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The Maximum Weight Clique Problem

Given a graph G with weight function w

Find a clique – set of vertices all
pairwise adjacent – of maximum weight

⇐⇒ Find a set of vertices without
edge (Independent Set – IS) of
maximum weight (on the complement)

⇐⇒ Find a set of vertices touching
every edge (Vertex Cover – VC)
minimum weight (on the complement)
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Branch & Bound (CP) vs SAT Encoding

Branch & Bound (CP)

Dedicated upper bound (coloring)

Dedicated data structure (bitsets)

Dedicated strategies (degree, color)

Backtracking

SAT Encoding

Weak upper bound (UP)

No data structure

VSIDS

Conflict-Driven Clause Learning

We want the best of both worlds!
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Generalised Nogoods [Katsirelos and Bacchus
05][Ohrimenko, Stuckey and Codish 07]

Branch and propagate as a CP solver

Store every deduction made during propagation as an explanation clause

(p1 ∧ p2 ∧ . . . ∧ pk ) =⇒ c

with pi ’s and c literals of the form x{=, 6=}v

When failing, compute a conflict using the explanation graph

A global constraint “X is an independent set of weight larger than k ”
I Compute an upper bound

I Prune w.r.t. this upper bound

I Need to compute explanations!
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Branching

For any vertex v :

either v is in VC (xv = true)

or v is in IS (xv = false)
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Upper bound

Unweighted case: coloring

of size k requires k colors

The chromatic number of G is an
upper bound on

We work on the complement, so
non-neighbors cannot share the same
color ⇒ clique cover
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Upper bound

Unweighted case: clique cover

An independent set of size k requires k
cliques

The chromatic number χ(G) of the
complement of G is an upper bound on
G’s independence number α(G)

We work on the complement, so
non-neighbors cannot share the same
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Upper bound

Weighted case: clique multi
cover [Babel 94]

A vertex of weight w must be covered
by w cliques

The total number of clique is an upper
bound on weight of the heaviest
independent set

Babel’s complexity depends on the
number of colors (|E |k )

I method similar to [Tavares 16] (|V |3)
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Pruning

[Babel 94]’s pruning rule: marginal cost
of adding a vertex to the IS

At most one vertex per clique in the IS

E.g. if d ∈ IS then a, e, f cannot be in
the IS, then:

I No vertices from cliques included in N(d)

I Marginal cost of d ∈ IS is 4

a

10

b5

c

3

e

3

f 13

d 9

d 9

3 + 3 + 2 + 6 + 1 + 3 = 18

+ 1 + 3 = 14

{a, b, c}{d, e, f} {b} {a, d, f} {a, f} {f}
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Dominance

“Dual” rule: marginal cost of v ∈ VC

Lose w(f ) = 13, gain at most∑
u∈N(f ) w(u) = 22

At most one vertex per clique in the IS

I Gain at most 1 per neighbor clique

I Lose 13, win ≤ 13: might as well be in IS

a
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Explanation

Residual graph after two decisions:
g ∈ VC and h ∈ VC

We have found an IS of weight 21
I Failure since 21 ≥ 18

Explanation: minimal clause that entails
the current upper bound when falsified

Trivial explanation: g ∈ IS or h ∈ IS

Reduced explanation: h ∈ IS

a

10

b5

c

3

d9

e
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f 13
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g6 g6 3
1
2
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{b, g} {a, f , g} {f , g}
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Explanation

The stack of decisions/deductions contains literals [v ∈ VC] or [v ∈ IS]

A literal [v ∈ IS] is followed by the literals [u ∈ VC] for u ∈ N(v)

Explanation Algorithm

Explore the stack of decisions/deductions in reverse order
I Given a literal [v ∈ VC]: try to remove it, and keep it otherwise
I Given a literal [v ∈ VC]: compute the cost of removing it
I Given a literal [v ∈ IS], if the cost of removing [u ∈ VC] for u ∈ N(v) is too high:

F keep it, and remove [u ∈ VC] for u ∈ N(v)

I Otherwise:
F remove [v ∈ IS] and try to remove as many [u ∈ VC] for u ∈ N(v) as possible
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Experimental evaluation: methods

mwclq [Fang et al. 16]

wlmc [Jiang et al. 17]

cliquer [Ostergard 01]

OTClique [Shimuzu et al. 17]

Tavares [Tavares 16] (implementation [McCreesh et al. 17])

11 / 16



Experimental evaluation: benchmarks

DIMACS Maximum Clique

, w(vi) = (i mod 200) + 1

BHOSLIB Maximum Independent Set

, w(vi) = (i mod 200) + 1

Structured benchmarks proposed by citationMcCreesh et al. 17

I WDP Winner Determination Problem in combinatorial auctions

I EC-CODE Design of error-correction codes

I REF Optimisation of university evaluation

I KIDNEY Maximizes the number/emergency of kidney exchanges
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Experimental evaluation: results on classes

Objective function: Geometric average weight

cdcl wlmc mwclq cliquer OTClique Tavares

objective objective objective objective objective objective

BHOSLIB (40) 4672.66 3770.83 4598.76 835.05 1619.57 4277.46
WDP (50) 84.95M 85.53M 85.53M 85.53M 85.53M 84.81M

EC-CODE (15) 97.31 97.31 96.88 97.31 97.31 97.31
DIMACS (160) 3277.55 3232.41 3252.04 2079.63 2496.57 3146.91
REF (129) 129.82 128.11 128.61 105.06 117.88 129.24

KIDNEY (188) 549.71B 549.41B 516.48B 537.69B 540.15B 544.41B
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Experimental evaluation: global results

Mean normalised gap to the best solution average over every instance of:

maximum weight u

minimum weight l

gap of weight g(w) ={ u−w
u−l if u > l

0 otherwise

I 0 if best, 1 if worst
0 0.1 0.2 0.3

101
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104

105

106

107

Normalised gap to best

C
P

U
tim

e
(m

s)

cdcl
wlmc
mwclq
cliquer
OTClique
Tavares
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PhD Thesis on combinatorial oprimization /
machine learning with Renault

Based at LAAS (Toulouse), visits to Renault (Paris)

Fundamental research / Industrial applications

I Routing in workshop, Car sequencing, Project Scheduling, ?

Open topic: CDCL, DNN, Monte-Carlo tree search,...

Attractive Salary

Flexible starting date (end of 2018 to late spring 2019)

Fig. 1 – Cantine du LAAS

Fig. 2 – QG Renault
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Questions?
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