Markovian Models for Genome Rearrangement Evolution

Li-San Wang

Department of Computer Sciences
University of Texas at Austin

Outline

- Genome Rearrangement Evolution
- The GNT Model
- Distribution of evolutionary distances
- Breakpoint distance
- Inversion distance
- Simulation study: accuracy of tree reconstruction
- Future work

Genomes As Signed Permutations

Genomes Evolve by Rearrangements

$\begin{array}{llllllllll}1 & 2 & -6 & -5 & -4 & -3 & 7 & 8 & 9 & 10\end{array}$

Transposition:
$\begin{array}{llllllllll}1 & 2 & 7 & 8 & 3 & 4 & 5 & 6 & 9 & 10\end{array}$

Inverted Transposition:
$\begin{array}{llllllllll}1 & 2 & 7 & 8 & -6 & -5 & -4 & -3 & 9 & 10\end{array}$

Our Model: the Generalized Nadeau-Taylor Model [STOC'01]

- Three types of events:
- Inversions (INV)
- Transpositions (TRP)
- Inverted Transpositions (ITP)
- Events of the same type are equiprobable
- Probabilities of the three types have fixed ratio

$$
\begin{aligned}
& \operatorname{Pr}(r \in I N V): \operatorname{Pr}(r \in T R P): \operatorname{Pr}(r \in I T P) \\
= & (1-\alpha-\beta): \alpha: \beta
\end{aligned}
$$

- We focus on signed circular genomes in this talk.

Edit Distances Between Genomes

- (I NV) Inversion distance [Hannenhalli \& Pevzner 1995]
- Computable in linear time [Moret et al 2001]
- (BP) Breakpoint distance [Watterson et al. 1982]
- Computable in linear time
- NJ (BP): [Blanchette, Kunisawa, Sankoff, 1999]

$$
\begin{gathered}
A=\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
B= & \begin{array}{lll|lll|l|l}
1 & 2 & 3 & -8 & -7 & -6 & 4 & 5
\end{array} & 9 & 10 \\
\mathrm{BP}(\mathrm{~A}, \mathrm{~B})=3
\end{array}
\end{gathered}
$$

Quantifying Error

FN: false negative (missing edge)
$1 / 3=33.3 \%$ error rate

NJ (BP) and NJ (INV)

120 genes, 160 leaves Uniformly Random Trees

Additive Distance Matrix and True Evolutionary Distance (T.E.D.)

	S1	S2	S3	S4	S5	
S1	0	9	15	14	17	
S2		0	14	13	16	
S3			0	13	16	
S4					0	13
S5						0

Theorem [Waterman et al. 1977] Given an m×m additive distance matrix, we can reconstruct a tree realizing the distance in $\mathrm{O}\left(\mathrm{m}^{2}\right)$ time.

Error Tolerance of Neighbor Joining

Theorem [Atteson 1999]
Let $\left\{\mathrm{D}_{\mathrm{ij}}\right\}$ be the true evolutionary distances, and $\left\{\mathrm{d}_{\mathrm{ij}}\right\}$ be the estimated distances for T . Let ε be the length of the shortest edge in T. If for all taxa i, j, we have

$$
\left|D_{i j}-d_{i j}\right|<\frac{1}{2} \varepsilon
$$

then neighbor joining returns T .

BP and INV

(K: Actual number of inversions)
(Inversion-only evolution)

Estimate True Evolutionary Distances Using BP

To use the scatter plot to estimate the actual number of events (K):

1. Compute BP/2
2. From the curve, look up the corresponding value of K
$\mathrm{BP} / 2$ vs $\mathrm{K} \quad$ (120 genes)
(K: Actual number of inversions) (Inversion-only evolution)

Using Breakpoints to Estimate T.E.D.

- Compute $\mathrm{f}_{\mathrm{n}}(\mathrm{k})=\mathrm{E}\left[\mathrm{BP}\left(\mathrm{G}_{0}, \mathrm{G}_{\mathrm{k}}\right)\right]$ (i.e. the expected number of breakpoints after k random events; n is the number of genes)
- Given two genomes G and G':
- Compute breakpoint distance d=BP(G,G')
- Find k so that $f_{n}(k)$ is closest to d
- Challenge: finding $f_{n}(k)$

True Evolutionary Distance (t.e.d.) Estimators for Gene Order Data

T.E.D. Estimator	Exact-I EBP [WABI'01]	Approx-I EBP [STOC'01]	EDE [ISMB'01]
Based on the Expectation of	Breakpoint distance (Exact)	Breakpoint distance (Approx.)	Inversion distance (Approx.)
Derivation	Analytical	Analytical	Empirical
Model knowledge	Required	Required	Inversion- only

IEBP: Inverting the Expected BreakPoint distance EDE: Empirically Derived Estimator

Exact-I EBP [WABI'01]

- Breakpoints are identically distributed: use linearity

State Notation

- The sign and position of gene 2 with respect to gene 1 (at pos 1) is $\{-n,-(n-1), \ldots,-2,2,3, \ldots, n\}$.

Markov Chain for a Breakpoint

- Let n be the number of genes
- Each breakpoint (in particular, bp between genes 1 and 2) is a Markov process with 2(n-1) states
- We have

$$
\begin{aligned}
M_{u, v} & =(1-\alpha-\beta)\left(M_{I}\right)_{u, v}+\alpha\left(M_{T}\right)_{u, v}+\beta\left(M_{V}\right)_{u, v} \\
& =\frac{1-\alpha-\beta}{\binom{n}{2}} \iota_{n}(u, v)+\frac{\alpha}{\binom{n}{3}} \tau_{n}(u, v)+\frac{\beta}{3\binom{n}{3}} \nu_{n}(u, v)
\end{aligned}
$$

where

- $\iota_{n}(u, v)$ is the number of inversions,
- $\tau_{n}(u, v)$ is the number of transpositions,
- $\nu_{n}(u, v)$ is the number of inverted transpositions, that bring gene 2 in state u to state v (n is the number of genes in each genome).
- The probability trasitional matrix is easily obtained:

$$
\begin{aligned}
& \iota_{n}(u, v)= \begin{cases}\min \{|u|-1,|v|-1, n+1-|u|, n+1-|v|\} \\
0 & \text { (if } u v<0) \\
\binom{|u|-1}{2}+\binom{n+1-|u|}{2} & \text { (if } u \neq v, u v>0)\end{cases} \\
& \tau_{n}(u, v)= \begin{cases}0 & (\text { if } u=v) \\
(\min \{|u|,|v|\}-1)(n+1-\max \{|u|,|v|\}) \\
\binom{n+1-|u|}{3}+\binom{|u|-1}{3} & (\text { if } u \neq v, u v>0)\end{cases} \\
& \nu_{n}(u, v)= \begin{cases}(n-2) \iota_{n}(u, v) & \text { (if } u=v) \\
\tau_{n}(u, v) & \text { if } u \neq v=0) \\
3 \tau_{n}(u, v) & =0 v>0)\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
10
\end{array}
\end{aligned}
$$

Exact-IEBP

- There are 2(n-1) states.
- The transitional matrix has dimension $2(n-1) \times 2(n-1)$.
- To compute $\mathrm{E}\left[\mathrm{BP}\left(\mathrm{G}_{0}, \mathrm{G}_{\mathrm{k}}\right)\right]$ for k up to 2 n takes $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time. (2n matrix-vector multiplications)

Reducing the State Space

Lower and Upper Bounds

- Under the GNT model, s is constant
- u is not constant, but has good lower and upper bounds: $u_{\max }$ and $u_{\text {min }}$
- Parameter u is small with respect to s

I nversion-Only Evolution

- Unsigned genome: $\mathrm{u}_{\min }=\mathrm{u}_{\max }->$ Markov Process [Caprara \& Lancia, 2000]
- Signed genome:

$$
\begin{gathered}
s=\frac{n-1}{\binom{n}{2}}=\frac{2}{n} \\
u_{\min }=0, u_{\max }=\frac{1}{\binom{n}{2}}
\end{gathered}
$$

- The two Markov chains ($\mathrm{s}, \mathrm{u}_{\min }$) and ($\mathrm{s}, \mathrm{u}_{\max }$) give lower and upper bounds to the expectation of breakpoint distance.

GNT Model

- $s=(1-\alpha-\beta) s_{I}+\alpha s_{T}+\beta s_{I T}$

$$
\begin{aligned}
& u_{\min }=(1-\alpha-\beta) u_{I, \min }+\alpha u_{T, \min }+\beta u_{I T, \min } \\
& u_{\max }=(1-\alpha-\beta) u_{I, \max }+\alpha u_{T, \max }+\beta u_{I T, \max }
\end{aligned}
$$

- $P_{k}^{L} \leq \operatorname{Pr}\left(B_{1}\left(G_{k} \mid G_{0}\right)=1\right) \leq P_{k}^{H}$, where

$$
P_{k}^{L}=s \frac{1-\left(1-s-u_{\max }\right)^{k}}{1-\left(1-s-u_{\max }\right)} \quad P_{k}^{H}=s \frac{1-\left(1-s-u_{\min }\right)^{k}}{1-\left(1-s-u_{\min }\right)}
$$

- $\mathcal{F}_{k}=\frac{n}{2}\left(P_{k}^{L}+P_{k}^{H}\right) \sim E\left[B P\left(G_{k}, G_{0}\right)\right]$

Approx-I EBP
 [Wang \& Warnow, STOC'01]

Theorem Let G_{k} be the genome obtained after applying k random rearrangement events to genome G_{0} according to the GNT model with parameters α and β. Let \mathcal{F}_{k} be the estimate to $E\left[B P\left(G_{k}, G_{0}\right)\right]$ in the Approx-IEBP distance.
For all $k>0$,

$$
\begin{aligned}
& \left|\mathcal{F}_{k}-E\left[B P\left(G_{k}, G_{0}\right)\right]\right| \leq 1+\frac{1}{n-1}, \text { and } \\
& \phi^{-1} \leq \frac{\mathcal{F}_{k}}{E\left[B P\left(G_{k}, G_{0}\right)\right]} \leq \phi
\end{aligned}
$$

where $\phi=1+\frac{2+4 \alpha+2 \beta}{2+\alpha+\beta} n^{-1}+O\left(n^{-2}\right)$.

True Evolutionary Distance Estimators

BP vs K
(120 genes) Exact-IEBP vs K
(K: Actual number of inversions)
(Inversion-only evolution)

Variance of True Evolutionary Distance Estimators

- There are new distance-based phylogeny reconstruction methods (though designed for DNA sequences)
- Weighbor [Bruno et al. 2000]
uses the variance of good t.e.d.s, and yield more accurate trees than NJ .
- Variance estimates for the t.e.d.s [Wang WABI'02]

- Weighbor(IEBP), Weighbor(EDE)

K vs Exact-IEBP (120 genes)

Deriving Var(BP)

- Difficulties in deriving $\operatorname{Var}(\mathrm{BP})$:
- Even $E(B P)$ is only in the form of unsimplified sums [RECOMB ‘99, WABI ‘01].
- Breakpoints are not independent.
- We will use an approximating model to examine all breakpoints simultaneously
- Idea: once two adjacent genes are separated, it is hard to bring the two genes back again (especially when there are many genes).

Approximating Model

- Approximating box model: boxes correspond to breakpoints.
- An approximation (using n boxes) can be obtained in the following way:
- Every inversion chooses two boxes and put a ball in them if they are empty.
- The BP distance is approximated by the number of nonempty boxes.

Approximating Model

- Notations:
- Let $B_{i}=1$ if box i is not empty, 0 if it is.
- We use inversion-only model to illustrate; let i and j be the two breakpoints corresponding to the two endpoints of the inversion being applied.
- Let the number of breakpoints be b.
- Let n be the number of genes.

Why the Approximation Works

- Case analysis: [Hannenhalli and Pevzner 1995]

Case	? BP	Condition	\# inversions	
1	+2	$\mathrm{B}_{\mathrm{i}}=\mathrm{B}_{\mathrm{j}}=0$	$\binom{n-b}{2}$	
2	+1	$\mathrm{B}_{\mathrm{i}}=0, \mathrm{~B}_{\mathrm{j}}=1$ or $\mathrm{B}_{\mathrm{i}}=1, \mathrm{~B}_{\mathrm{j}}=0$	$b(n-b)$	
3a	0	$\mathrm{B}_{\mathrm{i}}=\mathrm{B}_{\mathrm{j}}=1$		Total
3b	-1 -2	$B_{i}=B_{j}=1$, one/both of $\left(g_{i-1},-g_{j}\right),\left(-g_{i}, g_{j}\right)$ adjacencies are in G_{0}.	$\leq b$	$\binom{b}{2}$

- When b is small, probability of case 3 out of cases 1,2 , and 3 is small (when n is large)
- When b is large, probability of $3 b / 3 c$ out of case 3 is small
- As a result we can ignore cases 3b/3c
-> As a breakpoint is asserted, it does not disappear

Derivation of the Variance

- Fix k. Let $S=\left(\frac{1}{\binom{n}{2}}\left(x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n}\right)\right)^{k}$
- Each term in the expansion of S is a way of applying k inversions
E. g. $x_{1}^{3} x_{2} x_{3}^{2}$: box 1 three times, 2 once, 3 twice
- The coefficient of the term is the probabilities of such k inversions
- If transpositions and inverted transpositions are present:

$$
S=\left(\frac{1-\alpha-\beta}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} x_{i} x_{j}+\frac{\alpha+\beta}{\binom{n}{3}} \sum_{1 \leq i<j<l \leq n} x_{i} x_{j} x_{l}\right)^{k}
$$

- Let $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be the value of S when we let $\mathrm{x}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}$ for all i.
- Let $S_{j}=S(\underbrace{1,1,1, \ldots, 1}_{j 1^{\prime} s}, 0, \ldots, 0)$

Derivation of $\operatorname{Var}(\mathbf{B P})$

- Let u_{i} be the sum of coefficients of all terms in the expansion of S in the tollowing form:

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{i}^{a_{i}}\left(a_{1}, a_{2}, \ldots, a_{i}>0\right)
$$

Then $\binom{n}{i} u_{i}$ is the probability of having i nonempty boxes after k events.

- We want to compute

$$
Z_{a}=\sum_{i=0}^{n} i(i-1) \cdots(i-a+1)\binom{n}{i} u_{i}=n(n-1) \cdots(n-a+1) \sum_{i=a}^{n}\binom{n-a}{i-a} u_{i}
$$

In particular,

$$
\begin{aligned}
& z_{1}=\sum_{i=1}^{n} i\binom{n}{i} u_{i}=E[b \mid k] \approx E\left[B P\left(G_{0}, G_{k}\right)\right] \\
& z_{2}=\sum_{i=1}^{n} i(i-1)\binom{n}{i} u_{i}=E\left[b^{2}-b \mid k\right] \approx E\left[B P^{2}\left(G_{0}, G_{k}\right)-B P\left(G_{0}, G_{k}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
S & =\left(\frac{1}{\binom{n}{2}}\left(\sum_{1 \leq i<j \leq n} x_{i} x_{j}\right)\right)^{k} \\
& =\sum_{1 \leq i \leq n} \sum_{\left\{t_{1}, t_{2}, \ldots, t_{i}\right\} \subseteq\{1,2, \ldots, n\}} \sum_{\substack{a_{1}, a_{2}, \ldots, a_{i} \geq 1 \\
a_{1}+a_{2}+\ldots+a_{i}=2 k}} c\left(t_{1}, t_{2}, \ldots, t_{i}, a_{1}, a_{2}, \ldots, a_{i}\right) x_{t_{1}}^{a_{1}} x_{t_{2}}^{a_{2}} \cdots x_{t_{i}}^{a_{i}}
\end{aligned}
$$

$$
S_{j}=\sum_{1 \leq i \leq j} \sum_{\left\{t_{1}, t_{2}, \ldots, t_{i}\right\} \subseteq\{1,2, \ldots, j\}} \sum_{\substack{a_{1}, a_{2}, \ldots, a_{i} \geq 1 \\ a_{1}+a_{2}+\ldots+a_{i}=2 k}} c\left(t_{1}, t_{2}, \ldots, t_{i}, a_{1}, a_{2}, \ldots, a_{i}\right)
$$

$$
=\sum_{1 \leq i \leq j} \sum_{\left\{t_{1}, t_{2}, \ldots, t_{i}\right\} \subseteq\{1,2, \ldots, j\}} u_{i}=\sum_{1 \leq i \leq j}\binom{j}{i} u_{i}
$$

Lemma Let a be some given integer such that $1 \leq a \leq n$. Let us be given $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ such that

$$
\sum_{i=0}^{j}\binom{j}{i} u_{i}=\sum_{i=0}^{n}\binom{j}{i} u_{i}=S_{j}
$$

for all $j, 1 \leq j \leq n$. We have

$$
\sum_{i=n-a}^{n}(-1)^{n-i}\binom{a}{n-i} S_{i}=\sum_{i=0}^{n}\binom{n-a}{i-a} u_{i}
$$

Expectation and Variance [WABI'02]

- Let b_{k} be the number of nonempty boxes after k (box choosing) iterations in the approximation model. Let a $+\beta=$?. We have

$$
\begin{aligned}
& S_{n-1}=\left(1-\frac{2+\gamma}{n}\right)^{k}, S_{n-2}=\left(\frac{(n-3)(n-2-2 \gamma)}{n(n-1)}\right)^{k} . \\
& E b_{k}=n\left(1-S_{n-1}\right) \\
& \operatorname{Varb}_{k}=n S_{n-1}-n^{2} S_{n-1}^{2}+n(n-1) S_{n-2}^{2}
\end{aligned}
$$

- We use the delta method to obtain the variance of IEBP:

$$
\operatorname{Var} \widehat{k}\left(b_{k}\right) \simeq\left(\frac{d}{d k} E b_{k}\right)^{-2} \operatorname{Var} b_{k}=\frac{\left(1-n S_{n-1}+(n-1)\left(\frac{S_{n-2}}{S_{n-1}}\right)\right)}{n S_{n-1}\left(\ln \left(1-\frac{2+\gamma}{n}\right)\right)^{2}}
$$

Simulation Results

$\operatorname{Var}\left(B P_{k}\right)$
Variance of BP distance after k events

$$
\operatorname{Var} \widehat{k}\left(b_{k}\right)
$$

Variance of IEBP

Regression Formula for E(INV) and Var(INV)

- Let n be the number of genes, x be the normalized number of inversions (k / n), and $f(x)$ be the normalized expectation of the inversion distance ($f(x)$ seems to be roughly independent of n)
- We use nonlinear regression to obtain easily computable formulas for $E(I N V)$ and $\operatorname{Var}(I N V)$:

$$
\begin{aligned}
& f(x)=\min \left\{\frac{x^{2}+b x}{x^{2}+c x+b}, x\right\} \quad\left(x=\frac{k}{n}\right) \\
& \text { 1. } f(0)=0 \quad f^{\prime}(0)=1 \\
& \text { 3. } 0 \leq f(x) \leq x \\
& \text { 4. } f^{-1}(y) \quad \text { exists for all } y: 0 \leq y \leq 1
\end{aligned}
$$

$->\quad b=0.5956, c=0.4577$

EDE

[Moret, Wang, Warnow, \& Wyman, ISMB'01]

Formula for Var(INV) and Var(EDE)

- Let n be the number of genes, x be the normalized number of inversions (k / n), and $g_{n}(x)$ be the standard deviation of the inversion distance.
- The regression of $g_{n}(x)$: we use the following form

$$
\begin{gathered}
g_{n}(x)=n^{q} \frac{u x^{2}+v x}{x^{2}+w x+t} \\
\mathrm{q}=-0.6998, \mathrm{u}=0.1684, \mathrm{v}=0.1573, \mathrm{w}=-1.3893 \text {, and } \\
\mathrm{t}=0.8224 .
\end{gathered}
$$

- $\operatorname{Var}(E D E)$ can be obtained using the delta method on $\operatorname{Var}(I N V)$.

Regression for Var(INV)

Regression: solid lines, Simulation: dots

Distance-Based Methods

Using T.E.D. Helps

IEBP is Robust to Model Violations

120 genes, 160 taxa Uniformly Random Trees (alpha, beta) $=(0,0)$ (inversion only)

Maximum Parsimony Returns Thousands of Trees

- Example:
- The complete Caesalpinia dataset: 7095 trees on 82 taxa.
- The Astericeae dataset: 34,560 trees on 288 taxa.
- Consensus methods are necessary so we can summarize so many trees.
- Current approaches are limited to the strict consensus and majority consensus trees, and lose information

Postprocessing: Traditional Approaches

- Single-tree consensus

Example: strict consensus

$\left(t_{1}, t_{2}, t_{3}\right.$ all refine $\left.t\right)$

How Do We Interpret the Consensus Tree

- Given a nonbinary consensus tree t, every binary tree that refines t is equally probable to be the true tree:

(15 refinement trees)

Disadvantages of Single-Tree Consensus

- Loses a lot of information
- Sensitive to outlier trees
- Sensitive to small perturbations in the dataset

Sometimes A Cluster is Enough (Campanulaceae)

The Campanulaceae Gene-Order Dataset

1. 13 taxa (outgroup Tobacco)
2. 216 trees
(Courtesy Nina Amenta and Jeff Klingner)

Complex Structure in the I nferred Set of Trees

The Caesalpinia cpDNA Dataset

1. 51 taxa
2. 342 trees
(Courtesy Nina Amenta and Jeff Klingner)

Why We Want to Cluster Trees

- Dividing trees into clusters, and use the consensus trees from each cluster to represent "conflicting hypotheses" for the true phylogeny.
- Merits:
- Represent the input set of trees better
- Identify outliers
- Restrict perturbations to a small number of clusters

Biological Criteria

- Number of clusters
- Number of edges of the consensus
- Diameter of a cluster
- Density of clusters
- Etc.

Information Loss: How We I nterpret the Clustering

- We can define distributions for both the original set of trees and the clustering.

Input set of tree T :
All trees are equally probable.

Clustering_ $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$:
All trees refining any of $S C\left(C_{j}\right)$ are equally probable.

Distributions

- Input set of tree T:

$$
f_{T}(t)=\left\{\begin{array}{cl}
\frac{1}{|T|} & \text { if } t \in T \\
0 & \text { othewise }
\end{array}\right.
$$

- Clustering $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}$: let

$$
B=\bigcup_{i=1}^{k} B\left(C_{i}\right)
$$

$$
f_{C}(t)= \begin{cases}\frac{1}{|B|} & \text { if } t \in B \\ 0 & \text { otherwise }\end{cases}
$$

(Here $B(C)$ is the set of binary trees that refine the strict consensus of C)

Information Loss (KL)

- The distance between the two distributions is the loss of information due to clustering.
- L_{1} distance
- $\left.\begin{array}{ll}\mathrm{L}_{2} & \text { distance } \\ \text { - } \mathrm{L}_{\infty} \text { distance }\end{array}\right\} L_{x}(T, C)=\sum_{t}\left\|f_{T}(t)-f_{C}(t)\right\|_{x}$
- Kullback-Leibler distance (relative entropy):

$$
K L(T, C)=\sum_{t} f_{T}(t) \ln \frac{f_{T}(t)}{f_{C}(t)}
$$

Postprocessing of Phylogenetic Analysis Using Clustering [ISMB'02]

- The first framework using clustering algorithms in the postprocessing of phylogenetic analyses.
- Improves upon the traditional single-consensus approach in terms of information loss
- Identifies outliers in the Caesalpinia dataset
- Improves the resolution of the strict consensus by 36%
- Only loses 4\% of the trees

Number of Clusters

Caesalpinia (51 taxa, 450 trees)

Clu No.	No. of Trees	\% Edges lost
lclu	450	22.9%
1	108	10.4%
2	324	12.5%
3	18	10.4%
$1+2$	432	14.6%

$\mathrm{KL}($ Agg-complete, 3 clu$)=1.449269$
$\mathrm{KL}(1 \mathrm{clu})=9.790346$
Improvement: (22.9-14.6)/22.9 $=36 \%$
$\%$ trees dropped: $18 / 450=4 \%$

Acknowledgements

- University of Texas

Tandy Warnow (Advisor)
Robert K. Jansen Stacia Wyman

- University of New Mexico

Bernard M.E. Moret David Bader
Jijun Tang Mi Yan

- Central Washington University

Linda Raubeson

- University of Ottawa

David Sankoff

- University of Canterbury

Mike Steel

- LIRMM

Olivier Gascuel

- Genome rearrangement phylogeny

1. [STOC' 01] Li-San Wang and Tandy Warnow,
"Estimating true evolutionary distances between genomes,"
Proceedings of the Thirty-Third Annual ACM Symposium on the Theory of Computing (STOC'01), pp. 637-646, Crete, Greece (2001).
2. [ISMB' 01] Bernard M.E. Moret, LiSan Wang, Tandy Warnow, and Stacia Wyman,
"New approaches for reconstructing phylogenies based on gene order," Proceedings of S. Int'l Conf. on Intelligent Systems for Molecular Biology (ISMB-2001), pp.165-173, (2001).
3. [WABI' 01] Li-San Wang,
"Exact-IEBP: A New Technique For Estimating Evolutionary Distances Between Whole Genomes," Lecture Notes for Computer Sciences No. 2149: Proceedings of the First Workshop on Algorithms in BioInformatics (WABI'01), pp. 175-188, 2001.
4. [PSB' 02] Li-San Wang, Robert Jansen, Bernard Moret, Linda Raubeson, and Tandy Warnow,
"Fast Phylogenetic Methods For Genome Rearrangement Evolution: Empirical Study,"
Proceedings of Fifth Pacific Symp. of Biocomputing (PSB'02), pp. 524-535, Hawaii, USA 2002.
5. [WABI' 02] Li-San Wang, "Distance-Based Genome Rearrangement Phylogeny Using Weighbor," Lecture Notes for Computer Sciences No. 2452: Proceedings of the Second Workshop on Algorithms in BioInformatics (WABI'02), pp. 112-125, 2002.

Postprocessing by clustering

1. [ISMB' 02] Cara Stockham, Li-San Wang, and Tandy Warnow,
"Statistically Based Postprocessing of Phylogenetic Analysis by Clustering,"
Bioinformatics: supplemental issue, Proceedings of the 10th International Conference on Intelligent Systems and Molecular Biology (ISMB 2002), pp. 285-293, August 2002.
http:/ / www.cs.utexas.edu/ users/ lisan/
