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Introduction 

u Aim: show the flexibility of CP to cope with additional dimension (multiple 
support)

u Can we do it? How? Is the propagation complete?

u What is the motivation? How can it be useful? Interesting queries?

u Accepted at ICTAI 2021 
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Constraint Programming 

u In Constraint Programming (CP) the user declares:

u A set of variables

u A set of domains (set of possible values) 

u A set of constraints C on variables where c is a relation between set of 
variables 

u The constraint solver finds solutions (assignments on X satisfying all 
constraints)
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X = {x1,…,xn}

dom = {dom(x1),..., dom(xn)}
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u A filtering algorithm (aka propagator)

dom(X1) = {1,2,4}
dom(X2) = {2,3,5}
dom(X3) = {3,8,9}

X1 + X2 = X3
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Global Constraints

u Constraints defined by a relation on any number of 
variables

u Example: AllDifferent(x1,…,xn) specifies that all its 
variables must take different values
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Itemset Mining 
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u Find useful patterns from transaction databases 
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Frequent/Infrequent Itemsets

trans. Items
t1 A B C D E
t2 B C
t3 B C D E
t4 A B C D
t5 A B C E
t6 B C D E

u Itemset = set of items

u Cover: cover(AB) = {t1, t4, t5}

u Frequency: freq(AB) = |cover(AB)| = 3

u Given a frequency threshold s = 3:

u AB is frequent (freq(AB) = 3 ≥ 3)

u AD is infrequent (freq(AD) = 2 <3)
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Basic CP model for mining frequent 
itemsets (Luc De Raedt et.al, 2008)

u Variables:

u A binary variable for every item i: the presence of the item i in the searched 
itemset (P)

u A binary variable for every transaction t: the presence of the searched itemset (P) 
in the transaction t

u Constraints (reified):

u Cover constraint

u Threshold constraint (freq(P) ≥ s)
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With multiple minimum supports (MIS)

u Extend the model:

u Replace “freq(P) ≥ s” by “freq(P) ≥ min(MIS_k|k in P)”

u Does not scale!

u Define a global constraint “FreqRare”:

u Only item variables (no need for transaction variables)

u Dedicated propagator
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FreqRare

u Holds if the searched itemset (P={i|x_i=1}) is frequent w.r.t the list MIS

u Propagator à remove 1 from x_i if including i results a frequency less than 
the minimum of remaining MIS values 

u Time complexity: O(|items|*|transactions|)

u Result à Backtrack-free using minimum MIS as variable ordering heuristic
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User queries

u In CP à simply extend the model

u Specialized methods à a post processing step (checker)
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User queries

u Return itemsets including items of the same type (distance between MISs is 
bounded above):
u |MIS_i – MIS_j|≤ ub

u Size of the itemset is bounded below:

u |P|≥ c 

u K-pattern mining [Guns et al., 2011] (K patterns with constraints between 
them):
u K vectors of Boolean variables

u K distinct itemsets satisfying both constraints 



User queries
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User queries
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Experiments

u We selected several real-sized datasets from the FIMI repository 

u Our approach (CP4MIS) compared with: 1) CPFGrowth++ (SPMF implementation) 2) 
Basic CP Model (Rmodel)

u For CP we have used Oscar solver within Scala 

u MIS_i = max(Beta*freq(i), Min) as in [Bing Liu et.al, 1999]

u Machine = Intel core i7, 2.8Ghz with a RAM of 16GB

u Time limit = one hour 
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Results (Mining frequent itemsets)
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Results (CFPG vs CP4MIS) 
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Results (Constrained itemsets) 
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Results (K-pattern mining) 
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Conclusion

u We have introduced a CP-based approach for mining frequent itemsets with 
multiple minimum supports 

u We have provided a propagator and showed that, using minMIS heuristic, the 
propagation is backtrack-free (0 fails)

u Our CP approach have shown the flexibility and the performance in taking in 
consideration additional user constraints 

u Future: use the expressiveness of CP to solve problems that involve more 
complex constraints on MISs
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