Beyond the Holy Grail — Automatically
Generating Constraint Propagators for
Conjunctions of Time-Series Constraints

Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis

24th November 2017
1lére journée CAVIAR

ey A @ suc e

o INSIGt

aaaaaaaaaaaaaaaaaaaaa

The Question Motivating this Work

Consider two constraints
71(<X17X27 cee 7Xn>7 Rl) A 72(<X17X27 cee 7Xn>7 R2)1

where R; and Ry are constrained to be

the result of some computations over (X1, Xa, ..., Xp)
depending only on the relations <, =, > between X; and Xj;1.
For example,

Ri is the number of peaks in (X1, Xa,...,X,) and
Ry is the number of valleys in (X1, Xa,..., Xp).

What is the set of feasible pairs of R; and R,?

2/27

Example of Sets of Feasible Pairs of R; and R»:
Convex Case

Size: 11

~v1 = nb_peak

Ry
e e e e s e
L. SR A .

v2 = nb_ valley

e The set of feasible (blue) points is convex.

e Characterised by a set of parametrised linear inequalities
(where Ry, Ry are the variables and n the parameter)

3/27

Example of Sets of Feasible Pairs of R; and R»:
Non-Convex Case

Size: 11

~v1 = sum_ width decreasing_sequence

Ry

: 72 = sum_ width zigzag

Ry

e The set of feasible (blue) points is non-convex.
e A conjunction of linear inequalities of is not enough.

e Need also for a non-linear characterisation.

4/27

Two Emerging Problems for
Characterising Infeasible Combinations

1. Generate linear inequalities depending on Ry, R» and
parameterised by f(n) € {n,n mod p,\/n,...},
which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating
infeasible points on (or inside) the convex hull.

5/27

Two Emerging Problems for
Characterising Infeasible Combinations

1. Generate linear inequalities depending on Ry, R»> and
parameterised by f(n) € {n,n mod p,\/n,...},
which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating

infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a
large family of constraints?

Main Insight - --

5/27

Two Emerging Problems for
Characterising Infeasible Combinations

1. Generate linear inequalities depending on Ry, R»> and
parameterised by f(n) € {n,n mod p,\/n,...},
which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating
infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a
large family of constraints?

Main Insight - --
Use register automata and parameterised characterisation.

5/27

Take-Away Message

e Convex Case:

e A compositional way of generating cuts
from register automata [CP17implied].

e Non-Convex Case:

e Data Mining for generating conjectures,
e Proof using transducers and automata.

6/27

Case Study: Time-Series Constraints

e Described by:

e Declaratively : quantitative regular expressions,
e Operationally: finite transducers.

e Baseline implementation as register automata.

e Missing propagation for conjunction of constraints.

Work on improving propagators
for all constraints at the same time.

T7/27

Example of a Time-Series Constraint

Constrain the maximum of the of the valleys
in the time series X = (5,5,6,4,6,6,4,2,4,4,1,1,1,1,3,0).

= < > < = > > < = > = = = < >

A subsequence (X, ..., X)) of (Xo,...,Xm) is a valley if the signature
of (Xj_1,...,Xj+1) is a maximal word matching ‘>(>|=)*(<|=)*<.
8/27

Compositional Time-Series Definition
by Multiple Layers of Functions

max 4 (V) output: aggregation
[1 [9 [4 (1) feature sequence
I 3 67 10-11-12"13 ™ I occurrences of
valley > | < >|>|< >|1= =T < (mn regular expression
‘ = ‘ <|>I<|[=(>>|<|=|>=|=|=|<|> ‘ (1) signature sequence
(5154 (o102 14 11111113 o] i dmcemi
0 1 2 3 4 5 6 7 2
max__ _valley((5,5,6,4,6,6,4,2,4,4,1,1,1,1,3,0),4)

9/27

Space of Time-Series Constraints

Features
one
surface e sum_one_zigzag
min e max_surface peak
widthg
mfax
valley§ ém.ax min sum A >
......... regators
peak ggreg
steady
zigzag
inflexion

Regular Expressions 253 time-series constraints [Beldiceanu:synthesis|

over {<,=,>}
10/27

Time-Series Constraints Families of This Work

e Only topological constraints,
i.e. nb_o(X,R) and sum_width o(X, R)
(R depends only on the relations <,=, >
between consecutive X variables).

e Representation as register automata
with linear register updates.

e 35 constraints in the two families.

11/27

Synthesis of Services (Parameterised Bounds and Cuts)

g fi_o1(X,R) A Ngk i _02(X,Rp), X = (X1, Xo,..., Xn)

Regular
Expression

Automatic
---------- =-=--=(Transducer
Conversion

[ICTAILT]
For 253 Constraints, For 35 Constraints,
Parameterised Bounds on R; Parameterised Cuts
(independent of Rj: j # i) Linking Ry, ..., Rk
[BoundsConstraints; CP16] [CP17implied|

12/27

Example of Obtained Bounds and Generated Invariants
for a Conjunction of Two Constraints

nb_peak(X, Ry) Anb_valley(X, Ry) with X = (X1, Xa,..., X,), n > 2

Bounds obtained from
a generic formula for nb_o:

0< R <[5!

0< R <[5

Size: 11

Generated cuts:
R <Ry +1

R <Ry+1
Ri+R<n-2

Ri+R>0

Bounds are sharp and
3 out of the 4 found inequalities are facet-defining!

13/27

Example of a Generated Invariant
for a Conjunction of Three Constraints

nb_peak(X, R1) Anb_valley(X, R2) A nb_inflexion(X, R3)

g Thedpgigt 4.4 7)is
iscarded by + Ry <R3 .
! Discarded by

R1 + Rz < Rs:

ol
ol i o (4,4,7)
o i o (3,3,5)
oL = : 4 L4 (27273)
s : 1 ° (17171)

o 2 4+ 6 s 14 /27

Generating Non-Linear Invariants that Deal With Missing,
Infeasible Cases

Three Phases of our Method:

1. Generation of Data: generate all feasible combinations
of Ri, Ro,..., Rk for a given range of n values.

2. Mining Phase: generate hypothesis covering subsets of

infeasible points using the generated data.

3. Proving Phase: prove the generated hypothesis using
transducers and automata.

The three phases are offline.

15/ 27

Generation of Data

Pairs of different time-series constraints
’yl(<X1,X2, N ,Xn>, Rl) and 72(<X1,X2, . ,Xn>, Rz)

Generate all feasible pairs (Ry, Rp) for n € {1,2,...,12}.

Compute the convex hull using Graham's scan.

Collect all infeasible points inside the convex hull.

16 /27

Example of Samples of Generated Data

~v1 = sum_width decreasing sequence, 72 = sum_width zigzag

Size: 5 Size: 6 Size: 7
6 1

80 80 w 6 1
g 1 g g
& 24 1 4

= = s ’
g,] = =
B :, | B

g g g’ 1

0 1 0 B 0 1

T 0 1 2 3 4 5 6 0 2 4 6 0 2 4 6 8

sum_width_decreasing_sequence sum_width_decreasing_sequence sum_width_decreasing_sequence
Size: 8 Size: 9 Size: 10
s 10 1
8 1

w w w g8]
f6 g g
& o 1 &

h i N6 1
= = =
£ E 3
S = 1 s

2 B‘ B‘ 4 4
E 2 £ £

H 32 1 i 2 1

0 0 o 0 i

0 2 4 6 8 o 2 4 6 8 10 0o 2 4 6 8 10
sum_width_decreasing_sequence sum_width_decreasing_sequence sum_width_decreasing_sequence

17 /27

Mining Phase: Generation of Hypothesis

Consider only samples of sizes from 7 to 12.

Hypothesis of type GG A o A -+ A Cp
to cover infeasible points inside the convex hull.

Every Cy is a relation from our bias.

Examples of relations in our bias:
e RR=c, ceZ,
e R; = upper bound(R;,n),
e R;is odd (even),
° R,' = Rj.
Every infeasible point on/inside the convex hull

must be covered by at least one hypothesis.

18 /27

Mining Phase: Example

Size: 9
10 T
ol
6l AN
/, |
€, e |
/| !
2f /. }
| desasass |
(‘} é 4 6 2‘3 10
R
(Group @) Ry =1
Size: 9
10 T
ol
6l AN
¢ RS
« 4 / . |
, / |
/| |
| I R ‘
0 2 4 6 8 10
R
R1 5A
Group @
(Group @) Ry — 4

Size: 9
10 T
8
6 AN
e |
€, / \
e I
i / |
. 1 .7.7.7.7.7.7.7+
6 é 4 é 8 10
Ry
(Group @) Ry =1
Size: 9
10 T
8
6 AN
anwe!
¢, /
g !
2 //
of Lo !
0 2 4 6 8 10
Ry
R1 = up(R1,n) A
G ®
(Group ®) R mod2=1

Ry

Ry
R 3A
G ®
roup ®) Ry —
Size: 9
10 T

(Group ®)

4 6 8 10
R

Ri =R A

Ry mod2=1

Classification of Groups of Points

1. Independent Groups: H=CG A G A--- A Gy,
every Cy depends only on one R;.
2. Dependent Groups: H= G AN C2A--- NGy,

at least one Cj depends on more than one R;.

Size: 9 Size: 9

10 10
8 8
6 //\ 5 /\‘
E // ! €, /'/ }
T + IRV EEEEES
s asssssas '] |5 aaaassss |
0 2 4 6 8 10 6 é 4‘3 6 8 10
Ry R
Ry = up(Ry, n) A Ri =R A
(Group ®) R> mod é = 1) (Group ©®) Ri mod2=1
Independent Group Dependent Group

The proof scheme depends on the group type!
20/27

Proving Phase: Independent Groups

e For every hypothesis i A G A -+ A Cp,
generate a constant size automaton for each C; relation.

e Do the intersection of the automata for all G, G, ... Cp.

e The intersection is an automaton that recognises all and only

sequences satisfying the conjunction G; A G A -+ A Cp.

e If the intersection is empty,
then GG A GO A -+ A Gy is not feasible
else generate a counter example to refine the hypothesis.

21/27

Proving Phase: Independent Group Example
sum_width decreasing sequence(X, Ry) A sum_width zigzag(X, Rz)

An independent group is described by Ry =3 A Ry, =2

Ri=3

The intersection of two automata is empty!
The combination Ry = 3 and Ry = 2 is indeed infeasible.

22/27

Systematic Generation of Automata for
Proving Independent Groups

For two considered families of time-series constraints,

we can generate systematically automata for:

i=c, cEZ,

i = up(Ri,n)—c,c>0€Z, and 7;is nb_o,
i = up(R;, n), and ~; is sum_width o,

i is odd/even.

23/27

Example of Automaton for the ‘R is odd’ Rule

sum_width decreasing sequence(X, R)

D+0 >
R + default

(b)

(a) Automaton for the sum _width decreasing sequence constraint;
(b) Automaton for the ‘R is odd" rule, constructed from (a)

24 /27

Example of Automaton for the R = up(R, n) Rule

sum_width decreasing sequence(X, R)

1>

{04—0 } —
R < default

I1>1<1>1
1> = >
‘> > >‘
1>1<1>
12> = =
‘> = >
1> >1<l
1> > =

> > >

(a) Automaton for the sum _width decreasing sequence constraint;
(b) Automaton for the R = up(R, n) rule, constructed from (a)

>
>
>
>
>

>

25/27

Proving Phase: Dependent Groups

e Proof of dependent groups requires case by case consideration.

e The proof consists of verifying a certain property using our

cut-generation technique.

e Often, this property is only a sufficient,
but not a necessary condition, for proving our hypothesis.

26 /27

Conclusion

e Convex Case: A compositional way of generating cuts

from register automata. Already evaluated in [CP17implied|.

e Non-Convex Case: Data Mining + Proof
(using automata characterising infeasible combinations

of points for conjunction of constraints)
Currently evaluated from two perspectives:

e Use small sequences for learning, check on bigger sequences
whether uncovered infeasible points appear or not.
e Check how much it enhances propagation.

e Our method is offline and solver/system independent
(build a data base of parameterised invariants)

27 /27

