Frequent Itemset Mining

Nadjib LAZAAR
LIRMM- UM
COCONUT Team
(PART I)

IMAGINA 18/19
Webpage: http://www.lirmm.fr/~lazaar/teaching.html Email: lazaar@lirmm.fr

Data Mining

7 Data Mining (DM) or Knowledge Discovery in Databases (KDD) revolves around the investigation and creation of knowledge, processes, algorithms, and the mechanisms for retrieving potential knowledge from data collections.

Game Data Mining

7 Data about players behavior, server performance, system functionality...
7. How to convert these data into something meaningful?
7. How to move from raw data to actionable insights?
\rightarrow Game data mining is the answer

Frequent Itemset Mining: Motivations

Frequent Itemset Mining is a method for market basket analysis.
It aims at finding regularities in the shopping behavior of customers of supermarkets, mail-order companies, on-line shops etc.
7. More specifically: Find sets of products that are frequently bought together.
7. Possible applications of found frequent itemsets:
λ Improve arrangement of products in shelves, on a catalog's pages etc.
π Support cross-selling (suggestion of other products), product bundling.
入 Fraud detection, technical dependence analysis, fault localization... etc.
7 Often found patterns are expressed as association rules, for example:
π If a customer buys bread and wine, then she/he will probably also buy cheese.

Frequent Itemset Mining: Basic notions

7 Items:
7 Itemset, transaction:
7 Transactional dataset:
7. Language of itemsets: $\quad \mathscr{L}_{I}=2^{I}$
7. Cover of an itemset:
7. (absolute) Frequency:

$$
I=\left\{i_{1}, \ldots, i_{n}\right\}
$$

$P, T, \subseteq I$

$$
D=\left\{T_{1}, \ldots, T_{m}\right\}
$$

$\operatorname{cover}(P)=\left\{i \mid T_{i} \in D \wedge P \subseteq T_{i}\right\}$
$\operatorname{freq}(P)=|\operatorname{cover}(P)|$

Absolute/relative frequency

7. Absolute Frequency:

$$
\operatorname{freq}(P)=|\operatorname{cover}(P)|
$$

7 Relative Frequency:

$$
\operatorname{freq}(P)=\frac{1}{|D|}|\operatorname{cover}(P)|
$$

Frequent Itemset Mining：Definition

7．Given：
入 A set of items $I=\left\{i_{1}, \ldots, i_{n}\right\}$
入 A transactional dataset $D=\left\{T_{1}, \ldots, T_{m}\right\}$
入 A minimum support θ

7 The need：
$\boldsymbol{\lambda}$ The set of itemset P s．t．：\quad freq $(P) \geq \theta$

Example (1)

$$
I=\{a, b, c, d, e\}, D=\left\{T_{1}, \ldots, T_{10}\right\}
$$

$\mathcal{H}_{\text {D }}$	1:	a, d, e
	2:	b, c, d
	3:	a, c, e
	4:	a, c, d, e
	5:	a, e
	6:	a, c, d
	7.	b,c
	8:	a, c, d, e
	9:	b, c, e

$\mathcal{V}_{\mathcal{D}}$	1 3 4 5 6 8 10	b 2 7 9	2 3 4 6 7 8 9	d 1 2 4 6 8 10	e 1 3 4 5 8 9 10
vertical representation					

horizontal representation

$$
\operatorname{freq}(b c)=3
$$

$\mathcal{M}_{\mathcal{D}}$	a	b	c	d	e
1:	1	0	0	1	1
2 :	0	1	1	1	0
3:	1	0	1	0	1
4:	1	0	1	1	1
5:	1	0	0	0	1
6 :	1	0	1	1	0
7:	0	1	1	0	0
8:	1	0	1	1	1
9:	0	1	1	0	1
10:	1	0	0	1	1

matrix representation

Example (1)

	a	b	c	d	e
1:	1	0	0	1	1
2:	0	1	1	1	0
3:	1	0	1	0	1
4:	1	0	1	1	1
5:	1	0	0	0	1
6:	1	0	1	1	0
7:	0	1	1	0	0
8:	1	0	1	1	1
9:	0	1	1	0	1
10:	1	0	0	1	1

matrix representation

Example (1)

	a	b	c	d	e
$1:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$
$2:$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$3:$	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$
$4:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$5:$	$\mathbf{1}$	0	0	0	$\mathbf{1}$
$6:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
$7:$	0	$\mathbf{1}$	$\mathbf{1}$	0	0
$8:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$9:$	0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$
$10:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$

matrix representation

Example (1)

Frequent itemset?

	a	b	c	d	e
$1:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$
$2:$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$3:$	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$
$4:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$5:$	$\mathbf{1}$	0	0	0	$\mathbf{1}$
$6:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
$7:$	0	$\mathbf{1}$	$\mathbf{1}$	0	0
$8:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$9:$	0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$
$10:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$

matrix representation

Example (1)

Frequent itemset with minimum support $\theta=3$?

	a	b	c	d	e
$1:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$
$2:$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$3:$	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$
$4:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$5:$	$\mathbf{1}$	0	0	0	$\mathbf{1}$
$6:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
$7:$	0	$\mathbf{1}$	$\mathbf{1}$	0	0
$8:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$9:$	0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$
$10:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$

matrix representation

Searching for Frequent Itemsets

7. A naïve search that consists of enumerating and testing the frequency of itemset candidates in a given dataset is usually infeasible.

7 Why?

Number of items (\mathbf{n})	Search space $(\mathbf{2 n})$
10	$\approx 10^{3}$
20	$\approx 10^{6}$
30	$\approx 10^{9}$
100	$\approx 10^{30}$
128	$\approx 10^{68}$ (atoms in the universe)
1000	$\approx 10^{301}$

Anti-monotonicity property

7. Given a transaction database D over items I and two itemsets X, Y:

$$
X \subseteq Y \Rightarrow \operatorname{cover}(Y) \subseteq \operatorname{cover}(X)
$$

7) That is,

$$
X \subseteq Y \Rightarrow \operatorname{freq}(Y) \leq \operatorname{freq}(X)
$$

Example (2)

	a	b	c	d	e
$1:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$
$2:$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$3:$	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$
$4:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$5:$	$\mathbf{1}$	0	0	0	$\mathbf{1}$
$6:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
$7:$	0	$\mathbf{1}$	$\mathbf{1}$	0	0
$8:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$9:$	0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$
$10:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$

matrix representation

Apriori property

7. Given a transaction database D over items I, a minsup θ and two itemsets X, Y :

$$
X \subseteq Y \Rightarrow \operatorname{freq}(Y) \leq \operatorname{freq}(X)
$$

7 It follows: $\quad X \subseteq Y \Rightarrow(\operatorname{freq}(Y) \geq \theta \Rightarrow \operatorname{freq}(X) \geq \theta)$

All subsets of a frequent itemset are frequent!

7. Contraposition: $X \subseteq Y \Rightarrow(\operatorname{freq}(X)<\theta \Rightarrow \operatorname{freq}(Y)<\theta)$

All supersets of an infrequent itemset are infrequent!

Example (3)

All subsets of a frequent itemset are frequent!

$\theta=2$

Example (3)

All supersets of an infrequent itemset are infrequent!
$\theta=2$

	a	b	c	d	e
$1:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$
$2:$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
$3:$	$\mathbf{1}$	0	$\mathbf{1}$	0	$\mathbf{1}$
$4:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$5:$	$\mathbf{1}$	0	0	0	$\mathbf{1}$
$6:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0
$7:$	0	$\mathbf{1}$	$\mathbf{1}$	0	0
$8:$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$9:$	0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$
$10:$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$

matrix representation

Partially ordered sets

7. A partial order is a binary relation \mathcal{R} over a set \mathcal{S} :
$\forall x, y, z \in \mathcal{S}$

- $x \mathcal{R} x$
(reflexivity)
- $x \mathcal{R} y \wedge y \mathcal{R} x \Rightarrow x=y \quad$ (anti-symmetry)
- $x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z \quad$ (transitivity)

$\mathcal{S}=$?

$$
\mathcal{R}=?
$$

abcde

Poset $\left(2^{\mathcal{I}}, \subseteq\right)$

7 Comparable itemsets: $\quad x \subseteq y \vee y \subseteq x$
7 Incomparable itemsets: $x \nsubseteq y \wedge y \nsubseteq x$

Apriori Algorithm [Agrawal and Srikant 1994]

7 Determine the support of the one-element item sets (i.e. singletons) and discard the infrequent items.
7. Form candidate itemsets with two items (both items must be frequent), determine their support, and discard the infrequent itemsets.

7 Form candidate item sets with three items (all contained pairs must be frequent), determine their support, and discard the infrequent itemsets.
7. And so on!

Apriori Algorithm [Agrawal and Srikant 1994]

1) $L_{1}=\{$ large 1-itemsets $\}$;
2) for $_{1}\left(\underline{k}=2 ; L_{k-1} \neq \underline{\emptyset} ; \underline{k} \pm \pm\right.$) do begin
3) _ $C_{k}=$ apriori-gen $\left(L_{k-1}\right) ; / L$ New candidates
4) forall transactions $t \in \mathcal{D}$ do begin
5) $\quad C_{t}=\operatorname{subset}\left(C_{k}, t\right)$; // Candidates contained in t
6) forall candidates $c \in C_{t}$ do
7) c. count ++ ;
8) end
9) $L_{k}=\left\{c \in C_{k} \mid c\right.$. count \geq minsup $\}$
10) end
11) Answer $=\bigcup_{k} L_{k}$;

Apriori candidates generation

```
Algorithm 2: apriori-gen \(\left(L_{k}\right)\)
    \(1 E \leftarrow \emptyset\)
    2 foreach \(P^{\prime}, P^{\prime \prime} \in L_{k}\) s.t. : \(\left(P^{\prime}=\left\{i_{1}, \ldots, i_{k-1}, i_{k}\right\}\right) \wedge\left(P^{\prime \prime}=\left\{i_{1}, \ldots, i_{k-1}, i_{k}^{\prime}\right\}\right)\) do
    \(3 \quad P \leftarrow P^{\prime} \cup P^{\prime \prime} \quad / /\left\{i_{1}, \ldots, i_{k-1}, i_{k}, i_{k}^{\prime}\right\}\)
    \(4 \quad\) if \(\forall i \in P: P \backslash\{i\} \in L_{k}\) then
    \(5 \quad \quad L \leftarrow E \cup\{P\}\)
    6 return \(E\)
```


Improving candidates generation

7. Using apriori-gen function, an item of $k+1$ size can be generated in a j possible ways:

$$
j=\frac{k(k+1)}{2}
$$

7 Need: Generate itemset candidate at most once.
7 How: Assign to each itemset a unique parent itemset, from which this itemset is to be generated

Improving candidates generation

7 Assigning unique parents turns the poset lattice into a tree:

Canonical form for itemsets

7. An itemset can be represented as a word over an alphabet \mathcal{I}

7 Q: how many words of 3 items can we have? Of 4 items? Of k items?

$$
k!
$$

7. An arbitrary order (e.g., lexicography order) on items can give a canonical form, a unique representation of itemsets by breaking symmetries.
$\boldsymbol{\lambda}$ Lex on items:

$$
a b c<a c b<b a c<b c a \ldots
$$

Recursive processing with Canonical forms

 one item such that:

$$
\begin{aligned}
\operatorname{child}(P)=\left\{P^{\prime}:\right. & (i \notin P) \wedge\left(P^{\prime}=P \cup\{i\}\right) \\
& \left.\wedge(c(P) . l a s t<i) \wedge\left(P^{\prime} \text { is frequent }\right)\right\}
\end{aligned}
$$

入 Foreach P^{\prime}, process it recursively.

Example (4)

Q: what are the children of:

$$
\begin{aligned}
\operatorname{child}(P)=\left\{P^{\prime}:\right. & (i \notin P) \wedge\left(P^{\prime}=P \cup\{i\}\right) \\
& \left.\wedge\left(c\left(P^{\prime}\right) \cdot l a s t<i\right) \wedge\left(P^{\prime} \text { is frequent }\right)\right\}
\end{aligned}
$$

Items Ordering

7. Any order can be used, that is, the order is arbitrary

7 The search space differs considerably depending on the order
7 Thus, the efficiency of the Frequent Itemset Mining algorithms can differ considerably depending on the item order

7 Advanced methods even adapt the order of the items during the search: use different, but "compatible" orders in different branches

Items Ordering (heuristics)

7. Frequent itemsets consist of frequent items

7 Sort the items w.r.t. their frequency. (decreasing/increasing)

7 The sum of transaction sizes, transaction containing a given item, which captures implicitly the frequency of pairs, triplets etc.

入 Sort items w.r.t. the sum of the sizes of the transactions that cover them.

Tutorials

link: http://www.lirmm.fr/~lazaar/imagina/TD1.pdf

