
Solve a Constraint Problem Without Modeling It

Christian Bessiere, Remi Coletta, Nadjib Lazaar
CNRS, University of Montpellier

Montpellier, France
Email: {bessiere, coletta, lazaar}@lirmm.fr

Abstract—We study how to find a solution to a constraint
problem without modeling it. Constraint acquisition systems
such as Conacq or ModelSeeker are not able to solve a single
instance of a problem because they require positive examples
to learn. The recent QuAcq algorithm for constraint acquisition
does not require positive examples to learn a constraint
network. It is thus able to solve a constraint problem without
modeling it: we simply exit from QuAcq as soon as a complete
example is classified as positive by the user. In this paper, we
propose ASK&SOLVE, an elicitation-based solver that tries to
find the best tradeoff between learning and solving to converge
as soon as possible on a solution. We propose several strategies
to speed-up ASK&SOLVE. Finally we give an experimental
evaluation that shows that our approach improves the state of
the art.

Keywords-Elicitation based resolution; Constraint acquisi-
tion; Constraint Learning

I. INTRODUCTION

The success of constraint programming comes from its
efficiency to solve combinatorial problems once they are
represented as a constraint network. However, the design
of the original model, that is, the construction of the set of
constraints defining the problem, remains a delicate task that
requires some expertise in constraint programming. This is
a bottleneck in the use of constraint solvers by non-experts.

There already exist several techniques to tackle this bottle-
neck. In [8], the matchmaker agent is an interactive process
where the user is able to provide one of the constraints of her
target problem each time the system proposes an incorrect
solution. In [9], a preference elicitation mechanism solves
soft constraint problems where some of the preferences
are unspecified. The idea is to combine a branch&bound
search with elicitation steps where candidate solutions are
presented to the user who provides missing preferences on
the variables. When restricted to hard constraint problems
(that is, preferences are either accept or reject), this approach
becomes very close to the matchmaker agent, requiring the
user to be able to express her constraints one by one.
In Conacq and ModelSeeker the assumption is made that
the only thing the user is able to provide is examples of
solutions and non-solutions of the target problem or to
answer membership queries, that is, classify as positive or
negative examples proposed by the system [2], [4], [5], [13],
[1]. Based on these classified examples, the system learns
a set of constraints that correctly classifies all examples

given so far. A common feature of these techniques is that
they require positive examples, otherwise they can learn the
(trivial) inconsistent constraint network. QuAcq is a recent
learning system that is able to ask the user to classify
partial queries [3]. As opposed to membership queries,
partial queries are assignments of only part of the variables
of the problem. An interesting property of QuAcq is that it
is not necessary that the user provides positive examples to
converge. This property opens the door to a new type of use:
solve a problem without modeling it even if the user does
not have examples of past solutions.

In this paper, we propose ASK&SOLVE, an elicitation-
based algorithm that solves an unknown constraint network
by asking queries to the user. ASK&SOLVE tries to find the
best tradeoff between learning and solving to converge on a
solution with as few queries to the user as possible. Based
on the ASK&SOLVE algorithm we propose several strategies
(restart policies / variable ordering) to speed-up even more
convergence on a solution. We experimentally evaluate our
approach on several benchmark problems. The results show
that ASK&SOLVE improves the basic technique based on
QuAcq.

The rest of the paper is organized as follows. Sec-
tion II gives the necessary definitions to understand the
technical presentation. Section III describes the basic al-
gorithm ASK&SOLVE. In Section IV, several strategies
(restart policies and variable ordering) are presented. Sec-
tion V presents the experimental results we obtained when
comparing ASK&SOLVE to existing techniques and when
comparing the different restart policies / variable ordering
in ASK&SOLVE. Section VI concludes the paper and gives
some directions for future research.

II. BACKGROUND

We introduce some useful notions in constraint program-
ming and concept learning. The common knowledge shared
between a learner that aims at solving the problem and
the user who knows the problem is a vocabulary. This
vocabulary is represented by a (finite) set of variables X
and domains D = {D(xi)}xi∈X over Z. A constraint c
represents a relation on a subset of variables var(c) ⊆ X
that specifies which assignments of var(c) are allowed.
Combinatorial problems are represented with constraints
networks. A constraint network is a set C of constraints

on the vocabulary (X,D). An example e is a (partial)
assignment on a set of variables var(e) ⊆ X . e is rejected
by a constraint c iff var(c) ⊆ var(e) and the projection
e[var(c)] of e on var(c) is not in c. A complete assignment
e of X is a solution of C iff for all c ∈ C, c does not
reject e. We denote by sol(C) the set of solutions of C.
The projection C[Y] of C on a subset Y of X is the set
{c ∈ C | var(c) ⊆ Y }.

In addition to the vocabulary, the learner owns a language
Γ of relations from which it can build constraints on spec-
ified sets of variables. A constraint bias is a collection B
of constraints built from the constraint language Γ on the
vocabulary (X,D).

In terms of machine learning, a concept is a Boolean
function over DX = Πxi∈XD(xi), that is, a map that
assigns to each example e ∈ DX a value in {0, 1}. We
call target concept the concept fT that returns 1 for e if and
only if e is a solution of the problem the user has in mind.
In a constraint programming context, the target concept is
represented by a target network denoted by CT .

A query Ask(eY), with Y ⊆ X , is a classification
question asked to the user, where eY is an assignment in
DY = ΠXi∈YD(Xi). A set of constraints C accepts a
an assignment eY if and only if there does not exist any
constraint c ∈ C rejecting eY . The answer to Ask(eY) is
“yes” if and only if CT accepts eY . For any assignment
eY on Y , κB(eY) denotes the set of all constraints in B
rejecting eY .

III. SOLVE BY ASKING AND LEARNING

In this section we present ASK&SOLVE, an algorithm
for solving a problem without having a constraint network
describing it. The idea in ASK&SOLVE is to try to extend
step by step a scope on which we know at least one assign-
ment accepted by the target network CT . Each time there
is a chance that the assignment generated by ASK&SOLVE
violates one of the constraints in the bias B, ASK&SOLVE
asks the query to the user. If the answer to the query is
negative, ASK&SOLVE immediately launches a procedure
that learns a culprit constraint to avoid generating again an
assignment rejected for the same reason.

A. Description of ASK&SOLVE

In lines 1 to 5, ASK&SOLVE initializes several variables
that will be used in the main loop. The learned network CL

and the scope scp to be extended during search for solution
are initialized to the empty set. The set guilty will contain
the new variable to be added to the scope scp each time the
assignment produced on scp was accepted by the user. guilty
is also initialized to the empty set. The counter #negative-
answers counts the number of queries classified negative
by the user. It is initialized to zero. #negative-answers is
useless in the basic version of ASK&SOLVE but it will be
used in versions that implement a restart policy. Finally, the

flag Found, that will break the loop once a solution is found,
is set to false.

The main loop in ASK&SOLVE (line 6) starts by com-
puting an assignment e on scope scp (line 7). We look for
an assignment satisfying all constraints already learned (in
CL) and hopefully satisfying also all constraints from the
bias B that do not involve the new variable guilty. Among
the possible candidates, we choose the e that maximizes the
number of constraints involving the variable guilty that are
satisfied. The reason for trying to satisfy all constraints of
B on scp is that if e is classified as negative, we know
the variable guilty is involved in a violated constraint. The
reason for maximizing the remaining constraints from B is
that if CT is representable by the initial bias and if e is
classified positive, e is an assignment as close as possible to
the solution. However, it is not always possible to generate
such an assignment. If not possible (line 8), we compute
an assignment that satisfies the current CL and maximizes
the satisfied constraints in B (line 10). Satisfying CL is
always possible by extending the previous example with
any variable assigned to any value. We also set guilty to
the empty set because we are no longer sure the variable
in guilty will belong to a violated constraint in case e is
classified negative. If there are constraints in B able to reject
e (i.e., κB(e) 6= ∅), the query Ask(e) is presented to the user.
If her answer is ’no’, we know that e violates at least one
constraint in the target problem CT . The functions FindC
and FindScope are called to find such a constraint.

We do not give the code of functions FindScope
and FindC. They are implemented as they appear in
[3], and they are instrumented so that we increment the
variable #negative-answers each time a query is an-
swered negatively by the user. Let us say a few words
on how they work. Given sets of variables S1 and S2,
FindScope(e, S1, S2, false) returns the subset of S2 that,
together with S1 forms the scope of a constraint in B that
rejects e. Inspired from a technique used in QUICKXPLAIN
[12], FindScope requires a number of queries logarithmic
in |S2| and linear in the size of the final scope returned. The
function FindC takes as parameter the negative example
e and the scope returned by FindScope. It returns a
constraint from CT with the given scope that rejects e.

Now, coming back to line 12, the call to FindScope
returns the set of variables that together with guilty form
the scope of one of the violated constraints. Remember that
if e comes from line 7, guilty contains the new variable that
belongs to the scope of a violated constraint whereas if e
comes from line 10 we are not sure that guilty belongs to
a constraint in B violated by e. But this is fine because
in this case guilty is empty. Once a scope is returned by
FindScope, FindC returns a constraint from B with that
scope that rejects e. The constraint found is added to the
learned network CL (line 14). If FindC has not found
any constraint in B rejecting e, this means that our initial

Algorithm 1: ASK&SOLVE: Solving an unknown con-
straint network CT by asking user queries

1 CL ← ∅;
2 scp← ∅;
3 guilty ← ∅;
4 #negative-answers← 0;
5 Found← false;

6 while ¬Found do
7 select e in sol(CL[scp] ∪B[scp \ guilty])[scp]

maximizing satisfaction of B[scp];
8 if e = nil then
9 guilty← ∅;

10 select e in sol(CL[scp])[scp] maximizing
satisfaction of B[scp];

11 if κB(e) 6= ∅ and Ask(e) = no then
12 c← FindC(e,FindScope(e, guilty,

scp\guilty, false) ∪ guilty);

13 if c = nil then return ”collapse”;
14 else CL ← CL ∪ {c};
15 if #negative-answers ≥ restart() then
16 scp← ∅; #negative-answers← 0;

else
17 #negative-answers← 0;

18 if scp = X then Found← true;
else

19 guilty← {a variable in X \ scp};
20 scp← scp ∪ guilty;
21 B ← B \ κB(e);

22 return e;

bias was not able to represent CT . ASK&SOLVE returns a
collapse (line 13).

We do not describe lines 15-17 as we are in the basic
version of the algorithm where restart() always returns
+∞. In line 18 we are in the case where the user answered
’yes’ to the query. We first test if scp was complete. If yes,
this means that e is a solution and we return it (lines 18 and
22). If not, we extend scp with a new variable guilty chosen
in the remaining variables (lines 19-20) and we remove all
constraints violated by e from the bias (line 21).

IV. STRATEGIES

ASK&SOLVE learns constraints by asking queries during
search. Solving an instance by asking as few queries as
possible requires to find the good tradeoff between learning
and solving. If we try to go fast to a complete assignment,
this can lead to expensive constraint elicitation steps on
long negative assignments when the problem is critically
constrained. If we promote exploring first plenty of short
assignments, this allows a fast and cheap learning of con-
straints, but it can be a waste of time if the problem is easy
to solve.

We first analyse the behavior of ASK&SOLVE on a
sample problem. Based on this analysis, we propose several
strategies of exploration of the search space that try to get
the best tradeoff between learning and solving and thus to
reach a solution as fast as possible.

A. Analysing ASK&SOLVE behavior

We take the well-known zebra problem from Lewis Car-
roll [7]. The zebra problem has a single solution, which
makes it challenging to solve by hand. (It is claimed that
only 2% of the population can solve it.) This is thus a good
candidate to push our algorithm to the edge. We solved the
zebra with our basic version of ASK&SOLVE presented in
Section III (that is, with the function restart() in line 15
returning +∞). Figure 1(a) shows how the size scp of the
variable assignment evolves during search in ASK&SOLVE
(the x-axis is the number of iterations of the while loop
in line 6 of ASK&SOLVE). We see that the size of the
assignment grows with the number of iterations. This means
that, in case of negative answer, the space in which we
seek a culprit constraint grows, and thus the cost to find it
grows as well. To validate this guess we can observe Figure
1(b). It shows how many queries are asked each time the
example generated at the beginning of the while loop of
ASK&SOLVE is negative. As the plot is sawtoothed, we
drew its approximation of Bezier as interpolation to exhibit
the main trend (thick line in Figure 1(b)). We observe that
the average number of queries per iteration indeed increases
with the number of iterations.

Figure 1 shows that extending too fast the scope on which
we look for an assignment leads to a higher cost in number
of queries. A technique to avoid remaining on long scopes
with long sequences of negative answers is to incorporate
a restart policy in ASK&SOLVE. The idea is to count how
many negative examples were generated in a row and to
restart when a cutoff value is reached.

B. Restart policies

Restart policies have been a long-held goal in AI and they
are one of the approaches developed to boost combinatorial
search. We propose to use three restart policies that triggers
a restart in line 16 of Algorithm 1 when the number of
negative answers is greater than or equal to the cutoff value
returned by restart().
• Fixed cutoff. The first policy uses a fixed cutoff,

noted (FC). This is done by implementing the function
restart() so that it always returns |X|.

• Geometric. The second policy is the Geometric strat-
egy [16]. The cutoff value returned by restart() grows
geometrically by a factor of 1.5. We use an initial cutoff
size of |X|.

• Luby. The third policy we selected is more elabo-
rated. In this case the restart() function implements
the universal Luby-restarts policy defined in [14].

Figure 1: Variation of the size of the examples and of the number of queries per iteration of the while loop in ASK&SOLVE
(Zebra problem).

The Luby-restarts policy is given by the sequence
(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .) that is mul-
tiplied by the factor |X|. Such a policy has been used
with great success in SAT solvers [11]. The goal is, on
the one hand to cut the search early enough to escape
from bad subtrees and to produce short nogoods, and
on the other hand to let the solver the chance to go to
a solution. The similarity of this goal and ours led us
to try Luby in our setting.

The number #negative-answers of negative answers
from the user is reset either when we trigger a restart in line
16, or in line 17 when the user has classified as positive (in
line 11) an assignment e computed in line 7 or in line 10.

C. Variable ordering heuristics

When we use a restart policy, the question raises of the
order in which to select variables in the search following im-
mediately the restart. We tested and compared the following
variable ordering heuristics.
• random (RAND). At each restart event, we reorder the

variables randomly.
• lexicographic (LEX). Here we use the basic lexico-

graphic order. When a restart occurs, we restart on the
same variable order:

x1, x2, x3
restart−−−→ x1, x2, x3, x4 . . .

• reverse-lex (R-LEX). The algorithm is initialized with a
LEX order on the variables. Once a restart event occurs,
the variables in the scope scp are reversed: we start by
selecting the last variable that was added to scp and
continue until the first. If we reach the first (that is, we
exhausted all variables from that previous scope), we
select the remaining variables in the same order as they
were ordered before the restart. And so on.

x1, x2
restart−−−→ x2, x1, x3, x4

restart−−−→ x4, x3, x1 . . .

• countinuous-lex (C-LEX). Here we use a variant of the
lexicographic order. At the beginning we have a LEX
order on the variables. Once a restart event occurs, we
select the last variable in scp and we continue on the
same LEX order. (This LEX order has to be circular:
xn is followed by x1.) This heuristic allows the search
process to explore the variables in a balanced way.

x1, x2, x3
restart−−−→ x3, x4

restart−−−→ x4, x5, x6 . . .

V. EXPERIMENTAL EVALUATION

We made some experiments to evaluate the performance
of our ASK&SOLVE algorithm and the restart policies we
proposed. The first part of this section is devoted to the
comparison of existing techniques to our baseline version of
ASK&SOLVE presented in Algorithm 1 (with restart() =
+∞). The second part of the section evaluates the different
restart policies and variable orderings we proposed.

Our tests were conducted on an Intel Core i7 @ 2.9 GHz
with 8 Gb of RAM. We used the following benchmarks:
• Golomb Rulers. (prob006 in [10]) The problem aims

at finding a ruler where the distance between any
two marks is different from that between any other
two marks. The target network is encoded with m
variables corresponding to the m marks, and constraints
of varying arity. For our experiments, we selected the
8-marks ruler.

• Zebra Problem. Lewis Carroll’s zebra problem has a
single solution. The target network is formulated using
25 variables of domain size of 5 with 5 cliques of 6=
constraints and 14 additional constraints given in the
description of the problem [7].

• Purdey’s general store. This problem is described
by Jo Mason in [15]. It has a single solution. Four
families stopped by Purdey’s general store, each to buy
a different item and paying differently. Under a set
of additional constraints given in the description, the
problem is how can we match family with the item
they bought and how they paid for it.

A. Basic ASK&SOLVE against other techniques

We first want to confirm that our ASK&SOLVE archi-
tecture goes in a direction that makes it a good candidate
for solving unknown constraint problems without having
to model them. We compared ASK&SOLVE to three other
techniques that are able to solve by asking queries.

The first one that we can use is standard QuAcq as
presented in [3] that we stop as soon as a solution is found
(called QUACQ&SOLVE below).

The second one is a simple backtrack search procedure
that asks the user about the validity of the assignment
generated at a node of the search tree each time the currently
learned constraints do not allow it to infer the answer. If
the query is classified as positive we reduce the bias B,
otherwise we learn a constraint using the QuAcq principle
(i.e., we call a FindScope and a FindC functions on the
negative –partial– example). This technique is denoted by
BACKTRACK-E.

The last technique, BRANCH&LEARN, is the backtrack
search based on elicitation proposed in [6]. The approach is
very similar to BACKTRACK-E in the way it explores assign-
ments. However, it differs in the way it learns the constraints.
BRANCH&LEARN learns constraints using Conacq instead
of QuAcq. Each time an example e is classified positive,
BRANCH&LEARN reduces the bias B as in BACKTRACK-
E. But each time e is classified negative, BRANCH&LEARN
does not ask anything to the user. It simply stores a dis-
junction representing the set of candidate constraints in B
rejecting e. At least one of them has to be in the target
network.

Table I: ASK&SOLVE vs existing elicitation-based solvers

|CL| #q time

G
ol

om
b QUACQ&SOLVE 111 548 0.21

BACKTRACK-E 46 432 0.16
BRANCH&LEARN – 389 76.01
ASK&SOLVE 21 179 0.35

Z
eb

ra

QUACQ&SOLVE 58 623 0.02
BACKTRACK-E 51 528 0.06
BRANCH&LEARN – — —
ASK&SOLVE 60 509 0.02

Pu
rd

ey

QUACQ&SOLVE 18 157 0.01
BACKTRACK-E 15 119 0.01
BRANCH&LEARN – 109 0.61
ASK&SOLVE 14 103 0.01

Table I displays the comparative performance of
QUACQ&SOLVE, BACKTRACK-E, BRANCH&LEARN, and
ASK&SOLVE. We report the size |CL| of the partially
learned network (which represents the set of constraints
learned during search), the total number #q of queries, and
the average time needed to compute a query (in seconds).

The first observation we can make when
comparing QUACQ&SOLVE and BACKTRACK-E is
that QUACQ&SOLVE learns more constraints than
BACKTRACK-E (column |CL| in Table I). This is because
QUACQ&SOLVE promotes learning constraints and then
finds the solution by chance whereas BACKTRACK-E
promotes searching and is forced to learn when it fails
to extend its assignment. This observation explains why
BACKTRACK-E needs less queries than QUACQ&SOLVE.

Concerning BRANCH&LEARN, we cannot report the size
of the learned network CL because it stores a set of
disjunctions of constraints without being able to choose
a culprit among them. The number of queries needed by
BRANCH&LEARN to find a solution is better than that of
BACKTRACK-E on the instances it could solve in less than
10 hours. This lower number of queries is due to the lazy
strategy used in BRANCH&LEARN: after a negative answer,
BRANCH&LEARN does not elucidate a culprit constraint,
as done in BACKTRACK-E with the call to FindScope
and FindC. The counterpart to this lazy behavior is that
BRANCH&LEARN explores a lot of nodes, leading to pro-
hibitive cpu times when the problem is not small enough. For
instance, on Golomb, the average time between two queries
to the user is 76 seconds. On Zebra, the whole process had
not finished in 10 hours.

Concerning ASK&SOLVE, we see that it is incomparable
to QUACQ&SOLVE and BACKTRACK-E in terms of the
number of learned constraints. It generates the smallest CL

on Golomb but the largest on Zebra. However, ASK&SOLVE
is consistently faster than the other techniques in terms
of the number of queries needed to find a solution. This
tends to show that ASK&SOLVE promotes the learning
side or the solving side depending on the difficulty of the
instance to solve, and then reaches a better tradeoff than
QUACQ&SOLVE and BACKTRACK-E.

B. Evaluation of the strategies

In this section we assess the performance of our restart
policies and the variable orderings described in Section IV.
To speed-up ASK&SOLVE in terms of number of queries,
we implemented the three restart policies:
• Restarting after |X| negative answers (FC).
• The geometric restart policy with an initial restart of
|X| negative answers and a growth coefficient of 1.5.

• A luby restart policy with an initial restart of |X|
negative answers.

We also implemented the different variable ordering
heuristics (RAND, LEX, R-LEX and C-LEX).

Table II displays the comparative performance of all
possible strategies on the same three problems as in Section
V-A: Golomb, Zebra and Purdey’s general store problems. A
strategy is a combination (restart policy × variable ordering).
Each strategy has a row in Table II.

The first observation that is obvious from Table II is that
all techniques are very fast. They can easily be used in
an interactive process, as opposed to BRANCH&LEARN, as
seen in the experiments in Table I.

The second information we can draw from Table II is that
the choice of the order in which variables are selected after a
restart can noticeably affect the efficiency of ASK&SOLVE.
RAND and LEX are not efficient variable ordering heuristics
to be used by our restart policies. This is obvious for
RAND, which is almost always much worse than the baseline
ASK&SOLVE with no restart policy. This is also true for
LEX, to a lesser extent. Among R-LEX and C-LEX, we see
that R-LEX wins more often and with greater margins than
C-LEX.

Comparing the three restart policies, ASK&SOLVE with
Geometric or Luby is significantly better than with FC. This
is true on all problems. This confirms what we expected
from the observation of Figure 1: increasing the scope too
fast and spending time on long scopes is a waste of time
when answers are repeatedly negative.

Finally, if we look at the combinations restart pol-
icy+variable ordering, the best compromise is Geometric+R-
LEX.

When associated with Luby, C-LEX requires less queries
on Golomb, but the difference with Luby+R-LEX is tiny:
only 2 more queries for Luby+R-LEX.

Luby with C-LEX seems to be the best deal to solve
Golomb rulers. This is related to the nature of the Golomb
rulers. In Golomb rulers, we have an order on the marks.
Using C-LEX, ASK&SOLVE can learn this order with less
queries. Furthermore, Golomb rulers contain a set of not-
equal constraints on distances. Here also, the use of small
restarts as in Luby can speed-up the resolution.

On Zebra (resp. Purdey), Geometric+R-LEX requires 35
(resp. 27) less queries than +C-LEX. As a general con-
clusion of these experiments, we see that using strategies
in ASK&SOLVE improves the performance significantly
compared to the baseline ASK&SOLVE without restart. If
we compare Geometric+R-LEX to baseline ASK&SOLVE,
the saving in number of queries is 7% on Golomb, 32% on
Zebra, and 64% on Purdey.

VI. CONCLUSION

We have proposed ASK&SOLVE, an elicitation based
algorithm that solves a constraint problem without the need
of a constraint network representing it. The elicitation here
consists in asking the user to classify partial assignments as
positive or negative. We present several strategies (restart
policies and variable orderings) to improve the behavior

Table II: Various strategies for boosting ASK&SOLVE

RESTART VAR-ORDER |CL| #q time
none LEX 21 179 0.35

G
ol

om
b

FC

RANDOM 48 435 0.24
LEX 21 174 0.34
R-LEX 30 232 0.30
C-LEX 28 203 0.35

G
eo

m
et

ri
c RANDOM 56 527 0.27

LEX 21 202 0.33
R-LEX 21 166 0.28
C-LEX 21 162 0.31

L
ub

y

RANDOM 45 402 0.31
LEX 21 161 0.34
R-LEX 21 160 0.33
C-LEX 11 158 0.32

none lex 60 509 0.02

Z
eb

ra

FC

RANDOM 57 560 0.05
LEX 63 558 0.02
R-LEX 53 452 0.05
C-LEX 59 459 0.03

G
eo

m
et

ri
c RANDOM 59 503 0.02

LEX 60 482 0.05
R-LEX 48 346 0.03
C-LEX 59 381 0.04

L
ub

y

RANDOM 57 484 0.05
LEX 60 537 0.03
R-LEX 41 356 0.03
C-LEX 57 465 0.02

none LEX 14 103 0.01
Pu

rd
ey

FC

RANDOM 16 106 0.01
LEX 13 108 0.01
R-LEX 11 88 0.02
C-LEX 12 82 0.01

G
eo

m
et

ri
c RANDOM 16 99 0.02

LEX 12 77 0.01
R-LEX 8 37 0.02
C-LEX 15 64 0.01

L
ub

y

RANDOM 16 123 0.01
LEX 12 86 0.01
R-LEX 9 62 0.02
C-LEX 11 83 0.01

of ASK&SOLVE. Our experimental evaluation shows that
ASK&SOLVE presents a good tradeoff between learning and
searching for solutions. It outperforms the other techniques
by solving problems with less queries. When enhanced with
the right strategy, its performance becomes even better.

These results are promising for the use of ASK&SOLVE
on real problems because there exist several other techniques
that could be plugged in ASK&SOLVE to decrease even
more the number of queries. We could for instance embed
ModelSeeker as an internal stepofASK&SOLVE to quickly
learn global constraints each time we get a partial positive.

ACKNOWLEDGMENT

This work has been funded by the EU project ICON (FP7-
284715) and by the ANR project BR4CP (ANR-11-BS02-
008).

REFERENCES

[1] N. Beldiceanu and H. Simonis. A model seeker: Extract-
ing global constraint models from positive examples. In
Proceedings of the Seventeenth International Conference on
Principles and Practice of Constraint Programming (CP’12),
LNCS 7514, Springer–Verlag, pages 141–157, Quebec City,
Canada, 2012.

[2] C. Bessiere, R. Coletta, E. Freuder, and B. O’Sullivan.
Leveraging the learning power of examples in automated
constraint acquisition. In Proceedings of the Tenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP’04), LNCS 3258, Springer–Verlag, pages
123–137, Toronto, Canada, 2004.

[3] C. Bessiere, R. Coletta, E. Hebrard, G. Katsirelos, N. Lazaar,
N. Narodytska, C.G. Quimper, and T. Walsh. Constraint
acquisition via partial queries. In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence
(IJCAI’13), pages 475–481, Beijing, China, 2013.

[4] C. Bessiere, R. Coletta, F. Koriche, and B. O’Sullivan. A
SAT-based version space algorithm for acquiring constraint
satisfaction problems. In Proceedings of the European
Conference on Machine Learning (ECML’05), LNAI 3720,
Springer–Verlag, pages 23–34, Porto, Portugal, 2005.

[5] C. Bessiere, R. Coletta, B O’Sullivan, and M. Paulin. Query-
driven constraint acquisition. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJ-
CAI’07), pages 44–49, Hyderabad, India, 2007.

[6] Christian Bessiere, Remi Coletta, Frdric Koriche, Arnaud
Lallouet, and Matthieu Lopez. Branch and learn pour
l’acquisition de csp. In JFPC, 2012.

[7] L. Carroll. Life International Magazine, (December 17th,
1962), december 1962.

[8] E.C. Freuder and R.J. Wallace. Suggestion strategies for
constraint-based matchmaker agents. In Proceedings of the
Fourth International Conference on Principles and Practice
of Constraint Programming (CP’98), LNCS 1520, Springer–
Verlag, pages 192–204, Pisa, Italy, 1998.

[9] M. Gelain, M.S. Pini, F. Rossi, K.B. Venable, and T. Walsh.
Elicitation strategies for soft constraint problems with missing
preferences: Properties, algorithms and experimental studies.
Artif. Intell., 174(3-4):270–294, 2010.

[10] I.P. Gent and T. Walsh. Csplib: a benchmark library for
constraints. http://www.csplib.org/, 1999.

[11] Jinbo Huang. The effect of restarts on the efficiency of clause
learning. In IJCAI, pages 2318–2323, 2007.

[12] U. Junker. Quickxplain: Preferred explanations and relax-
ations for over-constrained problems. In Proceedings of
the Nineteenth National Conference on Artificial Intelligence
(AAAI’04), pages 167–172, San Jose CA, 2004.

[13] A. Lallouet, M. Lopez, L. Martin, and C. Vrain. On learning
constraint problems. In Proceedings of the 22nd IEEE
International Conference on Tools for Artificial Intelligence
(IEEE-ICTAI’10), pages 45–52, Arras, France, 2010.

[14] Michael Luby, Alistair Sinclair, and David Zuckerman. Opti-
mal speedup of las vegas algorithms. Information Processing
Letters, 47:173–180, 1993.

[15] J. Mason. Purdey’s general store. Dell Magazine, (April
1997), april 1997.

[16] Toby Walsh. Search in a small world. In IJCAI, pages 1172–
1177, 1999.

