Frequent Itemset Mining

Nadjib LAZAAR

LIRMM- UM
COCONUT Team

(PART 1)

IMAGINA 18/19

Webpage: http://www.lirmm.fr/~lazaar/teaching.html
Email: lazaar@lirmm.fr

http://www.lirmm.fr/~lazaar/teaching.html
http://www.lirmm.fr/~lazaar/teaching.html
mailto:lazaar@lirmm.fr

Data Mining

Data Mining (DM) or Knowledge Discovery in Databases (KDD)
revolves around the investigation and creation of knowledge,
processes, algorithms, and the mechanisms for retrieving
potential knowledge from data collections.

Game Data Mining

Data about players behavior, server performance, system
functionality...

How to convert these data into something meaningful?
How to move from raw data to actionable insights?

Game data mining is the answer

Frequent Itemset Mining: Motivations

Frequent Itemset Mining is a method for market basket analysis.

It aims at finding regularities in the shopping behavior of customers of
supermarkets, mail-order companies, on-line shops etc.

More specifically: Find sets of products that are frequently bought together.

Possible applications of found frequent itemsets:
72 Improve arrangement of products in shelves, on a catalog’s pages etc.

?A Support cross-selling (suggestion of other products), product bundling.
? Fraud detection, technical dependence analysis, fault localization... etc.

Often found patterns are expressed as association rules, for example:
7 If a customer buys bread and wine, then she/he will probably also buy cheese.

Frequent Itemset Mining: Basic notions

ltems: I=1{i,...,1,}

ltemset, transaction: P, T, Cl

Transactional dataset: D={T,....T,}

Language of itemsets: &, =2/

Cover of an itemset: cover(P)={i|T. € DAP C T}

(absolute) Frequency: freq(P) = | cover(P) |

Absolute/relative frequency

Absolute Frequency:

freq(P) = | cover(P) |

Relative Frequency:

freq(P) = |11)| | cover(P) |

Frequent Itemset Mining: Definition

Given:
? Asetofitems [I={i,...,1,}
? Atransactional dataset D = {Ty,...,T,}

eI,
72 A minimum support 6

The need:
7 ThesetofitemsetPs.t.: freq(P) >0

Example (2)

[= {a,b,C,d,e},D — {Tl’ ""TIO}

HD l: | a,d,e VD a| b | c|d]|e MD alblcld]|e
2.1 b,e,d 1y 2] 2] 1] 1 1: 111
3: | a,ce 31 7)) 31213 2 [o111
4 a,c,d,e Z} 9 ;1 ;1 il 3: 1 1 1
5 aye) . REERERE
: 6 7 8| 8
6: | a,c,d] 1101 9 5l 1 1
7] bc 10 9 10 6: | 1 11
§:|a,c.de vertical representation [111
9: | b,c e 10111
10: | a.d.e cover(bc) = {2,7,9} o T 1111

horizontal representation 10: 1 1 111

f r GQ(bC) =3 matrix representation

Example (2)

alblcld]|e
1: 11
i 2: 111
31 1 1
4: 1 1 111
a b C d e ol 1 1
6: || 1 1(1
T 11
ab || ac || ad || ae || bc || bd || be || cd || ce || de 81 111
O: 1|1 1
10: || 1 11
abc || abd || abe || acd || ace || ade || bed || bee || bde || cde matrix representation

abcde

Example (2)

[y
[y
[y

| | |

1|1
; 1
10: |/ 1 1|1

matrix representation

O | 0| ~J| | Ot
(R
| k| |k

Example (2)

Frequent itemset?

[y
[y
[y

| | |

1|1
; 1
10: |/ 1 1|1

matrix representation

O | 0| ~J| | Ot
(R
| k| |k

Example (1)

Frequent itemset with minimum support 6=37

[y
[y
[y

w
N
o
L\
(NG (UG U

1)1
_ 1
10: | 1 1)1

JL 4L t 1e | L J matrix representation

\
A / /
\ / / 4
\/ / y
X /A
\ \ / [/

N
o
(o))
(09)
(WY
TR
Ji
X
O |01 Ut
o
L i

Searching for Frequent Itemsets

A naive search that consists of enumerating and testing the
frequency of itemset candidates in a given dataset is usually

infeasible.
Why?
Number of items (n) Search space (2n)
10 =~ 103
20 =~ 106
30 = 109
100 =~ 1030
128 =~ 1068 (atoms in the universe)

1000 =~ 10301

Anti-monotonicity property

Given a transaction database D over items | and two itemsets X,
Y:

X CY = cover(Y) C cover(X)

That is,

XCY=freq(Y) < freq(X)

Example (2)

) bl cld
cover(ade) = {1,4,8,10},f”64(0d€)=4] T Z : 1 i
p ﬁ
cover(acde) = {4,8) ; 1 : i : 1
freq(acde) =2 N
7 37 6 1
5[1 1
6: 1] 111
0 4 5/ 6 37 1/1/ 4 4 4 rpot
sl o111
S EEIERRE
0 /0 0 3 3\ A& i 1 -0 2 [l0]1 -1
\ ade \\ matrix representation
\
\ \
0 0 O N2 VO
\ acde\
| e

Apriori property

Given a transaction database D over items |, a minsup 6 and two
itemsets X, Y:

XCY=freq(Y) < freq(X)

It follows: X C Y= (freq(Y) >0 = freq(X) > 0)

All subsets of a frequent itemset are frequent!

Contraposition: X C Y = (freq(X) < 0 = freq(Y) < 0)

All supersets of an infrequent itemset are infrequent!

Example (3)

All subsets of a frequent itemset are frequent!

= (o " e e]

[y
[y
[y

| | |
[y

1|1
1

acd || ace | ade cde | atrix representation

Sl R sE B N ESTR R
[y
b [t | k[t

Example (3)

All supersets of an infrequent itemset are infrequent!

5
611101
0 4 57 6 37 1/ A7 Y4 -4 ~a | U1
s 1101
o | 0 [1]1

ok
ok
ok

| | |
[

1|1
1

\bC e | bde matrix representation
0 0 U
abce|abde
abcde I

Partially ordered sets

A partial order is a binary relation R overasetS:

Vr,y,z € S
o r R x (reflexivity)

' 0
o r RyANy R x= x =1y (anti-symmetry) A

o t RyANy R z=x R z (transitivity)

| ab || ac || ad || ae || bc || bd || be || cd || ce]| de |

[abc |[abd |[abe |[acd || ace |[ade |[bed |[bee || bde || cde |

S :? abed abce% abde || acde || bede
R =7
* abcde

Comparable itemsets: x CyVy Cx

Incomparable itemsets: t Z yAy € x

ab || ac || ad || ae c || bd || be || cd || ce || de |

| abc || abd || abe || acd || ace || ade || bed || bee || bde || cde |

abced || abcee ||abde ||| acde || bede

Apriori Algorithm [Agrawal and Srikant 1994]

Determine the support of the one-element item sets (i.e.
singletons) and discard the infrequent items.

Form candidate itemsets with two items (both items must be
frequent), determine their support, and discard the infrequent

itemsets.

Form candidate item sets with three items (all contained pairs
must be frequent), determine their support, and discard the
infrequent itemsets.

And so on!
[Based on candidate generation and pruning J

Apriori Algorithm [Agrawal and Srikant 1994]

1) L = {large l-itemsets};

4) forall transactions ¢ € D do begin

5) C; = subset(Cy, t); // Candidates contained in ¢
6) forall candidates ¢ € (¢ do

7) c.count—+-+;

8) end

9) Ly = {c € Ck | c.count > minsup }

10) end

11) Answer = Uk Ly;

Apriori candidates generation

Algorithm 2: apriori-gen(Ly,)

E 0

foreach P’, P € Ly, s.t.: (P" = {i1,....i5_1,i}) N (P" = {i1,...,ip_1,7} }) do
L P+ P'UP" I{i1,... ik—1,%k,%)}

N B W N -

if Vi € P: P\{i} € Lj then
| E+ EU{P}

return £

=2

Improving candidates generation

Using apriori-gen function, an item of k+1 size can be
generated in a j possible ways:

. k(k+1
j = ks

Need: Generate itemset candidate at most once.

How: Assign to each itemset a unique parent itemset, from
which this itemset is to be generated

Improving candidates generation

Assigning unique parents turns the poset lattice into a tree:

a [[b][c]d]le La |l b]l cldlle]

| ab || ac || ad || ae || bc || bd || be || cd || ce || de | | ab || ac || ad || ae || bc || bd || be || cd || ce || de |
[abc |[abd || abe |[acd || ace || ade |[bed || bee |[bde |[cde| [abe |[abd || abe || acd || ace || ade || bed || bee || bde || cde |

abcd||abce||abde||acde||bcde ' labcd||abce||abde||acde||bcde |

Canonical form for itemsets

An itemset can be represented as a word over an alphabet 7

Q: how many words of 3 items can we have? Of 4 items? Of k
items? k'

An arbitrary order (e.g., lexicography order) on items can give a
canonical form, a unique representation of itemsets by breaking
symmetries.

A Lexonitems:

abc < acb < bac < bca . . .

Recursive processing with Canonical forms

? Foreach P of a given level, generate all possible extension of P by
one item such that:

child(P) ={P':(i¢ P)N (P = PU/{i})
A(c(P).last < i) A (P’ is frequent)}

?A Foreach P/, process it recursively.

Example (4)

Q: what are the children of:

7 &
% b |l c |l d]l e]
=7 G\N\ﬁ\A\zL
|a;\||ad||ae|)bc||bd|be cd || ce || de |
0 m\\\u\k
|abc||abd||abe|\acd| ace || ade || bed || bee || bde || cde |
\\gh\j@}rk
abcd||abce||abde)|acde||bcde|

)

oHId(P) = (P € PIA(P = PULi)
A(c(P").last < 1) A (P’ is frequent)}J

Items Ordering

Any order can be used, that is, the order is arbitrary
The search space differs considerably depending on the order

Thus, the efficiency of the Frequent Itemset Mining algorithms
can differ considerably depending on the item order

Advanced methods even adapt the order of the items during
the search: use different, but “compatible” orders in different
branches

Items Ordering (heuristics)

Frequent itemsets consist of frequent items

A Sort the items w.r.t. their frequency. (decreasing/increasing)

The sum of transaction sizes, transaction containing a given

item, which captures implicitly the frequency of pairs, triplets
etc.

2 Sort items w.r.t. the sum of the sizes of the transactions that
cover them.

Tutorials

link: http://www.lirmm.fr/~lazaar/imagina/TD1.pdf

http://www.lirmm.fr/~lazaar/imagina/TD1.pdf
http://www.lirmm.fr/~lazaar/imagina/TD1.pdf

