
Constraint Programming for Mining Borders of Frequent Itemsets

Mohamed-Bachir Belaid Christian Bessiere Nadjib Lazaar
LIRMM, University of Montpellier, CNRS, Montpellier, France

{belaid, bessiere, lazaar}@lirmm.fr

Abstract
Frequent itemset mining is one of the most stud-
ied tasks in knowledge discovery. It is often re-
duced to mining the positive border of frequent
itemsets, i.e. maximal frequent itemsets. Infrequent
itemset mining, on the other hand, can be reduced
to mining the negative border, i.e. minimal infre-
quent itemsets. We propose a generic framework
based on constraint programming to mine both bor-
ders of frequent itemsets. One can easily decide
which border to mine by setting a simple parameter.
For this, we introduce two new global constraints,
FREQUENTSUBS and INFREQUENTSUPERS, with
complete polynomial propagators. We then con-
sider the problem of mining borders with additional
constraints. We prove that this problem is coNP-
hard, ruling out the hope for the existence of a sin-
gle CSP solving this problem (unless coNP ⊆ NP).

1 Introduction
Data mining is the art of discovering knowledge from
databases. It includes the discovering of frequent itemsets
[Agrawal et al., 1994; Han et al., 2000], association rules
[Agrawal et al., 1994; Liu et al., 1999], rare itemsets [Sza-
thmary et al., 2007; Adda et al., 2007], sequence patterns
[Agrawal and Srikant, 1995], emerging patterns [Dong and
Li, 1999], and many other tasks. For many data mining prob-
lems, the frequency represents an important metric. Given
a frequency threshold s over a transaction dataset, frequent
itemsets are those present in at least s transactions. Item-
sets present in less than s transactions are called infrequent
(or rare). The number of frequent/infrequent itemsets can be
huge, making it hard even to print the result. Hence, we often
reduce the problem of mining frequent or infrequent itemsets
to the problem of mining the borders. The positive border
is the set of frequent itemsets with only infrequent supersets,
i.e. Maximal Frequent Itemsets (MFIs). The negative border
is the set of infrequent itemsets with only frequent subsets,
i.e. Minimal Infrequent Itemsets (MIIs). The subsets of the
MFIs and the supersets of the MIIs represent the frequent and
infrequent itemsets, respectively.

Several techniques have been introduced for mining MFIs
[Burdick et al., 2001; Gouda and Zaki, 2001; Uno et al.,

2004], or MIIs [Szathmary et al., 2007; Haglin and Manning,
2007; Szathmary et al., 2012]. Despite an obvious duality
between MFIs and MIIs, very few papers propose a single
framework for mining both MFIs and MIIs. In [Mannila and
Toivonen, 1997; Boros et al., 2003; Nourine and Petit, 2012],
inferring MFIs from the set of MIIs and vice versa (or also
called the dualization) is reduced to computing the minimal
transversals of a hypergraph [Berge, 1984]. In fact, MIIs cor-
respond to the minimal transversals of the hypergraph con-
structed by the complements of the set of MFIs.

In a recent line of work, researchers have taken advantage
of the flexibility of constraint programming to model various
data mining problems [De Raedt et al., 2008; Khiari et al.,
2010; Lazaar et al., 2016; Schaus et al., 2017; Bessiere et al.,
2018]. In terms of CPU time, constraint programming-based
methods have not yet competed with ad hoc algorithms. How-
ever, their flexibility allows the modeling of complex user
queries without revising the solving process.

In this paper we propose a generic parameterized model
allowing the user to decide which border to mine (i.e., MFIs
or MIIs). For this model we need to define two new global
constraints: (1) FREQUENTSUBS for mining itemsets hav-
ing only frequent subsets, and (2) INFREQUENTSUPERS for
mining itemsets having only infrequent supersets. We pro-
vide a polynomial domain consistency propagator for each
of these two constraints. We then address the issue of min-
ing borders in the presence of other constraints. As noticed
in [Bonchi and Lucchese, 2004], mining borders under addi-
tional constraints can lead to the loss of solutions. This can
happen with maximal/minimal borders, but also with closed
itemsets or generator itemsets. We prove that it is coNP-hard
to find maximal/minimal itemsets among those satisfying a
set of additional constraints. This implies that it is impossi-
ble to propose a CSP for representing the problem of finding
maximal/minimal itemsets under additional constraints, un-
less coNP ⊆ NP. This is an a posteriori justification of the
”multi-shot” approaches, such as the one presented in [Ne-
grevergne et al., 2013].

The paper is organized as follows. Section 2 gives some
background material. In Section 3 we give a generic model
for mining MFIs or MIIs. We define the new global con-
straints FREQUENTSUBS and INFREQUENTSUPERS and we
present their propagators. Section 4 analyzes the problem of
mining constrained MFIs or MIIs. We present some empirical

results in Section 5. Finally, we conclude in Section 6.

2 Background
2.1 Itemsets
Let I = {1, . . . , n} be a set of n item indices and T =
{1, . . . ,m} a set of m transaction indices. An itemset P is
a non-empty subset of I. D = {t1, . . . , tm} is the transac-
tional dataset, where for all i ∈ T , ti is an itemset. The cover
of an itemset P , denoted by cover(P), is the set of trans-
actions containing P . The frequency of an itemset P is the
cardinality of its cover i.e. freq(P) = |cover(P)|. Let s be
some given constant called a support threshold. The itemset
P is frequent if freq(P) ≥ s. P is infrequent (or rare) if
freq(P) < s. We now define the two main notions used in
this paper.

Definition 1 (Maximal Frequent Itemset (MFI)) An item-
set is an MFI if it is frequent and all its proper supersets are
infrequent.

Definition 2 (Minimal Infrequent Itemset (MII)) An item-
set is an MII if it is infrequent and all its proper subsets are
frequent.

In [Mannila and Toivonen, 1997] MFIs and MIIs are re-
ferred to as positive and negative border respectively. MFIs
are closed and MIIs are a generator itemset. We define closed
and generator itemsets.

Definition 3 (Closed itemset [Pasquier et al., 1999]) An
itemset P is closed if and only if there does not exist any
itemset Q) P such that freq(Q) = freq(P).

Definition 4 (Generator [Bastide et al., 2000]) A generator
is an itemset P such that there does not exist any itemsetQ (
P such that freq(Q) = freq(P).

t Items
t1 A B D E
t2 A C
t3 A B C E
t4 B C E
t5 A B C E

Table 1: Dataset

Example 2.1 With s = 3, the dataset in Table 1 has MFIs =
{ABE,AC,BCE} and MIIs = {ABC,ACE,D}.

2.2 Constraint Programming (CP)
A CP model specifies a set of variables X = {x1, . . . , xn},
a set of domains dom = {dom(x1), . . . , dom(xn)}, where
dom(xi) is the finite set of possible values for xi, and a set
of constraints C on X . A constraint cj ∈ C is a relation that
specifies the allowed combinations of values for its variables
var(cj). An assignment on a set Y ⊆ X of variables is a
mapping from variables in Y to values, and a valid assign-
ment is an assignment where all values belong to the domain
of their variable. A solution is an assignment on X satisfying
all constraints. Constraint programming is the art of writing

problems as CP models and solving them by finding solu-
tions. Constraint solvers typically use backtracking search
to explore the search space of partial assignments. At each
assignment, constraint propagation algorithms (aka, propaga-
tors) prune the search space by enforcing local consistency
properties such as domain consistency.

A constraint c on var(c) is domain consistent (DC) if and
only if, for every xi ∈ var(c) and every dj ∈ dom(xi),
there is a valid assignment satisfying c such that xi = dj .
Global constraints are constraints defined by a relation on any
number of variables. The constraint AllDifferent, specifying
that all its variables must take different values is an example
of global constraint (see [Rossi et al., 2006]).
Example 2.2 Consider the following instance of a CP model.
X = {x1, x2, x3}, dom(x1) = {0, 2}, dom(x2) = {0, 2, 4},
dom(x3) = {1, 2, 3, 4}, and C = {x1 ≥ x2, x1 + x2 = x3}.
Value 4 for x2 will be removed by DC because of constraint
x1 ≥ x2. Values 1 and 3 for x3 will be removed by DC
because of constraint x1 + x2 = x3. This CP model admits
the two solutions (x1 = 2, x2 = 0, x3 = 2) and (x1 =
2, x2 = 2, x3 = 4).

3 A Generic CP Model for Mining Borders
We present a CP model, MODELD,s,b, for mining MFIs or
MIIs. MODELD,s,b uses a vector x of n Boolean variables,
where xi represents the presence of the item i in the itemset.
We will use the following notations:
• x−1(1) = {i ∈ I | dom(xi) = {1}}
• x−1(0) = {i ∈ I | dom(xi) = {0}}
• x−1(∗) = {i ∈ I | i 6∈ x−1(1) ∪ x−1(0)}

MODELD,s,b(x) =

FREQUENTSUBSD,s(x) (1)

INFREQUENTSUPERSD,s(x) (2)

b ⇐⇒ FREQUENTD,s(x) (3)

where (1) is a global constraint that holds if and only if
the itemset x−1(1) has only frequent subsets w.r.t s, (2)
is a global constraint that holds if and only if the item-
set x−1(1) has only infrequent supersets w.r.t s, and the
Boolean parameter b reifies the global constraint FREQUENT
(3). FREQUENTD,s holds if and only if x−1(1) is frequent
w.r.t s. We prove that MODELD,s,b is a correct model for
mining MFIs or MIIs.
Theorem 1 The set of solutions to MODELD,s,b corresponds
to the set of MFIs if b = true, the set of MIIs otherwise.
Proof. We first prove that MFIs and MIIs always satisfy con-
straints (1) and (2). All supersets of an MFI are infrequent,
thus satisfying (2). Because an MFI is frequent, all its proper
subsets are frequent, thus satisfying (1). An MII has only
frequent subsets, thus satisfying (1). Because an MII is in-
frequent, it has only infrequent supersets, thus satisfying (2).
Hence, all MFIs and all MIIs satisfy constraints (1) and (2).

We now prove that a solution of MODELD,s,b, can only be
an MFI or an MII depending on the value of b. A solution of
MODELD,s,b can only be frequent (i.e., b = true) or infre-
quent (i.e., b = false). If it is frequent then it is an MFI (see
Definition 1). Otherwise it is an MII (see Definition 2). �

{}

A B C D E

AB AC AD AE BC BD CD BE CE DE

ABC ABD ACD ACE ABE ADE BCD BCE BDE CDE

ABCD ACDE ABCE ABDE BCDE

ABCDE

Itemsets with infrequent
supersets border

Itemsets with frequent
subsets border

MFI

MII

Figure 1: The powerset lattice of the dataset in Table 1 with borders
of FREQUENTSUBS and INFREQUENTSUPERS (s = 3).

Example 3.1 The lattice in Figure 1 displays the set of
itemsets satisfying the constraints FREQUENTSUBS and
INFREQUENTSUPERS on the dataset of Table 1 with s = 3.
The intersection between both sets is the set MFIs∪MIIs.

We can then use MODELD,s,b to mine either MFIs or MIIs
by simply setting b to true or false. We now define the global
constraints FREQUENTSUBS and INFREQUENTSUPERS and
we propose propagators.

3.1 The Global Constraint FREQUENTSUBS

We present the new global constraint FREQUENTSUBS used
to mine itemsets that have only frequent subsets.

Definition 5 (FREQUENTSUBS) Let x be a vector of
Boolean variables, s a support threshold and D a dataset.
The global constraint FREQUENTSUBSD,s(x) holds if and
only if ∀p ⊂ x−1(1), freq(p) ≥ s.
Algorithm. The propagator for the global constraint FRE-
QUENTSUBS is presented in Algorithm 1. Algorithm 1
takes as input the variables x and the support threshold s.
Algorithm 1 starts by computing the cover of the itemset
x−1(1) and stores it in cover (line 4). Then, for each item
j ∈ x−1(1), Algorithm 1 computes the cover of the subset
x−1(1) \ {j}, and stores it in cov[j] (line 6). If x−1(1) \ {j}
is infrequent then x−1(1) is not a solution and we return a
failure (line 7). Algorithm 1 must then remove items i that
cannot belong to a solution containing x−1(1). To do that,
we first test if the itemset x−1(1) is infrequent (line 8). If so,
we remove 1 from dom(xi) for all i ∈ x−1(∗) (lines 9-10)
because the itemset x−1(1) ∪ {i} has an infrequent subset
(x−1(1)) for every i in x−1(∗). Otherwise, for every item i
in x−1(∗) we test if the itemset x−1(1) ∪ {i} is infrequent
(line 12). If so, it could have infrequent subsets. Thus, for
every item j in x−1(1), we test if the size of the cover of
x−1(1)∪{i}\{j} (i.e., cov[j]∩cover(i)) is less than s (line
14). If so, we remove i from the possible items, that is, we
remove 1 from dom(xi) and break the loop (line 15).

Theorem 2 The propagator in Algorithm 1 enforces domain
consistency on the constraint FREQUENTSUBS.

Algorithm 1: Propagator for FREQUENTSUBS

1 In: s: support threshold;
2 InOut: x = {x1 . . . xn}: Boolean item variables;

3 begin
4 cover← cover(x−1(1));
5 foreach j ∈ x−1(1) do
6 cov[j]← cover(x−1(1) \ {j});
7 if |cov[j]| < s then return failure ;
8 if |cover| < s then
9 foreach i ∈ x−1(∗) do

10 dom(xi)← dom(xi) \ {1};

11 foreach i ∈ x−1(∗) do
12 if |cover ∩ cover(i)| < s then
13 foreach j ∈ x−1(1) do
14 if |cov[j] ∩ cover(i)| < s then
15 dom(xi)← dom(xi) \ {1}; break;

Proof. We first prove that if FREQUENTSUBS admits a so-
lution, x−1(1) is necessarily one of them. Suppose there is a
solution and x−1(1) is not one of them. This means that there
exists a superset of x−1(1) which has all its subsets frequent.
x−1(1) is one of these subsets. Thus, all subsets of x−1(1)
are frequent and x−1(1) is solution too, which contradicts the
assumption. We now prove that Algorithm 1 returns failure
if and only if FREQUENTSUBS does not admit any solution.
We know that FREQUENTSUBS has no solution if and only if
x−1(1) is not solution. x−1(1) is not solution if and only if it
has an infrequent subset x−1(1) \ {j} for some j in x−1(1).
In such a case the test in line 7 is true and failure is returned.
If FREQUENTSUBS admits solutions, x−1(1) is a support for
xi = 0, for all i ∈ x−1(∗). As a result, Algorithm 1 does not
need to check consistency of value 0 for any variable.

We now prove that Algorithm 1 prunes value 1 from
dom(xi) exactly when i cannot belong to a solution contain-
ing x−1(1). Suppose value 1 of xi is pruned by Algorithm 1.
This means that the test in line 8 (or line 14) was true, that
is, there exists a subset of x−1(1) ∪ {i} which is infrequent.
Thus, by definition, x−1(1) ∪ {i} does not belong to any so-
lution. Suppose now that value 1 of xi is not pruned. From
lines 8 and 14, we deduce that there does not exist any infre-
quent subset of x−1(1)∪{i}. Thus x−1(1)∪{i} is a solution
and value 1 of xi is domain consistent. �

Theorem 3 Given a transaction dataset D of n items and m
transactions, Algorithm 1 has anO(n2×m) time complexity.

Proof. Computing the size of the cover of an itemset is in
O(n×m). Line 5 is called at most n times, leading to a time
complexity in O(n2×m). The time complexity of lines 8-10
is bounded above by n. The test at line 13 is done at most n2
times. The cover x−1(1) ∪ {i} \ {j} at line 13 is computed
in O(m) thanks to the cov data structure. Thus, the time
complexity of lines 9-14 is bounded above by n2 ×m. As a
result, Algorithm 1 has an O(n2 ×m) time complexity. �

Algorithm 2: Propagator for INFREQUENTSUPERS

1 In: s: support threshold;
2 InOut: x = {x1 . . . xn}: Boolean item variables;

3 begin
4 cover← cover(x−1(1) ∪ x−1(∗));
5 if |cover| ≥ s then
6 foreach j ∈ x−1(0) do
7 if |cover ∩ cover(j)| ≥ s then
8 return failure;

9 foreach i ∈ x−1(∗) do
10 cover2← cover(x−1(1) ∪ x−1(∗) \ {i});
11 if |cover2| ≥ s then
12 foreach j ∈ (x−1(0) ∪ {i}) do
13 if |cover2 ∩ cover(j)| ≥ s then
14 dom(xi)← dom(xi) \ {0}; break;

3.2 The Global Constraint INFREQUENTSUPERS
We present the new global constraint INFREQUENTSUPERS
used to mine itemsets that have only infrequent supersets.
Definition 6 (INFREQUENTSUPERS) Let x be a vector of
Boolean variables, s a support threshold and D a dataset.
The global constraint INFREQUENTSUPERSD,s(x) holds if
and only if ∀p ⊃ x−1(1), freq(p) < s.

Algorithm. The propagator for the global constraint
INFREQUENTSUPERS is presented in Algorithm 2. Algo-
rithm 2 takes as input the variables x and the support thresh-
old s. Algorithm 2 starts by computing cover, the cover
of the largest possible itemset, x−1(1) ∪ x−1(∗) (line 4). If
such an itemset has a frequent superset (line 7) then no item-
set containing x−1(1) can be a solution and we return failure
(line 8). Algorithm 2 must then remove value 0 from dom(xi)
if the absence of the item i can lead to an itemset that has a
frequent superset. To do that, for every free item i (line 9), Al-
gorithm 2 computes cover2, the cover of the largest itemset
not containing the item i, i.e. x−1(1)∪x−1(∗)\{i} (line 10).
If x−1(1)∪ x−1(∗) \ {i} is frequent (line 11), it could have a
frequent superset. Thus, for every item j in x−1(0) ∪ {i} we
test whether the itemset x−1(1) ∪ x−1(∗) \ {i} ∪ {j} is fre-
quent (line 13). If so, we remove 0 from dom(xi) and break
the loop (line 14).
Theorem 4 The propagator in Algorithm 2 enforces domain
consistency on the constraint INFREQUENTSUPERS.

Proof. We first prove that if INFREQUENTSUPERS admits a
solution, x−1(1) ∪ x−1(∗) is necessarily one of them. Sup-
pose there is a solution and x−1(1) ∪ x−1(∗) is not one of
them. This means that there exists a subset of x−1(1) ∪
x−1(∗) which has all its supersets infrequent. x−1(1) ∪
x−1(∗) is one of these supersets. Thus, all supersets of
x−1(1) ∪ x−1(∗) are infrequent and x−1(1) ∪ x−1(∗) is so-
lution too, which contradicts the assumption. We now prove
that Algorithm 2 returns failure if and only if INFREQUENT-
SUPERS does not admit any solution. We know that if

INFREQUENTSUPERS has solutions, x−1(1) ∪ x−1(∗) is one
of them. x−1(1) ∪ x−1(∗) is not solution if and only if it has
a frequent superset. In such a case the test in line 7 is true for
some j in x−1(0) and failure is returned. If INFREQUENT-
SUPERS has solutions, x−1(1) ∪ x−1(∗) is a support for
xi = 1, for all i ∈ x−1(∗). As a result, Algorithm 2 does
not need to check consistency of value 1 for any variable.

We now prove that Algorithm 2 prunes 0 from dom(xi)
exactly when i belongs to all solutions containing x−1(1). If
the test in line 13 is true this means that with xi = 0 we get
itemsets having at least a frequent superset. Hence, 0 must be
pruned from dom(xi). Suppose now that the test in line 13
is false for all j. x−1(1) ∪ x−1(∗) \ {i} has only infrequent
supersets and xi = 0 is domain consistent. �

Theorem 5 Given a transaction dataset D of n items and m
transactions, Algorithm 2 has anO(n2×m) time complexity.
Proof. Computing the cover of x−1(1) ∪ x−1(∗) in line 4
is in O(n × m). The loop in line 6 computes the cover of
x−1(1)∪ x−1(∗)∪ {j} in O(m) using the already computed
cover of x−1(1)∪ x−1(∗) (i.e., cover). As a result the worst
case time complexity of lines 4-8 is in O(n×m). Similarly,
the time complexity of lines 10-14 is bounded above by
n ×m. Lines 10-14 are called at most n times, leading to a
time complexity in O(n2 ×m). �

It is worth noticing the duality between Algorithm 1 and
Algorithm 2. Algorithm 1 removes value 1 from dom(xi) if
including the item i leads to an itemset having an infrequent
subset. Algorithm 2 removes value 0 from dom(xi) if exclud-
ing the item i necessarily leads to itemsets having a frequent
superset. This duality is not totally obvious at a first glance
because Algorithm 1 requires the cov data structure to have
its good time complexity whereas Algorithm 2 does not need
it. The reason is that Algorithm 1 computes the covers of
subsets that we cannot derive from the cover of their super-
sets whereas Algorithm 2 computes covers of supersets that
can be obtained by simple bitwise operation on their subsets.

4 On Constrained Borders
As pointed out in [Bonchi and Lucchese, 2004], constraints
can interfere with closedness (or maximality) when they are
not monotone. Likewise, constraints can interfere with min-
imality when they are not anti-monotone. Hence, existing
”one-shot” CP approaches can miss solutions because they
look for maximal/minimal itemsets that in addition satisfy
constraints (see [Lazaar et al., 2016]), whereas we are usually
interested in itemsets that are maximal (or minimal) among
those satisfying the constraints. In this section we prove that
deciding whether a frequent itemset is maximal or closed
or minimal among those satisfying the constraints is coNP-
complete. This means that finding maximal/closed/minimal
itemsets among those satisfying a set of constraints is coNP-
hard. It is a proof that it is not possible to solve this prob-
lem using a single CSP (unless coNP ⊆ NP). This validates
”multi-shot” approaches [Negrevergne et al., 2013].
Theorem 6 Given a dataset D on a set of items I and a set
C of user’s constraints, deciding whether an itemset is maxi-
mal/closed among those satisfying C is coNP-complete.

Proof. Membership. Given an itemset P , a witness to its
non maximality/closedness is an itemset P ′ ⊃ P that is fre-
quent, satisfies C, and in the case of closedness has the same
frequency as P . Checking that P ′ is frequent and checking
that it has the same frequency as P is linear in |D|. Check-
ing that P ′ satisfies C requires the polynomial check of the C
constraints. Hence, the ”no” answer admits a polynomial cer-
tificate, and so deciding maximality or closedness is in coNP.

Completeness. We reduce co3COL, which is coNP-
complete, to the problem of deciding whether an itemset is
maximal/closed. We want to decide whether a connected
graph G = (V,E) is non colorable with three colors. We
build the dataset D on the set I = (a1, . . . , an, b1, . . . , bn, c)
of items, where n = |V |. The pair (ai, bi) of items will rep-
resent the vertex i in V . D contains the single transaction
(1, . . . , 1) and the frequency threshold s is set to |T |/2.

As in all CP models for itemset mining, there is a Boolean
variable for each item. The standard semantics is that xp = 1
if and only if the item p is in the itemset returned as solution.

For each edge (i, j) ∈ E, a quaternary constraint
c(xai , xbi , xaj , xbj) is put in the set C of user’s con-
straints. The tuples allowed by c(xai , xbi , xaj , xbj) are
(0000), (0110), (0111), (1001), (1011), (1101), (1110). The
assignments (01), (10), and (11) for the pair of vari-
ables (xai

, xbi) represent the three colors for vertex i.
c(xai

, xbi , xaj
, xbj) accepts the tuple (0000) plus the six tu-

ples representing the six combinations of different colors for
the pair of vertices (i, j). Hence, by construction, the tuple
(0, . . . , 0) is solution, and, as soon as a variable xai

or xbi is
set to 1, it forces all neighbors in E of vertex i to take an-
other color than the color represented by the assignment of
(xai , xbi). As a result, deciding whether the itemset {c} is
maximal/closed among the itemsets satisfying C is equiva-
lent to deciding whether there does not exist any superset of
{c} satisfying C, which is equivalent to deciding whether G
is non 3-colorable. �

Theorem 7 Given a dataset D on a set of items I and a set
C of user’s constraints, deciding whether an itemset is mini-
mal/generator among those satisfying C is coNP-complete.

Proof. (Sketch.) Membership is direct adaptation of the
proof of membership in Theorem 6: A witness of non-
minimality/non-generator of an itemset P is a subset that
is infrequent (or has the same frequency in case of genera-
tor) and satisfies C, which is polynomial to check. Com-
pleteness is the dual of the reduction in Theorem 6. We re-
duce co3COL to the problem of deciding whether an item-
set is minimal/generator. We build the dataset D on the set
I = (a1, . . . , an, b1, . . . , bn) of items with the three trans-
actions (1, 0, . . . , 0), (0, . . . , 0, 1) and (1, . . . , 1). The fre-
quency threshold s is set to |T |/2. For each edge in the graph,
we use again a quaternary constraint but the tuple (0000) is
replaced by the tuple (1111) and the three colors are repre-
sented by the assignments (00), (01), and (10) instead of
(01), (10), and (11). By construction, the tuple (1, . . . , 1)
is solution and deciding whether the itemset (a1, . . . , an,
b1, . . . , bn) is minimal/generator among the itemsets satisfy-
ing C is equivalent to deciding whether there does not exist
any subset of (a1, . . . , an, b1, . . . , bn) satisfying C, which is

equivalent to deciding whether G is non 3-colorable. �

Corollary 1 Given a dataset D on a set of items I and a
set C of user’s constraints, finding an itemset that is max-
imal/closed/minimal/generator among those satisfying C is
coNP-hard.

5 Experiments
We made several experiments to compare our CP model
MODELD,s,b to the state of the art approaches.

5.1 Experimental Protocol
The implementation of MODELD,s,b and its constraint propa-
gators were carried out in the Oscar solver using Scala (bit-
bucket.org/oscarlib/oscar). The code is publicly available at
gite.lirmm.fr/belaid/cp4borders. All experiments were con-
ducted on an Intel core i7, 2.2Ghz with a RAM of 8Gb
and a timeout of one hour. MODELD,s,b is denoted by
CP4MFI (resp. CP4MII) when b = 1, i.e. mining MFIs,
(resp. b = 0, mining MIIs). We used the global constraint
COVERSIZE to encode the constraint (3) in MODELD,s,b.
COVERSIZED(x, p) holds if and only if p = |cover(x−1(1))|
[Schaus et al., 2017]. We enforce frequency by simply
adding the constraint p ≥ s and infrequency by adding
p < s. The propagator of COVERSIZE enforces DC on
the frequency, but it does not on the infrequency. We have
assessed the quality of the COVERSIZE encoding of infre-
quency by comparing to a propagator that enforces DC on
the infrequency. We observed that the number of additional
nodes explored with the COVERSIZE encoding was marginal
and the CPU time was better. We thus use the propaga-
tor of COVERSIZE in all our experiments. As an MFI is a
closed itemset and an MII is a generator, we enhance prop-
agation by adding, respectively, the global constraints COV-
ERCLOSURE [Schaus et al., 2017] and GENERATOR [Belaid
et al., 2019]. After a few preliminary tests, we decided to use
smallest item frequency first as variable ordering heuristic and
largest value first as value ordering heuristic. We compared
CP4MFI to the FPGROWTH [Grahne and Zhu, 2003] spe-
cialized algorithm for extracting MFIs (Borgelt’s platform:
borgelt.net/fpgrowth.html) and CP4MII to WALKY-G [Sza-
thmary et al., 2012] for mining MIIs (CORON platform:
coron.loria.fr). We selected several real-sized datasets from
the FIMI repository (fimi.ua.ac.be/data). A dataset is charac-
terized by its name, the number of items |I|, the number of
transactions |T | and its density ρ.

5.2 Mining Borders
Our first experiment compares CP4MFI to FPGROWTH and
CP4MII to WALKY-G for mining MFIs and MIIs. For each
approach and each selected instance, Table 2 reports the
CPU time and the number of MFIs/MIIs.1 An instance of a
given dataset is characterized by its minimum support s (e.g.,
Zoo 50 denotes the instance of Zoo with s = 50).

A first observation is that the specialized algorithms FP-
GROWTH and WALKY-G follow a completely different ap-
proach to extract MFIs and MIIs whereas our CP model can

1This number is computed by releasing the timeout.

Dataset
|I| × |T |
ρ(%)

s
Mining MFIs Mining MIIs

FPGROWTH CP4MFI #MFIS WALKY-G CP4MII #MIIS

Zoo
36× 101
44%

50 0.01 0.03 32 0.12 0.04 111
9 0.01 0.08 200 0.10 0.13 875
1 0.01 0.09 59 0.27 0.12 1,071

Vote
48× 435
33%

150 0.01 0.04 75 0.19 0.10 479
5 0.08 0.77 13,787 0.85 1.40 37,526
1 0.13 0.47 342 1.26 1.24 32,067

Anneal
93× 812
45%

700 0.01 0.05 65 0.26 0.08 303
100 0.42 1.10 15,889 9.59 2.06 77,119
50 0.61 1.13 14,296 23.48 3.41 86,783

Chess
75× 3, 196

49%

2,500 0.01 0.10 286 0.10 0.13 511
1,000 1.04 4.34 114,382 23.14 8.38 152,316
500 16.60 25.66 952,812 OOM 97.42 1,353,344
160 233.78 127.30 5,784,232 OOM 923.84 9,364,262

Mushroom
119× 8, 124

19%

4,000 0.01 0.03 12 0.31 0.06 145
40 0.07 1.09 12,010 0.86 2.33 48,111
4 0.24 1.56 39,416 1.95 4.58 49,046

Connect
129× 67, 557

33%

55,000 0.01 0.51 594 0.34 0.48 891
7,000 2.60 69.03 123,345 163.25 99.42 165,198
2,000 24.40 342.95 893,826 TO 885.99 1,180,278
676 102.90 800.65 3,283,735 TO 3541.77 4,221,496

T10
1, 000× 100, 000

1%

5,000 0.01 0.19 10 0.13 4.59 905
1,000 0.12 207.89 307 2.33 373.01 344,651

50 0.35 255.18 12,062 4.27 472.82 698,556
Pumsb

2, 113× 49, 046
3%

48,000 0.01 0.09 3 0.25 10.18 2,115
32,000 0.21 470.80 17,791 30.10 48.55 57,425
17,000 145.96 TO 2,403,260 OOM TO > 3× 106

T10 = T10I4D100K TO= timeout OOM= out of memory

Table 2: FPGROWTH vs CP4MFI for mining MFI and WALKY-G vs
CP4MII for mining MIIs (time in seconds)

mine a border or the other just by flipping a parameter. When
mining MFIs, the main observation that we can draw from
Table 2 is that, as expected, the specialized algorithm FP-
GROWTH performs very well. However, CP4MFI is very com-
petitive too, and even faster on one instance (Chess 160). As
for MIIs, CP4MII outperforms WALKY-G in 14 instances out
of 26. CP4MII reaches once the timeout of one hour. WALKY-
G reaches the time out on two instances and an out of memory
state on three instances. WALKY-G uses a hash structure for
storing frequent generators. Maintaining this data structure
can be very expensive, especially on dense datasets. For in-
stance, on the very dense Chess 500, WALKY-G exhausts the
8Gb of memory to store the 50M frequent generators. On the
moderately dense Connect 7000, WALKY-G needs to store
more than 7.4M frequent generators to find the 165K MIIs
in 163.25 seconds. On these two instances, CP4MII returns
the whole set of MIIs in only 97.42 and 99.42 seconds, re-
spectively. On sparse datasets, where we have few frequent
generators, WALKY-G is very efficient. On the very sparse
dataset T10, WALKY-G stores less than 50K frequent gen-
erators to extract the 698K MIIs of T10 50 in less than 5
seconds whereas CP4MII needs more than 7 minutes.

5.3 Mining Constrained Borders
In many practical applications, the user asks for itemsets sat-
isfying some additional constraints. We performed experi-
ments that show the strength of our CP approach in taking
into account user’s constraints. We look for MFIs of minimim
size lb and MIIs of maximum size ub. These two queries can
easily be expressed in our CP model by adding the cardinal-
ity constraints

∑
i∈I xi ≥ lb to CP4MFI, and

∑
i∈I xi ≤ ub

to CP4MII. FPGROWTH includes a filtering step allowing
us to specify the minimum size of extracted MFIs. How-
ever, WALKY-G does not provide such feature, and extract-
ing MIIs under cardinality constraints is only possible via a
post-processing step. Table 3 reports the results. We selected
the instances having more than one million MFIs and/or MIIs
in Table 2. For each selected instance, we increased lb (resp.

Instance
Mining constrained MFIs Mining constrained MIIs

lb FPGROWTH CP4MFI #SOL ub WALKY-G CP4MII #SOL

Chess 500

25 17.97 0.30 0 1 OOM 0.08 19
24 17.60 0.72 2 3 OOM 0.41 1,962
21 16.60 1.65 2,091 5 OOM 8.88 31,591
17 17.86 10.58 171,567 7 OOM 16.58 224,172

Chess 160

29 201.55 1.23 0 1 OOM 0.03 9
28 224.31 1.73 10 3 OOM 0.62 2,384
26 226.77 3.51 1,527 4 OOM 1.31 13,487
23 219.82 16.08 132,814 6 OOM 17.44 186,653

Connect 676

40 117.87 5.96 0 1 TO 0.15 20
33 111.95 69.00 266 2 TO 2.53 1,612
32 109.07 117.17 21,788 4 TO 22.81 33,742
31 125.62 171.04 157,793 5 TO 119.42 144,007

Pumsb 17000

35 157.28 1.16 0 1 OOM 4.59 2,033
30 157.58 14.96 21 3 OOM 11.94 5,721
26 153.33 148.26 1,663 6 OOM 254.58 166,178
22 154.52 3019.25 55,018 8 OOM 2702.20 1,388,040

TO= timeout OOM= out of memory

Table 3: FPGROWTH vs CP4MFI for mining constrained MFI and
WALKY-G vs CP4MII for mining constrained MIIs (time in seconds)

decreased ub) and we report the CPU time, in seconds, ac-
cording to the number of solutions.

The main observation on the performance of FPGROWTH
for extracting constrained MFIs is that its CPU time is al-
most constant. For instance, extracting more than 5M or
just 10 MFIs on Chess 160 requires almost the same CPU
time. This is explained by the fact that the cardinality con-
straint in FPGROWTH has no pruning power. It is just used
as a checker. On the contrary, when lb increases, CP4MFI
removes more values thanks to constraint propagation, thus
drastically reducing the search space. Take for instance
Pumsb 17000. When lb = 22, CP4MFI extracts the 55K
MFIs in more than 50 minutes whereas when lb increases to
30, CP4MFI returns the 21 remaining solutions in only 15 sec-
onds. On instances with no solutions, such as Pumsb 17000
with lb = 35, CP4MFI proves the absence of solutions in one
second whereas FPGROWTH spends 157.28 seconds.

For WALKY-G, no results are reported because it already
has an OOM or TO state before reaching post-processing step.
The main observation that we can draw on the behavior of
CP4MII is again the strong correlation between the increase
of tightness of the cardinality constraint (that is, the decrease
of ub) and the drop in CPU time needed to extract the con-
strained MIIs. The explanation for this good behavior of
CP4MII is again the strength of constraint propagation to dis-
card inconsistent values, thus reducing the search space. On
Pumsb 17000, when ub decreases from 8 down to 1, CP4MII
goes from 45 minutes down to 4.59 seconds to return the set
of MIIs (1.3M MIIs for ub = 8 and 2K MIIs for ub = 1).

6 Conclusion
We have presented a CP model for mining MFIs and
MIIs. We defined two new global constraints, namely FRE-
QUENTSUBS and INFREQUENTSUPERS, with polynomial
complete propagators. We have proved that the problem of
MFIs or MIIs with constraints is co-NPhard, ruling out the
hope for a single CSP solving this problem. Nevertheless,
our CP model is sound when the additional constraints are
monotone on MFIs or anti-monotone on MIIs. Experiments
showed that the CP approach is competitive with state of the
art techniques for mining MFIs or MIIs and even better for
mining MFIs or MIIs with additional constraints.

References
[Adda et al., 2007] M. Adda, L. Wu, and Y. Feng. Rare

itemset mining. In Proceedings of ICMLA’07, Cincinnati,
Ohio, USA, pages 73–80. IEEE, 2007.

[Agrawal and Srikant, 1995] R. Agrawal and R. Srikant.
Mining sequential patterns. In Proceedings of ICDE’95,
Taipei, Taiwan, pages 3–14. IEEE, 1995.

[Agrawal et al., 1994] R. Agrawal, R. Srikant, et al. Fast al-
gorithms for mining association rules. In Proceedings of
VLDB’94, Santigo de Chile, Chile, volume 1215, pages
487–499, 1994.

[Bastide et al., 2000] Y. Bastide, R. Taouil, N. Pasquier,
G. Stumme, and L. Lakhal. Mining frequent patterns with
counting inference. ACM SIGKDD Explorations Newslet-
ter, 2(2):66–75, 2000.

[Belaid et al., 2019] M.B. Belaid, C. Bessiere, and
N. Lazaar. Constraint programming for association
rules. In Proceedings of SDM’19, Calgary, Alberta,
Canada. SIAM, 2019.

[Berge, 1984] C. Berge. Hypergraphs: combinatorics of fi-
nite sets, volume 45. Elsevier, 1984.

[Bessiere et al., 2018] C. Bessiere, N. Lazaar, and M. Maa-
mar. User’s constraints in itemset mining. In Proceedings
of CP’18, Lille, France, pages 537–553. Springer, 2018.

[Bonchi and Lucchese, 2004] F. Bonchi and C. Lucchese.
On closed constrained frequent pattern mining. In Pro-
ceedings of ICDM’04, Brighton, UK, pages 35–42. IEEE,
2004.

[Boros et al., 2003] E. Boros, V. Gurvich, L. Khachiyan, and
K. Makino. On maximal frequent and minimal infrequent
sets in binary matrices. Annals of Mathematics and Artifi-
cial Intelligence, 39(3):211–221, 2003.

[Burdick et al., 2001] D. Burdick, M. Calimlim, and
J. Gehrke. Mafia: A maximal frequent itemset algorithm
for transactional databases. In Proceedings of ICDE’01,
Heidelberg, Germany, pages 443–452. IEEE, 2001.

[De Raedt et al., 2008] L. De Raedt, T. Guns, and S. Nijssen.
Constraint programming for itemset mining. In Proceed-
ings of KDD’08, Las Vegas, Nevada, USA, pages 204–212.
ACM, 2008.

[Dong and Li, 1999] G. Dong and J. Li. Efficient mining
of emerging patterns: Discovering trends and differences.
In Proceedings of KDD’99, San Diego, California, USA,
pages 43–52. Citeseer, 1999.

[Gouda and Zaki, 2001] K. Gouda and M.J. Zaki. Efficiently
mining maximal frequent itemsets. In Proceedings of
ICDM’01, San Jose, California, USA, page 163. IEEE,
2001.

[Grahne and Zhu, 2003] G. Grahne and J. Zhu. Efficiently
using prefix-trees in mining frequent itemsets. In Proceed-
ings of FIMI’03, Melbourne, Florida, USA, volume 90,
2003.

[Haglin and Manning, 2007] D.J. Haglin and Anna M. Man-
ning. On minimal infrequent itemset mining. In Proceed-
ings of DMIN’07, Las Vegas, Nevada, USA, pages 141–
147, 2007.

[Han et al., 2000] J. Han, J. Pei, and Y. Yin. Mining frequent
patterns without candidate generation. In ACM sigmod
record, volume 29, pages 1–12. ACM, 2000.

[Khiari et al., 2010] M. Khiari, P. Boizumault, and
B. Crémilleux. Constraint programming for mining
n-ary patterns. In Proceedings of CP’10, St Andrews,
Scotland, pages 552–567. Springer, 2010.

[Lazaar et al., 2016] N. Lazaar, Y. Lebbah, S. Loudni,
M. Maamar, V. Lemière, C. Bessiere, and P. Boizumault.
A global constraint for closed frequent pattern mining. In
Proceedings of CP’16, Toulouse, France, pages 333–349.
Springer, 2016.

[Liu et al., 1999] B. Liu, W. Hsu, and Y. Ma. Mining as-
sociation rules with multiple minimum supports. In Pro-
ceedings of KDD’99, San Diego, California, USA, pages
337–341. ACM, 1999.

[Mannila and Toivonen, 1997] H. Mannila and H. Toivonen.
Levelwise search and borders of theories in knowledge dis-
covery. Data mining and knowledge discovery, 1(3):241–
258, 1997.

[Negrevergne et al., 2013] B. Negrevergne, A. Dries,
T. Guns, and S. Nijssen. Dominance programming for
itemset mining. In Proceedings of ICDM’13, Dallas,
Texas, USA, pages 557–566. IEEE, 2013.

[Nourine and Petit, 2012] L. Nourine and J.M. Petit. Extend-
ing set-based dualization: Application to pattern mining.
In Proceedings of ECAI’12, Montpellier, France, pages
630–635. IOS Press, 2012.

[Pasquier et al., 1999] N. Pasquier, Y. Bastide, R. Taouil, and
L. Lakhal. Discovering frequent closed itemsets for associ-
ation rules. In Proceedings of ICDT’99, Jerusalem, Israel,
pages 398–416. Springer, 1999.

[Rossi et al., 2006] F. Rossi, P. Van Beek, and T. Walsh.
Handbook of constraint programming. Elsevier, 2006.

[Schaus et al., 2017] P. Schaus, J.OR. A., and T. Guns. Cov-
ersize: A global constraint for frequency-based itemset
mining. In Proceedings of CP’17, Melbourne, Australia,
pages 529–546. Springer, 2017.

[Szathmary et al., 2007] L. Szathmary, A. Napoli, and
P. Valtchev. Towards rare itemset mining. In Proceedings
of ICTAI’07, Patras, Greece, volume 1, pages 305–312.
IEEE, 2007.

[Szathmary et al., 2012] Laszlo Szathmary, Petko Valtchev,
Amedeo Napoli, and Robert Godin. Efficient vertical min-
ing of minimal rare itemsets. In Proceedings of CLA’12,
Malaga, Spain, pages 269–280. Citeseer, 2012.

[Uno et al., 2004] T. Uno, M. Kiyomi, and H. Arimura.
Lcm ver. 2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. In Proceedings of
FIMI’04, Brighton, UK, volume 126, 2004.

