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Introduction

» Aim: show the flexibility of CP to cope with additional dimension (multiple
support)

» Can we do it? How? Is the propagation complete?

» What is the motivation? How can it be useful? Interesting queries?

» Accepted at ICTAI 2021
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Constraint Programming

» In Constraint Programming (CP) the user declares:
» Aset of variables
X= {X1a"°axn}
» Aset of domains (set of possible values)
dom = {dom(Xx4),..., dom(x,)}

» A set of constraints C on variables where c is a relation between set of
variables

» The constraint solver finds solutions (assignments on X satisfying all
constraints)




Constraint Programming

» Afiltering algorithm (aka propagator)

dom(Xy) = {1,2,4}
dom(X;) = {2,3,5}
dom(X3) = {3,8,9}

X1+X2=X3
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Constraint Programming

» Afiltering algorithm (aka propagator)

dom(Xy) = {1,%,4}
dom(Xy) = {2,%,5}
dom(X3) = {3,%9}

X1+X2=X3




Global Constraints

» Constraints defined by a relation on any number of
variables

» Example: AllDifferent(x,,...,X,) specifies that all its
variables must take different values
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ltemset Mining

» Find useful patterns from transaction databases




ltemset Mining

» Find useful patterns from transaction databases




Frequent/Infrequent Itemsets

» Itemset = set of items
» Cover: cover(AB) = {ty, t4, ts}
» Frequency: freq(AB) = |cover(AB)| =3
» Given a frequency threshold s = 3:
» AB is frequent (freq(AB) = 3 > 3) trans.
» AD is infrequent (freq(AD) = 2 <3) t1
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Frequent/Infrequent Itemsets

[temset = set of items
Cover: cover(AB) = {t4, t4, ts}

Frequency: freq(AB) = |cover(AB)| =3

Given a frequency threshold s = 3:
» AB is frequent (freq(AB) = 3 > 3)
» AD is infrequent (freq(AD) = 2 <3)
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Single threshold problem (example)
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Basic CP model for mining frequent
itemsets (Luc De Raedt et.al, 2008)

» Variables:

» Abinary variable for every item i: the presence of the item i in the searched
itemset (P)

» Abinary variable for every transaction t: the presence of the searched itemset (P)
in the transaction t

» Constraints (reified):
» Cover constraint

» Threshold constraint (freq(P) > s)




With multiple minimum supports (MIS)

» Extend the model:
» Replace “freq(P) = s” by “freq(P) > min(MIS_k |k in P)”

» Does not scale!

» Define a global constraint “FreqRare”:
» Only item variables (no need for transaction variables)

» Dedicated propagator




FregRare

» Holds if the searched itemset (P={i|x_i=1}) is frequent w.r.t the list MIS

» Propagator - remove 1 from x_i if including i results a frequency less than
the minimum of remaining MIS values

» Time complexity: O(|items|*|transactions]|)

» Result - Backtrack-free using minimum MIS as variable ordering heuristic




User queries

» In CP - simply extend the model

» Specialized methods - a post processing step (checker)




User queries

» Return itemsets including items of the same type (distance between MISs is
bounded above):

> |MIS_i - MIS_j|< ub

» Size of the itemset is bounded below:
» |P|>c

» K-pattern mining [Guns et al., 2011] (K patterns with constraints between
them):

» K vectors of Boolean variables

» K distinct itemsets satisfying both constraints
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Experiments

» We selected several real-sized datasets from the FIMI repository

» Our approach (CP4MIS) compared with: 1) CPFGrowth++ (SPMF implementation) 2)
Basic CP Model (Rmodel)

» For CP we have used Oscar solver within Scala
» MIS_i = max(Beta*freq(i), Min) as in [Bing Liu et.al, 1999]
» Machine = Intel core i7, 2.8Ghz with a RAM of 16GB

» Time limit = one hour




Results (Mining frequent itemsets)

CFPG Rmodel CP4MIS
Qo: (.a) . (b) . (c)
’ Time Time Memory Time Memory

Zoo 0.81 12.00 3,760 1.34 20
Vote 1.56 196.17 2,164 223 8
Anneal 30.91 134.74 3,095 64.82 49
Chess 11.64 305.03 3:153 28.20 67
Mushroom 45.53 TO - 106.00 48
Connect 48.45 TO - 854.59 218
T40 409.55 - OOM 91.70 2,304
Pumsb 38.60 - OOM 115.67 916
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Results (Mining frequent itemsets)

Rmodel CP4MIS
o0: —® ©
’ Time | Memory Memory

Zoo 12.00 3,760 20
Vote 196.17 2,164 8
Anneal 134.74 3,095 49
Chess 305.03 3153 67
Mushroom TO - 48
Connect TO - 218
T40 - OOM 2,304
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Results (Mining frequent itemsets)

CP4MIS
. (c)
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Results (CFPG vs CP4MIS)
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Results (Constrained itemsets)

CFPG CPAMIS
+Checker
Q2: ub c (d)

Zoo 2 10 0.62
Vote 1 10 1.14
Anneal 30 8 12.78
Chess 80 8 6.49
Mushroom 50 8 19.19
Connect 1000 10 20.88
T40 100 6 389.80
Pumsb 1000 8 27.91




Results (K-pattern mining)
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Conclusion

» We have introduced a CP-based approach for mining frequent itemsets with
multiple minimum supports

» We have provided a propagator and showed that, using minMIS heuristic, the
propagation is backtrack-free (0 fails)

» Our CP approach have shown the flexibility and the performance in taking in
consideration additional user constraints

» Future: use the expressiveness of CP to solve problems that involve more
complex constraints on MISs
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