

Conflict Directed Clause Learning for the Maximum Weighted Clique Problem

Emmanuel Hebrard¹ and George Katsirelos²

¹LAAS-CNRS, Université de Toulouse ²MIAT, INRA

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

• Given a graph G with weight function w

- Given a graph G with weight function w
- Find a clique set of vertices all pairwise adjacent – of maximum weight

- Given a graph G with weight function w
- Find a clique set of vertices all pairwise adjacent – of maximum weight

- Given a graph G with weight function w
- Find a clique set of vertices all pairwise adjacent – of maximum weight

- Given a graph G with weight function w
- Find a clique set of vertices all pairwise adjacent – of maximum weight
- Find a set of vertices without edge (Independent Set – IS) of maximum weight (on the complement)
- Find a set of vertices touching every edge (Vertex Cover – VC) minimum weight (on the complement)

- Given a graph G with weight function w
- Find a clique set of vertices all pairwise adjacent – of maximum weight
- Find a set of vertices without edge (Independent Set – IS) of maximum weight (on the complement)
- Find a set of vertices touching every edge (Vertex Cover – VC) minimum weight (on the complement)

- Given a graph G with weight function w
- Find a clique set of vertices all pairwise adjacent – of maximum weight
- Find a set of vertices touching every edge (Vertex Cover – VC) minimum weight (on the complement)

Branch & Bound (CP)

Branch & Bound (CP)

SAT Encoding

• Dedicated upper bound (coloring)

• Weak upper bound (UP)

Branch & Bound (CP)

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)

- Weak upper bound (UP)
- No data structure

Branch & Bound (CP)

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Dedicated strategies (degree, color)

- Weak upper bound (UP)
- No data structure
- VSIDS

Branch & Bound (CP)

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Dedicated strategies (degree, color)
- Backtracking

- Weak upper bound (UP)
- No data structure
- VSIDS
- Conflict-Driven Clause Learning

Branch & Bound (CP)

SAT Encoding

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Dedicated strategies (degree, color)
- Backtracking

- Weak upper bound (UP)
- No data structure
- VSIDS
- Conflict-Driven Clause Learning

We want the best of both worlds!

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

Branch and propagate as a CP solver

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

- Branch and propagate as a CP solver
- Store every deduction made during propagation as an explanation clause

 $(p_1 \wedge p_2 \wedge \ldots \wedge p_k) \implies c$

with p_i 's and *c* literals of the form $x \{=, \neq\} v$

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

- Branch and propagate as a CP solver
- Store every deduction made during propagation as an explanation clause

 $(p_1 \wedge p_2 \wedge \ldots \wedge p_k) \implies c$

with p_i 's and *c* literals of the form $x \{=, \neq\} v$

• When failing, compute a conflict using the explanation graph

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

- Branch and propagate as a CP solver
- Store every deduction made during propagation as an explanation clause

 $(p_1 \wedge p_2 \wedge \ldots \wedge p_k) \implies c$

with p_i 's and *c* literals of the form $x \{=, \neq\} v$

- When failing, compute a conflict using the explanation graph
- A global constraint "X is an independent set of weight larger than k"
 - Compute an upper bound
 - Prune w.r.t. this upper bound
 - Need to compute explanations!

For any vertex *v*:

• either v is in VC ($x_v = true$)

For any vertex *v*:

• either v is in VC ($x_v = true$)

For any vertex *v*:

- either v is in VC ($x_v = true$)
- or v is in $IS(x_v = false)$

• Unweighted case: *coloring*

- Unweighted case: *coloring*
- A clique of size *k* requires *k* colors

- Unweighted case: *coloring*
- A clique of size *k* requires *k* colors
- The chromatic number χ(G) of G is an upper bound on its clique number ω(G)

- Unweighted case: *coloring*
- A clique of size k requires k colors
- The chromatic number χ(G) of G is an upper bound on its clique number ω(G)
- We work on the complement, so non-neighbors cannot share the same color ⇒ clique cover

- Unweighted case: clique cover
- An independent set of size k requires k cliques
- The chromatic number χ(G) of the complement of G is an upper bound on G's independence number α(G)
- We work on the complement, so non-neighbors cannot share the same color ⇒ clique cover

• Weighted case: *clique multi cover* [Babel 94]

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight *w* must be covered by *w* cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

- Weighted case: *clique multi cover* [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors (|E|k)
 - method similar to [Tavares 16] (|V|³)

Pruning

- [Babel 94]'s pruning rule: marginal cost of adding a vertex to the *IS*
- At most one vertex per clique in the IS

Pruning

- [Babel 94]'s pruning rule: marginal cost of adding a vertex to the *IS*
- At most one vertex per clique in the IS
- E.g. if *d* ∈ *IS* then *a*, *e*, *f* cannot be in the *IS*, then:

Pruning

- [Babel 94]'s pruning rule: marginal cost of adding a vertex to the *IS*
- At most one vertex per clique in the IS
- E.g. if *d* ∈ *IS* then *a*, *e*, *f* cannot be in the *IS*, then:
 - No vertices from cliques included in N(d)
 - Marginal cost of $d \in IS$ is 4

• "Dual" rule: marginal cost of $v \in VC$

- "Dual" rule: marginal cost of $v \in VC$
- Lose w(f) = 13, gain at most $\sum_{u \in N(f)} w(u) = 22$

- "Dual" rule: marginal cost of $v \in VC$
- Lose w(f) = 13, gain at most $\sum_{u \in N(f)} w(u) = 22$
- At most one vertex per clique in the IS

- "Dual" rule: marginal cost of $v \in VC$
- Lose w(f) = 13, gain at most $\sum_{u \in N(f)} w(u) = 22$
- At most one vertex per clique in the IS
 - Gain at most 1 per neighbor clique

- "Dual" rule: marginal cost of $v \in VC$
- Lose w(f) = 13, gain at most $\sum_{u \in N(f)} w(u) = 22$
- At most one vertex per clique in the IS
 - Gain at most 1 per neighbor clique
 - Lose 13, win \leq 13: might as well be in *IS*

Residual graph after two decisions:
 g ∈ *VC* and *h* ∈ *VC*

- Residual graph after two decisions: *g* ∈ *VC* and *h* ∈ *VC*
- We have found an IS of weight 21
 - ▶ Failure since 21 ≥ 18

- Residual graph after two decisions:
 g ∈ *VC* and *h* ∈ *VC*
- We have found an IS of weight 21
 - ► Failure since 21 ≥ 18
- Explanation: minimal clause that entails the current upper bound when falsified

- Residual graph after two decisions:
 g ∈ *VC* and *h* ∈ *VC*
- We have found an IS of weight 21
 - ► Failure since 21 ≥ 18
- Explanation: minimal clause that entails the current upper bound when falsified
- Trivial explanation: $g \in IS$ or $h \in IS$

- Residual graph after two decisions:
 g ∈ *VC* and *h* ∈ *VC*
- We have found an IS of weight 21
 - ► Failure since 21 ≥ 18
- Explanation: minimal clause that entails the current upper bound when falsified
- Trivial explanation: $g \in IS$ or $h \in IS$

- Residual graph after two decisions:
 g ∈ *VC* and *h* ∈ *VC*
- We have found an IS of weight 21
 - ► Failure since 21 ≥ 18
- Explanation: minimal clause that entails the current upper bound when falsified
- Trivial explanation: $g \in IS$ or $h \in IS$

- Residual graph after two decisions:
 g ∈ *VC* and *h* ∈ *VC*
- We have found an IS of weight 21
 - ► Failure since 21 ≥ 18
- Explanation: minimal clause that entails the current upper bound when falsified
- Trivial explanation: $g \in IS$ or $h \in IS$
- Reduced explanation: $h \in IS$

• The stack of decisions/deductions contains literals [$v \in VC$] or [$v \in IS$]

- The stack of decisions/deductions contains literals [$v \in VC$] or [$v \in IS$]
- A literal $[v \in IS]$ is followed by the literals $[u \in VC]$ for $u \in N(v)$

- The stack of decisions/deductions contains literals [$v \in VC$] or [$v \in IS$]
- A literal $[v \in IS]$ is followed by the literals $[u \in VC]$ for $u \in N(v)$

- Explore the stack of decisions/deductions in reverse order
 - Given a literal [$v \in VC$]: try to remove it, and keep it otherwise

- The stack of decisions/deductions contains literals [$v \in VC$] or [$v \in IS$]
- A literal $[v \in IS]$ is followed by the literals $[u \in VC]$ for $u \in N(v)$

- Explore the stack of decisions/deductions in reverse order
 - Given a literal [$v \in VC$]: try to remove it, and keep it otherwise
 - Given a literal $[v \in VC]$: compute the cost of removing it

- The stack of decisions/deductions contains literals [$v \in VC$] or [$v \in IS$]
- A literal $[v \in IS]$ is followed by the literals $[u \in VC]$ for $u \in N(v)$

- Explore the stack of decisions/deductions in reverse order
 - Given a literal [$v \in VC$]: try to remove it, and keep it otherwise
 - Given a literal $[v \in VC]$: compute the cost of removing it
 - Given a literal $[v \in IS]$,

- The stack of decisions/deductions contains literals [$v \in VC$] or [$v \in IS$]
- A literal $[v \in IS]$ is followed by the literals $[u \in VC]$ for $u \in N(v)$

- Explore the stack of decisions/deductions in reverse order
 - Given a literal [$v \in VC$]: try to remove it, and keep it otherwise
 - Given a literal $[v \in VC]$: compute the cost of removing it
 - Given a literal $[v \in IS]$, if the cost of removing $[u \in VC]$ for $u \in N(v)$ is too high:

```
★ keep it, and remove [u \in VC] for u \in N(v)
```


- The stack of decisions/deductions contains literals $[v \in VC]$ or $[v \in IS]$
- A literal $[v \in IS]$ is followed by the literals $[u \in VC]$ for $u \in N(v)$

- Explore the stack of decisions/deductions in reverse order
 - Given a literal [$v \in VC$]: try to remove it, and keep it otherwise
 - Given a literal $[v \in VC]$: compute the cost of removing it
 - Given a literal $[v \in IS]$, if the cost of removing $[u \in VC]$ for $u \in N(v)$ is too high:
 - keep it, and remove $[u \in VC]$ for $u \in N(v)$
 - Otherwise:
 - remove $[v \in IS]$ and try to remove as many $[u \in VC]$ for $u \in N(v)$ as possible

Experimental evaluation: methods

- mwclq [Fang et al. 16]
- wlmc [Jiang et al. 17]
- cliquer [Ostergard 01]
- OTClique [Shimuzu et al. 17]
- Tavares [Tavares 16] (implementation [McCreesh et al. 17])

- DIMACS Maximum Clique
- BHOSLIB Maximum Independent Set

- DIMACS Maximum Clique, $w(v_i) = (i \mod 200) + 1$
- BHOSLIB Maximum Independent Set, $w(v_i) = (i \mod 200) + 1$

- DIMACS Maximum Clique, $w(v_i) = (i \mod 200) + 1$
- BHOSLIB Maximum Independent Set, $w(v_i) = (i \mod 200) + 1$
- Structured benchmarks proposed by citationMcCreesh et al. 17
 - WDP Winner Determination Problem in combinatorial auctions
 - EC-CODE Design of error-correction codes
 - REF Optimisation of university evaluation
 - KIDNEY Maximizes the number/emergency of kidney exchanges

Experimental evaluation: results on classes

• Objective function: Geometric average weight

Experimental evaluation: results on classes

• Objective function: Geometric average weight

		cdcl	wlmc	mwclq	cliquer	OTClique	Tavares
		objective	objective	objective	objective	objective	objective
BHOSLIB	(40)	4672.66	3770.83	4598.76	835.05	1619.57	4277.46
WDP	(50)	84.95 M	85.53 M	85.53 M	85.53 M	85.53 M	84.81 M
EC-CODE	(15)	97.31	97.31	96.88	97.31	97.31	97.31
DIMACS	(160)	3277.55	3232.41	3252.04	2079.63	2496.57	3146.91
REF	(129)	129.82	128.11	128.61	105.06	117.88	129.24
KIDNEY	(188)	549.71 B	549.41 B	516.48 B	537.69 B	540.15 B	544.41 B

Experimental evaluation: global results

Mean normalised gap to the best solution average over every instance of:

Normalised gap to best

PhD Thesis on combinatorial oprimization / machine learning with Renault

- Based at LAAS (Toulouse), visits to Renault (Paris)
- Fundamental research / Industrial applications
 - Routing in workshop, Car sequencing, Project Scheduling, ?
- Open topic: CDCL, DNN, Monte-Carlo tree search,...
- Attractive Salary
- Flexible starting date (end of 2018 to late spring 2019)

Fig. 2 – QG Renault

Questions?