
Tutorial on MaxSAT and Weighted CSP

George Katsirelos
INRA

19/06/2018

Introduction

• A (somewhat opinionated) tutorial on MaxSAT

• A small application

• Two kinds of solvers, with different performance
characteristics, using different techniques

• Complete solvers, because incomplete solvers can be
spectacularly wrong

• Incomplete runs of complete solvers still provide information
• Primal and dual bounds

MaxSAT

• X Boolean variables

• S ∪ φ soft and hard clauses

• w : S → N
• objective: find assignment that

• satisfies hard clauses
• minimizes sum of weights of violated soft clauses

• Technically, Weighted Partial MaxSAT

MaxSAT

Clauses vs monomials
A clause x ∨ y ∨ z is violated iff the monomial xyz evaluates to 1.
We write c for the monomial corresponding to clause c

MaxSAT

min
∑
c∈S

w(c)c

such that

φ

Example: Correlation Clustering

Problem
Given
G = 〈V ,E 〉 and w : E → R, find
cl : V → N that minimizes

sum of

{
w(uv) with cl(u) 6= cl(v),w(uv) > 0
|w(uv)| with cl(u) = cl(v),w(uv) < 0

• Typically solved with approximations or heuristics

• Variant with side constraints: allow w(uv) =∞ (must-link),
w(uv) = −∞ (cannot-link)

Example: Correlation Clustering

Variables xij : true iff i and j in same cluster
Hard clauses:

x ij ∨ x jk ∨ xik ∀i , j , k ∈ V

xij ∀must-link constraints ij

x ij ∀cannot-link constraints ij

Soft clauses:

((xij),w(ij)) ∀w(ij) > 0

((x ij),−w(ij)) ∀w(ij) < 0

Weighted CSP

• A particular dense special case of MaxSAT
• or: MaxSAT is a sparse special case of WCSP

• Given a hypergraph G = 〈V ,H〉, a WCSP 〈G ,D, c, k〉 is the
problem of finding a labeling l : V → D

min
∑
h∈H

ch(l(h))

such that

ch(l(h)) < k ∀h ∈ H

* Includes self edges and empty edge

* c is a set of cost functions, hence Cost Function Network
(CFN)

WCSP ⇔ MaxSAT

• Variables xia ⇐⇒ l(i) = a

•

Label each vertex

φ =
∧
i∈V

∨
a∈D

xia

Forbid tuples with cost k

∧
∧

(∨i∈hx il(i)) ∀h ∈ H, ch(l(h)) = k

Soft clauses for all other tuples

S ={((∨i∈hx il(i)), ch(l(h))) | h ∈ H, 0 < ch(l(h)) < k}

• Denseness: each hyperedge generates many clauses

WCSP or MaxSAT?

Rules of thumb

• When the objective is sparse or satisfiability is hard, MaxSAT
solvers should be better

• In certain problems with a dense objective, WCSP solvers are
much better

• Exceptions abound

• Branch-and-bound MaxSAT solvers best in some kinds of
problems (Max-Cut)

Solving WCSP

Solving WCSP

• Branch-and-bound

• Many preprocessing techniques, heuristics, etc

• Here we are interested in lower bounds

WCSP lower bound

min
l

∑
h∈H

ch(l(h)) ≥
∑
h∈H

min
l

ch(l(h))

Reparameterization

Equivalence

P ≡ P ′ if all assignments have the same cost

Move(c1, c2, x, α)

• Shifts α units of cost between c1 and c2 on the common
assignment x

• Shift direction: sign of α.

• α constrained: no negative costs!

⇒ Move preserves equivalence

⇒ All equivalent subproblem with the same structure can be
generated by a sequence of Moves

Reparameterization

Move{1, 2}, {1}, b, 1
←

⇓ Move({1},∅, [], 1)

c∅ = 1

Reparameterization

Move{1, 2}, {1}, b, 1
←

⇓ Move({1},∅, [], 1)

c∅ = 1

Reparameterization

Move{1, 2}, {1}, b, 1
←

⇓ Move({1},∅, [], 1)

c∅ = 1

Reparameterization

Move{1, 2}, {1}, b, 1
←

⇓ Move({1},∅, [], 1)

c∅ = 1

Finding reparameterizations

• Each variable has at least one 0-cost value, supported by at
least one 0-cost tuple in each constraint

• When does the current lower bound match the actual
optimum?

⇒ When the 0-cost values can be used to construct a 0-cost
solution

⇐ When they are inconsistent we can increase the lower bound

• Bool(P): a (hard!) CSP that contains only the zero-cost
subset of the WCSP P

VAC

• Iteratively construct Bool(P)
• If arc inconsistent, increase lower bound by reparameterization
• If arc consistent, finish

• Bool(P) changes non-monotonically after each
reparameterization

• Each inconsistent Bool(P) corresponds to an inconsistent
subset of the original WCSP P

From WCSP to MaxSAT

We generalize from arc inconsistent subsets to arrive at MaxSAT
solving techniques

Solving MaxSAT

Minimal Correction Sets

• F \ C is satisfiable, no larger subset of F is

• C : MCS

• F \ C : Maximal Satisfiable Subset (MSS)

• In the presence of hard clauses: H ∪ (S \ C) is satisfiable

• A maximal solution of a MaxSAT instance

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

Minimal Correction Sets

• F \ C is satisfiable, no larger subset of F is

• C : MCS

• F \ C : Maximal Satisfiable Subset (MSS)

• In the presence of hard clauses: H ∪ (S \ C) is satisfiable

• A maximal solution of a MaxSAT instance

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

Minimal Unsatisfiable Sets

• U ⊆ F is unsatisfiable, no smaller subset of F is

• In the presence of hard clauses: H ∪ U is unsatisfiable

• Also called minimal cores

(x1) (x2) (x3)
(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

Minimal Unsatisfiable Sets

• U ⊆ F is unsatisfiable, no smaller subset of F is

• In the presence of hard clauses: H ∪ U is unsatisfiable

• Also called minimal cores

(x1) (x2) (x3)
(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

Hitting set duality

(x1) (x2) (x3)
(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1) (x2) (x3)
(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1) (x2) (x3)
(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

Hitting set duality

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1), (x1, x2) not an MCS

Hitting set duality

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x1) (x2) (x3)

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

(x2), (x1, x3) an MCS

Hitting set duality

• Every (minimal) CS is a hitting set of all (minimal) USes

• Every (minimal) US is a hitting set of all (minimal) CSes

Algorithms

• Most algorithms exploit cores
• sequence-of-SAT
• branch and bound not competitive

• Most algorithms are dual: compute a lower bound and
improve it until we reach SAT

• But in fact they are anytime: core computation entails MCS
computation, so they produce primal bounds as well

• But not primal-dual

Hitting set based algorithms

• MCS ≡ solution means minimum MCS ≡ minimum solution

• MCS ⇔ MUS duality means minimum MCS ≡ minimum
hitting set of all MUSes

• Minimum HS of known MUSes is a relaxation

• If minimum HS is a CS, relaxation is tight

⇒ Generate MUSes until minimum HS is a CS

Hitting set based algorithms: MaxHS

• A solver that solver minimum HS with ILP

• Optimizes communication between two sides

• One of the best in recent years

Core-guided algorithms

• Use core to transform the formula until it is satisfiable

• Each transformation increases the lower bound

Opinion

All maxsat algorithms are hitting-set based

Core-guided algorithms

Framework for presenting such algorithms

• Each core of the transformed formula corresponds to a set of
cores of the original formula

• Ci : cores of the original formula accumulated after iteration i

• LBi : bound computed by algorithm after iteration i

• HSi : optimum of hitting set problem over ∪k=1...iCk

Core-guided algorithms

• First algorithm: PM1 for unweighted MaxSAT only

• WPM1 generalized PM1 to weighted MaxSAT

• Many subsequent solvers improve on how WPM1 transforms
the formula

PM1

1 Solve SAT formula H ∪ S

2 If SAT, report solution

3 If UNSAT,

1 extract core
2 relax all clauses in core with extra var bi
3 add cardinality constraint

∑
bi = 1 to H

WPM1

Handles soft clauses with non-unit weight by cloning

{(c ,w1 + w2)} ≡ {(c ,w1), (c ,w2)}

WPM1 example

Initial soft clauses (c1, 30), (c2, 30), (c3, 40), (c4, 60)
Core Transformation

{(c1, 30), (c3, 40)} (c1 ∨ b11, 30), (c3 ∨ b13, 30), (c3, 10)}
b11 + b13 = 1

{(c2, 30), (c4, 60)} (c2 ∨ b22, 30), (c4 ∨ b34, 30), (c4, 30)}
b22 + b24 = 1

{(c1 ∨ b11, 30), (c2 ∨ b22, 30), (c1 ∨ b11 ∨ b31, 30), (c2 ∨ b22 ∨ b32, 30),
(c3 ∨ b13, 30), (c4 ∨ b24, 30)} (c3 ∨ b13 ∨ b33, 30), (c4 ∨ b24 ∨ b34, 30)

b31 + b32 + b33 + b34 = 1
{(c3, 10), (c4, 30)} (c3 ∨ b43, 10), (c4 ∨ b44, 10), (c4, 20)}

b43 + b24 = 1

WPM1 cores

• Each core of PM1 is a compact representation of a set of
cores of the original instance

• These cores can be generated as solutions of a linear system

• Exponentially many

WPM1 bounds

We have WPM1i < HSi

• Redundant discovery of cores

• Must iterate more after enough cores have been found to
prove the optimum bound

PMRES

• A max resolution solver

• Among the state of the art

PMRES: Max-resolution

• A complete calculus for (weighted-, partial-) MaxSAT

• Here we use only a specific instantiation

A ∨ x , 1
x , 1

A, 1

A ∨ x , 1

PMRES: Clause reification

• Given a soft clause (c ,w), we can rewrite as

z ⇐⇒ C

(z ,w)

PMRES

1 Reify all soft clauses

2 Solve H ∪ S

3 Extract core

4 Apply max-resolution with all unit soft clauses

Maintains invariant that all soft clauses are unit, hence
max-resolution does not blow up

PMRES cores

• Each PMRES core is a compact representation of a set of
cores of the original instance

• Generated by performing variable elimination of the auxiliary
variables

• Exponentially many

PMRES bounds

PMRESi = HSi

• Perfectly exploits the cores it discovers

• Partially explains the advantage of PMRES over WPM1

Comparison

• Hitting set based solvers separate satisfiability concerns (SAT
subsolver) from bounds reasoning (ILP subsolver).

• Core-guided solvers use SAT solvers for both satisfiability
reasoning and bound reasoning

• Should be worse intuitively
• But often bound reasoning combined with SAT reasoning is

more efficient

Conclusions

• Many more MaxSAT solvers
• WPM2, WPM3, OLL, MSCG
• Branch-and-Bound

• This viewpoint can explain (nearly?) all of them

• Research on maxsat centered on finding more efficient SAT
encodings

• Can we exploit this viewpoint to identify better encodings?
Build new hybrids?

Q?

