
Beyond the Holy Grail – Automatically
Generating Constraint Propagators for
Conjunctions of Time-Series Constraints

Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis

24th November 2017
1ère journée CAVIAR

The Question Motivating this Work

Consider two constraints
γ1(〈X1,X2, . . . ,Xn〉,R1) ∧ γ2(〈X1,X2, . . . ,Xn〉,R2),

where R1 and R2 are constrained to be
the result of some computations over 〈X1,X2, . . . ,Xn〉
depending only on the relations <,=, > between Xi and Xi+1.

For example,
R1 is the number of peaks in 〈X1,X2, . . . ,Xn〉 and
R2 is the number of valleys in 〈X1,X2, . . . ,Xn〉.

What is the set of feasible pairs of R1 and R2?

2 / 27

Example of Sets of Feasible Pairs of R1 and R2:
Convex Case

0 1 2 3 4 5 6

0

1

2

3

4

5

6

R1

R
2

Size: 11

γ1 = nb_peak
γ2 = nb_valley

• The set of feasible (blue) points is convex.

• Characterised by a set of parametrised linear inequalities
(where R1, R2 are the variables and n the parameter)

3 / 27

Example of Sets of Feasible Pairs of R1 and R2:
Non-Convex Case

0 2 4 6 8 10 12

0

2

4

6

8

10

12

R1

R
1

Size: 11

γ1 = sum_width_decreasing_sequence

γ2 = sum_width_zigzag

• The set of feasible (blue) points is non-convex.

• A conjunction of linear inequalities of is not enough.

• Need also for a non-linear characterisation.

4 / 27

Two Emerging Problems for
Characterising Infeasible Combinations

1. Generate linear inequalities depending on R1, R2 and
parameterised by f (n) ∈ {n, n mod p,

√
n, . . . },

which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating
infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a
large family of constraints?

Main Insight · · ·

Use register automata and parameterised characterisation.

5 / 27

Two Emerging Problems for
Characterising Infeasible Combinations

1. Generate linear inequalities depending on R1, R2 and
parameterised by f (n) ∈ {n, n mod p,

√
n, . . . },

which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating
infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a
large family of constraints?

Main Insight · · ·

Use register automata and parameterised characterisation.

5 / 27

Two Emerging Problems for
Characterising Infeasible Combinations

1. Generate linear inequalities depending on R1, R2 and
parameterised by f (n) ∈ {n, n mod p,

√
n, . . . },

which represent the facets of the convex hull.

2. Generate non-linear parameterised invariants eliminating
infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a
large family of constraints?

Main Insight · · ·

Use register automata and parameterised characterisation.

5 / 27

Take-Away Message

• Convex Case:
• A compositional way of generating cuts

from register automata [CP17implied].

• Non-Convex Case:
• Data Mining for generating conjectures,
• Proof using transducers and automata.

6 / 27

Case Study: Time-Series Constraints

• Described by:
• Declaratively : quantitative regular expressions,
• Operationally: finite transducers.

• Baseline implementation as register automata.

• Missing propagation for conjunction of constraints.

Work on improving propagators
for all constraints at the same time.

7 / 27

Example of a Time-Series Constraint

Constrain the maximum of the widths of the valleys
in the time series X = 〈5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0〉.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

6

5

4

3

2

1

0

= < > < = > > < = > = = = < >= < > < = > > < = > = = = < >

1 2 44

A subsequence 〈Xi , . . . ,Xj 〉 of 〈X0, . . . ,Xm〉 is a valley if the signature

of 〈Xi−1, . . . ,Xj+1〉 is a maximal word matching ‘>(>|=)*(<|=)*<’.

8 / 27

Compositional Time-Series Definition
by Multiple Layers of Functions

max

width

valley

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 5 6 4 6 6 4 2 4 4 1 1 1 1 3 0

= < > < = > > < = > = = = < >

>> << >> >> << >> == == == <<

1 2 4

4

3 6 7 10 11 12 13

input: time series

(I) signature sequence

(II) occurrences of
regular expression

(III) feature sequence

(IV) output: aggregation

max_width_valley(〈5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0〉, 4)

9 / 27

Space of Time-Series Constraints

Aggregators

Features

Regular Expressions
over {<,=, >}

valley
peak

steady
zigzag

inflexion

max

width

min

surface

one

max min sum

max_width_valley

max_surface_peak

sum_one_zigzag

253 time-series constraints [Beldiceanu:synthesis]

10 / 27

Time-Series Constraints Families of This Work

• Only topological constraints,
i.e. nb_σ(X ,R) and sum_width_σ(X ,R)
(R depends only on the relations <,=, >
between consecutive X variables).

• Representation as register automata
with linear register updates.

• 35 constraints in the two families.

11 / 27

Synthesis of Services (Parameterised Bounds and Cuts)

g1_f1_σ1(X ,R1) ∧ · · · ∧ gk_fk_σ2(X ,R2), X = 〈X1,X2, . . . ,Xn〉

Pattern σi

Regular
Expression

Transducer

For 253 Constraints,
Parameterised Bounds on Ri

(independent of Rj : j 6= i)
[BoundsConstraints; CP16]

For 35 Constraints,
Parameterised Cuts
Linking R1, . . . ,Rk

[CP17implied]

Automatic
Conversion
[ICTAI17]

12 / 27

Example of Obtained Bounds and Generated Invariants
for a Conjunction of Two Constraints

nb_peak(X ,R1) ∧ nb_valley(X ,R2) with X = 〈X1,X2, . . . ,Xn〉, n ≥ 2

Bounds obtained from
a generic formula for nb_σ:
0 ≤ R1 ≤

⌊
n−1
2

⌋
0 ≤ R2 ≤

⌊
n−1
2

⌋
Generated cuts:
R2 ≤ R1 + 1

R1 ≤ R2 + 1

R1 + R2 ≤ n − 2

R1 + R2 ≥ 0

0 1 2 3 4 5 6

0

1

2

3

4

5

6

R1

R
2

Size: 11

R 1
≤
R 2
+
1

R 2
≤
R 1
+
1

R
1 +

R
2 ≤

9

R
1 +

R
2 ≥

0

Bounds are sharp and
3 out of the 4 found inequalities are facet-defining!

13 / 27

Example of a Generated Invariant
for a Conjunction of Three Constraints

nb_peak(X ,R1) ∧ nb_valley(X ,R2) ∧ nb_inflexion(X ,R3)

0

2

4

6

8

0

2

4

6

8

R1

R
2

The point (4 , 4 , 7) is
discarded by R1 + R2 ≤ R3

0

2

4

6

8

0

2

4

6

8

R
2

R 1

0 2 4 6 8

0

2

4

6

8

R3

R
2

Discarded by
R1 + R2 ≤ R3:

• (4, 4, 7)

• (3, 3, 5)

• (2, 2, 3)

• (1, 1, 1)

14 / 27

Generating Non-Linear Invariants that Deal With Missing,
Infeasible Cases

Three Phases of our Method:

1. Generation of Data: generate all feasible combinations
of R1,R2, . . . ,Rk for a given range of n values.

2. Mining Phase: generate hypothesis covering subsets of
infeasible points using the generated data.

3. Proving Phase: prove the generated hypothesis using
transducers and automata.

The three phases are offline.

15 / 27

Generation of Data

• Pairs of different time-series constraints
γ1(〈X1,X2, . . . ,Xn〉,R1) and γ2(〈X1,X2, . . . ,Xn〉,R2).

• Generate all feasible pairs (R1,R2) for n ∈ {1, 2, . . . , 12}.

• Compute the convex hull using Graham’s scan.

• Collect all infeasible points inside the convex hull.

16 / 27

Example of Samples of Generated Data

γ1 = sum_width_decreasing_sequence, γ2 = sum_width_zigzag

−1 0 1 2 3 4 5 6

0

2

4

6

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Size: 5

0 2 4 6

0

2

4

6

sum_width_decreasing_sequence
su
m
_
w
id
th
_
zi
gz
ag

Size: 6

0 2 4 6 8

0

2

4

6

8

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Size: 7

0 2 4 6 8

0

2

4

6

8

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Size: 8

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Size: 9

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence
su
m
_
w
id
th
_
zi
gz
ag

Size: 10

0 2 4 6 8 10 12

0

2

4

6

8

10

12

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Size: 11

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Size: 12

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

su
m
_
w
id
th
_
zi
gz
ag

Convex Hulls

17 / 27

Mining Phase: Generation of Hypothesis

• Consider only samples of sizes from 7 to 12.

• Hypothesis of type C1 ∧ C2 ∧ · · · ∧ Cp

to cover infeasible points inside the convex hull.

• Every Ck is a relation from our bias.

• Examples of relations in our bias:
• Ri = c , c ∈ Z,
• Ri = upper_bound(Ri , n),
• Ri is odd (even),
• Ri = Rj .

Every infeasible point on/inside the convex hull
must be covered by at least one hypothesis.

18 / 27

Mining Phase: Example

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group ¬) R1 = 1

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group) R2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group ®)
R1 = 3 ∧
R2 = 2

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group ¯)
R1 = 5 ∧
R2 = 4

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group °)
R1 = up(R1, n) ∧
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group ±)
R1 = R2 ∧
R1 mod 2 = 1

19 / 27

Classification of Groups of Points

1. Independent Groups: H = C1 ∧ C2 ∧ · · · ∧ Cp,
every Ck depends only on one Ri .

2. Dependent Groups: H = C1 ∧ C2 ∧ · · · ∧ Cp,
at least one Ck depends on more than one Ri .

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group °)
R1 = up(R1, n) ∧
R2 mod 2 = 1

Independent Group

0 2 4 6 8 10

0

2

4

6

8

10

R1

R
2

Size: 9

(Group ±)
R1 = R2 ∧
R1 mod 2 = 1

Dependent Group

The proof scheme depends on the group type!
20 / 27

Proving Phase: Independent Groups

• For every hypothesis C1 ∧ C2 ∧ · · · ∧ Cp,
generate a constant size automaton for each Ci relation.

• Do the intersection of the automata for all C1,C2, . . .Cp.

• The intersection is an automaton that recognises all and only
sequences satisfying the conjunction C1 ∧ C2 ∧ · · · ∧ Cp.

• If the intersection is empty,
then C1 ∧ C2 ∧ · · · ∧ Cp is not feasible
else generate a counter example to refine the hypothesis.

21 / 27

Proving Phase: Independent Group Example

sum_width_decreasing_sequence(X ,R1) ∧ sum_width_zigzag(X ,R2)

An independent group is described by R1 = 3 ∧ R2 = 2

a

b c

≤
>

>
≤

a

b

d

c

f

e

h

i

g

j

=

<

>

<

=

>

>

=

<
<=

>

=

<

>

=

=

>

>

=

<

<

>

=

>

=

<

R1 = 3 R2 = 2

The intersection of two automata is empty!
The combination R1 = 3 and R2 = 2 is indeed infeasible.

22 / 27

Systematic Generation of Automata for
Proving Independent Groups

For two considered families of time-series constraints,
we can generate systematically automata for:

• Ri = c , c ∈ Z,

• Ri = up(Ri , n)− c , c ≥ 0 ∈ Z, and γi is nb_σ,

• Ri = up(Ri , n), and γi is sum_width_σ,

• Ri is odd/even.

23 / 27

Example of Automaton for the ‘R is odd’ Rule

sum_width_decreasing_sequence(X ,R)

≤ s

{
D ← 0
R ← default

}

≥ t

R

>{
D ← 0
R ← R + 2

}
≤

>{
D ← 0
R ← R + D + 1

}=

{D ← D + 1}

<

{D ← 0}

(a)

s(0, 0)

t(0, 0)

t(1, 0)

s(0, 1)

t(0, 1)

t(1, 1)

s(1, 0) s(1, 1)

≤

>

=

<

>

<

≤

>

=

<

>

<

>

>

>

≤ ≤

>

(b)

(a) Automaton for the sum_width_decreasing_sequence constraint;
(b) Automaton for the ‘R is odd’ rule, constructed from (a)

24 / 27

Example of Automaton for the R = up(R , n) Rule

sum_width_decreasing_sequence(X ,R)

≤ s

{
D ← 0
R ← default

}

≥ t

R

>{
D ← 0
R ← R + 2

}
≤

>{
D ← 0
R ← R + D + 1

}=

{D ← D + 1}

<

{D ← 0}

(a)

s > t

< s ′

= t ′

>
>

< >

= >

=

>

> >

> < >

> = >

> > >

> < > >

> = = >

> = > >

> > < >

> > = >

> > > >

(b)

(a) Automaton for the sum_width_decreasing_sequence constraint;
(b) Automaton for the R = up(R, n) rule, constructed from (a)

25 / 27

Proving Phase: Dependent Groups

• Proof of dependent groups requires case by case consideration.

• The proof consists of verifying a certain property using our
cut-generation technique.

• Often, this property is only a sufficient,
but not a necessary condition, for proving our hypothesis.

26 / 27

Conclusion

• Convex Case: A compositional way of generating cuts
from register automata. Already evaluated in [CP17implied].

• Non-Convex Case: Data Mining + Proof
(using automata characterising infeasible combinations
of points for conjunction of constraints)
Currently evaluated from two perspectives:
• Use small sequences for learning, check on bigger sequences

whether uncovered infeasible points appear or not.
• Check how much it enhances propagation.

• Our method is offline and solver/system independent
(build a data base of parameterised invariants)

27 / 27

