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Abstract

Ontology-Based Data Access has been studied so far
for relational structures and deployed on top of rela-
tional databases. This paradigm enables a uniform ac-
cess to heterogeneous data sources, also coping with in-
complete information. Whether OBDA is suitable also
for non-relational structures, like those shared by in-
creasingly popular NOSQL languages, is still an open
question. In this paper, we study the problem of an-
swering ontology-mediated queries on top of key-value
stores. We formalize the data model and core queries of
these systems, and introduce a rule language to express
lightweight ontologies on top of data. We study the de-
cidability and data complexity of query answering in this
setting.

Introduction

Ontology-based data access (OBDA) is a well-
established paradigm for querying incomplete data
sources while taking into account knowledge provided
by a domain ontology (Poggi et al. 2008). Today, the
main applications of OBDA can be found in data inte-
gration as well as in querying the Semantic Web. The
interest of OBDA is to allow the users to ask queries
on high-level ontology vocabularies and to delegate
to algorithms (1) the reformulation of these high-level
queries into a set of low-level databases queries, (2) the
efficient computation of their answers by native data
management systems in which data is stored and in-
dexed, and (3) the combination of these answers in
order to obtain the final answers to the users’ query.
The advantage of OBDA is that, since the query re-
formulation step is independent of the data, ontology-
mediated query answering has the same data com-
plexity as the query engines equipping the underly-
ing native data storage systems, and can benefit from
the many low-level optimizations making them effi-
cient and scalable. OBDA has been studied so far
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for relational structures and deployed on top of rela-
tional databases. The database queries used in OBDA
are (unions of) conjunctive relational queries, while
the ontologies are specified in either a description
logic (e.g., the lightweight DL-Lite (Calvanese et al.
2007)(Kontchakov et al. 2010), or the expressive Horn-
SHZQ (Eiter et al. 2012)), or, more generally, a suit-
able fragment of first-order logic (e.g., Datalog+ (Calj,
Gottlob, and Pieris 2012) and existential rules (Baget
et al. 2011)). Within this framework, decidability and
complexity results have been obtained for ontology-
mediated query answering, and many algorithms have
been designed and implemented.

Whether this paradigm can be used to query data-
sources that are not relational is a still an open question.
The naive way to deal with non relational datasources
is to define mappings for translating them into relational
structures, and then use the classic OBDA framework as
it is. However, this approach would induce a significant
performance degrade as it would add a step for convert-
ing the data using the mappings and, most importantly,
it would make impossible to take advantage of the low
level query optimizations provided by native systems.
This can be particularly acute for NOSQL systems, like
key-value stores, that have been specifically designed to
scale when dealing with very large collections of data.

In this paper, we study ontology-based data access
directly on top of NOSQL systems. The term NOSQL
(NotOnly SQL) defines a broad collection of languages.
Key-value stores are NOSQL systems adopting the data
model of key-value records (also called JSON records).
These records are processed on distributed systems, but
also increasingly exchanged on the Web thereby replac-
ing semistructured XML data and many RDF formats
(see JSON-LD (Sporny et al. 2004)). Key-value records
are non-first normal forms where values are not only
atomic (in contrast with relational databases) and nest-
ing is possible (Abiteboul, Hull, and Vianu 1995).



{ department : “Computer Science”,

professor : |

“ 2

{ name : “Alice”, reachable : “yes”,
boss : “Charles” }

{ name : “Bob”,phone : {office : “5-256"}}]
course : [[“CI23”, “Java”] , [“C310”, “C++"]]
director : null }

Figure 1: Key-value record

Ilustrative example

To illustrate, consider the record in Figure 1. It contains
nine different keys among which five (department,
name, reachable, boss, office) are associated
with basic values. The key professor is associated
with a sequence of two basic records, the key course
with a sequence of two (nested) sequences, and the key
director with an unspecified value null. Key-value
(KV) stores feature a limited set of low-level operations
to query and update keys and values, namely
get(k) put(k,v) clear(k)

These systems are designed and optimized for this kind
of operations that can be performed in parallel over
large collections of records, and leave other functional-
ities (such as joins between records) for the application
accessing the NOSQL database.

In this work we are interested in querying KV stores
with ontologies and we mainly focus on get() queries.
An example of query retrieving names of professors
in a key-value record is get(professor.name).
This expression returns the values “Alice” and
“Bob” once evaluated on the record of Figure
1. Another feature supported by KV stores is
the possibility to check structural properties of a
record before selecting some content. Thus, we fur-
ther look at queries with a check() construct like
check(director).get(professor.name). The
get part of the query is evaluated at the only condition
that the key director also exists in the record. The
check() construct is particularly useful when dealing
with incomplete information (values for which we just
know the existence) which is expressed by null values,
like for the key director in Figure 1.

Our goal is to study how accessing information on
KV stores can be enhanced by ontology reasoning.
To illustrate the role of ontologies, consider the query
get(professor.contact.office), searching
through the contacts of all professors. Although in the
record of Figure 1 there is a phone record this query
yields no result because key contact is not found.
However, by introducing some general knowledge say-
ing that a phone number is a contact we could output a
result for the query. Here is where ontology-based data

access comes into play. In fact, we could simply equip
the store with a rule saying that “any value for the key
phone is also a value for the key contact”™:

phone(z) — contact(z)

thereby retrieving the value associated to the key
office in the subrecord. Furthermore, rules able to
assert the existence of a value can be used to reason
on incomplete information. For example, the follow-
ing rule says that whenever we find a value for the key
director in arecord, there exists a value for the key
assistant (although this could be unspecified):

director(z) — Jy.assistant(y)

With this knowledge in hand, the evaluation of the
query check (assistant).get (department)
on the record of Figure 1 outputs “Computer Sci-
ence”, although there is no explicit value for the key
assistant.

From a practical point of view, the interest of imple-
menting OBDA over KV stores is that, like the queries,
inference rules should be parallelizable over all records.

Contributions

This paper makes the following contributions towards
the study of OBDA for NOSQL databases. First, we
provide a formal syntax and semantics for data and core
queries based on homomorphisms, supported by popu-
lar key-value stores like MongoDB - which is missing
(Ong, Papakonstantinou, and Vernoux 2014). Second,
we present a rule language with clear formal seman-
tics suitable for writing lightweight ontologies on top of
KV records. Finally, we give a sound and complete re-
formulation technique, as well as (un)decidability and
data complexity results for ontology-mediated query
answering in this setting.

Formal Background

In this section, we formalize the data model of key-
value stores, and the associated query language.

Key-value Records Let CONST be an infinite set of
data constants and NULLS be an infinite set of nulls
used as placeholders for unknown values. A key-value
record r s a finite and non-empty set of key-value pairs
of the form (k,v), each assigning the value v to key k.
Furthermore, any key k occurs at most once in this set.
Values are terms generated by the following grammar

ra={(kwv) ..

with a € CONST, null € NULLS, and where [v...v]
is a non-empty sequence. A record r is an unordered
set of key-value pairs. RECS denotes the set of records
that can be recursively built in this way. The set of keys
at the top level of arecord r = {(k1,v1), ..., (kn,vn)},

(kw)} vi=al|lnull v o]



denoted by keys(r), is defined as keys(r)={k1,..., kn }.
Then, value(r, k;) = v;, if k; € keys(r), and is unde-
fined otherwise. We say that a value v is ferminal when
v € CONST, or v is a nested sequence, i.e., a sequence
within a sequence. Indeed, nested sequences are never
navigated inside by the queries considered in this paper.
A key-value store I is a finite set of key-value records.

Paths and homomorphisms are the basis of query
and rule semantics. A path 7 in a record r is a word al-
ternating values and keys of the form m=vg.k; . . . kv,
such that (a) v; is a subrecord of r, for all i < n (b)
kit1€keys(v;) and (c) if value(v;, k;y1) is a sequence,
then v;11 is an element of value(v;, ki11), otherwise
vi+1 = value(v;, kiy1) (0 < i < n). When vy = r the
path is said to be rooted.

A key-path k is a sequence of keys k = ky.ky ... ky.
A path-atom k(zx) is such that k is a key-path and
x a variable. We define its expansion as R(z) =
xo.k1.21.ko.xo ... xp_1.ky(x) and vars(k(z)) as the
set {z1,...,x,_1,x} of its pairwise distinct variables.

A homomorphism from x(x) to a record r is a
substitution h of the variables in vars(k(z)) such that
h(ﬁ(.’t)):h(,fo)klh(l‘l)kgh(l'g) . h(l’n,l)knh(m)
is a path 7 in 7. If h(x9) = r, then the homomorphism
h is said to be rooted.

A ground path-atom k(v) is such that x is a key-
path and v a value. Its associated record, denoted by
record(k(v)), is defined as follows. If k(v) = k(v),
then record(k(v)) = {k : v}, otherwise k(v) is of the
form k.x’(v) and record(k(v)) = {k : record(x'(v))}.

Record equality In the formal development, we con-
sider a set-based equality for records, thereby ignoring
order inside sequences. Two atomic values are identical,
denoted by v; = vo, if they are the same terminal value
or both null. The sequence v = [v ... v,] is contained
in the sequence v/ = [v]...v],], if for each value v;

~

there exists a v such that v; = v’. This is denoted by
v C v'. We write v = v’ when v C v and v' C v both
hold. Finally, two records are identical, r; = r9, when
keys(r1) = keys(rz) and value(ri, k) = value(ra, k)
for each k € keys(ry).

Record merging We recursively define an associative
operator “o” for merging two values v and v’, which
will be useful to define rule semantics.

o In the basic case where the merge involves null values,
we define v o null = null ov = v.

We now turn to the cases where v, v' # null.

e If v is a constant, we have to consider three subcases.
- When v’ =2 v, we define v o v’ = v.
- When v' € CONST URECS, we define vov' = [v,v'].

-Whenv' = [v],...,v}], wedeﬁnevov =v'ifv =]
for some v} € v/, andvov’ = [v,v],...,v]] otherwise.
For instance, 1o[{name : Alice}|=[1, {name : Alice}].
The dual cases where v’ is a constant but v is not are ob-
tained by exchanging the roles of v and v’ respectively.

o When v and v' are both records the values of their
common keys (denoted by the set C') are merged:
vov'=y, co {(ko, value(v, ko) o value(v', ko)) } U

Ukekeys(v)\C {(k,value(v,k))} U
Uk’ekeys(v’)\C {(klv Value(v/a k/))}

: 33} o {name :
[Bob, Smith|, age :

For instance, {name : Bob,age
Smith, city : Paris}={name :
33,city : Paris}.

o When v is the sequence vy, . .. ,v,| and v' is a record
we have again two subcases to consider.

- When none of the elements in v is a record we define
[v1,...;op] 0V = [v1,... U, 0]

- Otherwise, each record in the sequence v is pairwise
merged with v’. Hence, [v1,...,v,] 00 = [v],...,v}]
with v} = v; if v;¢RECS and v, = (v; 0v’) if v; ERECS.
For instance, [{name Smith}, {name : Jones}]
o{name : {first : Bob}} yields as result the se-
quence | { name : [Smith, {first : Bob}] }, {name :
[Jones,{first : Bob}]}|. Again, the dual case where
v is a record and v’ is a sequence is obtained by ex-
changing their roles.

e Finally, if v and v’ = [v} ... v},] are both sequences,
thenvo[v] ...v),] = (vov])o[v}... v ]. For instance,
=[1,2

1.2)0 1,10 2 2o (1) = 11,2, 1T,

The merge operator enjoys the following property.

Proposition 1 o-merge is commutative wrt =-equality,

e,

i.e., for any pair of values v, v’ it holds that vov’ = v’ ov.

Queries The query language we consider features
standard NOSQL selection and projection on the record
structure that we formalize by means of key-paths.

A get-query is of the form Q = get(x) where « is a
key-path specifying a projection expression to retrieve
the terminal values of interest within records. Its set of
answers over a record r is defined as

Q(r) = {h(x)|h is a rooted-homomorphism from «(z)
to r such that h(z) is frerminal}

A check-get query () adds a selection condition of the
form @’ = check(k).get(x’) with « and ' key-paths.
The set of answers of () on r is defined as follows. Let
Q' = get(x’) then Q(r) = Q’(r) if there exists a rooted
homomorphism from x(y) to r, otherwise Q(r) = 0.
Finally, the answer set of a (check-)get query @) over a
key-value store [ is defined as Q(I) = (J,; Q().



The NO-RL Rule Language

The language for reasoning on key-value stores, we call
NO-RL, is made of linear rules where a single path-
atom in the body and in the head of rules is allowed.
We consider two kinds of NO-RL rules, namely V-rules
of the form «/(z) — k(x) and 3-rules of the form
k() — Jy.x(y), whose semantics is presented next.
In the formal development, we denote a rule by o a set
of rules by . We define three NO-RL profiles of differ-
ent expressivity.

NO-RL(1) Rules : Key-Atoms

This basic reasoning language consists of rules of the
form: ¥'(z) — k(z) | Jy.k(y) where k, k' are keys
(i.e., key-paths of length one). This language allows one
to express rules at the record level as the following

o1 : phone(xz) — contact(z)

09 : boss(x) — reference(x)

o3 : reachable(xz) — Jy.phone(y)

The application of the rules on the record of Figure 1
yields the record below.

{ department : “Computer Science”,
professor : |
{name : “Alice”, reachable : “yes”,
boss : “Charles”, reference : “Charles”,
phone : null, contact : null}
{name : “Bob”,
phone : {office : “5-256"}
contact : {office : “5-256"}} ]
course : [[“CI23”, “Java”], [“C310”, “C++"]]
director : null }
As a main consequence of rule application, the data
to take into account when querying the record are not

only the input records but also all the data that can be
derived from them and the rules.

NO-RL(2): Body Path-Atoms

We now extend the former language by allowing path-
atoms in the rule body (only), so as to obtain rules of
the form x(x) — k(x) | Jy. k(y), like for instance

o1 :professor.name(x) — Jy. secretary(y)

o9 : professor.boss(z) — director(z)

Differently from the previous case, the application of
these rules requires some navigation to determine the
subrecords to extend with new keys or new values. The
following record corresponds to the application of rules,
again on the record of Figure 1.

{ department : “Computer Science”,
professor : |

“«

{name : “Alice”, reachable : “yes”,
boss : “Charles” },

{name : “Bob”,phone : {office : “5-256”}}]
course : [[“CI237, “Java”|, [“C310”, “C++"]]

secretary : null, director: “Charles” }

NO-RL(3): Head Path-Atoms

This third language is the dual of NO-RL(2) as path-
atoms are allowed in the head of rules (only), thereby
yielding rules of the form k(x) — x(x) | Jy. k(y) like

department(r) — professor.specialty(z)

saying that the department determines the teaching spe-
cialty of all of its professors. Applying this NO-RL(3)
rule on the record of Figure 1 gives the following result.

{ department : “Computer Science”,
professor : |

{name : “Alice”, reachable : “yes” boss :
“Charles”, specialty : “Computer Science”},

{name : “Bob”,phone : {office: “5-256"},
specialty : “Computer Science”} |

course : [[“CI23”, “Java”], [“C310”, “C++"]]
director : null }

Definition 1 (NO-RL) NO-RL is obtained as union of
NO-RL(3), NO-RL(2) (and thus NO-RL(1)) languages.

More general rules of the form k7. ...k} (z) —
k1.ko ... kn(y), with n,m > 2 (and possibly z = y),
can be simulated by a pair of two NO-RL rules, namely
Kk . K (2) = ko(x) and ko(z) — k1. ... ki (y).

NO-RL Rule Semantics

The formal semantics of NO-RL rules defines the ef-
fect of rule application on a KV store. This relies on
the merge operator (see Section ‘“Formal Background”),
which is used to enrich a record with either values
copied from its subrecords, or with fresh nulls. We first
define the single-step application of a NO-RL rule on a
record, and then the usual inference operator.

Definition 2 (Rule Semantics) Let o : Body(z) —
Head(x) | Jy. Head(y) be a NO-RL rule and r a record.
The rule o is said to be applicable on r if there is a
homomorphism h from Body(x) to r. We denote by r;
the subrecord of v at the root of the path h(Body(x)).

The application of o (w.r.t. h) to v consists of merging
the subrecord r; with a fresh record r, defined as
_ record(Head(h(z))) if o isaV-rule
fo = record(Head(null))  if o is an 3-rule
Let 7' be the obtained record. Then, the single step ap-
plication of o on r (wrt h) is denoted by o,r =1 7'



The inference operator (denoted by &) consists of
successive rule application steps. Given a set of rules 2
and a record v, we write v, X = 1’ if there are ry, ..., 1y,
andoy,...,0, € X s.t. 0;,1; F1 1ip1 withr =2 ry and
" =2, (1 <4< n). Finally, we write I,% F r' when
there exists v € I such that r, ¥+ r'.

Query semantics under NO-RL rules is now defined.
A value is an answer to a query () over a set of key-
values records and a set of rules if it can be obtained
as a result of the evaluation of the query Q over one
record inferred from one input record by application of
the rules.

Definition 3 (Query Semantics Under NO-RL Rules)
Given Q, I and ¥ we define Q(1,X) = U; g, Q(r).

A desirable property of any inference system is that
the order in which rules are applied is irrelevant. NO-RL
rules enjoy this property, which relies on the commuta-
tivity of the merge operator up to =-equality (Proposi-
tion 1) and to the monotonicity of rule application. This
last one ensures that if 7’ is obtained from r in one-step
then every rule application that was possible on - is still
possible on 7.

Theorem 1 (Confluence) For any record v, if r, %
r1 and r, X & ro with ry 2 ro then there are 71 and 7
such that r1, % = 71 and ro, % & 7o with 7 = 7.

To illustrate, consider the record r=record(a.b(v))
and the rules o1 : a(z)—c(x) and o3 : b(z)—d(z).
Applying o4 first gives r; = {a : {b:v},c: {b:v}}.
Applying o9 first gives ro = {a : {b : v,d : v}}. Of
course these intermediate records are different, ry 2% ro.
However, the fixpoint application of the rules is conflu-
entonrecord Fi={a : {b:v,d:v},c:{b:v,d:v}}.
Indeed, 7 can be obtained (i) from 7o by simply apply-
ing o1 or (i4) from r; by applying o5 first, and then o.
or (ii1) from r1 by applying o2 two consecutive times.

We refer to saturation as the process of applying a set
of NO-RL rules X on a record r, until fixpoint. Notice
that, as a corollary of Theorem 1, when this process is
finite, it yields a unique record modulo =-equality, we
note 7y. In this case, Q(r,X) = Q(ry) forany r € I.

Interestingly enough, because queries extract only
terminal values from records, 3-rules do not intervene
in the computation of answers to get-queries.
Proposition 2 For any get-query Q(I,%) = Q(I,Xv)
where Yy is the restriction of X to V-rules.

This is however not the case for general (check-get)
queries which need both kinds of rules.

Negative Results

We now study the decidability and complexity of the
following fundamental Query Answering (QA) deci-
sion problem.

Definition 4 (Query Answering Decision Problem)
Given I, 3, Q, and a value v, does v € Q(I,X) ?

Despite the fact that NO-RL rules seem simple, we
prove an undecidability result for general NO-RL rules,
which already holds for get queries.

Theorem 2 QA is undecidable for NO-RL rules.

Proof:(sketch) By reduction from the word problem in a
semi-Thue system, which is known to be undecidable.
Given two words w, wy and a set of rewriting rules I', the
word problem asks if there is a derivation of wy from w
with the rules in I'. The reduction establishes a bijective
relation between the set of symbols in w, wy, and I, and
the set of keys employed in a record. We build an in-
stance I = {r}, where r = record(k.,(v)), with k,, the
key-path corresponding to w and v a special constant.
Then, each rewriting rule wo < w; € T becomes a
NO-RL inference rule wy (z) — wz(x) € X. Note that
> may contain both NO-RL(2) and NO-RL(3) rules. Fi-
nally, we define Q = get(k.,), with ., the key-path
associated with wy. We can then establish a bijective
correspondence between (7) any derivation from w with
T" and (i7) the set of rooted-paths ending with the termi-
nal value v of a record inferred from r and . It follows
that wy is derivable from w with I'iff v € Q(I,%X). O

We can also see that as soon a single NO-RL(3) rule
is involved, saturation may be infinite, as illustrated by
the following example. On the record {a : v}, the rule
o = a(r) — b.a(z) can be applied indefinitely,
thereby yielding an unbounded number of records:

{a:v,b:{a:v}}
{a:v,b:{a:v,b:{a:v}}}
{a:v,b:{a:v,b:{a:v,b:{a:v}}}}

If we consider only NO-RL(2) (and thus NO-RL(1))
rules, the saturation is always finite because NO-RL(2)
rules do not increase the depth of records. However,
already for NO-RL(1) rules, the size of the saturation
can be exponential in the size of the data. Consider for
instance the rule o : k(z) — ki(z) and the record
r = record(k.k . .. k(v)) of depth d. The exhaustive ap-
plication of o gives us a record representing a complete
binary tree of depth d.

These observations suggest that saturating the store
may not be the most suitable approach to query answer-
ing. This leads us to turn towards query reformulation
techniques, in the spirit of the OBDA paradigm, where
data access is fully delegated to the database system.

Query Answering based on
Reformulation

Query reformulation amounts to finding a set of queries
{Q@1,...,Q,} which is equivalent to a given query Q
wrt a set of rules ¥ over all possible KV store instances.



As already discussed in the introduction, the main ad-
vantage of the approach is that it accesses information
leaving untouched the original data, avoiding extra stor-
age and maintenance costs and reusing database tech-
nology.

To see how reformulation works consider the
query Q get(professor.contact.office)
and the rule o; : phone(z) — contact(z).
A reformulation of (@ with o7 is Q' :
get(professor.phone.office). This  ex-
pression can be evaluated directly on the original data
(for instance on the record of Figure 1) together with @,
without requiring any rule application. Consider now an
F-rule like 09 : reachable(z) — Jy.phone(y).
This rule cannot be used for reformulating the
query get(professor.phone), for which the
expression get(professor.reachable) is
of course not a reformulation. Nevertheless, o9
is helpful for reformulating Boolean parts of
queries. For example, a Boolean condition like
check(professor. reachable) will be a refor-
mulation of check(professor.phone).

To make reformulation effective we need two kinds
of path-reformulations.

e Given the path-atom k(x) =  Ki.Ko.k3(T)
(with kq,k3 possibly empty) and the rule
o : ko(xg)—>k2(zo) we say that k' is a value
path-reformulation of k if K’ = Kk1.kg.k3(2)

e Given the path-atom x(x) = ki.k2(z) and o
ko(zo)—rka.k3(y) (where possibly zy = y and
K1, k3 are empty), we say that ' is a Boolean path-
reformulation of k with o if K" = K1.k0(z0).

Definition 5 (Query Reformulation) We say that
Q' = check(x}).get(k}) is a direct reformulation of
Q = check(ks).get(k1) with o if either k| is a value
path-reformulation of k1 with o or kY is a (value or
Boolean) path-reformulation of ko with o.

Furthermore, Q' is a reformulation of Q wrt 3 if
there exists a finite sequence of queries (Q1,...,Qn)
such that Q1 = Q, Q,, = Q' and foreach1 < i < n
Qi1 is a reformulation of Q; wrt ¥. The set of refor-
mulations of Q wrt ¥ is denoted by REF(Q, X). Note
that Q € REF(Q, X).

We first prove the soundness and completeness of QA
based on query reformulation.

Theorem 3 (Soundness and Completeness)
QLX) = UQ'eREF(Q,Z) Q')

Proof: (sketch) This follows from the correspondence
between one rule application and one reformulation
step of either the check or the get path-atom of the
query. The correspondence takes into account value and
Boolean reformulations in slightly different ways. [

Data Complexity of QA

Having a sound and complete reformulation procedure
gives us directly a query answering algorithm for the
case where REF(Q, X)) is finite. For NO-RL(3), and thus
NO-RL(1), it is indeed the case. For NO-RL(1), this fol-
lows from the fact that a rule always replaces a key with
at most one key thereby keeping constant the size of the
paths in the reformulations. As the symbols used in the
query are also finite, we have the finiteness of the refor-
mulation. More precisely, the number of reformulations
of a query is in O(|Q|!*!) as each symbol in a path of
@ can be chosen by at most |X| keys. For strictly NO-
RL(3) rules, notice that reformulation always lowers the
size of the paths in the query. Since the set REF(Q, X)
is always finite for NO-RL(3) rules, the data-complexity
of QA under NO-RL(3) rules is the same as basic query
answering on KV stores, which we prove to be in the
low complexity class ACY.

Theorem 4 Query answering on KV-stores (without
rules) is in AC® for data complexity.

Proof: (sketch) By reduction to the problem of answer-
ing conjunctive queries (actually “paths”) on relational
databases, known to have AC? data complexity. ]

Corollary 1 QA under NO-RL(3) (and thus NO-RL(1))
rules is in AC? for data complexity.

Proof: This follows from the fact that reformulation is
in constant time for data complexity and Theorem 4. [J

We now turn our attention to NO-RL(2). In a dual
way to saturation under NO-RL(3) rules, REF(Q, X))
can be infinite under NO-RL(2) rules. Indeed, con-
sider the rule 0 : a.b(z) — a(x) and the query
@ = get(a) which has an infinite reformulation set.

get(a.b) get(a.b.b) get(a.b.b.b)

However, it turns out that not all of these reformu-
lations are useful for QA when the instance [ is fixed.
Given any record r of depth d, every useful reformula-
tion of @, i.e., potentially able to find an answer in r, has
length bounded by d. Since a NO-RL(2)-reformulation
of a path k cannot be of smaller length than ||, com-
pleteness is not harmed if we exclude all reformulations
with length greater than d. There is a finite (although ex-
ponential in d) number of useful reformulations. Beside,
the number of steps needed to produce a reformulation
is bounded by (d + 1) x |X|. Indeed, strict NO-RL(2)
rules can be used at most d times to obtain a path of
length bounded by d, interleaved by at most one appli-
cation of each NO-RL(1) rule. This observation lead us
to the following result.

Theorem 5 QA under NO-RL(2) rules is in NP for data
complexity.

Summing up, the QA problem on KV stores with
NO-RL(3) (and thus NO-RL(1)) rules belongs to a low



data complexity class. Since this result is based on re-
formulation, this technique is likely to be efficiently
implementable. For NO-RL(2) rules reformulation can
still be computed in non-deterministic polynomial time.

Related Work and Conclusion

We presented a rule-based framework for answering
ontology-mediated queries over KV stores. We shown
that despite the apparent simplicity of our language,
query answering surprisingly turns out undecidable. We
identified several fragments of rules for which the query
answering problem has a low (data) complexity, moti-
vating the implementation of our framework on top of
NOSQL databases. Up to our knowledge, this work is
the first one that lays the formal basis of ontolgy-based
data access on top of NOSQL databases and that pro-
vides algorithms of query reformulation in this setting.

The NO-RL rule language operates on key-value
records and can be compared to existing languages de-
signed for reasoning on nested structures. For instance,
Frame Logic (Kifer, Lausen, and Wu 1995; Kifer
2005) provides a logical foundation for frame-based
and object-oriented languages for data and knowledge
representation. Its expressivity captures the NO-RL lan-
guage but there are no computational guarantees. The
Elog rule language (Baumgartner et al. 2001) underly-
ing the the Lixto system (Baumgartner et al. 2003) is a
fragment of monadic Datalog (Gottlob and Koch 2004)
that has been specifically designed for extracting tree
shaped data from HTML pages. These rules are simi-
lar to V-rules of the NO-RL(2) fragment. They are used
in forward-chaining manner to generate novel logical
structures that are then exported in XML. Active XML
(Abiteboul, Benjelloun, and Milo 2004) is a formalism
to model distributed systems represented as trees with
function calls for tasks such as sending, receiving and
querying data (like web services). Active XML function
calls can be assimilated to NO-RL(3) rules that are ap-
plied in a forward-chaining manner to expand answers
returned by XML queries. However, none of these ex-
isting work follows an OBDA approach, that is, they do
not add a backward-chaining step of query reformula-
tion on top of data management.

We leave as future work the precise analysis of
QA combined complexity, the identification of tractable
cases mixing NO-RL(2) and NO-RL(3) rules, as well as
the design and evaluation of QA algorithms that would
exploit the parallelization features of KV stores.
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