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Abstract. This paper presents a novel background knowledge approach
which selects and combines existing mappings from a given biomedical
ontology repository to improve ontology alignment. Current background
knowledge approaches usually select either manually or automatically a
limited number of different ontologies and use them as a whole for back-
ground knowledge. Whereas in our approach, we propose to pick up only
relevant concepts and relevant existing mappings linking these concepts
all together in a specific and customized background knowledge graph.
Paths within this graph will help to discover new mappings. We have im-
plemented and evaluated our approach using the content of the NCBO
BioPortal repository and the Anatomy benchmark from the Ontology
Alignment Evaluation Initiative. We used the mapping gain measure to
assess how much our final background knowledge graph improves results
of state-of-the-art alignment systems. Furthermore, the evaluation shows
that our approach produces a high quality alignment and discovers map-
pings that have not been found by state-of-the-art systems.

Keywords: ontology matching, background knowledge, repository of
ontologies, biomedical ontologies, BioPortal

1 Introduction

Ontology alignment is recognized by the scientific community as an important
area of research because of its multiple applications in different domains [8]: on-
tology engineering, data integration, information sharing, etc. Especially in the
biomedical domain that generates and manipulates a big volume of data. On-
tology matching plays a key role in the development of biomedical research by
facilitating the development of data warehouses articulated around common on-
tologies. Many works have been made to extract mappings automatically, mainly
using lexical and structural matchers, but these matchers often fail when the on-
tologies to align have different structures and do not use the same vocabulary
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(different terms to describe the same concepts) [22]. In the recent years, the com-
munity has started to consider an alternative solution for automatic approaches
in the use of background knowledge as a semantic mediator to discover mappings
between ontologies. These background knowledge resources span from thesaurus,
lexical resources, linked open data, one or several ontologies or a full repository
of ontologies [21, 20, 19] and in our case, already existing mappings. The use of
background knowledge has raised the following challenges: (1) selection: How
to select the most useful background to align ontologies? (2) usage: How to
use such knowledge in order to enhance alignment results? In all proposed ap-
proaches, the use of background knowledge was as a complementary solution to
traditional automatic approaches. In this paper, we propose a novel approach
to align ontologies using only a background knowledge built from heterogeneous
mappings, the main idea is to combine the knowledge formalized in mappings
produced manually by human experts, to mappings produced automatically by
simple lexical matching to discover new mappings between the ontologies to be
aligned. The main contributions of this paper are:

– A novel approach to align ontologies using a background knowledge graph
automatically built from existing mappings

– A novel measure called Path Confidence Measure to select the most accu-
rate mappings from several candidates mappings derived from the previously
built background knowledge graph.

We have implemented and evaluated our approach using the content of the
NCBO BioPortal4 repository and the Anatomy benchmark5 from the Ontology
Alignment Evaluation Initiative. The obtained results show that our approach
produces a high quality alignment, and discovers mappings not found by state-
of-the-art alignment systems.

The rest of this paper is organized as follows. Section 2 defines ontology
matching and common biomedical ontology mappings. Section 3 describes our
novel approach exploiting mappings extracted from a given repository to align
biomedical ontologies. Section 4 presents the proposed Path Confidence Measure.
Section 5 describes the implementation of our approach. Section 6 provides the
evaluation results of our approach. Section 7 discusses related work. Finally,
Section 8 concludes our paper and points out future work.

2 Preliminaries

2.1 Ontology Matching

Ontology matching is the process of finding correspondences between two given
ontologies O1 and O2. Each correspondence can be formalized by a quadruplet
≺ e1, e2, r, n � with e1 ∈ O1 and e2 ∈ O2, r is a relationship between two

4 http://bioportal.bioontology.org/
5 http://oaei.ontologymatching.org/2015/anatomy/index.html
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given entities e1 and e2, and n is the confidence value of this relationship (gen-
erally, a value between 0 and 1) [8]. In this paper, we deal only with equivalence
relationship between entities.

We distinguish the direct matching which has only the two ontologies to be
aligned as an input, from the indirect matching which uses external resources
that we call Background Knowledge (BK) to enhance the quality of direct match-
ing. These resources may be one mediator ontology, a set of ontologies, an ex-
isting alignment. The common schema to perform an alignment using a BK is
composed of two steps: anchoring and deriving relations [20, 21]. Anchoring con-
sists in finding for source and target entities their equivalent entities in the BK.
This step is generally done by using a lexical matcher. The second step consists
in deriving relations between the entities of ontologies to align according to the
relations between the anchored entities in the BK.

2.2 Biomedical Ontologies Mapping

The number of biomedical ontologies is too big to allow manual alignment of
all of them (the repository NCBO BioPortal stores more than 500 biomedical
ontologies). In addition, their size is also very large (e.g, SNOMEDCT, Gene
Ontology). Therefore, interconnecting manually all biomedical ontologies is not
feasible. However, we can find some reliable manually produced mappings in
several resources such as UMLS6 [3], the OBO Foundry [6] and the NCBO Bio-
Portal7 [12]. For instance, the OBO Foundry ontology developers produce Xref
relations between the concepts of their ontologies(more than 141 ontologies) that
can be considered mappings (latter called OBO mappings). As another example
CUI (Concept Unique Identifier) mappings that are produced by the US National
Library of Medicine team. When an ontology or a terminology is integrated in the
UMLS Meta-Thesaurus, a CUI is manually assigned to each concept, grouping
concepts together. These manually produced mappings are the formalization of
human experts knowledge that we aim to exploit to enhance biomedical ontology
matching.

3 Overview of our Approach

Our approach aims to reuse mappings that can be extracted from a repository
of ontologies to discover new ones, especially by combining manually and au-
tomatically produced mappings. Indeed, we hypothesis that manual mappings
may be the bridge that overcomes the limitations of automatic matchers. As we
can see in Fig. 1, our approach involves five steps: (1) Extraction of different
kinds of mappings between all ontologies stored in the repository to construct
the Global Mapping Graph, (2) Anchoring the concepts of the source ontology
on the resulted graph, (3) Based on resulted anchors, select mappings that may

6 Unified Medical Language System
7 Not all mappings in BioPortal are manually produced, see section 5.1 for more

information about NCBO BioPortal mappings
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help to discover new ones. The selected mappings are organized in the form of
a graph called the Specific Mapping Graph, (4) Anchoring the concepts of the
target ontology on the Specific Mapping Graph and extract all paths between
the source and target anchors (candidate mappings), and finally (5) Filtering
discovered candidates mappings to keep only the most reliable ones according
to a given aggregation strategy.

Fig. 1. Overview of the proposed approach

3.1 Building the Global Mapping Graph

In the biomedical domain the most known resources of manually produced map-
pings are: (i)ontologies produced by the OBO Foundry, (ii)ontologies integrated
in UMLS. For a given repository of ontologies, to build the Global Mapping
Graph we start by checking for each ontology if it is an OBO ontology, or if it
is integrated in UMLS. Then, we extract from each one its manually produced
mappings (OBO from the first category and CUI mappings from the second one).
After that, we use a lexical matcher or any other efficient matcher to match each
ontology with all others ontologies in the repository. We add these mappings
produced automatically to those produced manually. For each extracted map-
ping we keep the source and the target concepts, the ontology of each concept,
the set of labels of each concept and the provenance of this mapping (OBO,
CUI, etc.). We can add any other sets of relevant mappings to enrich the final
set of extracted mappings. At the end of the mappings extraction step we obtain
a large set of mappings that may contain redundant concepts. To clean up the
extracted mappings, we eliminate all redundancies in terms of concepts. The
final result of this step is the Global Mapping Graph. This step is done just for
once; it is independent from the couple of ontologies to be aligned. In case of
enriching the repository with a new ontology, we will only extract its related
mappings with other ontologies, and adding them to the resulted graph.
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3.2 Anchoring Source Concepts

The second step consists in anchoring source concepts on the Global Mapping
Graph. If the source ontology is stored in the repository, the anchors are the
source concepts themselves. Otherwise, the anchors can be found using a lexical
matcher on the concept labels between the source ontology and all concepts of
the Global Mapping Graph. In this case, the mappings returned by the lexical
matcher will be the first selected mappings in the Specific Mapping Graph. The
use of a lexical matcher offers the advantages of being fast (anchoring is a pre-
processing stage) and effective in aligning biomedical ontologies [11]. For a given
source concept we can get wrong anchors, for that we can imagine to use more
sophisticated matchers but the cost may led to high cost in terms of resources
(time and memory). In our approach we propose to let the filter at the end (see
section 3.5).

3.3 Selection of the Specific Mapping Graph

This step allows selecting the appropriate fragment from the Global Mapping
Graph for a given input ontology. For each concept in the list of source anchors
(Algorithm. 1), we select its direct mappings in the Global Mapping Graph (map-
pings of different provenance). For each target concept of found mappings, we
search for their mappings and so on, until no new concept is found. Indeed if
a concept A is mapped directly to B, the concept B may be automatically or
manually mapped to another concept C that has no mapping with A. Finally,
we obtain the Specific Mapping Graph which is composed of all concepts related
to the source ontology interconnected via selected mappings. It is interesting to
note that this Specific Mapping Graph is not limited in number of used ontolo-
gies, our units are concepts, not ontologies.

3.4 Anchoring Target Concepts

This step is necessary only if the target concept is not in the repository. If the
target ontology is already in the initial repository, the anchors are the target
concepts themselves. Indeed, if a target concept belongs to a mapping related
to the source ontology, this target concept is already in the resulted Specific
Mapping Graph. In the same manner, we can use any efficient lexical matcher to
anchor target concepts on Specific Mapping graph concepts and add the returned
alignment in it.

3.5 Filtering Final Mappings

To derive mappings between the source and the target ontologies, we search
for all paths between the source anchors and the target anchors in the Specific
Mapping Graph. In Fig. 2 we can find an example of paths between the concept
(MA:1012) and the concept (NCIT:C32337). One source concept may have sev-
eral target concepts (several mapping candidates). Indeed, mappings composing
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Algorithm 1 Specific Mapping Graph Selection

Input: GlobalMappingGraph, sourceAnchors,lexicalMappingsResultedFromAnchoring
Output: SpecificMappingGraph

if sourceOntology 6∈ BiomedicalOntologyRepository then
SpecificMappingGraph=lexicalMappingsResultedFromAnchoring

end if
for each c ∈ sourceAnchors do

listConcepts.add(c)
end for
next← 0
while next < listConcepts.size() do

x← listConcepts.get(next)
Extract S from GlobalMappingGraph: all direct mappings of x
for each m ∈ S do

if m 6∈ SpecificMappingGraph then
SpecificMappingGraph.add(m)

end if
if m.targetConcept 6∈ listConcepts then

listConcepts.add(m.targetConcept)
end if

end for
next + +

end while
return SpecificMappingGraph

the Specific Mapping Graph, in particular automatically produced ones, may
be wrong which lead to derive wrong mappings. The challenge is to select the
most accurate candidate target concept, especially if we deal with 1:1 mappings
(searching only for equivalence relationship). In our case, a candidate mapping
corresponds to one or several paths linking the same source concept to the same
target concept. The path in Fig. 2 represents a candidate mapping between the
concept (MA:1012) and the concept (NCIT:C32337). We have experimented dif-
ferent strategies (see section 6.2) to select one mapping from several candidates
for a given source concept, but these strategies produced a low recall. To im-
prove the quality of the final alignment, we propose a novel measure to select
the best mapping for a given source concept. This measure is described in the
next Section.

4 Path Confidence Measure

We define the type of a given path as a distinct sequence of provenances (CUI,OBO,
etc.) that forms this path, independently from intermediate concepts. For exam-
ple, the type of path linking the concept (MA:1012) to the concept (MeSH:D17626)
in Fig. 2 is OO (OBO OBO). The types of path linking the concept (MA:1012)
to the concept (NCIT:C32337) are: OO, OSO, OLLL, etc.
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Fig. 2. Extracted mappings from BioPortal for the mouse anatomy concept 1012 (each
concept is represented by the acronym of its ontology and its code within BioPortal)

To enhance the selection of the final mappings, we propose the novel Path
Confidence Measure(PCM) that takes the confidence value of given path type
into account. The confidence value is a score assigned to each path type according
to its ability to discover correct mappings. This measure is inspired from the
most frequent aggregation strategy (also called popularity in [17]) based on the
hypothesis: for a given source concept, the most accruate target concept is the
concept that has the highest number of paths linking it to this source concept.
In this hypothesis we assume that all path types has the same confidence value.
However, the quality of discovered mappings is different from one path type to
another. Indeed, some types give better results than the others (see Section.
5). For this purpose, we introduce the confidence value of a given path type
as a coefficient to be multiplied by the number of paths of this type. The Path
Confidence Measure for a given candidate mapping (Cs, Ct) is defined as the sum
of the number of each path type linking Cs to Ct multiplied by its confidence
value. We use the log function to avoid the over-estimation of a given candidate
mapping due to a large number of a given path type. We add 1 to avoid log(0)
and we divide by the max sum to normalize values between 0 and 1. For a given
candidate mapping (Cs, Ct), we compute the PCM score of the target concept
Ct as follows:

PCM(Cs, Ct) =

∑n
i=1 log(1 + NPi ∗ CVi)

maxm
j=1

∑n
i=1 log(1 + NPji ∗ CVi)

Where n is the number of different types of paths that lead to the target concept
Ct from the source concept Cs; NPi is the number of paths of type i linking
Cs to Ct; CVi is the confidence value of the path of type i; m is the number of
concepts of the source ontology. This measure is proposed only to select for a
given source concept, one target concept from several candidates.
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5 Implementation

To evaluate our approach, we have implemented it using the reference repository
of biomedical ontologies NCBO BioPortal and the ontologies of the Anatomy
track from Ontology Alignment Evaluation Initiative 20158.

5.1 NCBO BioPortal

NCBO BioPortal is a community based repository. Currently, it is one of the
richest repository in the biomedical domain with more than 500 biomedical on-
tologies. The repository offers a REST web services API.9 In particular, map-
pings of different provenances10 between stored ontologies. In addition of OBO
and CUI mappings that we have previously explained, the repository gener-
ates automatically other mappings such as LOOM [11], SAME URI and REST
mappings. LOOM mappings are based on close lexical match between preferred
names of terms or a preferred name and a synonym. The lexical match involves
removing white-space and punctuation from labels. SAME URI mappings are
based on exact match between the URI of concepts. Finally, REST mappings
that are mappings uploaded manually by users of the portal, they represent the
minority. In addition, the portal integrates an efficient Annotator [16] which can
be used as a lexical matcher. For a given concept label, the Annotator returns a
list of concepts that have the same label.

For the implementation of our approach we need a rich repository of biomed-
ical ontologies. Instead of creating a local repository, we have chosen to use
the NCBO BioPortal. Another factor that motivates our choice is the mappings
of different provenances that are stored and accessible through its REST API.
Consequently, BioPortal can be considered as a huge graph of ontologies inter-
connected via heterogeneous mappings. With this vision, BioPortal can play the
role of the Global Mapping Graph in our approach. Also,the source and the tar-
get ontologies of the Anatomy track are already stored in BioPortal, we do not
need to anchor concepts (see section 3.2 and 3.4), we can access directly to them
using their URI. Consequently, to run our approach, we need just to execute the
steps 3 and 5 of the proposed approach to produce the final alignment.

5.2 Anatomy track

The Anatomy track consists in finding an alignment of 1516 mappings between
the Adult Mouse Anatomy ontology (2738 concepts)and a part of the NCI The-
saurus (describing the human anatomy 3298 concepts). The task has a good
share of non-trivial mappings.

8 http://oaei.ontologymatching.org/2015/
9 http://data.bioontology.org/documentation

10 http://www.bioontology.org/wiki/index.php/BioPortal Mappings
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6 Evaluation

The selection of the Specific Mapping Graph step with the mouse anatomy (MA)
as a source ontology and the NCBO BioPortal as Global Mapping Graph has
produced a graph combining 85192 concepts and 368371 mappings of different
provenance (see Fig. 2). We have extracted the preferred label of each concept
and annotate it using the BioPortal Annotator, because it works with a richest
synonym dictionary which allows to discover lexical mappings that the LOOM
algorithm does not discover. Indeed, the LOOM algorithm is based only on
close lexical match without using any complementary resources. Mappings are
extracted in JSON format as we can see in [2], we note that no score is assigned
to these mappings, we have just the information about their provenance. It is
important to keep this information to be able to explain the provenance of a
given derived mapping at the end. The distribution of extracted mappings per
provenance is presented in Table.1. As we can see in the table the number of the
annotator mappings is greater than the number of LOOM mappings, this can
be explained by the fact that the annotator works only with exact string match
whereas LOOM involves some pretreatment such as removing white-space and
punctuation from labels.

Provenance of mappings Number of mappings

LOOM 196225

Annotator 78446

OBO 65305

CUI 17551

SAME URI 10488

REST 356

Table 1. Number of extracted mappings per provenance

6.1 Evaluation of Resulted Paths Types Quality

From the resulted Specific Mapping Graph, we have extracted all possible paths
between the concepts of the source ontology MA and the concepts of the target
ontology NCIt. Each path represents a candidate mapping that may be true or
false according to the reference alignment provided by OAEI2015. We have com-
puted the true positive mappings (mappings present in the reference alignment)
and the false positive mappings (mappings absent in the reference alignment) for
each type of path. Using these parameters, we have computed the precision, re-
call and F-Score for each type of path. Fig. 3 represents the top 50 types of path
ranked according to the F-Score measure. Based on the obtained results, we can
conclude that the best paths are the shortest ones: direct matching (paths of type
A and L), paths with two steps; one mediator concept (OO,LA,LL,OA,LA) and
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Fig. 3. Fscore per type of path

paths with three steps; two mediator concepts (OOA,LLA,LLL). We note that
the combination of manually and automatically produced mappings provides a
good results(e.g., LA,OOA,LA). The longest paths return a few mappings can-
didates, and generally wrong ones (see Fig. 4).

Fig. 4. True positive/False positive mappings per length of paths (number of steps)

According to this study, we have chosen to use the F-Score of each path’s
type as its confidence value to asses its performance.

6.2 Evaluation of Resulted Alignment Quality

In order to evaluate the quality of the Specific Mapping Graph, we have compared
mappings derived from it (mappings linking MA concepts to NCIt concepts) to
the reference mappings of the Anatomy track. First of all, we have evaluated
all mappings that can be derived from the Specific Mapping Graph without any
selection. Then, we have experimented three strategies to select only one target
concept for each source concept: (i) the first found; i.e. the final node of the
shortest path leading to the target ontology (ii) the most visited target concept;
it is the concept of the target ontology that has the highest number of paths from
a given source concept and (iii) the target concept that has the greatest PCM
score (path’s type F-Score as confidence value). Then, we have compared the
alignment produced by our approach to the final alignments of the four top sys-
tems in OAEI 2015 [4] for the Anatomy track. The results presented in Table 2



11

show that our final alignment is competitive with top alignment systems. With-
out any strategy of aggregation, our final alignment has the best precision but
relatively a low recall, what gives it the worst F-Score. However, the use of any
aggregation strategy improve the recall, and lets our final alignment having the
second position after AML system. We note that AML [7] and LogMapBio [15]
systems use already biomedical ontologies as BK. Also, AML implement several
features [7] that help improving the final alignment. The best F-Score is obtained
using the PCM measure for the selection of final mappings. Indeed, the proposed
measure promotes paths with high confidence.

Systems Mappings Correct Incorrect Precision Recall F-Score

All mappings 2247 1416 831 0,934 0,630 0,753

Resulted BK
First found 1504 1366 138 0,901 0,909 0,905
Most frequent 1504 1372 132 0,905 0,912 0,909
PCM 1503 1395 108 0,920 0,928 0,924

AML 1477 1412 66 0,931 0,956 0,944

LogMapBio 1549 1366 183 0,901 0,882 0,891

LogMap 1397 1282 115 0.846 0,918 0,88

XMAP 1414 1312 102 0,865 0,928 0,896
Table 2. Quality evaluation of the discovered mappings

6.3 Specific Mapping Graph: Usefulness Evaluation

The mapping gain [9] is a measure proposed to asses the usefulness of a BK
for a given task of alignment. It measures how many new mappings have been
found in an alignment A thanks to a given BK comparing to another alignment
B. For the sake of clarity, we recall here the formula of this measure. Given two
alignments A and B between ontologies S and T, the mapping gain between A
and B is defined as the fraction of mappings in A that are not in B.

MG(A,B) = Min(
Cs(A ∩ ¬B)

Cs(B)
,
Ct(A ∩ ¬B)

Ct(B)
)

Where Cs and Ct denote respectively the sets of concepts in the alignments (A
and B) and belong respectively to the source and the target ontologies.

To evaluate the usefulness of the Specific Mapping Graph as a BK, we have
computed the mapping gain using the previous formula replacing A by our final
derived alignment (with PCM) and B by one of alignments produced by the four
top systems in the OAEI 201511 (see Table 3).

Based on analysis done in [9], the authors conclude that if the use of a BK
provides a mapping gain greater than 2%, the BK could be considered as use-
ful. According to that, the Specific Mapping Graph is useful for all these systems

11 http://oaei.ontologymatching.org/2015/results/anatomy/index.html
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Systems # Absent concepts of MA # Absent concepts of NCIT Mapping Gain

AML 77 195 5%

LogMapBio 134 247 9%

XMAP 188 302 13%

LogMap 218 337 16%
Table 3. Mapping gain using resulted BK

(state-of-the-art alignment systems). We can observe that the resulted BK is sig-
nificantly useful for XMAP and LogMap because they do not use any biomedical
ontologies as a BK. The other systems already use biomedical ontologies as a BK.
AML uses three ontologies (Uberon, DOID and Mesh) which represents 292 591
concepts. LogMap uses top ten ontologies returned by the algorithm presented
in [5]. The first ontology returned by this algorithm is SNOMEDCT which con-
tains 324129 concepts. In the last both cases we observe the large number of
concepts comparing to the Specific Mapping Graph’s concepts (85192 concepts).
We observe also that even if AML and LogMap use a biomedical BK, the Specific
Mapping Graph allows to enhance their results. Table 4 presents the number of
reference mappings found by our approach, missed by the other systems.

AML LogMapBio XMAP LogMap

20 87 161 133
Table 4. Mappings found by our approach, missed by top alignment systems

7 Related Work

The selection of the appropriate BK to enhance biomedical ontology matching
is an active research issue. Several approaches have been proposed to address
it. To avoid the complexity of an automatic selection, many approaches usually
manually select the relevant BK. For examples, WordNet is used in [21], DOLCE
in [18]. The manual selection does not guarantee the enhancement of a given task
of alignment, and requires a wide range of knowledge. For this purpose, several
automatic approaches have been defined to select the appropriate BK as those
described in [20, 19].

The most similar work to this paper is done in [13], their approach consists
in aligning the source and the target ontologies with each ontology in a set of
intermediate ontologies, then compose the different produced alignments to de-
rive mappings between source and target ontologies. The authors do not extract
manually produced mappings and they do not extract mappings between inter-
mediates ontologies. Using their approach, one can derive only mappings with
one mediator concept (paths of two steps only). In the same manner [5] propose
to compose mappings after selecting dynamically five ontologies from BioPortal.
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However, and as we can see in Fig. 4, paths of length three (two mediator con-
cepts) and four (three mediator concepts) return many reference mappings. For
example, 945 reference mappings are returned by three-step-paths. This can be
the explanation of the high F-Score obtained by our approach (0.928) comparing
to the F-Score obtained in their experimentation (0.847 and 0.913 respectively).

Recently, other measures have been proposed to select the most appropriate
set of ontologies (which represents the BK) as the effectiveness [14] and the
mapping gain [9] measures. The drawback of the proposed measures resides in
the fact that they select the whole ontologies (many thousands of concepts)
even if we need just for a fragment from these ones. Furthermore, dealing with
whole ontologies makes it necessary to limit the number of selected ontologies.
In our approach, there is no limitation of the number of selected ontologies, our
units are concepts. We select only concepts that may help us to discover new
mappings without considering the number of used ontologies. In [9] the selection
is based on the mapping gain score. The ontologies with a low mapping gain (less
then the defined threshold) are eliminated even if they contain some concepts
that may help to discover reliable mappings. In our case, we do not select specific
ontologies but we work with all ontologies in the repository at the same time. We
propose to follow different kinds of mappings, and select progressively potential
useful concepts. Therefore, we combine the lexical overlapping with the human
knowledge from mappings produced manually without eliminating any candidate
mediator concept.

Furthermore, in all other approaches, the selection and the combination of
different ontologies is based only on mappings produced automatically, they do
not distinguish different types of mappings (different provenances). They are
based mainly on the lexical overlapping between the BK and ontologies to be
aligned. This criteria does not guarantee the selection of the best BK. For in-
stance, the huge biomedical ontology SNOMED-CT with its rich lexical content
may always be ranked first to match biomedical ontologies, even if more appro-
priate BK are available as Uberon for Anatomy in [5]. The use of SNOMED-CT
needs more resources, memory to manage the whole ontology and time to anchor
concepts on it.

Moreover, the Specific Mapping Graph could be reused as a resource to map
the source ontology with any other ontology. If a new ontology is added to the
initial repository, we just need to extract its related mappings with the concepts
in the Specific Mapping Graph and integrate them. In the previous approaches,
one will need to restart the selection process from scratch. The probability of not
finding an anchor for a given concept in a rich repository of biomedical ontologies
as NCBO BioPrtal (8150126 concepts) is very low. In this case, we can search on
the web for ontologies that may contain this concept as proposed in [1] and [19].

8 Conclusion and Future Work

This paper deals with the selection and the combination of heterogeneous map-
pings, produced manually and automatically, stored in a biomedical repository,
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to discover new ones. Our approach is based on building the Specific Mapping
Graph as a BK. Such graph allows to get an alignment of high quality between
ontologies to be aligned without using complex lexical and structural measures.
One source concept may have several candidates target concepts. To select the
most accurate one, we have proposed the Path Confidence Measure that takes
the confidence of a given path type into account.

The presented evaluation shows that our approach provides good results,
competitive to those of state-of-the-art systems. Also, that the reuse of existing
mappings allows discovering mappings missed by the previous approaches.

The explanation of final mappings is one of challenges of ontology match-
ing [22]. Indeed, it is very important to be able to justify the provenance of a
given mapping instead of a simple score. In our approach, each found mapping
is deducted from one or several paths. The edges of paths are tagged with their
provenance. Consequently, all found mappings are explained.

Moreover, we have evaluated our approach using one benchmark (Anatomy
benchmark). For a better evaluation, we will evaluate it on other OAEI biomed-
ical benchmarks. Also to improve the quality of the final alignment, we plan to
study the impact of the variation of the PMC threshold on the F-Score, currently
no threshold is applied. Also, the coherence of automatically produced BioPor-
tal mappings has been critiqued in [10]. For this purpose, we plan to integrate
a semantic verification into our approach to improve the quality of produced
alignment. Currently our approach is used to derive only 1:1 mappings. We
will experiment the usefulness of our method to derive n:m mappings. This will
be possible if we extract not only mappings but also fragments of ontologies
(sequence of concepts linked with is a relationship) that connect two concepts
extracted from the same ontology.
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