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Abstract

The volume of publicly available data in biomedicine is constantly increasing. However, these data are stored in differ-
ent formats and on different platforms. Integrating these data will enable us to facilitate the pace of medical discoveries
by providing scientists with a unified view of this diverse information. Under the auspices of the National Center for
Biomedical Ontology (NCBO), we have developed the Resource Index—a growing, large-scale ontology-based index
of more than twenty heterogeneous biomedical resources. The resources come from a variety of repositories main-
tained by organizations from around the world. We use a set of over 200 publicly available ontologies contributed by
researchers in various domains to annotate the elements in these resources. We use the semantics that the ontologies
encode, such as different properties of classes, the class hierarchies, and the mappings between ontologies, in order to
improve the search experience for the Resource Index user. Our user interface enables scientists to search the multiple
resources quickly and efficiently using domain terms, without even being aware that there is semantics “under the
hood.”

Keywords: semantic Web, ontology-based indexing, semantic annotation, data integration, information mining,
information retrieval, biomedical data, biomedical ontologies

1. Introduction

Researchers in biomedicine produce and publish
enormous amounts of data describing everything from
genomic information and pathways to drug descrip-
tions, clinical trials, and diseases. These data are stored
on many different databases accessible through Web
sites, using idiosyncratic schemas and access mecha-
nisms. Our goal is to enable a researcher to browse
and analyze the information stored in these diverse re-
sources. Then, for instance, a researcher studying allelic
variations in a gene can find all the pathways that the
gene affects, the drug effects that these variations mod-
ulate, any disease that could be caused by the gene, and
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the clinical trials that involve the drug or diseases related
to that specific gene. The information that we need to
answer such questions is available in public biomedical
resources; the problem is finding that information.

The research community agrees that terminologies
and ontologies are essential for data integration and
translational discoveries to occur [1, 2, 3]. However, the
metadata that describe the information in data resources
are usually unstructured, often come in the form of free-
text descriptions, and are rarely labelled or tagged using
terms from ontologies that are available for the domains.
Users often prefer labels from ontologies because they
provide a clear point of reference during their search
and mining tasks [4, 5, 6]. For example, researchers
and curators widely use the Gene Ontology to describe
the molecular functions, cellular location, and biologi-
cal processes of gene products. These annotations en-
able the integration of the descriptions of gene products
across several model organism databases [7].
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However, besides these examples, semantic annota-
tion of biomedical resources is still minimal and is often
restricted to a few resources and a few ontologies [8].
Usually, the textual content of these online resources
is indexed (e.g., using Lucene) to enable querying the
resources with keywords. However, there are obvious
limits to keyword-based indexing, such as the use of
synonyms, polysemy, lack of domain knowledge. Fur-
thermore, having to perform keyword searches at each
Web site individually makes the navigation and aggre-
gation of the available information extremely cumber-
some, if not impractical. Search engines, like Entrez
(www.ncbi.nlm.nih.gov/Entrez), facilitate search
across several resources, but but they do not currently
use as many of the available and relevant biomedical
ontologies.

The National Center for Biomedical Ontology
(NCBO) Resource Index addresses these two problems
by (1) providing a unified index of and access to multi-
ple heterogeneous biomedical resources; and (2) using
ontologies and the semantic representation that they en-
code to enhance the search experience for the user. The
NCBO BioPortal—an open library of more than 200 on-
tologies in biomedicine [9]—serves as the source of on-
tologies for the Resource Index. We use the terms from
these ontologies to annotate, or “tag,” the textual de-
scriptions of the data that reside in biomedical resources
and we collect these annotations in a searchable and
scalable index (Figure 1). The key contributions to the
field are (i) to build the search system for such an im-
portant number of ontologies and resources and (ii) to
use the semantics that the ontologies encode.

In the context of our research, we call data element
any identifiable entity or record (e.g., document, article,
experimentation report) which belongs to a biomedical
data resource (e.g., database of articles, experiments,
trials). Usually, an element has an identifier and can be
linked by a URL. For instance, the trial NCT00924001
is an element of the ClinicalTrials.gov data resource that
can be access with: http://clinicaltrials.gov/

ct2/show/NCT00924001. We call annotation—a cen-
tral component— a link from an ontology term to a data
element, indicating that the data element refers to the
term either explicitly or not [10, 11]. We then use these
annotations to “bring together” the data elements.

We currently index 22 resources, which are main-
tained by a variety of different institutions, with terms
from more than 200 ontologies included in BioPor-
tal (Appendix A). As of January 2011, our 1.5Tb
MySQL database, which stores the annotations in the
Resource Index, contains 11 Billion annotations, 3.3
Million ontology concepts, and 3.2 Million data el-

Figure 1: NCBO Resource Index overview. We process each
biomedical resource using the ontology-based indexing workflow. We
store the resulting annotations in a database and make them available
in several formats via REST Web services. BioPortal provides user-
friendly interfaces to search and navigate the Resource Index.

ements. The user interface is available at http://

bioportal.bioontology.org/resources.
A preliminary version of the system was presented in

[12]. In this paper, we illustrate use case scenarios (Sec-
tion 2), describe the system implementation (Section 3)
and the details of the indexing workflow (Section 3.3),
and the different means to access the Resource Index
(Section 3.4). We demonstrate how semantic technolo-
gies enable information retrieval and mining scenarios
that were not possible otherwise (Section 4).

2. Use case scenarios

We will describe the functionality of the Resource In-
dex through three use case scenarios.

Scenario 1: Multiple-term search across re-
sources. The user is interested in the role of tumor pro-
tein p53 in breast cancer. He can search the Resource In-
dex for “Tumor Protein p53” AND “Breast Carcinoma”
as defined in the NCI Thesaurus (Figure 2). The search
results summarize the number of elements per resources
annotated with both terms. The user can see there is rel-
evant data linking p53 to breast cancer in such resources
as ArrayExpress, ClinicalTrials.org, Gene Expression
Omnibus (GEO), Stanford Microarray Database (SMD)
and others. He can access the data elements within each
resource quickly and navigate between resources.

Scenario 2: Exploratory search across resources.
A researcher studying the causes and treatments for
stroke in humans is interested in learning more about
the genetic basis of the response to related conditions
by searching the literature. She already knows that
some related conditions such as stroke, transient is-
chemic attack, and cerebral bleeding fall under the gen-
eral category of cerebrovascular accidents (Figure 3).
Therefore, she starts by typing “cerebr” and immedi-
ately gets feedback in the form of suggested terms from
various ontologies. She selects and initiates a search
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Figure 2: Resource Index user interface. The search for resources
that contain both “Tumor Protein p53” AND “Breast Carcinoma.”

for Cerebrovascular Accident from the National Can-
cer Institute (NCI) Thesaurus. She notices a number
of hits from several resources and drills down to read
more about the data elements from both the GEO and
Database of Genotypes and Phenotypes (dbGAP) re-
sources. She focuses on GEO: the tag cloud empha-
sizes other terms that are ranked highly in these 31 ele-
ments. Thus, she can get an idea of what these elments
are about. She selects “Stroke” in the tag cloud, then
“Treatment,” and gets to the 12 elements that are an-
notated with the three previous terms. A similar series
of steps on dbGAP leads her to two elements annotated
with “Cerebrovascular Accident,” “Stroke,” and “Phys-
iology.” As a result of her search, she has quickly lo-
cated gene-expression data (from rats) that is connected
to genotype-phenotype data (from humans). In rats, re-
searchers studied the gene-expression level response to
both stroke and to drugs used to treat stroke. In humans,
researchers studied genotypes that predispose humans
to stroke and affect the physiology of the outcome.

Scenario 3: Semantically enriched search across
resources. The user wants to search gene expres-
sion data about “retroperitoneal neoplasms.” A di-
rect keyword search with “retroperitoneal neoplasm”
on the GEO Web site will return no results. How-

ever, there are several datasets in GEO about “pheochro-
mocytoma” and “renal cell cancer” both of which are
retroperitoneal neoplasms and thus relevant to the pre-
vious search. When our user queries the Resource In-
dex with “retroperitoneal neoplasm,” he will get the re-
sults that use the hierarchy represented in the BioPor-
tal ontologies. Specifically, the NCI Thesaurus defines
“pheochromocytoma” as a subclass of “retroperitoneal
neoplasm.” Thus, the user will get all data elements that
are annotated with “pheochromocytoma” as a response
to the query on “retroperitoneal neoplasm,” including
the relevant resources in GEO. Furthermore, he also
gets results from ArrayExpress and SMD, which are
other repositories of gene expression data also indexed
in the Resource Index.

In the next section, we describe the implementation
of the Resource Index, which enables these use cases.

3. The NCBO Resource Index

To create the Resource Index, we process metadata
describing data elements in a variety of heterogeneous
resources to create semantic annotations of these meta-
data. We use the publicly available biomedical ontolo-
gies in BioPortal as a source of terms, their synonyms,
and the relations between terms (Section 3.1). We
use resource-specific access tools to process metadata
that describe data elements in different resources (Sec-
tion 3.2). We use an off-the-shelf concept-recognition
tool to identify terms from BioPortal ontologies within
the textual metadata and annotate, or tag, the corre-
sponding element with the recognized terms. We ex-
pand these annotations using available ontology knowl-
edge (Section 3.3). Finally, the Web services and user
interface provide users with fast and scalable access to
this index and support different use cases such as infor-
mation retrieval and mining (Section 3.4).

3.1. Ontologies in the NCBO BioPortal
BioPortal, an open library of biomedical ontolo-

gies [9], provides uniform access to the largest collec-
tion of publicly available biomedical ontologies. At the
time of this writing, there are 245 ontologies in this col-
lection. BioPortal users can browse, search, visualize,
and comment on ontologies both interactively, through a
Web interface, and programmatically, via Web services.
The majority of BioPortal ontologies were contributed
by their developers directly to BioPortal. A number
of ontologies come from Open Biomedical Ontologies
(OBO) Foundry [13], a collaborative effort to develop a
set of interoperable ontologies for biomedicine. Bio-
Portal also includes publicly available terminologies
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Figure 3: Searching the Resource Indexin BioPortal. The user searches for resources on “cerebrovascular accidents” and finds gene-expression
data that are relevant to different types of cerebrovascular accidents, such as stroke.

from the Unified Medical Language System (UMLS),
a set of terminologies which are manually integrated
and distributed by the United States National Library
of Medicine [14]. BioPortal includes ontologies that
are developed in a variety of formats, including OWL,
RDF(S), OBO (which is popular with many developers
of biomedical ontologies), and RRF (which is used to
distribute UMLS terminologies). BioPortal provides a
uniform set of REST Web services to access basic lexi-
cal and structural information in ontologies represented
in these heterogeneous formats.

We use the BioPortal REST services to traverse the
ontologies and to create a dictionary of terms to use
for direct annotations of data elements in biomedical re-
sources. We use preferred name and synonym proper-
ties of classes for this dictionary. Some ontology for-
mats have preferred name and synonym properties as
part of the format (e.g., OBO and RRF). For OWL,
ontology developers can either use the relevant SKOS
properties to represent this information, or specify in
the ontology metadata which are the properties that they
use for preferred names (e.g., rdfs:label) and synonyms.
Currently, our dictionary contains 6,835,997 terms, de-

rived from the 3,349,338 concepts from 206 ontologies
(the subset of BioPortal ontologies that are usable for
annotation). We identify each concept by a URI defined
in the original ontology or provided by NCBO.

3.2. Accessing biomedical resources
In addition to the ontology terms, the data elements

from the biomedical resources are another major source
of information for the Resource Index (Figure 1). As
of January 2011, we have indexed 22 public biomedi-
cal resources of different sizes (up to 3.2 Million ele-
ments and 1.4Gb of data). We provide a list of sam-
ple resources in Appendix A. Data resources provide
their data in idiosyncratic formats (often XML) and of-
fer different means of access (often Web services). To
access the information in the resources, we build a cus-
tom wrapper for each resource. The wrapper extracts
the fields describing the data elements within a resource
as illustrated in step 1 of Figure 4. In developing each
wrapper, we work with a subject matter expert to de-
termine which textual metadata fields (later called con-
texts) we must process (e.g., title, description). We also
assign each context a weight [0,1] representing the im-
portance of the field. We later use this weight to score
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annotations.2 For example, we may give annotations
appearing in the title a higher weight based on the ex-
pert’s recommendation for that resource. In some cases,
resources already tag elements with ontology terms, so
the wrapper directly extracts the curated annotations and
applies an appropriate weight. We call these annotations
reported annotations. For example, the description of
gene-expression data in GEO contains an organism field
where a domain expert manually puts a term from the
National Center for Biotechnology Information taxon-
omy, which refers to the relevant organism.

Our resource-specific wrappers access the data ele-
ments incrementally, enabling us to process only the
data elements that were added to the resource since the
last time that we processed the resource.

3.3. Ontology-based annotation
After we access the data elements describing the re-

source, we perform the following steps to create anno-
tations for the data elements in the resource: (a) direct
annotation with ontology terms; (b) semantic expansion
of annotations; (c) aggregation and scoring of annota-
tions (Figure 4).

a. Creation of direct annotations. We process each
textual metadata using a concept-recognition tool that
detects the presence of concepts in text. Our workflow
accepts different concept recognizers ranging from sim-
ple string matching techniques to advanced natural lan-
guage processing algorithms. We currently use Mgrep
[15, 16] which enables fast and efficient exact matching
against a very large set of input strings (however without
any advanced natural language processing (e.g., stem-
ming, permutation, morphology)). Concept recognizers
usually use a dictionary. The dictionary (or lexicon) is
a list of strings that correspond to preferred names and
synonyms of ontology concepts. At this step, Mgrep
uses the 6.8 Million terms dictionary built before. In
the example in Figure 4, the recognizer identifies the
terms melanoma, melanocyte, and cell and creates
a set of direct annotations with the corresponding con-
cepts in the Human Disease, Cell type, and BIRNLex
ontologies. We preserve the identified term, the context
in whitch it appears, and its character position as prove-
nance information about the annotation.

b. Semantic expansion of annotations. After di-
rect annotations step, several semantic-expansion com-
ponents leverage the knowledge in the ontologies to cre-
ate expanded annotations from the direct annotations.

2Researchers have previously demonstrated the influence and im-
portance of the original context in which a term appears on informa-
tion retrieval [4].

Figure 4: Example of annotations generated for a GEO element.
Direct annotations are generated from textual metadata and already
existing ontology references of the data element. Then, expanded an-
notations are created using the ontology is a hierarchy. Finally, all the
annotations are aggregated and scored taking into consideration their
frequency and context.
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First, the is a transitive closure component traverses
an ontology subclass–superclass hierarchy using a cus-
tomized algorithm to create new annotations with su-
perclasses of the classes that appear in direct anno-
tations. We used the subclass transitive relation as
defined by the original ontology e.g., is a (OBO),
rdfs:subClassOf (OWL) and abstracted by BioPortal to
compute the transitive closure on the whole ontology
graph. For instance, we will expand a direct anno-
tation of a data element with the concept melanoma
from NCI Thesaurus, to annotations with melanocytic
neoplasm, cancer, and cellular proliferation

disease because NCI Thesaurus defines melanoma as
a subclass of melanocytic neoplasm, which in turn
is a subclass of cellular proliferation disease

(Figure 4). We preserve the shortest ancestor level (di-
rect parent, grandparent, etc.) as provenance informa-
tion to use for scoring annotations. Naturally, the farther
away the ancestor term is from the term in the direct an-
notation, the less relevant the corresponding expanded
annotation is.

Second, the ontology-mapping component creates
new annotations based on existing mappings between
ontologies. BioPortal provides point-to-point map-
pings between terms in different ontologies. Some
of these mappings were defined manually and some
were created automatically using various mapping al-
gorithms [17].3 We use the mappings that BioPortal
stores and provides to expand our annotations and we
do not follow them transitively. For instance, if a text
is directly annotated with the concept treatment in
Medical Subject Headings (MeSH), the mapping com-
ponent will generate a new annotation with the concept
therapeutic procedure from Systematized Nomen-
clature of Medicine-Clinical Terms (SNOMED-CT) be-
cause there is a mapping between these two terms in
BioPortal. We preserve the type of mapping as prove-
nance information to use for scoring annotations. It
allows to score those expanded annotations propor-
tionally to the mapping confidence (e.g., owl:sameAs,
skos:exactMatch, skos:closeMatch, manually cu-
rated or automatically generated).

c. Annotation aggregation and scoring. We use the
provenance information that we collect in creating di-
rect and expanded annotations to assign each annotation
a weight from 0 to 10 representing its relevance. For ex-
ample, a match based on a preferred label gets a weight
of 10 versus a synonym, which gets an 8; a match orig-

3In this work we assume mappings between ontologies already
exists, the creation of biomedical mappings is discussed in numerous
other papers.

Figure 5: Number and types of annotations in the Resource Index.

inating from a mapping gets a weight of 7 whereas one
from an is a relationship get a diminishing weight based
on ancestor level. Because several annotations with the
same concept but with different provenance and context
can co-exist we aggregate all those annotations of an el-
ement to a unique pair [concept-element], called aggre-
gated annotation, to which a score is assigned. Those
are the annotations used for searches. The scoring algo-
rithm takes into account frequency, provenance and con-
text of the annotation by doing the sum of the weights
assigned to each annotation normalized by the weights
of the original contexts.

At each step, the annotation workflow populates sev-
eral relational tables and stores the detailed (direct &
expanded) and aggregated annotations. Because both
ontologies and resources are changing often, we need
to automatically update the Resource Index tables regu-
larly. The workflow handles (i) resource updates (i.e.,
incremental processing of new elements added to re-
sources) using wrappers that pull only the data elements
that have not been processed yet and (ii) ontology up-
dates (i.e., incremental processing of new ontologies
and new ontology versions) because BioPortal provides
version specific identifiers for ontologies. For simplic-
ity, when a new ontology version is added to BioPortal,
the previous annotations associated with the ontology
are removed from the Resource Index and new ones are
added. The indexing workflow has been specifically op-
timized for this to occur rapidly [18]. We run these two
different updates respectively weekly and monthly.

3.4. Accessing the NCBO Resource Index
The annotation and the scores that we described in

the previous section constitute the Resource Index. The
index contains 3 Billion aggregated annotations and
11 Billion detailed annotations (10% direct, 90% ex-
panded) as illustrated by Figure 5. We provide both a
Web service access to the index and a special-purpose
easy-to-use graphical user interface, which enables do-
main experts to explore and analyze the information in
the Resource Index.

The main Resource Index user interface, illustrated in
Figures 2 and 3, is a search-based interface geared to-
wards biomedical end-users. Users do not even need to
be aware that semantic technologies are driving the user
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interface, and can use it through a simple search-box
mechanism. As the user types in terms that she is in-
terested in, she gets a list of auto-complete suggestions
for the search terms and the source ontologies for these
terms. Users can search data elements using AND and
OR constructs.4 She is presented with a list of search re-
sults (as snippets) as well as a tag cloud of related terms
(selected in the top 10 results) to help refine her search
further. For each identified element, a user can see the
details of the annotations highlighted in the original text
and link back to the URLs of the original data elements.

Users can retrieve the content of the Resource Index
programmatically by calling a Web service and speci-
fying either ontology concepts or specific data elements
that they are looking for. Specifically, we provide the
following services:

1. For a given concept, obtain the set of elements in
one or several resources annotated with this con-
cept (e.g., GEO and ArrayExpress elements anno-
tated with concept DOID:1909)

2. For several concepts, obtain the union or inter-
section of the set of elements annotated with
these concepts (e.g., GEO and ArrayExpress
elements annotated with both DOID:1909 and
CL:0000148).

3. For a given data element, obtain the set of concepts
in one or several ontologies annotating this element
(e.g., NCI Thesaurus concepts annotating the GEO
dataset GDS1965).

The first two information-retrieval services offer a
unique endpoint to query several heterogeneous data re-
sources and facilitate data integration (defined as view
integration in Goble & Stevens [3]). The third service
supports the type of exploration that the original re-
source may have never supported. This use case enables
users to gather more information about a data element
that they have already identified.

When retrieving annotations for a given element,
users can filter out annotations using several mech-
anisms, such as limiting results to annotations with
specific UMLS semantic types, using only results that
match the whole word in the query, disabling the results
obtained by matching synonyms, or selecting the type
of mapping used for expanding annotations. Users can
retrieve annotations in several formats (text, tab delim-
ited, XML, RDF and OWL). The results are ordered by
the scores assigned during the indexing phase.

4The OR construct is currently available only through Web ser-
vice; it is not available through the graphical user interface.

4. Discussion and related work

The Resource Index provides semantically-enabled
uniform access to a large set of heterogeneous biomed-
ical resources. It leverages the semantics expressed in
the ontologies in several different ways:

Preferred names and synonyms: Many biomedi-
cal ontologies specify, as class properties, not only la-
bels (preferred names) but also synonyms for the class
names, which we use during annotation. For example,
a keyword search of caNanoLab resource with “adri-
amycin” would normally obtain no results. However,
because the ontologies that we use have defined “dox-
orubicin” as a synonym for “adriamycin,” the Resource
Index retrieves all caNanoLab elements annotated with
the term “doxorubicin.”

Auto-complete: As users type a term into the search
box, they receive immediate feedback giving both pre-
ferred names and synonyms for matching classes from
different ontologies.

Hierarchies: We use subclass relations to traverse
ontology hierarchies to create expanded annotations,
therefore improving the recall of search on general
terms. For example, a search with “retroperitoneal neo-
plasm,” will retrieve data annotated with “pheochromo-
cytoma” (Section 2). Notice that subclass relationships
are present in all ontologies thus enable to provide the
same feature for all ontologies. Specific ontology rela-
tionships are not considered, although we acknowledge
there are often useful on a per-ontology approach.

Mappings: We use BioPortal mappings to ex-
pand the set of annotations. For example, a search
with the concept “treatment” from MeSH retrieves
the elements annotated with “therapeutic procedure”
in SNOMED-CT because there is a mapping between
these two concepts in BioPortal.5

The use of ontologies significantly enhances recall of
searches (i.e., more relevant data elements are retrieved)
without affecting precision of the top results. Our aggre-
gation and scoring addresses the issue of precision by
ranking relevant results for the user e.g., the algorithm
ranks the direct matches higher over the ones obtained
via semantic expansion. Semantic disambiguation is not
handled yet e.g., someone searching elements for Cell
in NCI Thesaurus will obtain the elements mentioning
the word cell as the abbreviation of cell phone. How-
ever, given the characteristics of the resources indexed
(biomedical databases as opposed to general Web sites)
the issue has not come up in practice.

5Notice there is no composition of the semantic expansion compo-
nents e.g., mapping ancestors are not used for annotations.
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Because the goal of the Resource Index is to improve
runtime information retrieval and data-mining tasks, we
decided to pre-compute inferences with ontologies (i.e.,
is a and mapping expansion) rather than to implement
semantic query-expansion algorithms [19] that would
have computed inferences dynamically but would have
required longer response time. Our technical decisions
in terms of design and architecture were often driven
by benchmarking analysis and metrics [18]. The index-
ing workflow execution times range from a couple of
minutes for the small resources to more than a week for
the biggest one. Because it is impossible to include in
the Resource Index all possible biomedical resources,
NCBO provides the ontology-based annotation work-
flow as a Web service [8], the NCBO Annotator, which
allows researchers to annotate their text data automat-
ically and get the annotations back. They can use this
service to develop their own semantic-search applica-
tions. Researchers at the Medical College of Wisconsin
have already created one such application for mining
associations between gene expression levels and phe-
notypic annotations for microarray data from GEO (cf.
http://gminer.mcw.edu).

Semantic annotation is an important research topic in
the Semantic Web community [10]. Tools vary along
with the types of documents that they annotate (e.g., im-
age annotation [20]). For an overview and comparison
of semantic annotation tools the reader may refer to the
study by Uren and colleagues [11].

As we have mentioned earlier, our annotation work-
flow can be configured to use any concept-recognition
tool. A number of publicly available concept recog-
nizers identify entities from ontologies or terminolo-
gies in text. These recognizers include IndexFinder
[21], SAPHIRE [22], CONANN [23], and the Univer-
sity of Michigan’s Mgrep [15]. The National Library
of Medicine (NLM)’s MetaMap [24], which identifies
UMLS Metathesaurus concepts in text, is generally used
as the gold standard for evaluating tools in the biomed-
ical domain. Many of these tools are not under active
development and are restricted to a particular ontology
or the UMLS.

Related tools in the biomedical domain include Ter-
minizer [25], which is an annotation service similar to
the NCBO Annotator. Terminizer recognizes concept
names and synonyms and their possible permutations
but only for OBO ontologies. Terminizer does not al-
low any automatic semantic expansion of the annota-
tions but allows refining annotations using broader or
narrower terms in the user interface. Whatizit [26],
which is a set of text mining Web services that can rec-

ognize several types of entities such as protein and drug
names, diseases, and gene products. Reflect [27], which
highlights gene, protein, and small-molecule names and
can perform the recognition in HTML as well as PDF
and MS Word documents. The originality of Reflect,
when used in a Web browser, is that the tool links the
identified terms to corresponding entries in biomedical
resources e.g., UniProt, DrugBank. However, the tool
is not driven by ontologies and does not execute any se-
mantic expansion.

We have conducted a comparative evaluation of two
concept recognizers used in the biomedical domain—
Mgrep and MetaMap—and found that Mgrep has clear
advantages in large-scale service oriented applications,
specifically addressing flexibility, speed and scalability
[8]. The precision of concept recognition varies depend-
ing on the text in each resource and type of entity being
recognized: from 93% for recognizing biological pro-
cesses in descriptions of gene expression experiments
to 60% in clinical trials, or from 88% for recognizing
disease terms in descriptions of gene expression exper-
iments to 23% for PubMed abstracts [8]. Other studies
reported similar results [28, 29]. The average precision
is approximately 73%, average recall is 78%.

Most of the other annotation tools do not perform
any semantic expansion, which gives the Resource In-
dex and the Annotatora significant advantage. There are
however other tools in the biomedical domain that use
semantics internally including MedicoPort [30], which
uses UMLS semantics to expand user queries; the work
of Moskovitch and colleagues [4], who use ontolo-
gies for annotation (concept based search) and demon-
strate the importance of the context (context-sensitive
search) when annotating structured documents. Health-
CyberMap [31] uses ontologies and semantic distances
for visualizing biomedical resources information. Essie
[32] shows that a judicious combination of exploit-
ing document structure, phrase searching, and concept
based query expansion is useful for domain optimized
information retrieval. Finally, other studies such as
Khelif and colleagues [33] illustrate the annotation of a
specific resource with specific ontologies (the GeneRIF
resource annotated with UMLS and Galen in this case).

Currently, we create annotations based only on tex-
tual fields. However, we can extend our approach
to other kinds of documents (i.e., images, sounds) by
changing the tool that we use for concept recognition.
We currently process only text meta-data in English.
However, as BioPortal now contains ontologies in mul-
tiple languages, we can start using concept recognizers
for other languages in the future.
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5. Challenges and future plans

We are currently working on expanding the Resource
Index to include more resources. Our goal is to index
up to 100 public resources, including PubMed, which
provides access to all research articles in biomedicine
(approximately 20 Million elements). We have ana-
lyzed the metrics on ontologies in order to re-structure
the database backend for the Resource Index. This re-
structuring has enabled us to reduce the processing time
for one of our larger datasets from one week to one
hour [18]. With this type of optimizations, we can now
annotate extremely large datasets such as PubMed. We
have already indexed the last five years of it (20%). We
note that since 2010, changes in MetaMap allow it to be
deployed with ontologies outside of UMLS. We are in-
vestigating the possibility of including MetaMap as an
alternative concept recognizer in the annotation work-
flow.

One limiting factor in increasing the number of re-
sources that we index is the need to develop custom ac-
cess tools for most resources. However, most resource
access tools follow the same principles, so we have built
templates that enable our collaborators to build them
easily and quickly to process their own datasets and to
include them in the Resource Index.

Our next challenge is to evaluate the user interface
and to understand what works best for domain experts.
We have performed small-scale formative evaluations,
but will need to work on larger scale evaluation, with
different groups of users.

6. Conclusions

We have presented an ontology-based workflow to
annotate biomedical resource automatically as well as
an index constructed using this workflow. Ontology-
based indexing is not new in biomedicine, however it is
usually restricted to indexing a specific resource with a
specific ontology (vertical approach). We adopt a hor-
izontal approach, accessing annotations for many im-
portant resources using a large number of ontologies.
This approach follows the translational bioinformatics
and Semantic Web vision to discover new knowledge
by recombining already existing knowledge (i.e., re-
sources and ontologies) in a manner that the knowledge
providers have not previously envisaged.

The Resource Index enables domain experts to
search heterogeneous, independently developed re-
sources. While we use ontologies and semantics “under
the hood” to improve the quality of the results and to
simplify the user interaction, the users are not aware of

this complexity. They use a simple search-box interface
and can drill down on the specific resources that contain
their terms of interest or any other relevant terms.

Appendix A. Lists of ontologies and resources

Table A.1: A sample of ontologies included in the Resource
Index. Please refer to http://bioportal.bioontology.org/

ontologies for a complete listing.

Table A.2: A sample of resources included in the Resource In-
dex. Please refer to http://rest.bioontology.org/resource_

index/resources/list/ for a complete listing.
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