Estimation of species divergence dates with a sloppy molecular clock

Ziheng Yang

Department of Biology University College London

Date estimation with a clock is easy.

 $t_2 = 13 \text{my}$

 l_5

Vode	Distance	Time(MY)
1	0.0627	15.8 ± 1.5
2	0.0517	13
3	0.0307	7.7 ± 1.0
4	0.0201	5.0 ± 0.9
5	0.0093	2.4 ± 0.6

human chimps gorilla orang gibbon

(Mutation rate = 0.0517/13)

(From Yang 1996 TREE 11:367-372; Horai et al. data)

Date estimation without clock is tricky.

How do we estimate dates when the clock is violated?

- Remove species or sites so that the clock looks reasonable and then use the clock.
- Account for rate variation when estimating dates.

Dealing with evolving evolutionary rates

- Use multiple calibration points
- Combine multiple genes in one analysis
- Use good models of rate evolution and good statistical methodology

- Likelihood local clock models
- Bayes models of stochastic rate evolution
- Dating divergences in Malagasy mouse lemurs

ML: global clock model with multiple calibrations

Model with fixed dates: *r* (rate), t_1 , t_3 , t_4 ($t_2 = 0.12$, $t_5 = 0.1$)

(((((A, B), C), D), (E, F)); (((((A, B), C), D) @0.12, (E, F) @0.1); (((((A, B), C), D) >0.08<0.15, (E, F) @0.1); Model not implemented: r, t_1, t_2, t_3, t_4 $(0.08 < t_2 < 0.15, t_5 = 0.1)$

ML: local clock model

assigns rate parameters for pre-specified branches

$$r_0 = 1$$

 $r_P = 1.41421$
 $r_R = 3.14159$

Dragons Primate 1 Primate 2 Primate 3 Primate 4 Rodent 1 Rodent 2 Rodent 3 Rodent 4

Kishino & Hasegawa 1990 *Methods Enzymol*. 183:550-570 Rambaut & Bromham 1998 *Molecular Biology and Evolution* 15:442-448 Yoder & Yang 2000 *Molecular Biology and Evolution* 17:1081-1090

Stochastic model of rate change

The rate r of a branch (node) is a random variable centred around the ancestral rate r_A

Thorne & Kishino 2002 *Systematic Biology* 51:689-702 Thorne et al. 1998 *Molecular Biology and Evolution* 15:1647-1657 Kishino et al. 2001 *Molecular Biology and Evolution* 18:352-361

Bayes MCMC algorithm for date estimation

$$f(\mathbf{t}, \mathbf{r}, \theta | D) = \frac{f(D | \mathbf{t}, \mathbf{r}) f(\mathbf{r} | \theta, \mathbf{t}) f(\mathbf{t} | \theta) f(\theta)}{f(D)}$$

t: times
r: rates
θ: parameters
D: data

Details in Thorne's implementation changed

- Likelihood calculation is approximate
- Gamma prior for rate at root
- Gamma prior for age of rate
- Hard bounds for fossil calibration nodes

Prior for times *f*(t) from the birthdeath process with species sampling

 $\mathbf{t}_{\mathrm{C}} = \{t_2, t_5\}$ calibration nodes $\mathbf{t}_{\overline{\mathrm{C}}} = \{t_1, t_3, t_4\}$ all other nodes

 $f(\mathbf{t}_{\mathrm{C}}, \mathbf{t}_{\overline{\mathrm{C}}}) = f_{\mathrm{BD}}(\mathbf{t}_{\overline{\mathrm{C}}} | \mathbf{t}_{\mathrm{C}}) f(\mathbf{t}_{\mathrm{C}})$

Prior for fossil calibration dates

>0.8<0.15 Soft bounds between (0.8, 0.15)

>0.8=0.12<0.15 gamma density with peak at 0.12

<0.8 Uniform for t < 0.8, power decay for t > 0.8>0.8 Power decay to 0 when t < 0.8, uniform improper when t > 0.8

Models of rate change

Rates for branches (Thorne et al. 1998)

Rates for branches derived from rates for nodes

Rates for nodes (Kishino et al. 2001)

Dating mouse lemur divergences

1795: Microcebus murinus

1970s: 2 species (*murinus*, long-eared grey west; *rufus*, short-eared reddish east)

2000 (Yoder et al.): 9 species

Parameter estimates (F84G) for COII and cytochrome b

Position	L	π_{T}	$\pi_{\rm C}$	π_{A}	π _G	К	α	S
1	606	0.23	0.26	0.29	0.22	3.5	0.29	3.4
2	606	0.40	0.25	0.22	0.13	2.7	0.17	1.2
3	606	0.21	0.34	0.40	0.04	19.0	1.17	55.3
All	1818	0.28	0.28	0.31	0.13	4.4	0.29	10.8

ML estimates, global clock (F84G)

Node	all	pos1	pos2	pos3	Comb
40 dog/bear	43.3	37.2	29.1	42.6	38.9
43 human/chimp	8.0	6.8	8.4	6.9	7.1
45 Hominoid	17.8	20.2	15.8	15.8	17.3
47 Anthropoi	61.7	65.4	60.5	58.1	62.0
48 Lorisiform	36.0	23.6	28.8	42.7	33.6
51 Lemuridae	31.0	34.3	35.7	23.6	28.0
59 mouse lemurs	13.1	13.8	10.0	7.2	8.5
61 Cheirogaleidae	30.7	30.0	22.4	26.3	26.5
65 Lemuriform	59.0	59.5	63.9	53.7	57.8
66 Strepsirrhine	62.9	62.6	63.9	65.7	63.4

ML estimates, local clock models (F84G)

Node	all	pos1	pos2	pos3	Comb
40 dog/bear	46.4	43.0	36.6	44.4	43.2
43 human/chimp	7.3	5.6	7.6	6.4	6.5
45 Hominoid	14.5	14.6	10.4	14.7	14.2
47 Anthropoid	58.2	61.9	55.1	54.8	57.8
48 Lorisiform	41.1	29.3	36.9	45.6	38.9
51 Lemuridae	36.3	43.8	46.2	25.8	33.3
59 mouse lemurs	9.1	11.4	9.3	4.5	7.2
61 Cheirogaleidae	31.1	33.8	26.9	25.7	28.6
65 Lemuriform	64.7	69.0	71.7	56.7	64.8
66 Strepsirrhine	68.8	71.8	71.7	68.8	69.9

Bayes estimates of divergence times (F84G)

Node	all	pos1	pos2	pos3	Comb
40 dog/bear	49.9	43.3	34.7	46.4	45.2 (34.9, 55.8)
43 human/chimp	8.1	7.1	5.9	6.9	7.1 (5.1, 9.3)
45 Hominoid	16.2	15.6	19.2	15.2	15.2 (12.1, 18.6)
47 Anthropoid	59.4	60.4	56.0	60.5	61.1 (50.1, 73.0)
48 Lorisiform	41.7	29.9	40.4	45.1	40.5 (29.3, 53.0)
51 Lemuridae	37.0	45.0	45.4	30.0	35.3 (26.2, 46.1)
59 mouse lemurs	13.1	23.1	25.8	8.5	10.0 (6.4, 15.4)
61 Cheirogaleidae	31.1	38.0	38.6	29.5	30.3 (21.9, 40.5)
65 Lemuriform	65.4	66.8	63.7	60.5	66.9 (55.2, 78.3)
66 Strepsirrhine	70.4	72.0	69.1	71.5	73.3 (62.2 83.6)

- For the mouse lemur data,
 - Models (JC vs. F84G) have a big impact.
 - Codon positions are very different.
 - Likelihood local clock models and Bayes MCMC calculation. produced similar estimates in combined analysis.
 - Bayes analysis was robust to prior parameters.
- It is advantageous to use multiple calibrations and multiple genes in a combined analysis.
- Date estimation without the clock remains tricky.

"Remarkable species diversity in Malagasy mouse lemurs (primates, Microcebus)", Yoder et al. 2000. Proc. Natl. Acad. Sci. U.S.A. **97:**11325-11330.

Fig. 2.2: An ancestral lemur makes its way across to Madagascar.

Acknowledgments

Anne Yoder, Yale Univ. Bruce Rannala, Univ. Alberta BBSRC