
A Framework for the Automatic Correction of
Constraint Programs

Nadjib Lazaar, Arnaud Gotlieb
INRIA Rennes Bretagne Atlantique

Campus Beaulieu
35042 Rennes, France

{nadjib.lazaar, arnaud.gotlieb}@inria.fr

Yahia Lebbah
University of Oran Es-Senia

Lab. LITIO,B.P. 1524 EL-M’Naouar
31000 Oran, Algeria
ylebbah@gmail.com

Abstract—Constraint programs, such as those written in high-
level constraint modelling languages, e.g., OPL (Optimization
Programming Language), COMET, ZINC or ESSENCE, are
more and more used in business-critical programs. As any other
critical programs, they require to be thoroughly tested and cor-
rected to prevent catastrophic loss of money. This paper presents
a framework for the automatic correction of constraint programs
that takes into account the specificity of the software development
process of these programs as well as their typical faults. We
implemented this framework in our testing platform CPTEST for
OPL programs. Using mutation testing, our experimental results
show that well-known constraint programs written in OPL can
be automatically corrected using our framework.

I. INTRODUCTION

Constraint Programming emerged since 1960’s for solv-
ing difficult combinatorial problems [RBW06] and evolved
through the development of high-level modelling lan-
guages such as OPL (Optimization Programming Language)
[VH99], COMET [VHM05], ZINC [MNR+08], or ESSENCE
[FGJ+07]. In these languages, statements are replaced by
constraints and any constraint program execution yields solu-
tions to a constraint system instead of returning values. All
these languages adopt an imperative-like syntax, but differ
from traditional languages (e.g., C, C++ and Java) by their
semantics which usually relies on fixpoint computations. A
few years ago, constraint programs started to be used in critical
programs. In particular, constraint programs were developed
for e-commerce in business-critical program to solve com-
binatorial auctions [HO05]. Other critical software sectors
also started to be concerned such as air-traffic control and
management [FPA+07], [JV08] and software verification and
certification [CRVH08], [Got09].

As any other critical programs, constraint programs must
be thoroughly tested and corrected before being used on real-
size instances of problems. Typical faults in critical constraint
programs include bad formulation or refinement of a specific
constraint and addition of erroneous constraints. Unfortunately,
these faults cannot easily be handled by existing software
testing approaches because of the following reasons: firstly,
constraint programs are intrinsically non-deterministic as they
represent unordered sets of solutions and traditional testing
approaches usually consider only deterministic programs ; sec-

ondly, the refinement process of constraint programs develop-
ment is specific to Constraint Programming. Indeed, constraint
program developers usually start with an initial declarative
model of the problem, which faithfully translates the problem
specification, without granting interest to its performances.
As this model cannot handle large-sized instances of the
problem, they exploit several refinement techniques to build
an improved model. For example, usual refinement techniques
include the use of dedicated data structures, constraint refor-
mulation, global constraints addition, redundant and surrogate
constraint addition, as well as constraints which break sym-
metries (these constraints usually improve considerably the
effectiveness of the solving process). The refinement process,
carried out by the developers, is an error-prone and most of
the faults are introduced during this step. Manual correction
of faults in constraint programs is costly as it requires both the
knowledge of the program being developed but also knowledge
of how constraints are handled by the underlying constraint
solver. In fact, the user often resorts exploring manually one
by one each of the constraints of its constraint model, which
can be cumbersome even for small programs. In this context,
finding ways to correct automatically constraint programs
becomes therefore essential.

Automatic correction (also called bug-fixing or program
repair) of programs is an emerging trend in software testing,
as witnessed by several recent and persuading contributions.
Given a buggy program, a failing test run and several passing
test runs, the goal is to find automatically a fix for the
program [JFGG09], [WFLGN10] that pass the failing test run.
Two main approaches can be distinguished: approaches using
mutation testing operators to suggest automatically fixes to
faulty programs [DW10], [WFLGN10] and approaches using
formal specifications to repair programs. In particular, Wei et
al.[WPF+10] proposed to exploit program’s contracts (pre/post
conditions) to find a fix. Unfortunately, these approaches
cannot be directly applied to constraint programs for the
reasons mentioned above. Moreover, automatic correction of
constraint programs should take into account the peculiarities
of the software development process of these programs.

In [LGL10b] and [LGL10a], we introduced CPTEST, a
Testing framework for constraint programs written in OPL.

In this framework, given a combinatorial problem to solve, a
first highly declarative constraint model (noted M for Model-
Oracle) is used as a reference to detect non-conformities
within a refined and optimized constraint program solving the
same problem (noted CPUT for Constraint Program Under
Test). Unlike the declarative Model-Oracle, the CPUT is
intended to solve hard instances of the problem. The non-
conformities between both M and CPUT result from faults
introduced during the refinement process and can be found by
using M as a testing oracle. In [LGL10a], we extended this
approach by localizing a subset of constraints in the CPUT that
may contain the fault. By solving auxiliary constraint prob-
lems, CPTEST can identify constraints that cannot be part of
a selected non-conformity and can thus be discarded from the
set of potential faulty constraints. In this paper, we propose to
find automatically fixes for incorrect constraint programs. As
constraint programs implicitily represents sets of solutions and
a Model-Oracle is available, adding or withdrawing constraints
within the CPUT allows us to find automatically fixes for
potential faulty constraints. We implemented this approach on
top of CPTEST and got experimental results on a set of four
classical OPL constraint programs, namely the Golomb rulers,
N-queens, Social Golfer and Car sequencing. These results
show that OPL constraint programs can be automatically
corrected using our framework CPTEST.

The rest of the paper is organized as follows. The next sec-
tion presents our automatic correction process on an illustrative
example, namely the Golomb Rulers. Section 3 and 4 recall
how faults in constraint programs can be detected and localized
by solving auxiliary constraint problems. Section 5 contains
the algorithm we propose to correct automatically constraint
programs while Section 6 presents our experimental results.
Finally, Section 7 concludes the paper.

II. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate automatic correction of a clas-
sical constraint program example: the Golomb rulers problem.
Solving the Golomb rulers problem has various applications in
Radio communications and X-Ray crystallography. Although
it has a simple formulation, solving hard instances of the
problem is considered as a very challenging problem [Ran93].
A Golomb ruler is a set of m marks 0 = x1 < x2 < ... < xm

such as m(m− 1)/2 distances {xj − xi|1 ≤ i < j ≤ m} are
distinct. A ruler is of order m if it contains m marks, and it
is of length xm. The goal is to find a ruler of order m with
minimal length (minimize xm).

A first declarative model of this problem is given in Fig.1
which is a simple constraint model available from the problem
specification analysis. In our testing framework, we called
this model the Model − Oracle (M). Then, this model is
refined using techniques such as constraint reformulation,
surrogate and global constraint addition, or symmetry-breaking
to build an improved constraint model called the Constraint
Program Under Test (CPUT) that must be thoroughly tested
and corrected before using it on hard instances. Figure 2 shows
a CPUT of Golomb rulers written in OPL. One can easily get

Fig. 1. A Model-Oracle for Golomb rulers in OPL.

Fig. 2. A CPUT for Golomb rulers in OPL.

confidence in the fact that the M of Figure 1 actually solves
the Golomb rulers, but this is even more difficult for the CPUT
of Figure 2.

When m = 6, our CPTEST framework reports that
the CPUT of Figure 2 is unsatisfiable which witnesses the
existence of a fault. Then, CPTEST automatically localizes
suspicious constraints and reports cc1 as containing a fault.
By using the algorithms presented in this paper, CPTEST
additionally proposes to remove cc1 and to add three other
constraints shown in Tab.I. Note that the (unknown) fault in
the CPUT resulted from a small modification in cc1 where
the operator < was incorrectly changed to >.

III. FAULT DETECTION

A. Notations and Hypothesis

In this section, we introduce the notations required to
understand the rest of the paper and the main hypothesis on
which our approach is based.

TABLE I
AN AUTOMATIC CPUT CORRECTION

Removed Constraints Added Constraints
cc1: forall (i in 1..m-1) x[4] < x[5];

x[i] > x[i+1]; x[3] < x[4];
x[2] < x[3];

As mentioned previously, we consider the initial declar-
ative constraint model to be a testing oracle, called the
Model-Oracle noted M . M represents all the solutions of
the problem and strictly conforms the problem specification.
We suppose that M is satisfiable and then possesses at least
one solution. Considering unsatisfiable Model-Oracles may be
interesting for some applications (such as software verification
[Got09]) but we excluded these cases in order to avoid
having to consider equivalence of unsatisfiable models. The
Constraint Program Under Test is a constraint program noted
P (possibly unsatisfiable) which is expected to conform the
solutions of M . sol(M) (respectively sol(P)) denotes the set
of solutions of M (respectively P).The general conformity
relation between M and P is given by the following definition:

Definition 1 (conf):

P conf M ⇔ sol(P) 6= ∅ ∧ sol(P) ⊆ sol(M)

B. Non-conformity Detection

As proving conformity on all the instances of a problem
is undecidable in the general case, we proposed in [LGL10b]
a testing process aiming at detecting non-conformities. For a
given instance, a non-conformity is either a solution of P that
is not a solution of the model-oracle M , or P is unsatisfiable
(i.e., sol(P) = ∅). Systematic non-conformities detection can
be sought by combining the negation of a constraint of M
with the constraints of P (i.e., P ∧ ¬Ci where Ci ∈ M).
Badly formulating a constraint in P can remove and/or add
solutions to M . In [LGL10b], we proposed an algorithm
called one negated shown below, for systematically searching
non-conformities in P . Note that, in our framework, a non-
conformity is materialized by a solution of P that is not a
solution of M .

Algorithm 1: one negated(P , M)
nc← ∅
foreach Ci ∈M do

nc← solve(P ∧ ¬Ci)
if nc then

return ¬conf(nc)

return conf

In Algorithm 1, solve() denotes a call to a constraint solver
that provides only a single solution.

IV. FAULT LOCALIZATION

In [LGL10a], we proposed another algorithm to localize
faulty constraints, under the hypothesis that only a single

constraint is faulty in P . In this section, we extend this
approach by proposing an algorithm that cans localize several
faults in P . By fixing a parameter k, the algorithm called
k locate and given below, is able to localize at most k faulty
constraints in P . The fault localization process is based on the
following definition and property. Given a constraint program
P = {C1, C2...Cn} that does not conform to its model-oracle
M , we introduce the notion of suspicious set:

Definition 2 (Suspicious set):
Ti is suspicious in P w.r.t. M ≡M ∧ P\Ti is satisfiable.
Roughly speaking, a suspicious set in P is a subset of P
that gives an explanation to the fault in P . Algorithm 2

Algorithm 2: k locate(M, P, k)

1 set← ∅
2 T ← powset(P, k)
3 for i ∈ 1..k do
4 foreach Tj ∈ T : |Tj | = i do
5 if sol(M ∧ P\{Tj}) 6= ∅ then
6 set← set ∪ {Tj}
7 foreach Tl ∈ T : Tj ⊂ Tl do
8 T ← T/{Tl}

9 return set

takes as inputs the Model-Oracle M , the CPUT P and k the
parameter that specifies the maximum number of considered
faulty constraints. powset(P, k) is the set of all subsets of P
that have a cardinality less or equal to k and not including
the empty set. Our algorithm is complete as any complex
fault involving i constraints where i ≤ k will be reported by
Algorithm 2. It is worth noticing that k locate reports only
sets of minimal size (line 7 and 8). Formally speaking,

Ti ∈ k locate(P,M, k)⇒{
∀Tj ∈ powset(P\Ti, k − card(Ti)) :
Ti ∪ Tj /∈ k locate(P,M, k)

The idea behind Algorithm 2 is to localize faulty constraints
by iterating on all the possible subsets of P , with cardinality
less than k, and by keeping only the subsets Ti for which
sol(M ∧ P\{Ti}) has solutions. Thus, Algorithm 2 is also
correct as it provides only subsets of P that are suspicious.
Note however that each proposed subset necessarily contains
the faulty constraints, but may also includes non-faulty con-
straints. When M ∧ P\{Ti} fails, it means that Ti does not
contain all the faulty constraints.

The size of set T computed by powset(P, k) is∑
i=1..k(Ci

m) = Ck+1
m+1, which is exponential in k and then the

algorithm may become intractable when k increases. However,
we believe that usually, only a few constraints are involved
within a faulty CPUT, keeping the value of k as small as pos-
sible. The proposed k locate algorithm can be enhanced by
using dichotomic schemes among the faulty constraints, such

as the QuickExplain algorithm of [Jun04], but we considered
this possibility to be outside the scope of the paper and will
not go into further details on it.

V. AUTOMATIC FAULT CORRECTION IN CONSTRAINT
PROGRAMS

Once a fault is localized in P , our approach tries to reformu-
late the constraints of the subset found to be responsible of the
fault. In order to restore the conformity with the model-oracle.
We propose an automatic correction based on the computation
of a set of constraints in M that should be incorporated to P
to correct it.

Figure 3 shows a possible correction of a given P w.r.t. its
model-oracle M , where P ≡

∧
i∈1..3 Ti and Ti is a subset of

constraints. The detection step returns a non-conformity point
saying that P does not conform to M and contains faults
(part(a) Figure 3). The localization step reports that T3 is a
suspicious set (part(b) Figure 3) where sol(M ∧ P\T3) 6= ∅).
The automatic correction process first removes the suspicious
set (part(c) Figure 3) and then proposes to add C ′, where
C ′ ∈ M , to restore the conformity of P w.r.t M (part(d)
Figure 3).

Algorithm correction aims at finding the set of constraints
to revise non-conforming constraints within P . It returns a set
of pairs where each pair is composed of two sets: a set of
suspicious constraints R and a set A of constraints from the
model-oracle. For each pair (R,A), removing or revising R
and adding or reformulating A enable to correct automatically
P . The algorithm begins by finding the set of suspicious
constraints, under the hypothesis that there are at most k faulty
constraints. For each suspicious set Ti, the calculate function
computes the correcting constraints Ci of the model-oracle
M for which (P\Ti)∧¬Ci does not fail. More precisely, any
constraint Ci where sol((P\Ti) ∧ ¬Ci) 6= ∅ should be in the
correction set, as there exist solutions of (P\Ti) which do not
conform to Ci. Thus, adding Ci to the program will withdraw
these points.

Algorithm 3: correction(M, P, k)
set← k locate(M, P, k)
if card(P) = card(

⋃
Ti∈set Ti) then

return (∅, calculate(M,P))
else

corr ← {(∅, ∅)}
foreach Ti ∈ set do

corr ← corr ∪ {(Ti, calculate(M, P\Ti))}
return corr

calculate(M, P):
set← ∅
foreach Ci ∈M do

if sol(P ∧ ¬Ci) 6= ∅ then
set← set ∪ {Ci}

return set

Proposition 1: Provided that there are at most k faulty
constraints, we have the following property: the results of
calculate(M, P\Ti) is conforming the Model-Oracle M , ac-
cording to definition 1.

Proof.
Any constraint C ′ computed by calculate(M,P\Ti) satis-

fies
∀Ci ∈M, sol(((P\Ti) ∧ C ′) ∧ ¬Ci) = ∅

which means that

sol((P\Ti) ∧ C ′) ⊆ sol(M)

Therefore, (P\Ti) ∧ C ′ is conforming M .

VI. EXPERIMENTAL VALIDATION

All our experiments were performed on Intel Core2
Duo CPU 2.40Ghz machine with 2.00 GB of RAM
and all the programs and results are available online at
(www.irisa.fr/celtique/lazaar/CPTEST).

A. CPTEST
In this section, we give a brief overview of CPTEST,

the testing framework we built for testing OPL constraint
programs. It includes a complete OPL parser and a backend
process that produces dedicated OPL programs as output
that must be solved to detect, localize and correct faults.
CPTEST includes implementations of Algorithms 1,2 and 3
given above. The underlying constraint solver of CPTEST is
based on ILOG CP Optimizer 2.1. Figure 4 shows a snapshot
of CPTEST, acting on a classical constraint program that
solves the well-known N-queens problem.

B. Faults Injection

The purpose of our experiments was to check that CPTEST
can automatically detect, localize and correct faults in well-
known constraint programs, namely Golomb rulers, N-queens,
social golfer and car sequencing problems. For that, we
manually injected significant faults in these CP programs in
order to generate faulty OPL programs, called mutants. We fed
CPTEST with the resulting faulty constraint programs and let
CPTEST to correct automatically them.

Table III shows the main results on the four problems. It
contains four columns, named mutation, detection, localization
and correction. The columns related to mutation show the
various mutants while the columns named detection give the
non-conformity points that reveal the existence of faults in the
mutants and the time consumption. The columns localization
give the suspicious constraints and the columns correction give
two sets of constraints: a set of constraints to be removed and
a set of constraints to be added in order to correct P .

C. CP Problems

Golomb Rulers: As presented in Sec.II, Golomb rulers
aims at finding a ruler where the distance between any two
marks is different than any other two marks. It is also an
optimization problem where one wants to find an optimal ruler
of minimal length. For our experiments, we selected m = 6

Fig. 3. A possible P correction.

Fig. 4. CPTEST acting on n-queens problem.

as an instance that covers all constraints of the programs (i.e.,
all the constraints of P are used within the solving process).
We built 7 mutants from an improved Golomb rulers CP
program by systematically injecting faults. For example, the
fault injected in Mut7 consists in replacing the allDifferent
global constraint as follows:

allDifferent(all(ind in indexes) d[ind]);

by

cc5: forall(i in m..2*m)
count(all(j in indexes) d[j],i)==1;

Let us look in more details at Mut2 and Mut5 in Table III.
CPTEST returns a non-conformity for Mut2 (i.e., x=[0 1 3

10 13 20] where x is not a Golomb ruler as 3-0=13-10).
This non-conformity is a solution of the Mut2 and not of
the model-oracle. In the localization step, CPTEST reports
an empty set saying that Mut2 contains a relaxed constraint

and does not handle a large part of the problem specification.
Finally, the correction step gives the set of constraints to
be added to Mut2 for correction: it returns 49 elementary
constraints to be added to Mut2.

Mut5 is an over-constrained program where the fault in-
jected in ct1 reduces it to fail (i.e., sol(Mut5) = ∅), so it
does not conform to the model-oracle). The localization step
returns ct1 as a suspicious constraint in less than 4sec. The
correction step proposes to remove ct1 and replace it by 3
elementary constraints (x[4] < x[5] ; x[3] < x[4] ;

x[2] < x[3] ;) in w 30min. This CPU time may appear as
being enormous for a simple constraint program, but recall that
a large search space must be explored and that even simple
specification problem may lead to constraint problems that
require hours to be solved.

N-queens: The N-queens problem requires to place N
queens on an N × N chessboard. Its model-oracle can be

given with only three constraints, the first one ensures that all
queens are placed on distinct column, while the second and
the third constraint ensure that two queens cannot be placed
on the same upper or lower-diagonal on the chessboard. We
have an improved N-queens program with new data structures,
redundant, surrogate and global constraints. We produced 7
faulty mutants (from Mut1 to Mut7) by injecting faults in
the correct improved CP program. We took N = 8 as an
instance that covers all the constraints. Let us look at Mut3,
Mut5 and Mut6 from tab.III.
Mut3 does not conform the model-oracle as the fault

injected in ct11 makes P unsatisfiable (i.e., sol(Mut3) = ∅).
The localization step returns ct11, as the only suspicious
constraint. CPTEST reports that ct11 must be removed to
conform the model-oracle.
Mut5 is also non-conform to the model-oracle where

CPTEST returns a non-conformity q1=[8 7 6 5 4 3 2

1]. q1 is not an 8-queens solution where all queens are placed
on the second diagonal. This non-conformity is due to the
fault injected in ct4. CPTEST reports that ct4 is suspicious
constraint and suggests, in correction step, to replace it by 28
elementary constraints.

CPTEST returns a non-conformity point for Mut6 which
is a solution of the mutant and not of the model-oracle (i.e.,
q2=[7 2 3 6 8 1 5 4]). Indeed, q2 is not an 8-queens
solution as queen[2] and queen[3] are on the same
diagonal. This non-conformity point reveals a fault in Mut6,
which was injected in ct3. The localization step reports that
Mut6 needs additional constraints where the fault on ct3 is a
relaxation. For correction, we add 56 elementary constraints1

in order to restore the conformity between Mut6 and the
model-oracle.

Social Golfer: Social golfer is one of the hardest problem of
the CSPLib[HMGW] (see prob010). We have m social golfers,
n weeks and k groups of l size. Each golfer plays once a week
in groups of l golfers. The problem asks to build a schedule
of play for all golfers over the n weeks such that no golfer
plays in the same group as any other golfer more than one
time.

We take an instance of the problem with 4 weeks, 3 groups
of 3 golfers. We injected faults in an improved social golfer
program to build 5 mutants (from Mut1 to Mut5). Let us
look at Mut2 and Mut4 from Table III. CPTEST returns a
non-conformity for Mut2 as a bad schedule (i.e., sg1) due
to the fault in ct2 constraint. CPTEST reports an empty set
saying that Mut2 needs some constraints to be added. After
that, the correction step of CPTEST returns 75 elementary
constraints to add to Mut2.

The fault in ct4 of Mut4 reduces the set of solutions
to empty. So Mut4 does not conform to the model-oracle.
CPTEST returns two suspicious constraints (ct4, ct5) in
less than 4sec. In the correction step, CPTEST gives two
possible corrections, the first one being to replace ct4 by 58

1All results and the set of constraints can be consulted online at url www.
irisa.fr/celtique/lazaar/CPTEST

TABLE II
NUMBER OF SOLUTIONS OF CAR SEQUENCING MUTANTS BEFORE AND AFTER

CORRECTION.

Mutant Mut1 Mut2 Mut3 Mut4 Mut5,Mut6,Mut7
before 26 466 43 259 35 754 42 271 0
after 6 6 6 6 6

elementary constraints ; the second one being to replace ct5
by another set of 58 elementary constraints.

Car Sequencing: Car sequencing is a real-world CP prob-
lem that amounts to find an assignment of cars to the slots of
a car-production company, where cars are grouped by classes.
Each class represents cars with some specific options. The
assembly line must satisfy some option capacity constraints.
The model-oracle of car sequencing is taken from the OPL
book [VH99]. We have an improved car sequencing program
that includes interesting features of CP with wide parameter
settings, redundant, surrogate and global constraints addition,
and specialized data structures definition. We inject fault in
this CP program to get 7 mutants.

Let us take Mut2, Mut4 and Mut7 of car sequencing from
Table III. Mut4 does not conform the M as the fault injected in
ct2 reduced it to fail. CPTEST returns the faulty constraint
ct2 which can be advantageously corrected by using 37
elementary constraints returned by the correction step.

The fault injected in Mut7 is localized in ct5
(sol(Mut7) = ∅). (ct5, ct6) are returned as suspicious
constraints by the localization step. To correct the programs,
CPTEST suggests two possible corrections, either remove
ct5 or add ct6 .

A non-conformity is reported for Mut2 (i.e., [4 1 6 4 3

5 3 6 2 5]) which is an incorrect assembly line. Mut2 does
not conform the model-oracle and no suspicious constraints
are reported in localization step as Mut2 needs constraint
addition. To restore the conformity status of Mut2, CPTEST
returns 32 elementary constraints to add.

card(sol(Mut2)) = 43 259 where the model-oracle have
only 6 possible solutions, so the mutant can return 43 253
faulty solutions. To get a conformity status, the set of solutions
of Mut2 must be a subset of solutions of the model-oracle
(i.e., sol(Mut2) ⊆ sol(M)). Figure 5 gives the number of
solutions of the mutant after the addition of the 32 elementary
constraints one by one in an incremental way. The set of
solutions is then reduced after each constraint addition until
it reaches 6 solutions. Table II shows the number of solutions
of the different car sequencing mutants before and after
correction. We note that the model-oracle of car sequencing
have only 6 possible solutions. Mut1 to Mut4, the correction
removes an important number of bad solutions. The set of
solutions of Mut5, Mut6 and Mut7 are reduced to empty due
to the fault injected. The correction on these mutants keep the
6 possible solutions as correct solutions.

D. Threats to Validity

External threats to validity lay on the source of constraint
problems that we used for our experiments. We have selected

Fig. 5. Mut2 correction.

TABLE III
FAULT DETECTION, LOCALIZATION AND CORRECTION ON CLASSICAL BENCHMARK PROBLEMS

G
ol

om
b

ru
le

rs
(m

=6
) Mutants Fault Detection Localization Correction

injected non-conformity time susp. ct time removed ct added ct time
Mut1 ct2 [0 1 3 6 13 20] 0.86s ∅ 0.96s ∅ 50 EC 17.43s
Mut2 ct3 [0 1 3 10 13 20] 1.32s ∅ 2.65s ∅ 49 EC 27.03s
Mut3 ct3 [0 1 3 6 13 20] 0.67s ∅ 4.96s ∅ 50 EC 46.70s
Mut4 ct5 [0 9 11 12 15 19] 1.01s ∅ 10.54s ∅ 5 EC 29.63s
Mut5 ct1 sol(Mut5)=∅ 10.46s ct1 9.57s ct1 3 EC 1 698.04s
Mut6 ct7 sol(Mut6)= ∅ 9.37s ct7 9.36s ct7 22 EC 107.81s
Mut7 ct9 sol(Mut7)= ∅ 35.10s ct9 13.50s ct9 ∅ 108.45s

n-
qu

ee
ns

(n
=8

) Mut1 ct11 sol(Mut1)=∅ 8.32s ct11 7.53s ct11 ∅ 18.21s
Mut2 ct12 sol(Mut2)=∅ 8.21s ct12 8.10s ct12 ∅ 18.10s
Mut3 ct11 sol(Mut3)=∅ 7.85s ct11 8.14s ct11 ∅ 18.35s
Mut4 ct12 sol(Mut2)=∅ 8.06s ct12 8.16s ct12 ∅ 18.23s
Mut5 ct4 [8 7 6 5 4 3 2 1] 2.78s ct4 2.32s ct4 28 EC 7.21s
Mut6 ct3 [7 2 3 6 8 1 5 4] 3.34s ∅ 0.98s ∅ 56 EC 9.28s
Mut7 ct1 [8 4 3 6 5 7 2 1] 3.07s ∅ 0.53s ∅ 56 EC 9.12s

s.
go

lfe
r

(s
g

I) Mut1 ct1 sol(Mut1)=∅ 10.28s ct1 3.65s ct1 58 EC 32.95s
Mut2 ct2 sg1 0.31s ∅ 3.51s ∅ 75 EC 18.32s
Mut3 ct3 sol(Mut3)=∅ 9.85s ct3 3.71s ct3 58 EC 36.28s
Mut4 ct4 sol(Mut4)=∅ 9.37s ct4 3.64s ct4 58 EC 67.39s

ct5 ct5 58 EC
Mut5 ct5 sol(Mut5)=∅ 9.21s ct5 3.75s ct5 58 EC 34.18s

sg_I: weeks = 4; groups = 3; groupSize = 3;
sg1=[[1 1 1 1] [1 2 2 2] [1 3 3 3] [2 1 3 3] [2 2 2 1] [2 2 1 1] [3 3 3 2] [3 1 1 2] [3 3 2 3]]

ca
r

se
q.

(c
Se

q
I) Mut1 ct2 [4 5 4 6 3 6 5 1 3 2] 5.68s ∅ 1.34s ∅ 32 EC 6.09s

Mut2 ct3 [4 1 6 4 3 5 3 6 2 5] 5.82s ∅ 1.54s ∅ 32 EC 6.28s
Mut3 ct2 [4 6 2 5 3 6 1 3 5 4] 7.18 ∅ 1.51s ∅ 31 EC 3.28s
Mut4 ct2 sol(Mut4)=∅ 2.78s ct2 3.07s ct2 37 EC 34.95s
Mut5 ct1 sol(Mut5)=∅ 2.62s ct1 4.96 ct1 ∅ 9.08s
Mut6 ct6 sol(Mut6)=∅ 2.64s ct6 5.09s ct6 ∅ 9.23s
Mut7 ct5 sol(Mut6)=∅ 2.40s ct5 5.09s ct5 ∅ 14.98s

ct6 ct6 ∅
cSeq_I: nbSlots = 10; nbCars = 6; nbOptions = 5; demand = [1, 1, 2, 2, 2, 2];
capacity = [[1,2],[2,3],[1,3],[2,5],[1,5]]; optionDemand = [5 ,6 ,3 ,4 ,2];
option = [[1, 0, 0, 0, 1, 1],[0, 0, 1, 1, 0, 1],[1, 0, 0, 0, 1, 0],[1, 1, 0, 1, 0, 0],[0, 0, 1, 0, 0, 0]];

susp. ct: suspicious constraints, EC: elementary constraint

well-known and difficult problems from the Constraint Com-
munity, which allowed us to validate our approach on pertinent
empirical data. However, these problems come from academia
and might not perfectly reflect industrial usage of Constraint
Programming in critical applications. In addition, we manually
injected faults of our own in the constraint programs under
test in our experiments. Although these faults were selected to
show the capabilities of an automatic correction approach and
thus, are not easy to spot and fix, we do not know whether
they are realistic or not. Unlike other languages where tons
of programs and bugs are available (e.g., Java, C and C++),
programs written in constraint modeling languages are not

available from repositories on the Web. Finally, our overall
approach of automatic correction of constraint programs is
based on the availability of a Model-Oracle for a given prob-
lem, i.e., an initial constraint model extracted from the problem
specification. However, this hypothesis might be difficult to
satisfy in all the cases, as initial models are necessarily kept
for analysis in industrial development process.

VII. CONCLUSION

This paper has introduced a new framework for the correc-
tion of constraint programs. The proposed framework is built
on the hypothesis that a first declarative and simple constraint

model-oracle is available from the problem specification analy-
sis. This model-oracle is then refined using various techniques
to form an improved constraint program. We have defined
a conformity relation forcing the solutions of the constraint
program to be included in those of the model-oracle. The
proposed correction algorithm is preceded by a localization
step to detect suspicious constraints violating the conformity
relation. After that, the correction process finds the constraints
of the model-oracle that should be removed or added to the
constraint program in order to correct it. The final result of
the correction process is a set of pairs, where each pair is
composed of suspicious constraints and correction constraints.

Experiments with our tool are promising and provide a first
validation of the proposed approach. We believe that tools
that can automatically test and correct constraint programs
will help to facilitate the adoption of constraint programs in
critical applications. Further works include the improvement
of the constraint solving process that we introduced here by
considering improved versions of the computation of negated
constraints, dichotomic algorithms to explore suspicious set of
constraints and the exploitation of open constraint solvers to
investigate coverage criteria for constraint programs.

REFERENCES

[CRVH08] H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv:
A constraint-programming framework for bounded program
verification. In Proc. of CP2008, LNCS 5202, pages 327–341,
2008.

[DW10] Vidroha Debroy and W. Eric Wong. Using mutation to automat-
ically suggest fixes for faulty programs. In Proc. of ICST’10,
pages 65–74, April 2010.

[FGJ+07] A.M. Frisch, M. Grum, C. Jefferson, B. Martnez, and H.I.
Miguel. The design of essence: a constraint language for
specifying combinatorial problems. In Proceedings of IJCAI’07,
pages 80–87, 2007.

[FPA+07] P. Flener, J. Pearson, M. Agren, Garcia-Avello C., M. Celiktin,
and S. Dissing. Air-traffic complexity resolution in multi-sector
planning. Journal of Air Transport Management, 13(6):323 –
328, 2007.

[Got09] A. Gotlieb. Tcas software verification using constraint program-
ming. The Knowledge Engineering Review, 2009. Accepted for
publication.

[HMGW] Brahim Hnich, Ian Miguel, Ian P. Gent, and Toby Walsh. A
problem library for constraints. www.csplib.org.

[HO05] Alan Holland and Barry O’Sullivan. Robust solutions for
combinatorial auctions. In ACM Conference on Electronic
Commerce (EC-2005), pages 183–192, 2005.

[JFGG09] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta.
Bugfix: A learning-based tool to assist developers in fixing
bugs. In ICPC, pages 70–79, 2009.

[Jun04] Ulrich Junker. Quickxplain: Preferred explanations and relax-
ations for over-constrained problems. In AAAI, pages 167–172,
2004.

[JV08] U. Junker and D. Vidal. Air traffic flow management with
ilog cp optimizer. In International Workshop on Constraint
Programming for Air Traffic Control and Management, 2008.
7th EuroControl Innovative Research Workshop and Exhibition
(INO’08).

[LGL10a] N. Lazaar, A. Gotlieb, and Y. Lebbah. Fault localization in
constraint programs. In Proc. of the 2010 IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2010,
Oct. 2010.

[LGL10b] N. Lazaar, A. Gotlieb, and Y. Lebbah. On testing constraint
programs. In Proc. of Principles of Constraint Programming,
CP’2010, Sept. 2010.

[MNR+08] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey, M. Garcia
De La Banda, and M. Wallace. The design of the zinc modelling
language. Constraints, 13(3):229–267, 2008.

[Ran93] W. T. Rankin. Optimal golomb rulers: An exhaustive paral-
lel search implementation. Master’s thesis, Duke University,
Durham, 1993.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook
of Constraint Programming (Foundations of Artificial Intelli-
gence). Elsevier Science Inc., New York, NY, USA, 2006.

[VH99] P. Van Hentenryck. The OPL optimization programming lan-
guage. MIT Press, Cambridge, MA, USA, 1999.

[VHM05] Pascal Van Hentenryck and Laurent Michel. Constraint-Based
Local Search. The MIT Press, 2005.

[WFLGN10] Westley Weimer, Stephanie Forrest, Claire Le Goues, and
ThanhVu Nguyen. Automatic program repair with evolutionary
computation. Commun. ACM, 53(5):109–116, 2010.

[WPF+10] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, and Andreas Zeller. Automated fixing of
programs with contracts. In Proc. of 19th ISSTA, Trento, Italy,
pages 61–72, July 2010.

