Tutorial on MaxSAT and Weighted CSP

George Katsirelos
INRA

19/06,/2018

Introduction

A (somewhat opinionated) tutorial on MaxSAT

A small application

Two kinds of solvers, with different performance
characteristics, using different techniques

Complete solvers, because incomplete solvers can be
spectacularly wrong

Incomplete runs of complete solvers still provide information
e Primal and dual bounds

MaxSAT

X Boolean variables
S U ¢ soft and hard clauses
w:S—N

objective: find assignment that

e satisfies hard clauses
e minimizes sum of weights of violated soft clauses

Technically, Weighted Partial MaxSAT

MaxSAT

Clauses vs monomials
A clause x V y V Z is violated iff the monomial Xyz evaluates to 1.
We write ¢ for the monomial corresponding to clause ¢

MaxSAT

ol

minz w(c)

such that
o

Example: Correlation Clustering

Problem
Given
G=(V,E)and w: E — R, find

cl: V — N that minimizes
<um of w(uv) with cl(u) # cl(v), w(uv) >0
|w(uv)| with cl(u) = cl(v), w(uv) <0

e Typically solved with approximations or heuristics

e Variant with side constraints: allow w(uv) = co (must-link),
w(uv) = —oo (cannot-link)

Example: Correlation Clustering

Variables x;;: true iff i and j in same cluster
Hard clauses:

Xij V Xjk V Xik Vi,j,keV
Xij Vmust-link constraints ij
X Vcannot-link constraints ij

Soft clauses:

((xi), w(if)
(i), —w(if)

Yw(ij) > 0
Vw(ij) <0

~— ~—

*

Weighted CSP

A particular dense special case of MaxSAT
e or: MaxSAT is a sparse special case of WCSP

Given a hypergraph G = (V, H), a WCSP (G, D, c, k) is the
problem of finding a labeling / : V — D

min » " cp(/(h))

heH
such that

ch(l(h)) < k Vhe H

Includes self edges and empty edge

c is a set of cost functions, hence Cost Function Network
(CFN)

WCSP < MaxSAT

e Variables x;, <= /(i) =a

Label each vertex

¢ = /\ \/ Xia
ieV aeD
Forbid tuples with cost k

A A VienXig) Vh € H,cp(I(h)) = k
Soft clauses for all other tuples
S ={((Vienxi)), ca(I(h))) | he€ H,0 <cu(l(h)) <k}

e Denseness: each hyperedge generates many clauses

WCSP or MaxSAT?

Rules of thumb

e When the objective is sparse or satisfiability is hard, MaxSAT
solvers should be better

e In certain problems with a dense objective, WCSP solvers are
much better

e Exceptions abound

e Branch-and-bound MaxSAT solvers best in some kinds of
problems (Max-Cut)

Solving WCSP

Solving WCSP

e Branch-and-bound
e Many preprocessing techniques, heuristics, etc

e Here we are interested in lower bounds

m|n E cn(/

heH

WCSP lower bound

Z mlln cn(1(h))

heH

Reparameterization

Equivalence
P = P’ if all assighments have the same cost

MOVE(¢y, ¢, X, @)
e Shifts « units of cost between ¢; and ¢ on the common
assignment x
e Shift direction: sign of a.
e « constrained: no negative costs!

= MOVE preserves equivalence

= All equivalent subproblem with the same structure can be
generated by a sequence of MOVEs

Reparameterization

[)
S

Reparameterization

Move{l,2}, {1}, b,1

<_
all a alle o |a
blle b b @ ® /b

2 1

Reparameterization

Move{l,2}, {1}, b,1

<_
all a alle o |a
hlle b bl & ® /b
2 1

() Move({1},2,]],1)

Reparameterization

Move{l,2}, {1}, b,1

<_
all a alle ® |a
hblle b b @ ®)b
2 1 2

() Move({1},2,]],1)

Cg:].

Finding reparameterizations

e Each variable has at least one 0-cost value, supported by at
least one O-cost tuple in each constraint
e When does the current lower bound match the actual
optimum?
= When the 0-cost values can be used to construct a 0-cost
solution
< When they are inconsistent we can increase the lower bound
e Bool(P): a (hard!) CSP that contains only the zero-cost
subset of the WCSP P

VAC

e lteratively construct Bool(P)
e If arc inconsistent, increase lower bound by reparameterization
e If arc consistent, finish
e Bool(P) changes non-monotonically after each
reparameterization

e Each inconsistent Bool(P) corresponds to an inconsistent
subset of the original WCSP P

From WCSP to MaxSAT

We generalize from arc inconsistent subsets to arrive at MaxSAT
solving techniques

Solving MaxSAT

Minimal Correction Sets

F\ C is satisfiable, no larger subset of F is

C: MCS

F\ C: Maximal Satisfiable Subset (MSS)

In the presence of hard clauses: HU (S \ C) is satisfiable

A maximal solution of a MaxSAT instance

Minimal Correction Sets

F\ C is satisfiable, no larger subset of F is

C: MCS

F\ C: Maximal Satisfiable Subset (MSS)

In the presence of hard clauses: HU (S \ C) is satisfiable
A maximal solution of a MaxSAT instance

B @

(Yl V 72) (71 V Y3) (Yg V Y3)

Minimal Unsatisfiable Sets

e U C F is unsatisfiable, no smaller subset of F is
e In the presence of hard clauses: H U U is unsatisfiable

e Also called minimal cores

Minimal Unsatisfiable Sets

e U C F is unsatisfiable, no smaller subset of F is
e In the presence of hard clauses: H U U is unsatisfiable

e Also called minimal cores

(x1) (x2) (x3)

(x1Vx2) (x1Vx3) (X2VX3)

Hitting set duality

(x1) (x2) (x3)

(Yl V YQ) (71 V Y3) (Yg V Y3)

(x1) (x2) (x3)

(x1Vx2) (x1Vx3) (Xx2VXx3)

(x1) (x2) (x3)

(x1Vx2) (x1Vx3) (X2VX3)

Hitting set duality

(x2) (x3)
(71 \ Y3) (72 V 73)

(Xl), (71,72) not an MCS

Hitting set duality

(x1) (x3)
(Yl V 72) (72 V 73)
(x1) (x3)
(71 V 72) (Yz V Y3)
(x1) (x3)
(71 \Y 72) (72 \ 73)

(Xz), (71,73) an MCS

Hitting set duality

e Every (minimal) CS is a hitting set of all (minimal) USes
e Every (minimal) US is a hitting set of all (minimal) CSes

Algorithms

e Most algorithms exploit cores
e sequence-of-SAT
e branch and bound not competitive
e Most algorithms are dual: compute a lower bound and
improve it until we reach SAT
e But in fact they are anytime: core computation entails MCS
computation, so they produce primal bounds as well
e But not primal-dual

Hitting set based algorithms

MCS = solution means minimum MCS = minimum solution

MCS < MUS duality means minimum MCS = minimum
hitting set of all MUSes

Minimum HS of known MUSes is a relaxation

e If minimum HS is a CS, relaxation is tight

= Generate MUSes until minimum HS is a CS

Hitting set based algorithms: MaxHS

e A solver that solver minimum HS with ILP
e Optimizes communication between two sides

e One of the best in recent years

Core-guided algorithms

e Use core to transform the formula until it is satisfiable
e Each transformation increases the lower bound
Opinion
All maxsat algorithms are hitting-set based

Core-guided algorithms

Framework for presenting such algorithms
e Each core of the transformed formula corresponds to a set of
cores of the original formula
e (;: cores of the original formula accumulated after iteration i
e LB;: bound computed by algorithm after iteration i
e HS;: optimum of hitting set problem over Uj—1._;Ci

Core-guided algorithms

e First algorithm: PM1 for unweighted MaxSAT only

e WPM1 generalized PM1 to weighted MaxSAT

e Many subsequent solvers improve on how WPM1 transforms
the formula

PM1

® Solve SAT formula HU S

® If SAT, report solution
© If UNSAT,

@ extract core
@® relax all clauses in core with extra var b;
© add cardinality constraint > b; =1to H

WPM1

Handles soft clauses with non-unit weight by cloning

{(C7 wiy + W2)} = {(C7 Wl)? (Cv W2)}

WPM1 example

Initial soft clauses (c1,30), (c2,30), (c3, 40), (ca, 60)

] Core \ Transformation \
{(¢1,30), (c3,40)} (c1 V bi,30), (c3 V b, 30), (cs3,10)}
bl +b}=1
106, 30), (ca.60)] (6 V 2.30), (cs 52,30, (ca. 30)]
b3+ b; =1

{(c1 V b1,30),(c2 Vv b3,30), | (c1 V b}V b3,30),(ca VB3V b3,30),
(c3V b3,30),(ca vV b3,30)} | (c3V b3V b3,30),(caV b3V b3,30)
b} + b3+ b3+ b3 =1
{(C3, 10)7 (C4; 30)} (C3 v bgla 10); (C4 \ bﬁa 10); (C47 20)}
b} +b;=1

WPM1 cores

e Each core of PM1 is a compact representation of a set of
cores of the original instance
e These cores can be generated as solutions of a linear system

e Exponentially many

WPM1 bounds

We have WPM1; < HS;

e Redundant discovery of cores

e Must iterate more after enough cores have been found to
prove the optimum bound

PMRES

e A max resolution solver

e Among the state of the art

PMRES: Max-resolution

o A complete calculus for (weighted-, partial-) MaxSAT
e Here we use only a specific instantiation

AVx, 1
%, 1
Al

AVx,1

PMRES: Clause reification

e Given a soft clause (c, w), we can rewrite as

z <— C

(z,w)

PMRES

@ Reify all soft clauses

® Solve HU S

© Extract core

O Apply max-resolution with all unit soft clauses

Maintains invariant that all soft clauses are unit, hence
max-resolution does not blow up

PMRES cores

e Each PMRES core is a compact representation of a set of
cores of the original instance

e Generated by performing variable elimination of the auxiliary
variables

e Exponentially many

PMRES bounds

PMRES; = HS;

e Perfectly exploits the cores it discovers
e Partially explains the advantage of PMRES over WPM1

Comparison

e Hitting set based solvers separate satisfiability concerns (SAT
subsolver) from bounds reasoning (ILP subsolver).

e Core-guided solvers use SAT solvers for both satisfiability
reasoning and bound reasoning

e Should be worse intuitively
e But often bound reasoning combined with SAT reasoning is
more efficient

Conclusions

Many more MaxSAT solvers

e WPM2, WPM3, OLL, MSCG
e Branch-and-Bound

This viewpoint can explain (nearly?) all of them

Research on maxsat centered on finding more efficient SAT
encodings

Can we exploit this viewpoint to identify better encodings?
Build new hybrids?

Q7

