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DATA MINING

➤ Data Mining (DM) or Knowledge Discovery in Databases 
(KDD) revolves around the investigation and creation of 
knowledge, processes, algorithms, and the mechanisms for 
retrieving potential knowledge from data collections.  

Mining on:

➤ Itemsets (Finding itemsets from a collection of transactions)

➤ Sequences (Finding subsequences from collection of 
sequences)

➤ Graphs (Finding subgraphs from collection of graphs)

➤ Tree, Geometric structures…
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FREQUENT ITEMSET MINING
➤ Aims at finding regularities in datasets (e.g., shopping 

behavior of customers)   

In market basket analysis:

➤ Find sets of products that are frequently bought together 

    Often found patterns are expressed as association rules, for 
example: 

➤ If a customer buys bread and wine, then she/he will 
probably also buy cheese.

[Agrawal et al, 93]
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➤ Aims at finding regularities in datasets (e.g., shopping 
behavior of customers)   

➤ Given:

➤ A set of items

➤ A set of transactions overs the items

➤ A minimum support    

➤ The need:

➤ The set of itemset P s.t.:

I = {i1, …, in}

T = {t1, …, tm}

θ

freq(P) ≥ θ
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t4: A E F

t5: B E F

t6: B E F G

freq(BEF) = 50 %
cover(BEF) = {t1, t5, t6}

➤ Brute force enumeration is infeasible

➤ 128 items 1068 itemsets (atoms in 
the universe)

➤ Several specialised algorithms have 
been developed: 

Apriori, Eclat, FP-Growth, LCM…

➤ Dealing with basic user’s constraints:

Frequency, Condensed representations 
(closedness, maximality,…), Size… 
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Dataset #Frequent #Closed #Maximal
Zoo-1 151	807 3	292 230
Mushroom 155	734 3	287 453
Lymph 9	967	402 46	802 5	191
Hepa;;s 27	.	107 1	827	264 189	205
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FAULT LOCALISATION
➤ The need: identify a subset of statements that are susceptible to 

explain a fault in a program

➤ Precision <=> Efficiency

➤ Spectrum-based approaches: (ranking metrics -  suspiciousness 
score)

➤ Tarantula [Jones and Harrold 05]

➤ Ochiai [Abreu et al. 07]

➤ Jaccard [Abreu et al. 07]

➤ …
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Test cases
Program : Character counter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8
function count (char *s) {

int let, dig, other, i = 0;
char c;

e1: while (c = s[i++]) { 1 1 1 1 1 1 1 1
e2: if(’A’<=c && ’Z’>=c) 1 1 1 1 1 1 0 1
e3: let += 2; //- fault - 1 1 1 1 1 1 0 0
e4: else if ( ’a’<=c && ’z’>=c ) 1 1 1 1 1 0 0 1
e5: let += 1; 1 1 0 0 1 0 0 0
e6: else if ( ’0’<=c && ’9’>=c ) 1 1 1 1 0 0 0 1
e7: dig += 1; 0 1 0 1 0 0 0 0
e8: else if (isprint (c)) 1 0 1 0 0 0 0 1
e9: other += 1; 1 0 1 0 0 0 0 1
e10: printf("%d %d %d\n", let, dig, other);} 1 1 1 1 1 1 1 1
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➤ Pros:  Quick localisation

➤ Cons:  independent evaluation of each statement at the expense of accuracy

➤ Need: more finer-grained localisation, taking into account user’s constraints

➤ How: Use of Declarative Data Mining 
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Fault localisation  
= 

Mining Task
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PATTERN SUSPICIOUSNESS DEGREE (PSD)
➤ PSD function. Given a pattern P of a program:

➤ PSD-dominance relation. Given two patterns Pi and Pj

➤ Top-k suspicious patterns.

�24

PSD(P ) = freq�(P ) + |FAIL|�freq+(P )
|PASS|+1

Pi BPSD Pj , PSD(Pi) > PSD(Pj)

top-k= {P | 6 9P1, . . . , Pk : 81  j  k, Pj BPSD P}
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