Conflict Directed Clause Learning for the Maximum Weighted Clique Problem

Emmanuel Hebrard ${ }^{1}$ and George Katsirelos ${ }^{2}$
${ }^{1}$ LAAS-CNRS, Université de Toulouse ${ }^{2}$ MIAT, INRA

The Maximum Weight Clique Problem

- Given a graph G with weight function w

The Maximum Weight Clique Problem

- Given a graph G with weight function w
- Find a clique - set of vertices all pairwise adjacent - of maximum weight

The Maximum Weight Clique Problem

- Given a graph G with weight function w
- Find a clique - set of vertices all pairwise adjacent - of maximum weight

The Maximum Weight Clique Problem

- Given a graph G with weight function w
- Find a clique - set of vertices all pairwise adjacent - of maximum weight
- \Longleftrightarrow Find a set of vertices without edge (Independent Set - IS) of
 maximum weight (on the complement)

The Maximum Weight Clique Problem

- Given a graph G with weight function w
- Find a clique - set of vertices all pairwise adjacent - of maximum weight
- \Longleftrightarrow Find a set of vertices without edge (Independent Set - IS) of
 maximum weight (on the complement)
- \Longleftrightarrow Find a set of vertices touching every edge (Vertex Cover - VC) minimum weight (on the complement)

The Maximum Weight Clique Problem

- Given a graph G with weight function w
- Find a clique - set of vertices all pairwise adjacent - of maximum weight
- \Longleftrightarrow Find a set of vertices without edge (Independent Set - IS) of maximum weight (on the complement)
- \Longleftrightarrow Find a set of vertices touching every edge (Vertex Cover - VC) minimum weight (on the complement)

The Maximum Weight Clique Problem

- Given a graph G with weight function w
- Find a clique - set of vertices all pairwise adjacent - of maximum weight
- \Longleftrightarrow Find a set of vertices without edge (Independent Set - IS) of maximum weight (on the complement)
- \Longleftrightarrow Find a set of vertices touching every edge (Vertex Cover - VC) minimum weight (on the complement)

Branch \& Bound (CP) vs SAT Encoding

Branch \& Bound (CP)
SAT Encoding

Branch \& Bound (CP) vs SAT Encoding

Branch \& Bound (CP)

SAT Encoding

- Dedicated upper bound (coloring)
- Weak upper bound (UP)

Branch \& Bound (CP) vs SAT Encoding

Branch \& Bound (CP)

SAT Encoding

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Weak upper bound (UP)
- No data structure

Branch \& Bound (CP) vs SAT Encoding

Branch \& Bound (CP)

SAT Encoding

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Dedicated strategies (degree, color)
- Weak upper bound (UP)
- No data structure
- VSIDS

Branch \& Bound (CP) vs SAT Encoding

Branch \& Bound (CP)

SAT Encoding

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Dedicated strategies (degree, color)
- Backtracking
- Weak upper bound (UP)
- No data structure
- VSIDS
- Conflict-Driven Clause Learning

Branch \& Bound (CP) vs SAT Encoding

Branch \& Bound (CP)

SAT Encoding

- Dedicated upper bound (coloring)
- Dedicated data structure (bitsets)
- Dedicated strategies (degree, color)
- Backtracking
- Weak upper bound (UP)
- No data structure
- VSIDS
- Conflict-Driven Clause Learning

We want the best of both worlds!

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

- Branch and propagate as a CP solver
- Branch and propagate as a CP solver
- Store every deduction made during propagation as an explanation clause

$$
\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k}\right) \Longrightarrow c
$$

with p_{i} 's and c literals of the form $x\{=, \neq\} v$

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

- Branch and propagate as a CP solver
- Store every deduction made during propagation as an explanation clause

$$
\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k}\right) \Longrightarrow c
$$

with p_{i} 's and c literals of the form $x\{=, \neq\} v$

- When failing, compute a conflict using the explanation graph

Generalised Nogoods [Katsirelos and Bacchus 05][Ohrimenko, Stuckey and Codish 07]

- Branch and propagate as a CP solver
- Store every deduction made during propagation as an explanation clause

$$
\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k}\right) \Longrightarrow c
$$

with p_{i} 's and c literals of the form $x\{=, \neq\} v$

- When failing, compute a conflict using the explanation graph
- A global constraint " X is an independent set of weight larger than k "
- Compute an upper bound
- Prune w.r.t. this upper bound
- Need to compute explanations!

Branching

For any vertex v :

For any vertex v :

- either v is in $V C$ ($x_{v}=$ true $)$

Branching

Branching

For any vertex v :

- either v is in $V C$ ($x_{v}=$ true $)$

Branching

For any vertex v :

- either v is in $V C$ ($x_{v}=$ true $)$
- or v is in $I S\left(x_{v}=f a l s e\right)$

For any vertex v :

- either v is in $V C$ ($x_{v}=$ true $)$
- or v is in $I S\left(x_{v}=\right.$ false $)$

Branching

13

Upper bound

- Unweighted case: coloring

Upper bound

- Unweighted case: coloring
- A clique of size k requires k colors

Upper bound

- Unweighted case: coloring
- A clique of size k requires k colors
- The chromatic number $\chi(G)$ of G is an upper bound on its clique number $\omega(G)$

Upper bound

- Unweighted case: coloring
- A clique of size k requires k colors
- The chromatic number $\chi(G)$ of G is an upper bound on its clique number $\omega(G)$
- We work on the complement, so non-neighbors cannot share the same
 color \Rightarrow clique cover

Upper bound

- Unweighted case: clique cover
- An independent set of size k requires k cliques
- The chromatic number $\chi(\bar{G})$ of the complement of G is an upper bound on G's independence number $\alpha(G)$
- We work on the complement, so
 non-neighbors cannot share the same color \Rightarrow clique cover

Upper bound

- Weighted case: clique multi cover [Babel 94]

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

CNRS

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$
- method similar to [Tavares 16] $\left(|V|^{3}\right)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors $(|E| k)$

- method similar to [Tavares 16] $\left(|V|^{3}\right)$

CNRS

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

```
3+3
```

- method similar to [Tavares 16] (|V| $\left.{ }^{3}\right)$

Upper bound

CNRS

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

```
3+3
```

- method similar to [Tavares 16] (|V| $\left.{ }^{3}\right)$

Upper bound

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

- method similar to [Tavares 16] $\left(|V|^{3}\right)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set

- Babel's complexity depends on the number of colors $(|E| k)$

- method similar to [Tavares 16] $\left(|V|^{3}\right)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors $(|E| k)$

- method similar to [Tavares 16] (|V| $\left.{ }^{3}\right)$

Upper bound

- Weighted case: clique multi cover [Babel 94]
- A vertex of weight w must be covered by w cliques
- The total number of clique is an upper bound on weight of the heaviest independent set
- Babel's complexity depends on the number of colors $(|E| k)$

```
3+3+2+6+1+3=18
```

- method similar to [Tavares 16] (|V| $\left.{ }^{3}\right)$
- [Babel 94]'s pruning rule: marginal cost of adding a vertex to the $I S$
- At most one vertex per clique in the $I S$

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\}\{b\}\{a, d, f\}\{a, f\}\{f\} \\
& \mathbf{3}+\mathbf{3}+\mathbf{2}+\mathbf{6}+\mathbf{1}+\mathbf{3}=\mathbf{1 8}
\end{aligned}
$$

LAAS

- [Babel 94]'s pruning rule: marginal cost of adding a vertex to the $I S$
- At most one vertex per clique in the $I S$
- E.g. if $d \in I S$ then a, e, f cannot be in

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\}\{b\}\{a, d, f\}\{a, f\}\{f\} \\
& \mathbf{3}+\mathbf{3}+\mathbf{2}+\mathbf{6}+\mathbf{1}+\mathbf{3}=\mathbf{1 8}
\end{aligned}
$$

- [Babel 94]'s pruning rule: marginal cost of adding a vertex to the $I S$
- At most one vertex per clique in the $I S$
- E.g. if $d \in I S$ then a, e, f cannot be in

- No vertices from cliques included in $N(d)$
- Marginal cost of $d \in I S$ is 4

Dominance

- "Dual" rule: marginal cost of $v \in V C$

$$
\begin{aligned}
& \{a, b, c\} d, e, f\}\{b\}\{a, d, f\}\{a, f\}\{f\} \\
& \mathbf{3}+\mathbf{3}+\mathbf{2}+\mathbf{6}+\mathbf{1}+\mathbf{3}=\mathbf{1 8}
\end{aligned}
$$

Dominance

- "Dual" rule: marginal cost of $v \in V C$
- Lose $w(f)=13$, gain at most $\sum_{u \in N(f)} w(u)=22$

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\}\{b\} \quad\{a, d, f\}\{a, f\}\{f\} \\
& \mathbf{3}+\mathbf{3}+\mathbf{2}+\mathbf{6}+\mathbf{1}+\mathbf{3}=\mathbf{1 8}
\end{aligned}
$$

Dominance

- "Dual" rule: marginal cost of $v \in V C$
- Lose $w(f)=13$, gain at most $\sum_{u \in N(f)} w(u)=22$

- "Dual" rule: marginal cost of $v \in V C$
- Lose $w(f)=13$, gain at most $\sum_{u \in N(f)} w(u)=22$

Dominance

- Gain at most 1 per neighbor clique

$$
\begin{aligned}
& \{a, b, c\} d, e, f\} \quad\{b\} \quad\{a, d, f\}\{a, f\}\{f\} \\
& \mathbf{3}+\mathbf{3}+\mathbf{2}+\mathbf{6}+\mathbf{1}+\mathbf{3}=\mathbf{1 8}
\end{aligned}
$$

- "Dual" rule: marginal cost of $v \in V C$
- Lose $w(f)=13$, gain at most $\sum_{u \in N(f)} w(u)=22$

Dominance

- Gain at most 1 per neighbor clique
- Lose 13 , win ≤ 13 : might as well be in IS

Explanation

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\} \quad\{b\} \quad\{a, d, f\}\{a, f\} \quad\{f\} \\
& 3+3+2+6+1+3+18
\end{aligned}
$$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\} \quad\{b\} \quad\{a, d, f\}\{a, f\} \quad\{f\} \\
& 3+3+2+6+1+3=18
\end{aligned}
$$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$
- We have found an IS of weight 21
- Failure since $21 \geq 18$

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\} \quad\{b\} \quad\{a, d, f\}\{a, f\} \quad\{f\} \\
& 3+3+2+6+1+3=18
\end{aligned}
$$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$
- We have found an IS of weight 21
- Failure since $21 \geq 18$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$
- We have found an IS of weight 21
- Failure since $21 \geq 18$

- Trivial explanation: $g \in I S$ or $h \in I S$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$
- We have found an IS of weight 21
- Failure since $21 \geq 18$

- Trivial explanation: $g \in I S$ or $h \in I S$
$\{a, b, c\}\{d, e, f\} \quad\{b\} \quad\{a, d, f\}\{a, f\} \quad\{f\}$
$3+3+2+6+1+3=18$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$
- We have found an IS of weight 21
- Failure since $21 \geq 18$
- Explanation: minimal clause that entails the current upper bound when falsified

- Trivial explanation: $g \in I S$ or $h \in I S$

$$
\begin{aligned}
& \{a, b, c\}\{d, e, f\}\{b, \mathbf{g}\}\{a, d, f\}\{a, f, \mathbf{g}\}\{f, \mathbf{g}\} \\
& \mathbf{3}+\mathbf{3}+2+6+\mathbf{1}+\mathbf{3}=\mathbf{1 8}
\end{aligned}
$$

Explanation

- Residual graph after two decisions: $g \in V C$ and $h \in V C$
- We have found an IS of weight 21
- Failure since $21 \geq 18$
- Explanation: minimal clause that entails the current upper bound when falsified

- Trivial explanation: $g \in I S$ or $h \in I S$
- Reduced explanation: $h \in I S$

Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$

Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$
- A literal $[v \in I S]$ is followed by the literals $[u \in V C]$ for $u \in N(v)$

Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$
- A literal $[v \in I S]$ is followed by the literals $[u \in V C]$ for $u \in N(v)$

Explanation Algorithm

- Explore the stack of decisions/deductions in reverse order
- Given a literal $[v \in V C]$: try to remove it, and keep it otherwise

Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$
- A literal $[v \in I S]$ is followed by the literals $[u \in V C]$ for $u \in N(v)$

Explanation Algorithm

- Explore the stack of decisions/deductions in reverse order
- Given a literal $[v \in V C]$: try to remove it, and keep it otherwise
- Given a literal $[v \in V C]$: compute the cost of removing it

Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$
- A literal $[v \in I S]$ is followed by the literals $[u \in V C]$ for $u \in N(v)$

Explanation Algorithm

- Explore the stack of decisions/deductions in reverse order
- Given a literal $[v \in V C]$: try to remove it, and keep it otherwise
- Given a literal $[v \in V C]$: compute the cost of removing it
- Given a literal $[v \in I S]$,

Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$
- A literal $[v \in I S]$ is followed by the literals $[u \in V C]$ for $u \in N(v)$

Explanation Algorithm

- Explore the stack of decisions/deductions in reverse order
- Given a literal $[v \in V C]$: try to remove it, and keep it otherwise
- Given a literal $[v \in V C]$: compute the cost of removing it
- Given a literal $[v \in I S]$, if the cost of removing $[u \in V C]$ for $u \in N(v)$ is too high:

```
keep it, and remove [u\inVC] for }u\inN(v
```


Explanation

- The stack of decisions/deductions contains literals $[v \in V C]$ or $[v \in I S]$
- A literal $[v \in I S]$ is followed by the literals $[u \in V C]$ for $u \in N(v)$

Explanation Algorithm

- Explore the stack of decisions/deductions in reverse order
- Given a literal $[v \in V C]$: try to remove it, and keep it otherwise
- Given a literal $[v \in V C]$: compute the cost of removing it
- Given a literal $[v \in I S]$, if the cost of removing $[u \in V C]$ for $u \in N(v)$ is too high:

$$
\text { keep it, and remove }[u \in V C] \text { for } u \in N(v)
$$

- Otherwise:

Experimental evaluation: methods

- mwclq [Fang et al. 16]
- wlmc [Jiang et al. 17]
- cliquer [Ostergard 01]
- OTClique [Shimuzu et al. 17]
- Tavares [Tavares 16] (implementation [McCreesh et al. 17])

Experimental evaluation: benchmarks

Experimental evaluation: benchmarks

- DImACS Maximum Clique
- Bhoslib Maximum Independent Set

Experimental evaluation: benchmarks

- DIMACS Maximum Clique, $w\left(v_{i}\right)=(i \bmod 200)+1$
- BHOSLIB Maximum Independent Set, $w\left(v_{i}\right)=(i \bmod 200)+1$

Experimental evaluation: benchmarks

- DIMACS Maximum Clique, $w\left(v_{i}\right)=(i \bmod 200)+1$
- BHOSLIB Maximum Independent Set, $w\left(v_{i}\right)=(i \bmod 200)+1$
- Structured benchmarks proposed by citationMcCreesh et al. 17
- WDP Winner Determination Problem in combinatorial auctions
- EC-CODE Design of error-correction codes
- REF Optimisation of university evaluation
- KIDNEY Maximizes the number/emergency of kidney exchanges

Experimental evaluation: results on classes

- Objective function: Geometric average weight

Experimental evaluation: results on classes

- Objective function: Geometric average weight

		cdcl	wlmc	mwclq	cliquer	OTClique	Tav
		objective	objective	objective	objective	objective	objective
BHOSLIB	(40)	4672.66	3770.83	4598.76	835.05	1619.57	4277.46
WDP	(50)	84.95M	85.53M	85.53M	85.53M	85.53M	84.81M
EC-CODE	(15)	97.31	97.31	96.88	97.31	97.31	97.31
DIMACS	(160)	3277.55	3232.41	3252.04	2079.63	2496.57	3146.91
REF	(129)	129.82	128.11	128.61	105.06	117.88	129.24
KIDNEY	(188)	549.71B	549.41B	516.48B	537.69B	540.15B	544.41B

Experimental evaluation: global results

Mean normalised gap to the best solution average over every instance of:

- maximum weight u
- minimum weight /
- gap of weight $g(w)=$ $\begin{cases}\frac{u-w}{u-l} & \text { if } u>1 \\ 0 & \text { otherwise }\end{cases}$
- 0 if best, 1 if worst

PhD Thesis on combinatorial oprimization / machine learning with Renault

- Based at LAAS (Toulouse), visits to Renault (Paris)
- Fundamental research / Industrial applications
- Routing in workshop, Car sequencing, Project Scheduling, ?
- Open topic: CDCL, DNN, Monte-Carlo tree search,...
- Attractive Salary
- Flexible starting date (end of 2018 to late spring 2019)

Fig. 1 - Cantine du LAAS

Fig. 2 - QG Renault

Questions?

