Beyond the Holy Grail – Automatically Generating Constraint Propagators for Conjunctions of Time-Series Constraints

Ekaterina Arafailova, **Nicolas Beldiceanu**, and Helmut Simonis 24th November 2017 1ère journée CAVIAR

The Question Motivating this Work

Consider two constraints $\gamma_1(\langle X_1, X_2, \dots, X_n \rangle, R_1) \land \gamma_2(\langle X_1, X_2, \dots, X_n \rangle, R_2),$

where R_1 and R_2 are constrained to be the result of some computations over $\langle X_1, X_2, \ldots, X_n \rangle$ depending **only** on the relations $\langle -, -, \rangle$ between X_i and X_{i+1} .

For example,

- R_1 is the number of peaks in $\langle X_1, X_2, \ldots, X_n \rangle$ and
- R_2 is the number of valleys in $\langle X_1, X_2, \ldots, X_n \rangle$.

What is the set of feasible pairs of R_1 and R_2 ?

Example of Sets of Feasible Pairs of *R*₁ and *R*₂: Convex Case

- The set of feasible (blue) points is convex.
- Characterised by a set of **parametrised** linear inequalities (where *R*₁, *R*₂ are the variables and *n* the parameter)

Example of Sets of Feasible Pairs of *R*₁ and *R*₂: Non-Convex Case

 $\gamma_1 = \text{sum_width_decreasing_sequence}$ $\gamma_2 = \text{sum_width_zigzag}$

- The set of feasible (blue) points is non-convex.
- A conjunction of linear inequalities of is **not enough**.
- Need also for a non-linear characterisation.

Two Emerging Problems for Characterising Infeasible Combinations

- 1. Generate linear inequalities depending on R_1 , R_2 and parameterised by $f(n) \in \{n, n \mod p, \sqrt{n}, \dots\}$, which represent the facets of the convex hull.
- 2. Generate non-linear parameterised invariants eliminating infeasible points on (or inside) the convex hull.

Two Emerging Problems for Characterising Infeasible Combinations

- 1. Generate linear inequalities depending on R_1 , R_2 and parameterised by $f(n) \in \{n, n \mod p, \sqrt{n}, \dots\}$, which represent the facets of the convex hull.
- 2. Generate non-linear parameterised invariants eliminating infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a large family of constraints?

Main Insight ····

Two Emerging Problems for Characterising Infeasible Combinations

- 1. Generate linear inequalities depending on R_1 , R_2 and parameterised by $f(n) \in \{n, n \mod p, \sqrt{n}, \dots\}$, which represent the facets of the convex hull.
- 2. Generate non-linear parameterised invariants eliminating infeasible points on (or inside) the convex hull.

How to solve these two problems in a systematic way for a large family of constraints?

Main Insight ····

Use register automata and parameterised characterisation.

Take-Away Message

- Convex Case:
 - A compositional way of generating cuts from register automata [CP17implied].
- Non-Convex Case:
 - Data Mining for generating conjectures,
 - **Proof** using **transducers** and **automata**.

Case Study: Time-Series Constraints

- Described by:
 - Declaratively: quantitative regular expressions,
 - Operationally: finite transducers.
- Baseline implementation as register automata.
- Missing propagation for conjunction of constraints.

Work on improving propagators for all constraints at the same time.

Example of a Time-Series Constraint

Constrain the maximum of the widths of the valleys in the time series $X = \langle 5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0 \rangle$.

A subsequence $\langle X_i, \ldots, X_j \rangle$ of $\langle X_0, \ldots, X_m \rangle$ is a valley if the signature of $\langle X_{i-1}, \ldots, X_{j+1} \rangle$ is a maximal word matching '>(>|=)*(<|=)*<'.

Compositional Time-Series Definition by Multiple Layers of Functions

 $max_width_valley((5,5,6,4,6,6,4,2,4,4,1,1,1,1,3,0),4)$

Space of Time-Series Constraints

10/27

Time-Series Constraints Families of This Work

- Only topological constraints,
 i.e. nb_σ(X, R) and sum_width_σ(X, R)
 (R depends only on the relations <,=,>
 between consecutive X variables).
- Representation as register automata with linear register updates.
- 35 constraints in the two families.

Synthesis of Services (Parameterised Bounds and Cuts)

$$g_1_f_1_\sigma_1(X,R_1) \wedge \cdots \wedge g_k_f_k_\sigma_2(X,R_2), X = \langle X_1, X_2, \dots, X_n \rangle$$

Example of Obtained Bounds and Generated Invariants for a Conjunction of Two Constraints

 $\mathsf{nb_peak}(X, R_1) \land \mathsf{nb_valley}(X, R_2)$ with $X = \langle X_1, X_2, \dots, X_n \rangle$, $n \ge 2$

Bounds obtained from a generic formula for nb_ σ : $0 \le R_1 \le \lfloor \frac{n-1}{2} \rfloor$ $0 \le R_2 \le \lfloor \frac{n-1}{2} \rfloor$ Generated cuts: $R_2 \le R_1 + 1$ $R_1 \le R_2 + 1$ $R_1 + R_2 \le n-2$

 $R_1 + R_2 \ge 0$

Bounds are sharp and

3 out of the 4 found inequalities are facet-defining!

Example of a Generated Invariant for a Conjunction of Three Constraints

 $nb_{peak}(X, R_1) \land nb_{valley}(X, R_2) \land nb_{inflexion}(X, R_3)$

14/27

Generating Non-Linear Invariants that Deal With Missing, Infeasible Cases

Three Phases of our Method:

- 1. Generation of Data: generate all feasible combinations of R_1, R_2, \ldots, R_k for a given range of *n* values.
- 2. Mining Phase: generate hypothesis covering subsets of infeasible points using the generated data.
- 3. **Proving Phase: prove** the generated hypothesis using transducers and automata.

The three phases are offline.

Generation of Data

- Pairs of different time-series constraints $\gamma_1(\langle X_1, X_2, \dots, X_n \rangle, R_1)$ and $\gamma_2(\langle X_1, X_2, \dots, X_n \rangle, R_2)$.
- Generate all feasible pairs (R_1, R_2) for $n \in \{1, 2, \dots, 12\}$.
- Compute the convex hull using Graham's scan.
- Collect all infeasible points inside the convex hull.

Example of Samples of Generated Data

 $\gamma_1 = \mathsf{sum}$ width decreasing sequence, $\gamma_2 = \mathsf{sum}$ width zigzag

Size: 6

Size: 9

Mining Phase: Generation of Hypothesis

- Consider only samples of sizes from 7 to 12.
- Hypothesis of type C₁ ∧ C₂ ∧ · · · ∧ C_p
 to cover infeasible points inside the convex hull.
- Every C_k is a relation from our bias.
- Examples of relations in our bias:

•
$$R_i = c, c \in \mathbb{Z}$$
,

- $R_i = upper_bound(R_i, n)$,
- R_i is odd (even),
- $R_i = R_j$.

Every infeasible point on/inside the convex hull must be covered by at least one hypothesis.

Mining Phase: Example

Classification of Groups of Points

- 1. Independent Groups: $H = C_1 \wedge C_2 \wedge \cdots \wedge C_p$, every C_k depends only on one R_i .
- 2. **Dependent Groups**: $H = C_1 \wedge C_2 \wedge \cdots \wedge C_p$,

at least one C_k depends on more than one R_i .

The proof scheme depends on the group type!

Proving Phase: Independent Groups

- For every hypothesis C₁ ∧ C₂ ∧ · · · ∧ C_p, generate a constant size automaton for each C_i relation.
- Do the intersection of the automata for all $C_1, C_2, \ldots C_p$.
- The intersection is an automaton that recognises all and only sequences satisfying the conjunction C₁ \lapha C₂ \lapha \dots \lapha C_p.
- If the intersection is empty, then C₁ ∧ C₂ ∧ · · · ∧ C_p is not feasible else generate a counter example to refine the hypothesis.

Proving Phase: Independent Group Example

sum_width_decreasing_sequence(X, R_1) \land sum_width_zigzag(X, R_2)

An independent group is described by $R_1 = 3 \land R_2 = 2$

The intersection of two automata is **empty**! The combination $R_1 = 3$ and $R_2 = 2$ is indeed **infeasible**.

Systematic Generation of Automata for Proving Independent Groups

For two considered families of time-series constraints, we can generate systematically automata for:

•
$$R_i = c, c \in \mathbb{Z}$$
,

•
$$R_i = up(R_i, n) - c$$
, $c \ge 0 \in \mathbb{Z}$, and γ_i is nb_σ ,

- $R_i = up(R_i, n)$, and γ_i is sum_width_ σ ,
- R_i is odd/even.

Example of Automaton for the 'R is odd' Rule

(a) Automaton for the sum_width_decreasing_sequence constraint;(b) Automaton for the '*R* is *odd*' rule, constructed from (a)

Example of Automaton for the R = up(R, n) Rule

(a) Automaton for the sum_width_decreasing_sequence constraint;
(b) Automaton for the R = up(R, n) rule, constructed from (a)

Proving Phase: Dependent Groups

- Proof of dependent groups requires case by case consideration.
- The proof consists of verifying a certain property using our cut-generation technique.
- Often, this property is only a sufficient, but not a necessary condition, for proving our hypothesis.

Conclusion

- Convex Case: A compositional way of generating cuts from register automata. Already evaluated in [CP17implied].
- Non-Convex Case: Data Mining + Proof (using automata characterising infeasible combinations of points for conjunction of constraints) Currently evaluated from two perspectives:
 - Use small sequences for learning, check on bigger sequences whether uncovered infeasible points appear or not.
 - Check how much it enhances propagation.
- Our method is offline and solver/system independent (build a data base of parameterised invariants)