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Introduction



Constraint Satisfaction Problem

Definition (Variable)
A variable x is an entity associated to a value. This value belongs to its domain,
denoted dom(x).

Definition (Constraint)
A constraint c is defined by a set of variables, called scope of c and denoted scp(c),
and by a mathematical relation which describes the set of tuples allowed by c for the
variables of its scope.
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Constraint Satisfaction Problem

Definition (CSP)
A Constraint Satisfaction Problem (or Constraint Network) P is defined by:

• a finite set of variables, denoted X
• a finite set of constraints, denoted C, such that ∀c ∈ C, scp(c) ⊆ X

Definition (Solution)
A solution of a CSP instance P corresponds to the assignment of a value to each
variable of X such that all the constraints of C are satisfied.
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Solving Principle of a Constraint Solver
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Global scheme : depth first binary tree search with backtracking
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1st run : root of the tree
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Decision : the variable ordering heuristic selects x
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Decision : the value ordering heuristic selects a
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Propagation : enforcing of the arc-consistency (AC) property
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Decision : next selection (variable, valeur)
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Propagation : enforcing of the AC property and conflict
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Backtracking : parent node
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Refutation : we consider y ̸= b
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Backtracking : parent node (root node)
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Refutation : x ̸= a
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Restarting : cutoff reached and nogood extraction
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Restarting : backtrack to the root node
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Solving Principle of a Constraint Solver
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2nd run : root node
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2nd run : cutoff reached and restarting
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Solving Principle of a Constraint Solver
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tth run : cutoff reached and restarting
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Solving Principle of a Constraint Solver
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End of solving : satisfiability | unsatisfiability | timeout
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Variable ordering heuristics
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lex: lexicographic order
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Variable ordering heuristics
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Let the set H = {lex, dom, dom/ddeg, abs, ibs, dom/wdeg, chs, cacd}:

lex: lexicographic order
dom: size of domain

dom/ddeg: size of domain and variable degree
abs: activity of variables
ibs: impact of variables

dom/wdeg: size of domain and constraint weighting
chs: history of constraint conflicts

cacd: arity and domain of the conflict variables



Problem

Heuristic determines search efficiency...

#instances dom/wdeg activity impact

KnightTour 4 3 5
MultiKnapsack 24 27 25

Subisomorphism 7 2 5

Table 1: Solved instances by heuristic

... but heuristic selection needs expert qualities.

Given a CSP instance and a set of heuristics available in the solver, which heuristic is
the best for solving the instance?
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Multi-Armed Bandit Framework



Why this name?

One-armed bandits with different jackpot probabilities:

🎰🎰🎰🎰🎰
2% 1.5% 1% 1.5% 10%

The multi-armed bandit problem is characterized by:

• the search for a balance between exploration and exploitation
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Global description of a bandit

The bandit problem is described as a game where a player faces the environment. At
each trial t:

• the player chooses an action it among a set of actions A (heuristic selection in our
case)

• the environment gives a reward rt(it) to the player for the selected action

The player’s goal is to minimize his regret after T trials:

RegretT = max
i∈A

T∑
t=1

rt(i) −
T∑

t=1
rt(it)

or, depending on the bandit paradigm, minimizing the number of trials required to
explore before committing to an optimal arm.
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Link between bandit and heuristics in a CSP solver

solving()

selects a heuristic Hi1

rewards r1(Hi1)

solving()

selects a heuristic Hi2

rewards r2(Hi2)

solving()

selects a heuristic HiT

rewards rT(HiT)

environment:Solver player:Bandit
run1

run2

runT
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Reward function

The reward function is based on the size of the trees pruned during a run t:

rt(i) =
log2

(∑
n∈cft(Tt)

∏
x∈fut(n)|dom(x)|

)
log2(

∏
x∈vars(P)|dom(x)|)

where:

• cft(T ): the set of conflictual nodes
• fut(n): the set of unfixed variables
• vars(P): the variables of P
• dom(x): the domain of x

10/17
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Selection policies

UCB: simple upper confidence bound (stochastic bandit)
EXP3: exponential weighting for exploration and exploitation (adversarial bandit)

UNI: random and uniform choice (naive policy)
VBS: virtual best solver (best policy)

Let the set of choice policies B = {UCB, EXP3, UNI, VBS, }:

11/17



Selection policies

UCB: simple upper confidence bound (stochastic bandit)
EXP3: exponential weighting for exploration and exploitation (adversarial bandit)

UNI: random and uniform choice (naive policy)
VBS: virtual best solver (best policy)

Let the set of choice policies B = {UCB, EXP3, UNI, VBS, AST}:

11/17



Adaptive Single Tournament
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AST bandit algorithm

Algorithm: Adaptive Single Tournament (AST)

Input: A set of arms [K], a positive integer m ≥ 1

1 Set S = [K]

2 for each run t = 1, 2, . . . do
3 if σluby(t) = 1 then
4 Select an arbitrary arm i ∈ S
5 Set S = S \ {i} and if S = ∅ then set S = [K]

6 else
7 Let ileft be the arm played at run t − σluby(t)
8 Let iright be the arm played at run t − 1
9 Choose i ∈ {ileft, iright} with best reward ri

10 Play i for m times and set ri to the mth observed reward at run t
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5 Set S = S \ {i} and if S = ∅ then set S = [K]

6 else
7 Let ileft be the arm played at run t − σluby(t)
8 Let iright be the arm played at run t − 1
9 Choose i ∈ {ileft, iright} with best reward ri

10 Play i for m times and set ri to the mth observed reward at run t
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Experimental context

CSP instances (ICSP): 810 instances XCSP’17/18/19 (83 families)
computation nodes: 3.3 GHz CPU Intel XEON E5-2643 and 32 GB of RAM

timeout: 2, 400 seconds
solvers: ACE with each heuristics H and policies B

restarting sequence: u × lubyt where u = 150
cutoff unity: wrong decisions

value ordering heuristic: min-dom
propagation property: arc-consistency

learning: nogoods at the end of runs

14/17



Overall analysis
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Finer-grained analysis
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Figure 3: Proportions of heuristics selected by UCB and AST at each cutoff of Luby’s
sequence, for the CSP instance Rlfap-scen-11-f01_c18

16/17



Conclusion



Conclusion

In this study, we have:

• focused on the best heuristic identification problem
• presented the non-stochastic bandit algorithm AST

The results have shown a better behaviour than the stochastic and adversarial
bandits-based, and are closer to the VBS. In addition, these results are corroborated by
a convergence analysis.
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Perspective

As perspectives, we think:

• designing bandit algorithm for others universal restart schemes (e.g., exponential
sequence)

• extending learning and autonomy (e.g., branching heuristics and propagation
techniques)
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