Declarative Approaches for Constrained Clustering

Thi-Bich-Hanh DAO

LIFO - Université d'Orléans

GDR-IA GT Caviar Montpellier November 30, 2021

Thi-Bich-Hanh DAO (LIFO) Decl. appr. for constrained clustering GDR-IA GT Caviar Nov 2021 1/57

Outline

- Constrained Clustering
- 2 Clustering using SAT
- 3 Clustering using ILP
- 4 Clustering using CP
- 5 Some directions

(3)

Clustering

- Given *n* objects $\{o_1, \ldots, o_n\}$, find a partition of the objects into *k* groups (clusters) s.t.:
 - objects in a group are similar and/or
 - objects of different groups are dissimilar
- Different settings:
 - Conceptual clustering: with objects described by boolean features, find clusters and their descriptions (concepts)
 - Distance-based clustering: based on a dissimilarity measure between pairs of points
 - Spectral clustering, correlation clustering: based on a similarity between pairs of points defined by an weighted graph

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Conceptual clustering

- *n* objects (transitions) \mathcal{T} described by
- *m* boolean features (items) *I*

	a	b	с
<i>o</i> ₁	1	1	0
<i>o</i> ₂	1	1	1
<i>0</i> 3	0	1	1
<i>0</i> 4	0	1	1
<i>0</i> 5	0	1	1

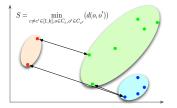
伺下 イヨト イヨト 三日

- Pattern: a set of items *I* ⊆ *I*, closed if all the objects satisfying *I* have only *I* in common.
- Concept: (T, I), with $T \subseteq T$, $I \subseteq I$ closed pattern, such that the objects in T, and only them, satisfy I $(\{o_2\}, \{a, b, c\}), (\{o_1, o_2\}, \{a, b\}), (\{o_2, o_3, o_4, o_5\}, \{b, c\})$
- Conceptual clustering: finding k non overlapping clusters covering all data and corresponding to concepts

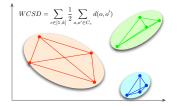
Dissimilarity-based clustering

- Given $\mathcal{O} = \{x_i \in \mathbb{R}^m\}_1^n$, a dissimilarity measure $d : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^+$
- Find a partition of \mathcal{O} into K homogeneous clusters
- The homogeneity usually characterized by an optimization criterion

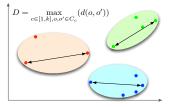
Clustering optimization criteria



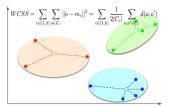
Maximizing S: minimal split between clusters



Minimizing WCSD: within-cluster sum of dissimilarities



Minimizing *D*: maximal cluster diameter



Minimizing WCSS: within-cluster sum of squares

Thi-Bich-Hanh DAO (LIFO)

Constrained clustering

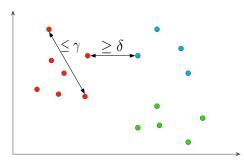
- Clustering is in general NP-hard
- Classic methods are usually heuristic and search for a local optimum, e.g. k-means for WCSS
 Different local optima may exist

4 2 5 4 2 5

- The clustering solution must be coherent with the prior knowledge
 Knowledge integrated into the clustering process by means of user-constraints
- Constrained clustering: clustering under
 - constraints on clusters
 - constraints on pairs of points
- With user-constraints, polynomial criterion (split) becomes NP-Hard

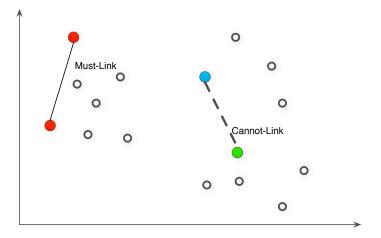
Constraints on clusters

- Capacity constraint: cluster size
 - \blacktriangleright lower-bounded by α
 - upper-bounded by β
- Maximal diameter constraint: cluster diameter upper-bounded by γ
- Minimal margin constraint: separation between clusters lower-bounded by δ
- Density constraint
- etc.



8 / 57

Constraints on pairs of points



< □ > < 同 > < 回 > < 回 > < 回 >

Classic approaches for constrained clustering

• Classic clustering methods designed for one optimization criterion

- K-means: $\arg \min_C \sum_{c \in [1,k]} \sum_{o_i \in C_c} d(o_i, \mu_c)^2$
- FPF (K-centers): $\operatorname{arg\,min}_{C} \max_{c \in [1,k], o, o' \in C_c} d(o, o')$

• Their extension integrates a certain type of user-constraints

- ML/CL constraints:
 - * COP-Kmeans [Wagstaff et al. 2001],
 - * PCK-means [Basu et al. 2004], MPCK-means [Bilenko et al. 2004],
 - * ...
- cluster size constraint [Ng 2000, Bradley et al. 2000, Ge et al. 2007, Demiriz et al. 2008, ...]

Declarative approaches for constrained clustering

- Formulation of constrained clustering as a problem in
 - SAT
 - Constraint Programming (CP)
 - Integer Linear Programming (ILP)
- Use of SAT/CP/ILP solvers

4 11 14 14 14 14

Various works

• Conceptual clustering:

- CP: de Raedt *et al.* 2008, Khiari *et al.* 2010, Guns *et al.* 2011, Chabert *et al.* 2017
- SAT: Métivier et al. 2012
- ILP: Mueller et al. 2010, Ouali et al. 2016
- Correlation clustering:
 - MIP and MAXSAT: Berg et al., 2013, 2017
- Dissimilarity based clustering:
 - SAT: Davidson et al., 2010
 - CP: Dao et al., 2013, 2017, Guns et al., 2016
 - ILP: Babaki et al., 2014

Outline

- Constrained Clustering
- 2 Clustering using SAT
- Clustering using ILP
- 4 Clustering using CP
- 5 Some directions

A B b

Constrained clustering as a 2-SAT problem Davidson & al., 2010

Find a partition of *n* points into 2 clusters 0/1.

- Partition represented by *n* boolean variables *x_i*:
 - $x_i = 0(1)$: point *i* belongs to cluster 0 (resp. 1)
- Constraints formulated into 2-SAT
 - ▶ Must_Link(x_i, x_j)

$$(x_i \wedge x_j) \vee (\overline{x_i} \wedge \overline{x_j}) \Longleftrightarrow (x_i \vee \overline{x_j}) \wedge (\overline{x_i} \vee x_j)$$

$$(x_i \wedge \overline{x_j}) \vee (\overline{x_i} \wedge x_j) \Longleftrightarrow (x_i \vee x_j) \wedge (\overline{x_i} \vee \overline{x_j})$$

 Diameter constraints D ≤ α: for all (i, j) such that d_{ij} > α, add Cannot_Link(x_i, x_j)
 Margin constraints S ≥ β: for all (i, j) such that d_{ij} < β, add Must Link(x_i, x_i)

Minimizing the maximal diameter

- Observation: the maximal diameter D is one of the values d_{ij}
- Optimization by dichotomic search:
 - ▶ sort all the distinct values d_{ij} in increasing order, set upper/lower bounds
 - repeat
 - \star choose *D* the middle value
 - ***** solve 2-SAT problem P with D
 - \star if P is satisfiable then revise upper bound, else revise lower bound
- Complexity:
 - solving 2-SAT problem $P: O(n^2)$
 - optimization in the worst case: $O(n^2 log(n))$

Conceptual clustering using SAT Métivier *et al.*, IDA 2012

• Constraint-based language

$$\texttt{isClustering}([X_1,...,X_k]) \equiv \begin{cases} \wedge_{1 \leq i \leq k} \texttt{isNotEmpty}(X_i) \land \\ \texttt{coverTransactions}([X_1,...,X_k]) \land \\ \texttt{noOverlapTransactions}([X_1,...,X_k]) \land \\ \texttt{canonical}([X_1,...,X_k]) \end{cases}$$

- Queries to focus on more interesting clustering solutions
- Several problems formulated by queries, ex. balanced clustering:

$$q_{3}([X_{1},...,X_{k}]) \equiv \begin{cases} \texttt{isClustering}([X_{1},...,X_{k}]) \land \\ \land_{1 \leq i < j \leq m, d(t_{i},t_{j}) < \beta} \texttt{mustLink}(t_{i},t_{j}) \land \\ \land_{1 \leq i < j \leq m, d(t_{i},t_{j}) > \alpha} \texttt{cannotLink}(t_{i},t_{j}) \land \\ \land_{1 \leq i < j \leq k} | \texttt{size}(X_{i}) - \texttt{size}(X_{j}) | \leq \Delta \times m \end{cases}$$

SAT encoding

- Variables: $T_{ij} = 1$ iff transaction t belongs to cluster j
- Constraints in language encoded into SAT

$$ext{coverTransactions}([X_1,\ldots,X_k]) \equiv igwedge_{t\in\mathcal{T}}igvee_j \mathcal{T}_{tj}$$

$$\texttt{mustLink}(t_1, t_2) \equiv \bigwedge_j (\neg T_{t_1 j} \lor T_{t_2 j}) \land (T_{t_1 j} \lor \neg T_{t_2 j})$$

$$\texttt{cannotLink}(t_1, t_2) \equiv \bigwedge_j (\neg T_{t_1 j} \lor \neg T_{t_2 j}) \land (T_{t_1 j} \lor T_{t_2 j})$$

• Ensuring completeness: having a solution *s*, add $\neg s$ to the CNF and restart to find another solution, until failure.

医静脉 医原体 医原体 医原体

Outline

- Constrained Clustering
- 2 Clustering using SAT
- 3 Clustering using ILP
- 4 Clustering using CP
- 5 Some directions

A B b

Clustering with ILP: modeling

Conceptual model:

minimize quality(C),
subject to
$$C_1 \cap C_2 = \emptyset \quad \forall C_1, C_2 \in C$$

 $|\bigcup_{C \in C} C| = n$
 $|C| = k$

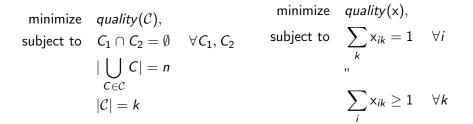
Here, Boolean encoding: $x_{ik} = [o_i \in C_k]$

Thi-Bich-Hanh DAO (LIFO) Decl. appr. for constrained clustering GDR-IA GT Caviar Nov 2021 19/57

• • = • • = • =

Clustering with ILP: modeling

Boolean encoding:
$$x_{ik} = [o_i \in C_k]$$



Clustering with ILP: constraints

Boolean encoding: $x_{ik} = [o_i \in C_k]$

Additional constraints:

• Must-Link(i,j)
$$\equiv x_{ik} = x_{jk} \quad \forall k$$

• Cannot-Link(i,j)
$$\equiv \mathsf{x}_{ik} + \mathsf{x}_{jk} \leq 1 \quad \forall k$$

- Margin-min $(\beta) \equiv d(o_i, o_j) < D \rightarrow \mathsf{Must-Link}(i, j)$
- Diameter-max $(\beta) \equiv d(o_i, o_j) > D \rightarrow \text{Cannot-Link}(i, j)$

• Capacity-max(k,
$$\beta$$
) $\equiv \sum_{i} x_{ic} \leq \beta$

All these constraints are linear.

• • = • • = • =

Minimizing maximal diameter

Objective: minimizing the maximal diameter

$$\begin{array}{ll} \text{minimize} & \mathsf{Z} \\ \text{subject to} & \sum_{k} \mathsf{x}_{ik} = 1 & \forall i \\ & \sum_{i} \mathsf{x}_{ik} \geq 1 & \forall k \\ & \mathsf{Z} = \max_{c \in [1,k], o_i, o_j \in C_c} (d(o_i, o_j)) \\ & \leftrightarrow d(o_i, o_j) \ast \mathsf{x}_{ik} \ast \mathsf{x}_{jk} \leq \mathsf{Z} & \forall ijk \quad (quadratic) \\ & \leftrightarrow d_{ii} \ast \mathsf{x}_{ik} + d_{ii} \ast \mathsf{x}_{ik} - d_{ii} \leq \mathsf{Z} & \forall ijk \quad (linear) \end{array}$$

Requires $O(n^2k)$ constraints to encode the diameter.

[Rao, 1979]

(日本)(日本)(日本)(日本)

Clustering with ILP, other objectives

• WCSD criterion
$$W = \sum_{k \in [1,K]} \sum_{o_i, o_j \in C_k} d(i,j)^2$$

$$\leftrightarrow W = \sum_{k} \sum_{i,j} d(o_i, o_j)^2 * \mathsf{x}_{ik} * \mathsf{x}_{jk}$$

Linearization requires $O(n^2)$ variables and $O(n^2k)$ constraints of: $y_{ij} >= x_{ik} + x_{jk} - 1$

• WCSS criterion
$$V = 1/2 \sum_{k \in [1,K]} \frac{\sum_{o_i, o_j \in C_k} d(o_i, o_j)^2}{|C_k|}$$

$$\leftrightarrow V = 1/2 \sum_{k} \frac{\sum_{i,j} d(o_i, o_j)^2 * \mathsf{x}_{ik} * \mathsf{x}_{jk}}{\sum_{i} \mathsf{x}_{ik}}$$

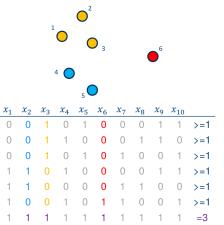
Linearization ...?

Not suitable for ILP?

- 34

Dual view of clustering

Primal view: every variable a point-in-cluster, constraint per cluster
Dual view: every variable a possible cluster, constraint per point
Example (k = 3, subset of clusters):



Dual view of clustering

Dual view: every variable a possible cluster

Advantage:

- Weight of each cluster can be precomputed
- Constraints ML/CL/Capacity/Diameter/Margin also precomputed
 - \rightarrow can preprocess constraints on every cluster individually
 - \rightarrow remove cluster from formulation if it violates a constraint

Disadvantage:

• Requires $O(2^n)$ variables

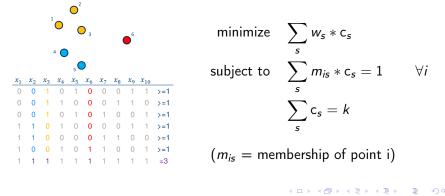
Can we overcome the exponential blow-up?

Clustering using ILP: 2 approaches

- Restricted problem: consider only a subset of all possible clusters
- Using column generation: consider each time only a subset of clusters, generate a new one if needed

Approach 1, restricted problem Mueller and Kramer, DS 2010

- Conceptual clustering: each cluster represents a given concept
- In 2-step approach: mine possible patterns/clusters, then compose a clustering
- \rightarrow given set of candidate clusters, problem is standard ILP



Objective function

$$\begin{array}{ll} \text{minimize} & \sum_{s} w_{s} * \mathsf{c}_{s} \\ \text{subject to} & \sum_{s} m_{is} * \mathsf{c}_{s} = 1 \\ & \sum_{s} \mathsf{c}_{s} = k \end{array} \qquad \forall i$$

Objective aggregations:

- minSumQuality: $\sum_{s} w_{s} * c_{s}$
- minMeanQuality: $\frac{\sum_{s} w_s * c_s}{\sum_{s} 1}$
- minMaxQuality: $M, M \ge w_s * c_s \quad \forall s$

3 × 4 3 ×

Constraints

minimize
$$\sum_{s}^{s} w_{s} * c_{s}$$
subject to
$$\sum_{s}^{s} m_{is} * c_{s} = 1$$

$$\sum_{s}^{s} c_{s} = k$$

Constraints:

- completeness: $\sum_{s} m_{is} * c_{s} = 1$
- overlap: $\alpha \leq \sum_{s} m_{is} * c_{s} \leq \beta$
- numberClusters: $\alpha \leq \sum_{\textit{s}} \textit{c}_{\textit{s}} \leq \beta$
- conditional cluster groups (clausal): $\sum_t c_t \leq 1$

i

Combining with existing algorithms Ouali *et al.*, IJCAI 2016

Conceptual clustering: transactions $\mathcal T$, items $\mathcal I$

- \bullet Step 1: computed closed itemsets (candidate clusters) ${\cal C}$ using LCM
- Step 2: compose a clustering from candidate clusters

optimize
$$\sum_{c \in \mathcal{C}} v_c * x_c$$

subject to (1)
$$\sum_{c \in \mathcal{C}} a_{t,c} * x_c = 1 \qquad \forall t \in \mathcal{T}$$

(2)
$$\sum_{c \in \mathcal{C}} x_c = k$$

 $x_c \in \{0, 1\}, c \in \mathcal{C}$

4 3 5 4 3 5 5

Combining with existing algorithms Ouali *et al.*, IJCAI 2016

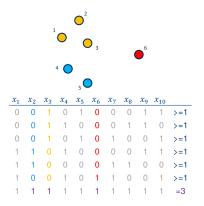
Co-clustering extension: k clusters covering both \mathcal{T} and \mathcal{I} without overlap

$$\begin{array}{ll} \text{optimize} & \sum_{c \in \mathcal{C}} v_c * x_c \\ \text{subject to} & (1) & \sum_{c \in \mathcal{C}} a_{t,c} * x_c = 1 & \forall t \in \mathcal{T} \\ & (2) & \sum_{c \in \mathcal{C}} x_c = k \\ & (2') & k_{min} \leq k \leq k_{max} \\ & (3) & \sum_{c \in \mathcal{C}} w_{i,c} * x_c = 1 & \forall t \in \mathcal{I} \\ & k \in \mathbb{N}, x_c \in \{0,1\}, c \in \mathcal{C} \end{array}$$

A B M A B M

- 3

Approach 2, column generation



Observe: only k of 2^n cluster will have $c_s = 1$.

 \rightarrow Let's generate the clusters as needed: column generation

Column generation for dissimilarity-based constrained clustering

• Basic idea:

- Start with a few initial clusters
- Find optimal LP solution to this restricted problem
- Find the most violated cluster for this solution
- Add this cluster and repeat.
- WCSS criterion without constraints: [du Merle *et al.* 1999, Aloise *et al.* 2009]
- WCSS criterion with constraints: [Babaki et al. 2014]
 - adding constraints to subproblem
 - solve set enumeration problem using constrained branch-and-bound

• • = • • = •

Outline

- Constrained Clustering
- 2 Clustering using SAT
- Clustering using ILP
- 4 Clustering using CP
- 5 Some directions

A B b

Constrained clustering using CP

Two approaches:

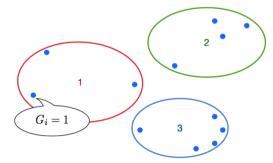
- 1-step: finding a clustering under constraints from data
 - ► conceptual clustering: Khiari *et al.* CP 2010, Guns *et al.* TKDE 2013
 - dissimilarity-based clustering: Dao et al. ECML/PKDD 2013, AIJ 2017

- 2-step: combining with an algorithm that generates cluster candidates then composing a clustering
 - conceptual clustering: Chabert et al. CP 2017

CP Framework for Constrained Clustering Dao & al., ECML/PKDD 2013, AIJ 2017

Modeling a partition:

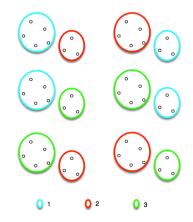
- Clusters identified by their index $1, \ldots, K$, $K_{min} \leq K \leq K_{max}$
- Decision variables $G_1, ..., G_N \in \{1, ..., K_{max}\}$
 - $G_i = k$: point *i* is grouped in the cluster k



Partitioning: breaking symmetries

- Symmetries: one partition corresponds to different assignments
- Breaking symmetries:
 - First point in cluster 1
 - ► A cluster number k is created only if the number k − 1 has been used
- Expressed by the CP constraint:

 $Precede([G_1, ..., G_N], [1, K_{max}])$



4 2 5 4 2 5

Partitioning: number of clusters

- At most K_{max} clusters: $Dom(G_i) \in [1, K_{max}]$
- At least K_{min} clusters: cardinality constraint

$$\#\{i \in [1, N] \mid G_i = K_{min}\} \ge 1$$

Thi-Bich-Hanh DAO (LIFO) Decl. appr. for constrained clustering GDR-IA GT Caviar Nov 2021 38 / 57

User-constraints

Instance-level constraints

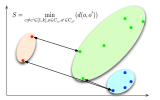
- Must-link constraint ML(i, j): $G_i = G_j$
- Cannot-link constraint CL(i,j): $G_i \neq G_j$

- All popular cluster-level constraints can be expressed by CP constraints
- Minimal size α of clusters

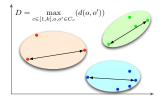
$$\forall i \in [1, N], \ \#\{j \in [1, N] \mid G_i = G_j\} \ge \alpha$$

Optimization criteria

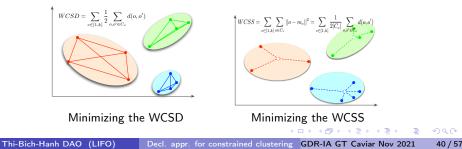
Each of the criteria can be modeled directly using CP constraints.



Maximizing the minimal split



Minimizing the maximal diameter



Diameter criterion

- Minimizing the maximal diameter
 - D represents the maximal diameter: minimize D
 - Any two points i, j with d(i, j) > D must be in different clusters:

$$d(i,j) > D \rightarrow G_i \neq G_j \tag{1}$$

- Direct modeling
 - Modeling (1) using logical variables and constraints
 - Needs $O(N^2)$ of variables and constraints
 - Many of them do not have useful propagation

A global constraint for the diameter criterion

$\textit{diameter}(D, [G_1, .., G_N], d) \stackrel{\textit{def}}{=} \forall i < j \in [1, N], d(i, j) > D \rightarrow G_i \neq G_j$

Filtering algorithm

Ensure the same consistency but better computation time:

- Consider only potential cases
- Avoid examining unuseful candidates

ヘロト ヘ回ト ヘヨト ヘヨト

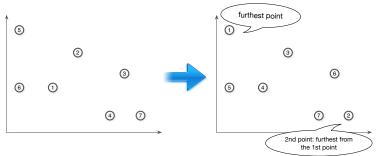
Global constraints for other criteria

- Split criterion $split(S, [G_1, ..., G_N], d) \stackrel{def}{=} \forall i < j \in [1, N], d(i, j) < S \rightarrow G_i = G_j$
- WCSD criterion (ICTAI 2013) $wcsd(W, [G_1, ..., G_N], d) \stackrel{def}{=} W = \sum_{k \in [1, K]} \sum_{o_i, o_j \in C_k} d(i, j)^2$
- WCSS criterion (CP 2015) $wcss(V, [G_1, ..., G_N], d) \stackrel{def}{=} V = \sum_{k \in [1, K]} \sum_{o_i \in C_k} ||o_i - m_k||^2$ where m_k is the centroid of the cluster C_k
- Better computation time (split)
- Better propagation and computation time (WCSD, WCSS)

• • = • • = •

Search strategies

- Search strategies depend on the optimization criterion
- Partition symmetry breaking is based on the indices of points ⇒ points are reordered using FPF (Furthest Point First) algorithm (Gonzales, 1985): points that are far from each other have a small index



4 3 5 4 3 5

2-step constrained clustering using CP

Method:

- Step 1: extract all formal concepts $\mathcal F$ with a dedicated tool (LCM)
- Step 2: use CP to select a subset of $\mathcal F$ forming the clustering

CP model for step 2 using set variable *P*: the set of selected concepts [Chabert *et al.*, CP 2017]

• partition: each $t \in \mathcal{T}$ is covered by one concept

 $\forall t \in \mathcal{T}, |CF(t) \cap P| = 1$

• k selected concepts

$$|P| = k$$

A B F A B F

Conceptual clustering as an exact cover problem

In the selected concepts P, each object is covered exactly once

$$\forall t \in \mathcal{T}, \#\{C \in P \mid t \in C\} = 1$$

 \longrightarrow a conceptual clustering problem can be seen as an exact cover problem

Global constraint exactCover $Q_{\mathcal{T},P,q}$ (selected, MinQ, MaxQ) [Chabert et al., 2020]:

- the *selected* variables assigned to *true* correspond to an exact cover of (\mathcal{T}, P)
- *MinQ* and *MaxQ* variables are assigned to the minimum and maximum quality associated with the selected subsets

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Outline

- Constrained Clustering
- 2 Clustering using SAT
- Clustering using ILP
- 4 Clustering using CP
- 5 Some directions

A B b

3

Making clustering useful using constraints

Cluster friend network in groups for different diner parties

- the difference in age is minimized
- equal number of males and females
- each person should have at least 5 other persons in the same group sharing the same hobby

More meaningful constraints

- Objects can be described by different types of information
- Constraints not only generated from ground truth label
- Constraints can be provided by expert and capture what makes the clustering useful in the domain

A (10) A (10)

Actionable clustering Dao *et al.*, ECAI 2016

Data: each instance $x \in \mathcal{X}$ is described by:

- a set of features: to compute distances between instances and the clustering objective function
- a set of properties: on which constraints are stated

Actionable clustering

- Constraints making clustering actionable
 - cardinality constraints
 - geometric constraints
 - density constraints
 - complex logic constraints

CP offers a natural modeling of these constraints

A B M A B M

Minimal clustering modification

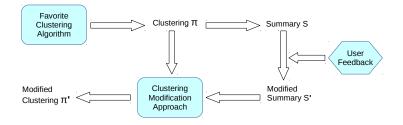
Cluster friend network in groups for different diner parties

- A very cohesive clustering already obtained, but
 - the range of ages for some clusters is too large
 - one cluster has too many males compared to females
- Simply removing data points to get desirable clusters undermines the intended use
- Applying a constrained clustering algorithm does not guarantee to find a similar clustering

Minimal clustering modification

- Finding a similar clustering by minimal modifications
- Removing the undesirable properties

Minimal clustering modification problem Kuo *et al.*, AAAI 2017



Minimally modify Π to obtain Π' to satisfy S'

minimize_{Π'} $d(\Pi', \Pi)$ subject to Π' satisfies S'

Thi-Bich-Hanh DAO (LIFO) Decl. appr. for constrained clustering GDR-IA GT Caviar Nov 2021 51/57

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Minimal clustering modification with restriction on diameters

- Problem: minimally modify Π such that along / dimensions the maximum diameter is reduced.
- Theorems:
 - The problem with I = 2 is NP-Complete
 - Suppose the number of dimensions along which the maximum diameter must be reduce is a variable *I*. The reclustering problem is NP-Complete for *k* ≥ 3.
- Formulation for diameter constraints:

$$orall c \in [1,k], orall t \in [1,l], \max_{i,j \in [1,n]} (C[c,i]C[c,j]D_{tij}) \leq D_{ct}'$$

$O(n^2k)$ constraints, not efficient

A B M A B M

ILP formulation

Data
$$X \subset \mathbb{R}^{n imes f}$$
, $\forall t \in [1, I]$ let:
 $M_l[t] \leftarrow \min_{i=1,...,n} \{X[i, t]\} \forall t = 1, ..., f$
 $M_u[t] \leftarrow \max_{i=1,...,n} \{X[i, t]\} \forall t = 1, ..., f$

More efficient ILP formulation:

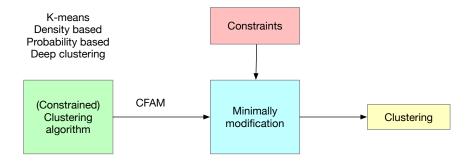
$$\begin{split} & \underset{z,C,L,H}{\text{minimize}} \quad \sum_{i=1}^{n} z[i] \\ & \text{subject to} \\ & \forall c = 1, \dots, k, \, \forall i = 1, \dots, n, \, C[c,i] = \mathbb{I}[\Pi'[i] = c] \\ & \forall i = 1, \dots, n, \, z[i] = \mathbb{I}[\Pi'[i] \neq \Pi[i]] \\ & \forall c = 1, \dots, k, \, \, \forall t = 1, \dots, f, \\ & L[c,t] = \min_{i=1,\dots,n} \{C[c,i](X[i,t] - M_u[t])\} + M_u[t] \\ & H[c,t] = \max_{i=1,\dots,n} \{C[c,i](X[i,t] - M_l[t])\} + M_l[t] \\ & H[c,t] - L[c,t] \leq \mathcal{D}'[c,t] \end{split}$$

Distance between two partitions measured by number of changes

3

A B A A B A

Post-process clustering algorithms with constraint



Thi-Bich-Hanh DAO (LIFO) Decl. appr. for constrained clustering GDR-IA GT Caviar Nov 2021 54/57

4 A 1

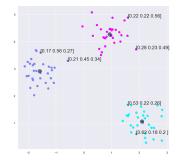
- A TEN A TEN

3

Exploiting current partition Nghiem *et al.*, DS 2020

- Cluster Fractional Allocation Matrix S ∈ ℝ^{n×k}, S_{ic} score of point i belonging to cluster c
 - Distance-based clustering:
 - $S_{ic} = ||x_i \mu_c||$
 - Deep/probability-based clustering: S_{ij} is the soft-assignment
- Minimally modification subject to constraints:

$$\mathsf{optimize}_{\Pi'}\sum_i S_{i\Pi'[i]}$$



Take home messages

- Strong points:
 - declarative approaches offer frameworks modeling various constrained clustering settings
 - numerous constraints and objective functions can be integrated
- Weak points:
 - scalability
- Needs:
 - considering several views of the problem
 - appropriate choice of variables and/or constraint expressions
 - constraint propagation designs and heuristics
- Open issues:
 - scalability
 - interactive/incremental clustering
 - if not satisfying all constraints
 - if constraints are noisy

A B F A B F

Acknowledgments

Some parts of this talk were taken from the tutorial at eEGC 2016 prepared with:

- Christel Vrain (LIFO)
- Tias Guns (KU Leuven)

Our work in this talk are in collaboration with:

- Khanh-Chuong Duong, Nguyen-Viet-Dung Nghiem, Christel Vrain (LIFO)
- Ian Davidson, Chia-Tung Kuo (UC Davis)
- S. S. Ravi (Univ. at Albany)

4 3 5 4 3 5 5