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ML versus DM

Predictive (global) modeling:
turn the data into an as accurate as possible prediction machine
ultimate purpose is automatization
e.g., autonomously driving a car based on sensor inputs.

Exploratory data analysis:
automatically discover novel insights about the domain in which
the data was measured
use machine discoveries to synergistically boost human expertise
e.g., understanding commonalities and differences among
PET scans of Alzheimer’s patients.
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Roadmap

constraint-based pattern mining
(å not a tutorial, the goal is to illustrate the limits)

pattern mining as an optimization problem

interactive pattern mining

Each part:
a period of the data mining story

a take-home message
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Constraint-based pattern mining:
the toolbox and its limits
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Data mining task: an example
Contrast patterns (1/2)

d1 d2 d3 d4 d5
mol1 X X X X X
mol2 X X X X X
mol3 X X X X X
mol4 X X X X X
mol5 X X X X X
mol6 X X X X X
mol7 X X X X X
mol8 X X X X X
mol9 X X X X X
mol10 X X X X X

2 classes:
T: toxic
NT: non toxic

X : pattern
example: {d1,d2}

{d1,d2}: present/supported
by chemicals [2,9,10]

Frequency:
F ({d1, d2}) = 3
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Contrast patterns (2/2)

d1 d2 d3 d4 d5
mol1 X X X X X
mol2 X X X X X
mol3 X X X X X
mol4 X X X X X
mol5 X X X X X
mol6 X X X X X
mol7 X X X X X
mol8 X X X X X
mol9 X X X X X
mol10 X X X X X

GR (“growth rate”) to quantify
a contrast:

GRT (X ) = |NT | × F (X ,T )
|T | × F (X ,NT )

{d1,d3} is present in:
- the toxic chemicals [2,4,5]
- the non-toxic chemicals [6]

GRT ({d1, d3}) = 5× 3
5× 1 = 3

Emerging pattern : GRclas(X ) ≥ mingr (a constraint)

goal: given mingr , mining all emerging patterns.
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What is the difficulty?

Let us consider a very simple description of chemicals:
å n binary descriptors (presence/absence of molecular fragments)

What is the size of the search space?

2n (it is easy to get huge. . . )

Example of computation time:
(1 micro-second is required to process one data)

Taille (n) log2n n nlog2n n2 2n

10 3× 10−6 10× 10−6 30× 10−6 100× 10−6 10−3
100 7× 10−6 100× 10−6 700× 10−6 0.01

1014 centuries

1000 10× 10−6 10−3 0.01 1

astronomic

10 000 13× 10−6 0.01 0.13 1.7 minute

astronomic

100 000 17× 10−6 0.1 1.7 2.8 hours

astronomic

Heikki Mannila: “data mining is the art of counting”
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Must we explore
the whole search space?

frequent patterns
(and association rules)

å no
(it can be still expensive)

contrast patterns

å a priori yes

Why contrast patterns do not follow anti-monotonicity property?
when a pattern is specialized, both the numerator and denominator decrease, but the numerator
as well as the denominator can decrease the fastest

“solution”: pruning according to “branch and bound”
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Speeding the algorithms

pattern condensed representations (Calders et al.
Constraint-Based Mining and Inductive Databases 2004):
do not count the frequency of all patterns (the frequencies of other patterns
are deduced from the computed frequencies) à equivalence classes

the FIM Era: FIMI1 Workshop@ICDM, 2003 and 2004
during more than a decade, only ms were worth it!
even if the complete collection of frequent itemsets is known useless,
the main objective of many algorithms was to earn ms according to
their competitors!

What about the end-user (and the pattern interestingness)?
å constraints are a partial answer.

1Frequent Itemset Mining Implementations
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Constraint-based data mining

Constraints are needed for:
making the extraction feasible
only retrieving patterns that describe an interesting subgroup of
the data

Constraint properties are used to infer constraint values on (many)
patterns without having to evaluate them individually
å they are defined up to the partial order � used for listing the
patterns
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Classes of constraints

There are several classes of constraints (e.g. (anti-)monotone,
convertible, succinct constraints).

A large class of constraints: a lot of constraints can be
decomposed into several pieces that are either monotone or
anti-monotone.

primitive-based constraints (Soulet et al. PAKDD 2005)

piecewise monotone and anti-monotone constraints
(Cerf at al. SDM 2008)

projection-antimonotonicity (Buzmakov et al. ECML/PKDD 2015)
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The “secret” of constraint-based
pattern mining

deduce (anti-)monotone constraints from the whole query

take benefit from intervals/spaces where patterns have a same
value according to interestingness measures
å pattern condensed representations
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Toward declarativity

Why declarative approaches?
for each problem, do not write a solution from scratch

Declarative approaches:
CP approaches (De Raedt et al. KDD 2008, Khiari et al. CP 2010, Guns
et al. TKDE 2013, Dao et al. ECML/PKDD 2013, Dao et al AIJ 2017,
Aoga et al. Constraints 2017,. . . )

SAT approaches (Boudane et al. IJCAI 2016, Jabbour et al. CIKM 2013,
Jabbour et al. PAKDD 2017, Dao et al IJCAI-ECAI 2018,. . . )

ILP approaches (Mueller et al DS 2010, Babaki et al. CPAIOR 2014,
Ouali et al. IJCAI 2016,. . . )

ASP approaches (Gebser et al. IJCAI 2016,. . . )
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Thresholding problem

threshold
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a too stringent threshold:
trivial patterns

a too weak threshold:
too many patterns, unmanageable
and diversity not necessary assured

some attempts to tackle this issue:
interestingness is not a dichotomy (Bistarelli and Bonchi
ECML/PKDD 2005)
taking benefit from hierarchical relationships (Han and Fu TKDE
1999, Desmier et al. IDA 2014)

but setting thresholds remains an issue in pattern mining.
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Constraint-based pattern mining:
issues

how to fix thresholds?

how to handle numerous patterns including non-informative
patterns? how to get a global picture of the set of patterns?

how to support the user to define relevant constraints
independently of the pruning strategies used by the algorithms?
how to design the proper constraints/preferences?
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Take home message 1:

the need of preferences in pattern mining
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Pattern mining as an optimization problem
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Pattern mining
as an optimization problem

performance issue
the more, the better
data-driven

quality issue
the less, the better
user-driven

In this part:
preferences to express user’s interests
focusing on the best patterns:
dominance relation, optimal pattern sets, subjective interest
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Addressing pattern mining tasks
with user preferences

Idea: a preference expresses a user’s interest
(no required threshold)

Examples based on measures/dominance relation:
“the higher the frequency, growth rate and aromaticity are,
the better the patterns”
“I prefer pattern X1 to pattern X2 if X1 is not dominated by X2
according to a set of measures”

å measures/preferences: a natural criterion for ranking patterns
and presenting the “best” patterns
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Preference-based approaches
in this talk

in this part: preferences are explicit (typically given by the user
depending on his/her interest/subjectivity)
in the next part: preferences are implicit

quantitative/qualitative preferences:
quantitative:

measures


constraint-based data mining : frequency , size, . . .
background knowledge: price,weight, aromaticity , . . .
statistics: entropy , pvalue, . . .

qualitative: “I prefer pattern X1 to pattern X2” (pairwise
comparison between patterns).
With qualitative preferences: two patterns can be incomparable.
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Measures

Many works on:
interestingness measures (Geng et al. ACM Computing Surveys 2006)

utility functions (Yao and Hamilton DKE 2006)

statistically significant rules (Hämäläinen and Nykänen ICDM 2008)

Examples:

area(X ) = frequency(X )× size(X ) (tiling: surface)

lift(X1 → X2) = D×frequency(X1X2)
frequency(X2)×frequency(X1)

utility functions: utility of the mined patterns (e.g. weighted
items, weighted transactions).
An example: No of Product × Product profit
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Putting the pattern mining task to
an optimization problem
The most interesting patterns according to measures/preferences:

free/closed patterns (Boulicaut et al. DAMI 2003, Bastide et al.
SIGKDD Explorations 2000)
å given an equivalent class, I prefer the shortest/longest patterns
one measure: top-k patterns (Fu et al. Ismis 2000, Jabbour et al.
ECML/PKDD 2013)
several measures: how to find a trade-off between several criteria?
å skyline patterns (Cho et al. IJDWM 2005, Soulet et al. ICDM 2011,
van Leeuwen and Ukkonen ECML/PKDD 2013)
dominance programming (Negrevergne et al. ICDM 2013),
optimal patterns (Ugarte et al. ICTAI 2015)
subjective interest/interest according to a background
knowledge (De Bie DAMI 2011) 23/60



top-k pattern mining: an example
Goal: finding the k patterns maximizing an interestingness measure.

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

the 3 most frequent patterns:
B, E , BE a

å easy due to the anti-monotone
property of frequency

the 3 patterns maximizing area:
BCDE , BCD, CDE
å branch & bound
(Zimmermann and De Raedt MLJ09)

aOther patterns have a frequency of 5:
C , D, BC , BD, CD, BCD

24/60



top-k pattern mining: an example
Goal: finding the k patterns maximizing an interestingness measure.

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

the 3 most frequent patterns:
B, E , BE a

å easy due to the anti-monotone
property of frequency

the 3 patterns maximizing area:
BCDE , BCD, CDE
å branch & bound
(Zimmermann and De Raedt MLJ09)

aOther patterns have a frequency of 5:
C , D, BC , BD, CD, BCD

24/60



top-k pattern mining
an example of pruning condition

top-k patterns according to area, k = 3

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Principle:

Cand : the current set of the k
best candidate patterns
when a candidate pattern is
inserted in Cand , a more efficient
pruning condition is deduced

A: lowest value of area for the patterns in Cand

L: size of the longest transaction in D (here: L = 6)

a pattern X must satisfy frequency(X ) ≥ A
L

to be inserted in Cand
å pruning condition according to the
frequency (thus anti-monotone)

Example with a depth first search approach:
initialization: Cand = {B, BE , BEC}
(area(BEC) = 12, area(BE) = 10, area(B) = 6)

å frequency(X) ≥ 6
6

new candidate BECD: Cand = {BE , BEC , BECD}
(area(BECD) = 16, area(BEC) = 12, area(BE) = 10)

å frequency(X) ≥ 10
6 which is more efficient

than frequency(X) ≥ 6
6

new candidate BECDF . . .
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top-k pattern mining in a nutshell

Advantages:

compact

threshold free

best patterns

Drawbacks:

complete resolution is costly,
sometimes heuristic search
(beam search)
(van Leeuwen and Knobbe DAMI 2012)

diversity issue: top-k patterns
are often very similar

several criteria must be aggregated
å skylines patterns: a trade-off
between several criteria
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Skypatterns (Pareto dominance)
Notion of skylines (database) in pattern mining (Cho at al. IJDWM 2005, Papadopoulos et al.

DAMI 2008, Soulet et al. ICDM 2011, van Leeuwen and Ukkonen ECML/PKDD 2013)

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Patterns freq area
AB 2 4

AEF 2 6
B 6 6

BCDE 4 16
CDEF 2 8

E 6 6
...

...
...

|LI | = 26, but only 4 skypatterns

Sky(LI , {freq, area}) = {BCDE ,BCD,B,E}
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Skylines vs skypatterns

Problem Skylines Skypatterns

Mining task
a set of a set of

non dominated non dominated
transactions patterns

Size of the | D | | L |space search
domain a lot of works very few works

usually: | D |<<| L | D set of transactions
L set of patterns
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Skypatterns: how to process?
A naive enumeration of all candidate patterns (LI) and then
comparing them is not feasible. . .

Two approaches:
1 take benefit from the pattern condensed representation according

to the condensable measures of the given set of measures M
skylineability to obtain M ′ (M ′ ⊆ M)
giving a more concise pattern condensed representation
the pattern condensed representation w.r.t. M ′ is a superset of
the representative skypatterns w.r.t. M which is (much smaller)
than LI .

2 use of the dominance programming framework (together with
skylineability)
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Dominance programming
Dominance: a pattern is optimal if it is not dominated by another.
Skypatterns: dominance relation = Pareto dominance

1 Principle:
starting from an initial pattern s1
searching for a pattern s2 such that s1 is not preferred to s2
searching for a pattern s3 such that s1 and s2 are not preferred
to s3...
until there is no pattern satisfying the whole set of constraints

2 Solving:
constraints are dynamically posted during the mining step

Principle: increasingly reduce the dominance area by processing
pairwise comparisons between patterns. Methods using Dynamic CSP
(Negrevergne et al. ICDM 2013, Ugarte et al. CPAIOR 2014, AIJ 2017). 30/60



Dominance programming:
example of the skypatterns

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

| LI |= 26 = 64 patterns
4 skypatterns

ar
ea

freq
M = {freq, area}

q(X ) ≡ closedM′(X )

∧¬(s1 �M X )∧¬(s2 �M X )

Candidates =

{BCDEF︸ ︷︷ ︸
s1

, BEF︸︷︷︸
s2

, EF︸︷︷︸
s3

, }
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Dominance programming: to sum up

The dominance programming framework encompasses many kinds of
patterns:

dominance relation
maximal patterns inclusion
closed patterns inclusion at same frequency

order induced bytop-k patterns the interestingness measure
skypatterns Pareto dominance

maximal patterns ⊆ closed patterns

top-k patterns ⊆ skypatterns
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A step further

a preference is defined by any property between two patterns
(i.e., pairwise comparison) and not only the Pareto dominance
relation: measures on a set of patterns, overlapping between
patterns, coverage,. . .

å preference-based optimal patterns

In the following:
(1) define preference-based optimal patterns,
(2) show how many tasks of local patterns fall into this framework,
(3) deal with optimal pattern sets (not given in this talk).
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Preference-based optimal patterns

A preference B is a strict partial order relation on a set of patterns S.
x B y indicates that x is preferred to y

(Ugarte et al. ICTAI 2015): a pattern x is optimal (OP) according to B
iff 6 ∃y1, . . . yp ∈ S,∀1 ≤ j ≤ p, yj B x
(a single y is enough for many data mining tasks)

Characterisation of a set of OPs: a set of patterns:{
x ∈ S | fundamental(x) ∧ 6 ∃y1, . . . yp ∈ S,∀1 ≤ j ≤ p, yj B x

}
fundamental(x): x must satisfy a property defined by the user
for example: having a minimal frequency, being closed, . . .
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Local patterns: examples

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

S = LI
(Mannila et al. DAMI 1997)

Large tiles
c(x) ≡ freq(x)× size(x) ≥ ψarea

Example: freq(BCD)× size(BCD) = 5× 3 = 15

Frequent sub-groups
c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y ∈ S :

T1(y) ⊇ T1(x) ∧ T2(y) ⊆ T2(x)
∧ (T (y) = T (x)⇒ y ⊂ x)

Skypatterns
c(x) ≡ closedM(x)

∧ 6∃ y ∈ S : y �M x

Frequent top-k patterns according to m
c(x) ≡ freq(x) ≥ ψfreq

∧ 6∃ y1, . . . , yk ∈ S :∧
1≤j≤k

m(yj) > m(x)
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Local (optimal) patterns: examples

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

S = LI
(Mannila et al. DAMI 1997)

Large tiles
c(x) ≡ freq(x)× size(x) ≥ ψarea

Frequent sub-groups
c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y ∈ S :

T1(y) ⊇ T1(x) ∧ T2(y) ⊆ T2(x)
∧ (T (y) = T (x)⇒ y ⊂ x)

Skypatterns
c(x) ≡ closedM(x)

∧ 6∃ y ∈ S : y �M x

Frequent top-k patterns according to m
c(x) ≡ freq(x) ≥ ψfreq

∧ 6∃ y1, . . . , yk ∈ S :∧
1≤j≤k

m(yj) > m(x)
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Many other works in this broad field
Example: heuristic approaches
pattern sets based on the Minimum Description Length principle: a
small set of patterns that compress - Krimp (Siebes et al. SDM 2006)
L(D, CT ): the total compressed size of the encoded database and the code table:

L(D,CT ) = L(D|CT ) + L(CT |D)
Many usages:

characterizing the differences and the norm between given components in
the data - DiffNorm (Budhathoki and Vreeken ECML/PKDD 2015)
causal discovery (Budhathoki and Vreeken ICDM 2016)
missing values (Vreeken and Siebes ICDM 2008)
handling sequences (Bertens et al. KDD 2016)
. . .

and many other works on data compression/summarization (e.g. Kiernan and
Terzi KDD 2008),. . .
Nice results based on the frequency. How handling other measures? 37/60



Pattern mining as an optimization
problem: concluding remarks

In the approaches indicated in this part:
measures/preferences are explicit and must be given by the
user. . . (but there is no threshold :-)

diversity issue: top-k patterns are often very similar

complete approaches (optimal w.r.t the preferences):
å stop completeness “Please, please stop making new
algorithms for mining all patterns”
Toon Calders (ECML/PKDD 2012, most influential paper award)

A further step: interactive pattern mining (including the instant
data mining challenge), implicit preferences and learning preferences
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Take home message 2:

pattern mining can also be an
optimization problem

(in this part, with explicit preferences)
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Interactive pattern mining
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Interactive pattern mining

Idea: “I don’t know what I am looking for, but I would definitely
know if I see it.”
à preference acquisition

In this part:
easier: no user-specified parameters (constraint, threshold or
measure)
better: learn user preferences from user feedback
faster: instant pattern discovery (otherwise the user is
discouraged)
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Interactive pattern mining: overview

Interactive data exploration using pattern mining (Van Leeuwen 2014)

Learn Interact

Mine

provide
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Interactive pattern mining: overview

Interactive data exploration using pattern mining (Van Leeuwen 2014)

Learn Interact

Mine

Mine: provide a sample of k patterns to the user (called the query Q)
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Interactive pattern mining: overview

Interactive data exploration using pattern mining (Van Leeuwen 2014)

Learn

Mine

Interact

Interact: like/dislike or rank or rate the patterns user
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Interactive pattern mining: overview

Interactive data exploration using pattern mining (Van Leeuwen 2014)

Learn Interact

Mine

Learn: generalize user feedback for building a preference model
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Interactive pattern mining: overview

Interactive data exploration using pattern mining (Van Leeuwen 2014)

Learn Interact

Mine

Mine (again!): provide a sample of k patterns benefiting from the
preference model
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Interactive pattern mining:
example: characterizing fraudsters

D1 : unknown set of data prefered by the user.
We assume that the user knows if a given pattern is relevant or not w.r.t. D1

Goal: mining all patterns characterizing D1

what the user wants:

Trans. Items Classe
t1 A B E 1
t2 A B 1
t3 B C D 0
t4 B C 0

(Giacometti and Soulet IDA 2017)
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Interactive pattern mining:
example: characterizing fraudsters
D1 : unknown set of data prefered by the user.
We assume that the user knows if a given pattern is relevant or not w.r.t. D1

Goal: mining all patterns characterizing D1

what we propose:

Trans. Items w
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Learning preferences
within the interactive pattern mining framework

Source: Hewasinghage et al. EGC 2017 44/60



Challenges in this example

1 A two-way learning problem:
system to user: the user learns new knowledge from the database
through the patterns provided by the system (frequent patterns in D1)
å fast extraction and quality of patterns are needed to maintain a
satisfactory interaction

user to system: the system learns the user preferences (here
represented by weights of items) from her feedback
å diversity is needed to discover the user preferences

2 Which patterns to propose:
pattern sampling according to (Boley et al. KDD 2011): fast and
random (which guarantees a good diversity)
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Interactive pattern mining: challenges

Mine
instant discovery for facilitating the iterative process
preference model integration for improving the pattern quality
pattern diversity for completing the preference model

Interact
simplicity of user feedback (binary feedback > graded feedback)
accuracy of user feedback (binary feedback < graded feedback)

Learn
expressivity of the preference model
ease of learning of the preference model

à Optimal
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preference model integration for improving the pattern quality
pattern diversity for completing the preference model

Interact
simplicity of user feedback (binary feedback > graded feedback)
accuracy of user feedback (binary feedback < graded feedback)

Learn
expressivity of the preference model
ease of learning of the preference model

à optimal mining problem (according to preference model)
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Interactive pattern mining: challenges

Mine
instant discovery for facilitating the iterative process
preference model integration for improving the pattern quality
pattern diversity for completing the preference model

Interact
simplicity of user feedback (binary feedback > graded feedback)
accuracy of user feedback (binary feedback < graded feedback)

Learn
expressivity of the preference model
ease of learning of the preference model

à active learning problem
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Learn (preference model):
how user preferences are represented?
Research problem:

expressivity of the preference model
ease of learning of the preference model

Weighted product model:
a weight on items I
score for a pattern X = product of weights of items in X
(Bhuiyan et al. CIKM 2012, Dzyuba et al. PAKDD 2017)

ωA ωB ωC
AB 4 × 1 = 4
BC 1 × 0.5 = 0.5
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Learn (preference model):
how user preferences are represented?
Research problem:

expressivity of the preference model
ease of learning of the preference model

Feature space model:
features:

assumption about the user preferences
the more, the better

examples:
expected and measured frequency (Xin et al. KDD 2006)
attributes, coverage, chi-squared, length and so on (Dzyuba et al.
ICTAI 2013)

mapping between a pattern X and a set of features
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Interact (user feedback):
how user feedback are represented?

Research problem:
simplicity of user feedback (binary feedback > graded feedback)
accuracy of user feedback (binary feedback < graded feedback)

Weighted product model:
Binary feedback (like/dislike) (Bhuiyan et al. CIKM 2012, Dzyuba et al.
PAKDD 2017)
pattern feedback

A like
AB like
BC dislike
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Interact (user feedback):
how user feedback are represented?

Research problem:
simplicity of user feedback (binary feedback > graded feedback)
accuracy of user feedback (binary feedback < graded feedback)

Feature space model:
ordered feedback (ranking) (Xin et al. KDD 2006, Dzyuba et al. ICTAI 2013)

A � AB � BC

graded feedback (rate) (Rueping ICML 2009)

pattern feedback
A 0.9

AB 0.6
BC 0.2
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Learn (preference learning method):
how user feedback are generalized to a model?
Weighted product model:
Counting likes and dislikes for each item: ω = β(#like - #dislike)

(Bhuiyan et al. ICML 2012, Dzyuba et al. PAKDD 2017)
pattern feedback A B C

A like 1
AB like 1 1
BC dislike -1 -1

22−0 = 4 21−1 = 1 20−1 = 0.5

Feature space model: à learning to rank
1 calculate the distances between feature vectors for each pair (training

dataset)
2 minimize the loss function stemming from this training dataset

Algorithms: SVM Rank (Joachims KDD 02), AdaRank (Xu et al. SIGIR 07),. . .
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Learn (active learning problem):
how are selected the set of patterns (query Q)?

Research problem:
mining the most relevant patterns according to Quality
querying patterns that provide more information about
preferences

Heuristic criteria:
local diversity: diverse patterns among the current query Q
global diversity: diverse patterns among the different queries
Qi (i.e. taking into account the story of the queries)
density: dense regions are more important
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Learn (preference learning method):
what method is used to mine the pattern query Q
Research problem:

instant discovery for facilitating the iterative process
preference model integration for improving the pattern quality
pattern diversity for completing the preference model

Approaches:
post-processing: re-ranking the patterns with the updated quality (Rueping

ICML 2009, Xin et al. KDD 2006) ; clustering as heuristic for improving the
local diversity (Xin et al. KDD 2006)

optimal pattern mining: beam search based on reweighing subgroup quality
measures for finding the best patterns (Dzyuba et al. ICTAI 2013)

pattern sampling: (Bhuiyan et al. CIKM 2012, Dzyuba et al. PAKDD 2017):
randomly draw pattern with a distribution proportional to their updated
quality, then sampling as heuristic for diversity and density
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Instant pattern discovery

The need:
“the user should be allowed to pose and refine queries at any moment
in time and the system should respond to these queries instantly”
Providing Concise Database Covers Instantly by Recursive Tile Sampling.
(Moens et al. DS 2014)
à few seconds between the query and the answer

Methods:
sound and complete pattern mining
beam search subgroup discovery methods
Monte Carlo tree search (Bosc et al. ECML/PKDD 2016)

pattern sampling
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Dataset sampling vs pattern sampling
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Two-step procedure: toy example
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Two-step procedure: toy example
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Pattern sampling based on SAT
(Dzyuba et al. DMKD 2017)

Principle:
used samplers based on random hash functions and XOR-sampling
from the SAT community
the sampling combines strong constraints (XOR constraints dividing the
search space into 2n cells) and a weak constraint (e.g. weighting w.r.t the
frequency)

Method:
a cell (here numbered 101) is defined by a set of n XOR constraints:
X1 ⊗ X2 ⊗ X4 = 1 Xi belongs to the pattern language
X0 ⊗ X1 ⊗ X3 ⊗ X4 = 0
X0 ⊗ X2 ⊗ X4 = 1
draw a pattern from the patterns satisfying the XOR constraints
à add it to the sample
update the set of XOR constraints, repeat 55/60



Interactive pattern mining:
concluding remarks

preferences are not explicitly given by the user. . .
. . . but, representation of user preferences should be anticipated
in upstream.

instant discovery enables a tight coupling between user and
system. . .
. . . but, most advanced models are not suitable.
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Take home message 3:

I don’t know what I am looking for. . .
å interactive pattern mining
(à preference acquisition)
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Preference-based pattern mining

User preferences are more and more prominent. . .

From simple preference models to complex ones
from frequency to anti-monotone constraints and more complex
ones
from 1 criterion (top-k) to multi-criteria (skyline)
from weighted product model to feature space model
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Preference-based pattern mining

User preferences are more and more prominent. . .

From preference elicitation to preference acquisition
user-defined constraint
no threshold with optimal pattern mining
no user-specified interestingness
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Preference-based pattern mining

User preferences are more and more prominent. . .

from data-centric methods:
2003-2004: Frequent Itemset
Mining Implementations

2002-2007: Knowledge Discovery
in Inductive Databases

to user-centric methods:
2010-2014: Useful Patterns

2015-2017: Interactive Data
Exploration and Analytics
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Pattern mining in the AI field

cross-fertilization between data mining and constraint
programming/SAT/ILP (De Raedt et al. KDD 2008):
designing generic and declarative approaches
å make easier the exploratory data mining process

avoiding writing solutions from scratch
easier to model new problems

open issues:

how go further to integrate preferences?
how to define/learn constraints/preference?
how to visualize results and interact with the end user?
. . .

Many other directions associated to the AI field:
integrating background knowledge, knowledge representation,. . .
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