 0 if it is.
- We use inversion-only model to illustrate; let i and j 

be the two breakpoints corresponding to the two 
endpoints of the inversion being applied.

- Let the number of breakpoints be b.
- Let n be the number of genes.
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Why the Approximation Works

• Case analysis: [Hannenhalli and Pevzner 1995]

• When b is small, probability of case 3 out of cases 1, 2, and 
3 is small (when n is large)

• When b is large, probability of 3b/3c out of case 3 is small
• As a result we can ignore cases 3b/3c

-> As a breakpoint is asserted, it does not disappear

3c

3b

3a

2

1

Case

-2

-1

0

+1

+2

?BP

TotalBi=Bj=1

Bi=Bj=1, one/both of 
(gi-1, -gj), (-gi, gj) 
adjacencies are in G0.

# inversionsCondition

Bi=0, Bj=1 or Bi=1, Bj=0 

Bi=Bj=0

3c

3b

3a

2

1

Case

-2

-1

0

+1

+2

?BP

TotalBi=Bj=1

Bi=Bj=1, one/both of 
(gi-1, -gj), (-gi, gj) 
adjacencies are in G0.

# inversionsCondition

Bi=0, Bj=1 or Bi=1, Bj=0 

Bi=Bj=0
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• Fix k.  Let

- Each term in the expansion of S is a way of applying k 
inversions
E.g. : box 1 three times, 2 once, 3 twice

- The coefficient of the term is the probabilities of such k 
inversions

- If transpositions and inverted transpositions are present:

• Let                       be the value of S when we let xi=ai for 
all i. 

• Let 

Derivation of the Variance
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• Let      be the sum of coefficients of all terms in the expansion of S in 
the following form:

Then         is the probability of having i nonempty boxes after k events.
• We want to compute

In particular, 

1 2
1 2 1 2( , ,..., 0)iaa a

i ix x x a a a >L

Derivation of Var(BP)
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Expectation and Variance [WABI’02]

• Let bk be the number of nonempty boxes after k (box 
choosing) iterations in the approximation model.  Let a
+ ß = ?.  We have

• We use the delta method to obtain the variance of IEBP:
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Simulation Results

Variance of BP distance after k events Variance of IEBP

(120 genes, inversion only)
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Regression Formula for 
E(INV) and Var(INV)

• Let n be the number of genes, x be the normalized 
number of inversions (k/n), and f(x) be the normalized 
expectation of the inversion distance 
(f(x) seems to be roughly independent of n)

• We use nonlinear regression to obtain easily computable 
formulas for E(INV) and Var(INV):

->  b=0.5956, c=0.4577

2

2( ) min{ , } ( )
x bx k

f x x x
x cx b n

+
= =

+ +
0)0( =f1. 1)0(' =f2.

0 ( )f x x≤ ≤3.

4.
1( )f y− : 0 1y y≤ ≤exists for all 
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EDE 
[Moret, Wang, Warnow, & Wyman, ISMB’01]

Regression
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Formula for Var(INV) and Var(EDE)

• Let n be the number of genes, x be the normalized 
number of inversions (k/n), and gn(x) be the standard 
deviation of the inversion distance.

• The regression of gn(x): we use the following form

q=-0.6998, u=0.1684, v=0.1573, w=-1.3893, and 
t=0.8224.

• Var(EDE) can be obtained using the delta method on 
Var(INV).
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Regression for Var(INV)

Regression: solid lines,  Simulation: dots
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Distance-Based Methods

WeighborINV

NJBP

EDE

IEBP
(Exact-, Approx-)
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Using T.E.D. Helps

120 genes
160 taxa
Uniformly random trees
Transpositions/inverted
transpositions only
(180 runs per figure)

5%
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IEBP is Robust to Model Violations

120 genes, 160 taxa
Uniformly Random Trees
(alpha,beta)=(0,0) (inversion only)

NJ(Exact-IEBP)
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Maximum Parsimony Returns 
Thousands of Trees

• Example:

- The complete Caesalpinia dataset: 
7095 trees on 82 taxa.

- The Astericeae dataset: 
34,560 trees on 288 taxa.

• Consensus methods are necessary so we can summarize so 
many trees.

• Current approaches are limited to the strict consensus and 
majority consensus trees, and lose information
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Postprocessing:
Traditional Approaches

• Single-tree consensus
Example: strict consensus

C D E
A

B

F

G

C D E
A
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F
C D E
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t
(t1, t2, t3 all refine t)
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C D
E F
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A

B

C D
E F

G

t1
A

B

C D E F

G

A

B

C D E F

G

t2
A
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C D
E F

G
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B

C D
E F
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t3



48

How Do We Interpret the Consensus Tree

• Given a nonbinary consensus tree t, every binary tree that 
refines t is equally probable to be the true tree:

C D E
A

B

F

G

C D E
A

B

F
C D E

A

B

F

G

t

A

B

C D
E F

G

A

B

C D
E F

G

t3
A

B

C D E F

G

A

B

C D E F

G

t2
A

B

C D
E F

G

A

B

C D
E F

G

t1

(15 refinement trees)



49

Disadvantages of Single-Tree Consensus

• Loses a lot of information
• Sensitive to outlier trees 
• Sensitive to small perturbations in the dataset
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Sometimes A Cluster is Enough
(Campanulaceae)

The Campanulaceae
Gene-Order Dataset

1. 13 taxa 
(outgroup Tobacco)

2. 216 trees

(Courtesy Nina Amenta and Jeff Klingner)
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Complex Structure in the 
Inferred Set of Trees

The Caesalpinia
cpDNA Dataset

1. 51 taxa 

2. 342 trees

(Courtesy Nina Amenta and Jeff Klingner)
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Why We Want to Cluster Trees

• Dividing trees into clusters, and use the consensus trees from 
each cluster to represent “conflicting hypotheses” for the true 
phylogeny.

• Merits:

- Represent the input set of trees better
- Identify outliers
- Restrict perturbations to a small number of clusters
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Biological Criteria

• Number of clusters
• Number of edges of the consensus
• Diameter of a cluster
• Density of clusters
• Etc.
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Information Loss:
How We Interpret the Clustering

Input set of tree T:
All trees are equally 
probable.

Clustering {C1,C2, …  , Ck}:
All trees refining any of SC(Ci)
are equally probable.

• We can define distributions for both the original set of trees 
and the clustering.
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Distributions

• Input set of tree T:

• Clustering {C1,C2, … , Ck}: let
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Information Loss (KL)

• The distance between the two distributions is the loss of 
information due to clustering.

- L1 distance
- L2 distance
- L∞ distance

- Kullback-Leibler distance (relative entropy): 

∑=
t C

T
T tf

tf
tfCTKL

)(
)(

ln)(),(
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t

Tx tftfCTL ||)()(||),( −= ∑
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Postprocessing of Phylogenetic 
Analysis Using Clustering [ISMB’02]

• The first framework using 
clustering algorithms in the 
postprocessing of phylogenetic 
analyses.

- Improves upon the 
traditional single-consensus 
approach in terms of 
information loss

• Identifies outliers in the 
Caesalpinia dataset

- Improves the resolution of 
the strict consensus by 36% 

- Only loses 4% of the trees Number of Clusters
In

fo
rm

at
io

n 
Lo

ss

1 Clu

Phy Island

Agglom Avg
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Caesalpinia (51 taxa, 450 trees)

22.9%4501clu

14.6%4321+2

10.4%183

12.5%3242

10.4%1081

% Edges lostNo. of TreesClu No.

KL(Agg-complete, 3clu) = 1.449269
KL(1clu) = 9.790346

Improvement: (22.9-14.6)/22.9 = 36%
% trees dropped: 18/450=4%
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