Constraint Programming for Itemset Mining with Multiple Minimum Supports

Mohamed-Bachir Belaid¹, Nadjib Lazaar² 30/11/2021

Introduction

- Aim: show the flexibility of CP to cope with additional dimension (multiple support)
- Can we do it? How? Is the propagation complete?
- What is the motivation? How can it be useful? Interesting queries?
- Accepted at ICTAI 2021

In Constraint Programming (CP) the user declares:

A set of variables

 $X = {x_1,...,x_n}$

A set of domains (set of possible values)

dom = {dom(x_1),..., dom(x_n)}

- A set of constraints C on variables where c is a relation between set of variables
- The constraint solver finds solutions (assignments on X satisfying all constraints)

A filtering algorithm (aka propagator)

dom(X₁) = {1,2,4} dom(X₂) = {2,3,5} dom(X₃) = {3,8,9} $X_1 + X_2 = X_3$

A filtering algorithm (aka propagator)

dom(X₁) = {1,2,4} dom(X₂) = {2,3,5} dom(X₃) = {3,8,9} $X_1 + X_2 = X_3$

A filtering algorithm (aka propagator)

dom(X₁) = {1,2,4} dom(X₂) = {2,3,5} dom(X₃) = {3,2,9} $X_1 + X_2 = X_3$

Global Constraints

- Constraints defined by a relation on any number of variables
- Example: AllDifferent(x₁,...,x_n) specifies that all its variables must take different values

Itemset Mining

Itemset Mining

► Find useful patterns from transaction databases

Itemset Mining

Find useful patterns from transaction databases

Frequent/Infrequent Itemsets

- Itemset = set of items
- Cover: $cover(AB) = \{t_1, t_4, t_5\}$
- Frequency: freq(AB) = |cover(AB)| = 3
- Given a frequency threshold s = 3:
 - ► AB is **frequent** (freq(AB) = $3 \ge 3$)
 - AD is infrequent (freq(AD) = 2 <3)</p>

trans.	Items
t_1	A B C D E
t_2	B C
t_3	B C D E
t_4	A B C D
t_5	
t_6	B C D E
	**

Frequent/Infrequent Itemsets

- Itemset = set of items
- Cover: $cover(AB) = \{t_1, t_4, t_5\}$
- Frequency: freq(AB) = |cover(AB)| = 3
- Given a frequency threshold s = 3:
 - ► AB is **frequent** (freq(AB) = $3 \ge 3$)
 - AD is infrequent (freq(AD) = 2 <3)</p>

trans.	Items						
t_1	A B C D E						
t_2	B C						
t_3	B C D E						
t_4	A B C D						
t_5	A B C E						
t_6							

Frequent/Infrequent Itemsets

- Itemset = set of items
- Cover: $cover(AB) = \{t_1, t_4, t_5\}$
- Frequency: freq(AB) = |cover(AB)| = 3
- Given a frequency threshold s = 3:
 - ► AB is **frequent** (freq(AB) = $3 \ge 3$)
 - AD is infrequent (freq(AD) = 2 <3)</p>

Basic CP model for mining frequent itemsets (Luc De Raedt et.al, 2008)

- Variables:
 - A binary variable for every item i: the presence of the item i in the searched itemset (P)
 - A binary variable for every transaction t: the presence of the searched itemset (P) in the transaction t
- Constraints (reified):
 - Cover constraint
 - ► Threshold constraint $(freq(P) \ge s)$

With multiple minimum supports (MIS)

- Extend the model:
 - ▶ Replace "freq(P) \ge s" by "freq(P) \ge min(MIS_k|k in P)"
 - Does not scale!
- Define a global constraint "FreqRare":
 - Only item variables (no need for transaction variables)
 - Dedicated propagator

FreqRare

- Holds if the searched itemset (P={i|x_i=1}) is frequent w.r.t the list MIS
- Propagator → remove 1 from x_i if including i results a frequency less than the minimum of remaining MIS values
- Time complexity: O(|items|*|transactions|)
- \blacktriangleright Result \rightarrow Backtrack-free using minimum MIS as variable ordering heuristic

► In CP \rightarrow simply extend the model

Specialized methods \rightarrow a post processing step (checker)

- Return itemsets including items of the same type (distance between MISs is bounded above):
 - ► $|MIS_i MIS_j| \le ub$
- Size of the itemset is bounded below:
 - P|≥ C
- K-pattern mining [Guns et al., 2011] (K patterns with constraints between them):
 - K vectors of Boolean variables
 - K distinct itemsets satisfying both constraints

- Return itemsets including items of the same type (distance between MISs is bounded above):
 - ► $|MIS_i MIS_j| \le ub$
- Size of the itemset is bounded below:
 - P|≥ C
- K-pattern mining [Guns et al., 2011] (K patterns with constraints between them):
 - K vectors of Boolean variables
 - K distinct itemsets satisfying both constraints

Experiments

- We selected several real-sized datasets from the FIMI repository
- Our approach (CP4MIS) compared with: 1) CPFGrowth++ (SPMF implementation) 2) Basic CP Model (Rmodel)
- For CP we have used Oscar solver within Scala
- MIS_i = max(Beta*freq(i), Min) as in [Bing Liu et.al, 1999]
- Machine = Intel core **i7**, 2.8Ghz with a RAM of **16GB**
- Time limit = one hour

	CFPG	Rm	odel	CP4		
Q0:	(a)		(b)		#20]	
	Time	Time	Memory	Time	Memory	#501
Zoo	0.81	12.00	3,760	1.34	20	1.3M
Vote	1.56	196.17	2,164	2.23	8	2.1M
Anneal	30.91	134.74	3,095	64.82	49	71.7M
Chess	11.64	305.03	3,153	28.20	67	22.6M
Mushroom	45.53	ТО	-	106.00	48	105.2M
Connect	48.45	ТО	-	854.59	218	91.7M
T40	409.55	-	OOM	91.70	2,304	15.8M
Pumsb	38.60	-	OOM	115.67	916	13.5M

	CFPG	Rm	odel	CP4		
00.	(a)	((b)		(c)	#20]
Q0:	Time	Time	Memory	Time	Memory	#501
Zoo	0.81	12.00	3,760	1.34	20	1.3M
Vote	1.56	196.17	2,164	2.23	8	2.1M
Anneal	30.91	134.74	3,095	64.82	49	71.7M
Chess	11.64	305.03	3,153	28.20	67	22.6M
Mushroom	45.53	то	-	106.00	48	105.2M
Connect	48.45	то	-	854.59	218	91.7M
T40	409.55	-	OOM	91.70	2,304	15.8M
Pumsb	38.60		ООМ	115.67	916	13.5M

	CFPG	Rmodel		CP4MIS		
00.	(a)	(b) Time Memory		(c)		#20]
Q0.	Time			Time	Memory	#501
Zoo	0.81	12.00	3,760	1.34	20	1.3M
Vote	1.56	196.17 2,164		2.23	8	2.1M
Anneal	30.91	134.74	3,095	64.82	49	71.7M
Chess	11.64	305.03	3,153	28.20	67	22.6M
Mushroom	45.53	TO	-	106.00	48	105.2M
Connect	48.45	TO –		854.59	218	91.7M
T40	409.55	-	ООМ	91.70	2,304	15.8M
Pumsb	38.60	-	ООМ	115.67	916	13.5M

	CFPG	Rmodel		CP4		
00.	(a)	((b)		#20]	
Qu:	Time	Time	Memory	Time	Memory	#501
Zoo	0.81	12.00	3,760	1.34	20	1.3M
Vote	1.56	196.17 2,164		2.23	8	2.1M
Anneal	30.91	134.74	3,095	64.82	49	71.7M
Chess	11.64	305.03	3,153	28.20	67	22.6M
Mushroom	45.53	то	-	106.00	48	105.2M
Connect	48.45	TO –		854.59	218	91.7M
T40	409.55	-	OOM	91.70	2,304	15.8M
Pumsb	38.60	-	OOM	115.67	916	13.5M

Results (CFPG vs CP4MIS)

Results (Constrained itemsets)

			CFPG +Checker	CP4MIS	
Q2:	ub	С	(d)	(c)	#sol
Zoo	2	10	0.62	0.10	14
Vote	1	10	1.14	0.13	12
Anneal	30	8	12.78	0.18	7
Chess	80	8	6.49	0.23	30
Mushroom	50	8	19.19	0.36	27
Connect	1000	10	20.88	2.03	2
T40	100	6	389.80	54.31	14
Pumsb	1000	8	27.91	2.86	17

Results (K-pattern mining)

Mushroom

Conclusion

- We have introduced a CP-based approach for mining frequent itemsets with multiple minimum supports
- We have provided a propagator and showed that, using minMIS heuristic, the propagation is backtrack-free (0 fails)
- Our CP approach have shown the flexibility and the performance in taking in consideration additional user constraints
- Future: use the expressiveness of CP to solve problems that involve more complex constraints on MISs

t1			Τ			S		0		U	
t2	Α	Ν	Τ	Η	К	S			Ε		
t3	Α				K	S	l				Q

bachir@simula.no

t1			Τ			S		0		U	
t2	Α	Ν	Т	Η	К	S			Ε		
t3	A				К	S	l				Q

ΤΗΑΝΚS

bachir@simula.no

