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Abstract
In ∀∃-rules, the conclusion may contain existen-
tially quantified variables, which makes reason-
ing tasks (as deduction) non-decidable. These
rules have the same logical form as TGD (tuple-
generating dependencies) in databases and as con-
ceptual graph rules. We extend known decidable
cases by combining backward and forward chain-
ing schemes, in association with a graph that cap-
tures exactly the notion of dependency between
rules. Finally, we draw a map of known decidable
cases, including an extension obtained by combin-
ing our approach with very recent results on TGD.
Version published at IJCAI’09 with minor typos correc-
tions

1 Introduction
Rules have long been considered as an essential component
of knowledge-based systems. In this paper, we deal with rules
which extend the rules usually considered in logic program-
ming or deductive databases: they are in the form H → C,
whereH andC are conjunctions of atoms, respectively called
the hypothesis and conclusion of the rule, and there might be
variables in the conclusion which are existentially quantified.
E.g. the rule R = Human(x) → Parent(y, x) ∧ Human(y)
stands for the formula ∀x(Human(x) → ∃y(Parent(y, x) ∧
Human(y))). This kind of rule, that we call ∀∃-rule, has
the same logical form as a very general kind of dependen-
cies studied in databases called tuple generating dependencies
(TGD) [AHV95] and as conceptual graph (CG) rules [Sow84;
BM02]. They can also be seen as an abstraction for onto-
logical knowledge expressed in specific KR languages, e.g.
the RDFS rules [Hay04], constraints in F-logic-Lite [CK06;
CGK08], as well as some kinds of inclusions in description
logics [BCM+03; CGL+07].

Let us consider knowledge bases (KB) composed of a set
of facts (existentially closed conjunctions of atoms) and a set
of ∀∃-rules. Several fundamental problems on these KB are
equivalent (and very simple reductions allow us to go from
one problem to another), namely fact deduction (is a fact
deducible from a KB?), rule deduction (is a rule deducible
from a KB?) and boolean conjunctive query answering in

the presence of incomplete knowledge (is a boolean conjunc-
tive query deducible from a KB?). The database versions of
these problems are conjunctive query containment w.r.t. a set
of TGD, TGD implication and boolean conjunctive query an-
swering under constraints expressed by TGD. In this paper,
we have chosen fact deduction to represent this family. All
results obtained regarding this problem can be immediately
recast in terms of the other problems.

Deduction is not decidable ([Var84] for TGD, [BM02] for
CG rules), which is due to the existential variables in the
conclusion. Finding expressive decidable cases is thus ex-
tremely important. Until now, there were only decidable
cases based on the forward chaining scheme (called the chase
in databases). With the previous rule R, forward chaining
does not halt: onceR has been applied, it can be applied again
indefinitely and each application produces a fact which is not
equivalent to any of the previous ones. Most exhibited decid-
able classes of rules correspond to cases where forward chain-
ing halts (with the notable exceptions of the results in [JK84;
CGK08], cf. Sect. 5).

We propose a new approach, which allows us to extend the
map of decidable cases. Briefly, we combine backward and
forward chaining schemes in association with a graph that
captures exactly the notion of dependency between rules; this
graph is used to define a combination of both schemes pre-
serving completeness and decidability. The key notion, in the
definitions of our backward chaining mechanism and our de-
pendency criteria, is that of a piece, which can be seen as
a “unit of knowledge” brought by a rule application. It al-
lows us to keep accounting for the complex structure of a rule
conclusion induced by existential variables, by characterizing
sets of atoms which should not be processed separately (e.g.
in the above rule R, {Parent(y, x),Human(y)} is a piece).

The main contributions of this paper are as follows:
• new decidable classes based on finite backward chaining

(Sect. 3.2: Th. 2, Prop. 2 and 3);
• the effective characterization of the notion of depen-

dency between rules, allowing one to build an optimal
graph of rule dependencies (GRD) (Sect. 4.1: Th. 3);
• new decidable classes obtained by combining the struc-

ture of the GRD and classes of rules for which forward
or backward chaining are finite (Sect. 4.2: Th. 4, 5, 6);
• a map of known decidable cases, ordered by inclusion,



including an extension obtained by combining our re-
sults with the results in [CGK08] (Sect. 5: Th. 7, 8).

2 Preliminaries
Basic definitions. We consider a first-order logical lan-
guage with constants but no other function symbols. For
space saving, we also do not consider equality in this short
paper. Hence, an atom is of form p(t1 . . . tk), where p is a
predicate of arity k and the ti are variables or constants. A
fact is a set of atoms. A rule is a couple R = (H,C) of
facts where H is called the hypothesis of R and C its con-
clusion. We note that term(X), var(X) and const(X) are
respectively the sets of terms, variables and constants oc-
curring in the atoms of a fact or a rule X . The frontier of
a rule R (notation fr(R)) is the set of variables occurring
both in H and C. Let F∧ be the conjunction of atoms in
a fact F ; the logical translation of F is the existential clo-
sure of F∧. A rule R = (H,C) is logically translated
into the formula ∀h1 . . . ∀hk(H∧ → (∃c1 . . . ∃cqC∧)) where
{h1, . . . , hk} = var(H) and {c1, . . . , cq} = var(C) \ fr(R).
In the examples, we use the form H∧ → C∧, with the quan-
tification of variables being implicit. A knowledge base (KB)
is composed of a set of facts and a set of rules. As the union
of two facts is a fact, we consider the set of facts as a single
fact. We thus note (F,R) a KB, where F is a fact and R is a
set of rules. The same notation is used for facts (resp. rules)
and their logical translation. We use the classical notions of
semantic consequence, noted |=, and equivalence, noted ≡.

We address the following deduction problem, called FR-
DEDUCTION: “given a KBK = (F,R) and a factQ, isQ de-
ducible fromK, i.e. does {F}∪R |= Q hold?”. As explained
in the introduction, this problem can be seen as a representa-
tive of several equivalent problems. It is semi-decidable (sev-
eral proofs mentioned in [BM02]). Since Q and F are both
facts, only their role in the deduction problem distinguishes
them. When we need to distinguish between them, we call
F the assertion and Q the query; Q is also called a goal in
backward chaining.
Substitution and homomorphism. Given a set of variables
V and a set of terms T , a substitution of V by T is a mapping
from V to T . Let σ : V → T be a substitution, and F be
a fact. σ(F ) denotes the fact obtained from F by replacing
each occurrence of x ∈ V ∩ term(F ) by σ(x). IfR = (H,C)
is a rule, σ(R) = (σ(H), σ(C)). A safe substitution is a
bijection from V to a set of new variables (i.e. that do not
appear in the formulas involved in the reasoning). Given two
facts F andQ, a homomorphism fromQ to F is a substitution
σ from var(Q) to term(F ) such that σ(Q) ⊆ F . If there
is a homomorphism from Q to F , we say that Q maps to
F . Homomorphism checking is sound and complete w.r.t.
logical deduction in the fragment of facts: given F and Q
two facts, F |= Q iff Q maps to F (several proofs of this
result in KR and databases).
Forward Chaining. We assume in this paper that the reader
is familiar with forward and backward chaining paradigms.
We recall here some definitions and results about forward
chaining. A ruleR = (H,C) is applicable to a fact F if there
is a homomorphism σ from H to F . The application of R to

F according to σ produces a fact α(F,R, σ) = F∪σ(σ′(C)),
where σ′ is a safe substitution of var(C) \ fr(R). This ap-
plication is said to be redundant if α(F,R, σ) ≡ F (it suf-
fices to check that α(F,R, σ) maps to F ). A fact F ′ is called
an R-derivation of F if there is a finite sequence (called the
derivation sequence) F = F0, F1, . . . , Fk = F ′ such that for
all 1 ≤ i ≤ k, there is a rule R = (H,C) ∈ R and a homo-
morphism σ from H to Fi−1 with Fi = α(Fi−1, R, σ). Such
a derivation yields a sound and complete mechanism: given
a KB K = (F,R) and a fact Q, Q is deducible from K iff
Q maps to anR-derivation of F [SM96]. The following def-
inition of a finite expansion set and associated concrete cases
are from [BM02]. A set of rules is called a finite expansion
set if it is guaranteed, for any fact, that after a finite number
of rule applications, all further rule applications will become
redundant, i.e. produce facts equivalent to the current fact.
More precisely:

Definition 1 (Finite expansion set and full derivation) A
set of rulesR is called a finite expansion set (f.e.s.) if for any
fact F , there is an R-derivation F ′ of F such that for every
rule R = (H,C) ∈ R, for every homomorphism σ from H
to F ′, α(F ′, R, σ) maps to F ′ (i.e. all rule applications on
F ′ are redundant). F ′ is called a fullR-derivation of F .

If R is a f.e.s., any forward chaining algorithm that builds
a derivation sequence and stops when all rule applications are
redundant then checks if Q maps to the fact obtained, is com-
plete and halts in finite time. The f.e.s. notion is an abstract
characterization of sets of rules allowing for a finite forward
chaining mechanism, but it does not help to predict that the
mechanism will actually stop on a given set of rules (note,
moreover, that all decidable cases of the problem do not rely
upon f.e.s.). As concrete classes of f.e.s., let us cite the range
restricted rules (r.r.) in positive Datalog, which do not have
existentially quantified variables (i.e. var(C) ⊆ var(H)) and
disconnected rules, whose frontier is empty. The backward
chaining paradigm that we present now allows one for new
decidable classes, namely by finite unification sets.

3 Backward Chaining Revisited

The key operation in a backward chaining mechanism is the
unification between part of a current goal (a fact in our frame-
work) and a rule conclusion. This mechanism is typically
used in logic programming, with rules having a single atom
in the conclusion, which is unified with an atom of the current
goal. Since the conclusion of a ∀∃-rule has a more complex
structure (it may contain several atoms and possibly existen-
tially quantified variables), the associated unification opera-
tion is also more complex. It allows one to process conclu-
sions and goals without decomposing them into atoms, and
we will show that it is worthwhile to do so. We will rely
on the notion of a piece, which stems from a graph vision
of rules and was introduced in [SM96] for CG rules. We re-
formulate it, as well as the associated unification notion, in a
logical framework. As shown in Sect. 4.1, we will also use
unification in a new perspective.



3.1 Piece-based rewriting
Given a subset T of its terms, a fact can be partitioned into
pieces according to T . The piece notion is easier to grasp if
we see a fact as an undirected bipartite graph, with two kinds
of nodes, representing respectively terms and atoms, and such
that there is an edge between a term node t and an atom node
A if t occurs in A. Then, given a set of term nodes T , two
atom nodes A1 and A2 are in the same piece if there is a path
between them that does not go through a node of T . If T = ∅,
each connected component of T is a piece.

Definition 2 (Pieces, Cutpoints) Let F be a fact and T ⊆
term(F ). A piece of F according to T is a non-empty subset
of F recursively defined as follows: each atom is in a piece;
two distinct atoms A1 and A2 are in the same piece iff either
(var(A1) ∩ var(A2)) \ T 6= ∅, or there is an atom A3 ∈ F
such thatA1 andA3 are in the same piece andA3 andA2 are
in the same piece. LetR = (H,C) be a rule. The cutpoints of
R are the set of terms cutp(R) = fr(R) ∪ const(C). A piece
of R is a piece of C according to cutp(R).

Example 1 (Pieces) R = p(x, y) → p(x, z) ∧ p(z, t) ∧
p(t, x) ∧ p(x, u) has one cutpoint, which is x, hence two
pieces {p(x, z), p(z, t), p(t, x)} and {p(x, u)}.

A piece can be seen as a “unit” of knowledge brought by
a rule application in forward chaining. Indeed, a rule R can
be decomposed into an equivalent set of rules with the same
hypothesis and exactly one piece in the conclusion. More
precisely, any rule R = (H,C), such that C contains k
pieces C1, . . . , Ck, is semantically equivalent to the set of
rules {(H,Ci)}1≤i≤k. Moreover, the conclusions of these
rules cannot be further decomposed while keeping a set of
∀∃-rules with the same semantics as R (provided that H is
not modified, see another decomposition later).

Backward chaining erases whole pieces of a goal Q. To
explain the key ideas of the following unifier definition, let us
present it as performing the inverse of a rule application to a
potential fact. Given Q and a rule R = (H,C), assume that
Q can be proven by an application of R to a fact F according
to a homomorphism πR, i.e. there is a homomorphism πQ

from Q to α(F,R, πR) and πQ(Q) is not included in F . Let
σR be the substitution of fr(R) (extracted from πR) used to
applyR to F . Q can then be partitioned intoQ′ andQ′′, such
that πQ maps Q′ to σR(C) and Q′′ to F . Let TQ be the set
of terms t in Q such that πQ(t) is in const(C) ∪ σR(fr(R)).
TQ defines pieces of Q, which can be partitioned into pieces
of Q′ and pieces of Q′′. Each piece of Q′ is mapped by πQ

to a piece of σR(C). Briefly said, the backward chaining step
associated with σR erases from Q the pieces composing Q′
and adds σR(H) to it.

Definition 3 (Unifier) Let Q be a fact and R = (H,C) be a
rule. A unifier of Q with R is a tuple µ = (TQ, Q

′, σQ, σR)
where:

• TQ is a subset of term(Q), which thus defines pieces in
Q (TQ is possibly empty);

• Q′ is the union of one or more pieces of Q (defined by
TQ);

• σQ is a substitution from the variables of TQ to
const(C) ∪ TQ and σR is a substitution from fr(R) to
const(C) ∪ TQ;

• there is a homomorphism σ from σQ(Q′) to σR(C)
such that for all t ∈ TQ, there is t′ ∈ cutp(R) with
σ(σQ(t)) = σR(t′).

Definition 4 (Rewriting a fact) Let Q be a fact, R =
(H,C) be a rule, and µ = (TQ, Q

′, σQ, σR) be a unifier of
Q with R. A rewriting of Q according to R and µ produces a
fact β(Q,R, µ) = σ′(σR(H)) ∪ σQ(Q \ Q′), where σ′ is a
safe substitution from var(H) \ fr(R).

Example 2 (Unification) Let R = h(x, y) → p(x, z) ∧
q(z, y) ∧ r(z, t). Let Q = p(u, v) ∧ q(v, u) ∧ s(u,w).
Q is unifiable with R, with TQ = {u}, which defines
two pieces Q1 = {p(u, v), q(v, u)} and Q2 = {s(u,w)}.
Q′ = Q1, σQ = {(u, u)}, σR = {(x, u), (y, u)} (with
σ = {(u, u), (v, z)}). The new fact is h(u, u)∧ s(u,w) (with
σ′ = ∅).

Definition 5 (Rewriting sequence) Let Q and Q′ be two
facts, and R be a set of rules. We say that Q′ is an R-
rewriting of Q if there is a finite sequence (called the rewrit-
ing sequence) Q = Q0, Q1, . . . , Qk = Q′ such that for all
1 ≤ i ≤ k, there is a rule R = (H,C) ∈ R and a unifier µ
of Qi−1 with R such that Qi = β(Qi−1, R, µ).

The soundness and completeness of backward chaining
(next theorem) relies on the following equivalence between
R-rewriting andR-derivation:

Property 1 Let F and Q be two facts, and R be a set of
rules. There is an R-rewriting of Q that maps to F iff there
is anR-derivation F ′ of F such that Q maps to F ′.

Theorem 1 Let K = (F,R) be a KB, and Q be a fact. Then
F,R |= Q iff there is anR-rewriting of Q that maps to F .

Let us end with a remark about the piece notion. It might
be argued that the unification operation would be much sim-
pler if rule conclusions were decomposed, not only into sin-
gle pieces (which would not fundamentally simplify the uni-
fication definition), but into single atoms. Indeed, a rule
(H,C) can be equivalently encoded by a set of rules {H →
R(t1, ..., tk), (R(t1, ..., tk)→ Ac)Ac∈C)}, where R is a new
predicate assigned to the rule and t1...tk are the terms of
C. However, the rewriting mechanism would then build “no-
good” unifications that would have been avoided with piece-
based unification (see the example 3 below). Besides the loss
of efficiency in backward chaining, this decomposition of rule
conclusions beyond single pieces weakens the characteriza-
tion of decidable cases, as shown in Sect. 4.1.
Example 3 (Atomic Decomposition) The rule R =
h(x, y) → p(x, z) ∧ q(z, y), which has a single piece, could
be replaced by three rules: RA

1 = h(x, y) → R(x, y, z),
RA

2 = R(x, y, z)→ p(x, z) and RA
3 = R(x, y, z)→ q(z, y).

Let Q = s(u, v)∧ q(v, w). Q is not unifiable with R, but it is
with RA

3 , because the information that RA
2 and RA

3 cannot be
considered independently has been lost.



3.2 Finite unification sets
Consider a backward chaining mechanism that builds R-
rewritings ofQ in a breadth-first way and maintains a setQ of
the most generalR-rewritings built (i.e. it does not add a new
R-rewriting Q′′ to Q if there is Q′ ∈ Q with Q′′ |= Q′); it
answers yes if it finds anR-rewritingQ′ s.t. F |= Q′. This al-
gorithm is sound and complete and halts on positive instances
of the problem. Whereas finite expansion sets ensure that all
information deducible from a fact in forward chaining can be
encoded in a finite fact, the finite unification sets presented
hereafter ensure that the above set Q of rewritings is finite.
Definition 6 (Finite unification set) A set of rules R is
called a finite unification set (f.u.s.) if for every fact Q,
there is a finite set Q of R-rewritings of Q such that for any
Q′ ∈ Q, for any rule R ∈ R, for any unifier µ of Q′ with R,
there is a fact in Q that maps to some β(Q′, R, µ). We say
that Q is a fullR-rewriting set of Q.

The above backward chaining mechanism halts in finite
time ifR is a f.u.s., hence:
Theorem 2 FR-DEDUCTION is decidable ifR is a f.u.s.

Similarly to f.e.s., f.u.s. yield an abstract characterization,
that should be instantiated with concrete examples. We pro-
vide two concrete cases of f.u.s. rules hereafter.
Definition 7 (Atomic hypothesis rule) A rule R = (H,C)
is called an atomic hypothesis rule (a.h.) if H contains a
single atom.
Property 2 A set of a.h. rules is a f.u.s.

A.h. rules are particularly well adapted to express nec-
essary properties of concepts or relations in ontological lan-
guages, without any restriction on the form of the conclusion
(i.e. rules of form C(x)→ P or r(x1 . . . xk)→ P , where C
is a concept, r a k-ary relation and P any set of atoms). The
second kind of rules does not put any restriction on the form
of the hypothesis but constrains the form of the conclusion:
Definition 8 (Domain restricted rule) A rule R = (H,C)
is called a domain restricted rule (d.r.) if each atom of C
contains all or none of the variables in H .
Property 3 A set of d.r. rules is a f.u.s.

E.g. the set {R} with R = Human(x) → Parent(y, x) ∧
Human(y) is not a f.e.s. but it is a f.u.s. since R is a.h. (and
d.r.). It is easy to check that the union of two f.e.s. (resp.
f.u.s.) is not a f.e.s. (resp. f.u.s.). Moreover, combining a
f.e.s. and a f.u.s. may lead to non-decidability. In the next
section, we study conditions on the interaction between rules
that keep decidability.

4 Compilation of the rule base
Generally speaking, compiling a knowledge base involves
preprocessing it off-line, so that the compiled form obtained
can be used on-line to accelerate reasoning tasks (e.g. query
answering). Concerning rules, a classical compilation tech-
nique consists of precomputing a graph encoding dependen-
cies between rules. Due to space limitations, we will not de-
tail how this technique allows one to improve the efficiency
of forward and backward chainings (as done for example in
[Bag04]), but rather use it to extend decidable classes of rules.

4.1 The Optimal Graph of Rule Dependencies
A rule R′ is said to depend on a rule R if the application of R
on a fact may trigger a new application of R′:

Definition 9 (Dependency) A rule R′ = (H ′, C ′) depends
on a rule R = (H,C) if there is a fact F , a homomorphism
σ : H → F and a homomorphism σ′ : H ′ → α(F,R, σ),
such that σ′(H ′) 6⊆ F .

It is easy to define necessary conditions for a rule to depend
on another: e.g. if R′ depends on R then there is an atom in
H ′ that can be unified (classical meaning) with an atom in
C. Characterizing dependency by actually computable nec-
essary and sufficient conditions is less obvious. In the next
definition of the graph of rule dependencies, we thus distin-
guish between graphs that are “complete” w.r.t. to depen-
dency (i.e. all dependencies are encoded by their edges), and
the only sound and complete graph, whose edges encode all
dependencies and only dependencies.

Definition 10 (Graph of rule dependencies) LetR be a set
of rules. A graph of rule dependencies (GRD) of R is a di-
rected graph (R, E), whereR is the set of nodes and E is the
set of edges, such that, if R′ depends on R, then (R,R′) is an
edge of E. The optimal GRD of R (notation GRD(R)) is the
(only) GRD ofR with the minimal number of edges.

Assertions (resp. queries) can be added to the GRD as rules
with an empty hypothesis (resp. conclusion) and are thus
sources (resp. sinks) in the GRD. The next theorem shows
that our unifiers exactly capture the dependency notion:

Theorem 3 Let R be a set of rules. Then the GRD (R, E),
where (R,R′) ∈ E iff there is a unifier of the hypothesis of
R′ with R, is the optimal GRD ofR.

Though all results presented hereafter in this paper remain
valid when considering any GRD, building the optimal GRD
is important both to optimize reasoning and provide wider
decidable classes.
Example 4 (Dependency) Let R0 = p(x, y) ∧ p(y, x) →
p(x, z) ∧ p(z, t) ∧ p(t, x). With a weak criterium, R0 could
depend on itself. Using the criterium in Th. 3, it does not: C0

is a single piece, and sinceR0 has only one cutpoint (x), there
should be a homomorphism from H0 to C0 (which would
map x to x). Note that if z was replaced by y in C0, the
rule obtained would have 2 cutpoints and 2 pieces, and would
depend on itself.
Example 5 (GRD) LetR = {R0, R1, R2, R3}, where:
R0 is the rule in Example 4
R1 = q(x) ∧ p(x, y)→ q(y)
R2 = p(x, y)→ r(x, y, z) ∧ p(z, w)
R3 = s(x) ∧ t(x, y)→ p(x, y)
GRD(R) has two loops (R1, R1) and (R2, R2) plus the edges
(R0, R1), (R0, R2), (R3, R0), (R3, R1) and (R3, R2).

Let us point out that decomposing rule conclusions into
single atoms (see Sect. 3.1) would weaken the GRD no-
tion. Indeed, “fake” dependencies could be introduced. For
instance, in Example 3 and inserting Q (as a rule with an
empty conclusion): there are edges (RA

1 , R
A
2 ) and (RA

1 , R
A
3 ),

and, which is the bad point, an edge (RA
3 , Q), whereas there

would be no edge (R,Q). Thus, even if the GRD obtained is



optimal for {RA
1 , R

A
2 , R

A
3 , Q}, it does not compute optimal

dependencies w.r.t. {R,Q}.

4.2 Decidability results related to the GRD
Let us consider a basic forward chaining mechanism, that
proceeds in a breadth-first way, i.e. at each step it computes
all new (and non redundant) rule applications w.r.t. the cur-
rent fact, then applies them to produce a new fact. If a subset
of rules X ⊆ R has been non-redundantly applied at step i,
then the only rules that have to be checked for applicability
at step i+ 1 are in the set {R′ ⊆ R|∃R ∈ X, (R,R′) ∈ E}.
Similar arguments apply for backward chaining. The next
theorem follows:

Theorem 4 Let R be a set of rules. If GRD(R) has no cir-
cuit, thenR is both a f.e.s. and a f.u.s.

Note that a loop (a self-unifiable rule) in the GRD is suffi-
cient to yield the non-decidability of the deduction problem.1
One can however accept some kinds of circuits, as stated in
the next theorem:

Theorem 5 LetR be a set of rules. If all strongly connected
components2 of GRD(R) are f.e.s. (resp. f.u.s.), then R is a
f.e.s. (resp. f.u.s.).

Since forward and backward chainings do not stop on the
same kinds of rules, the idea is to combine both mechanisms,
not into a single mechanism (like some Datalog evaluation
techniques [AHV95]), but rather use one after the other, pro-
vided that the interactions between rules obey some constraint
preserving finiteness, thus decidability. This constraint is ex-
pressed on the GRD as follows:

Definition 11 (Finitely combined set) Let R be a set of
rules. A partition (R1,R2) of R is said to be finitely com-
bined if R1 is a f.e.s., R2 is a f.u.s., and there is no edge
from a rule ofR2 to a rule ofR1 in GRD(R). R is a finitely
combined set if it admits a finitely combined partition.

Example 5 (continued) Each rule forms its own connected
component. {R1} is a f.e.s. since R1 is range restricted (r.r.),
but it is not a f.u.s. {R2} is a f.u.s. since R2 is a.h. (and
d.r.), but it is not a f.e.s. {R3} is a f.e.s. and a f.u.s. because
R3 is r.r. and d.r. R0 does not belong to one of our concrete
classes, but {R0} is a f.e.s. and a f.u.s. since its GRD has no
edge. From Th. 5, we conclude that {R0, R1, R3} is a f.e.s.
and {R0, R2, R3} is a f.u.s. A finitely combined partition
necessarily considers R3 and R0 as f.e.s. because of their
edges to R1. Thus, the only finitely combined partition is
{{R0, R1, R3}, {R2}}.

The next theorem provides an effective decidable sound
and complete mechanism for finitely combined sets of rules:
given a finitely combined partition, first use forward chaining
on the f.e.s. part to compute a full derivation of the facts, say
F ′, then use backward chaining on the f.u.s part to check if
there is a rewriting of Q that maps to F ′.

1In Baget’s PhD thesis [Bag01], it is proven that a universal Tur-
ing machine can be encoded by a single self-dependent rule.

2Two nodes x and y are in the same strongly connected compo-
nent if there are directed paths from x to y and from y to x. Any
isolated node forms its own strongly connected component.

Theorem 6 Let (R1,R2) be a finitely combined partition of
a set of rules R, and F and Q be two facts. Then F,R |= Q
iff Q′ maps to F ′, where F ′ is a full R1-derivation of F and
Q′ belongs to a fullR2-rewriting set of Q.

5 Novelty, Related works and Perspectives
Weak characterizations of rule “dependency” (also called
“precedence”) have been used in several algorithms involv-
ing ∀∃-rules, yielding non-optimal GRDs (e.g. in the Sesame
reasoner which processes RDFS rules [BK03]). A precursor
of our GRD is introduced in [Bag04]: this paper defines a cri-
terium of dependency for CG rules, which, translated into ∀∃-
rules, is optimal for rules without constants. Instead, we rely
on unification, which has an additional advantage of connect-
ing the notion of dependency to backward chaining. F.e.s. are
introduced in [BM02] and a result equivalent to the f.e.s. part
in Th. 5 is proven in [Bag04]. Our definition of unification is
equivalent (but more compact and simpler) to that introduced
in [SM96] for processing CG rules in backward chaining. The
notions of f.u.s. and associated results (Th. 2, Prop. 2 and 3)
as well as the combined use of the GRD structure with for-
ward and backward chainings are totally new (Th. 4, 5, 6).

Concerning TGD, let us first cite the pioneer paper of
[JK84] that showed that query containment on inclusion de-
pendencies (ID) is decidable even if the forward chaining (i.e.
the chase) may not halt. Note that, as ID are rules with a sin-
gle atom in the hypothesis and in the conclusion, they are par-
ticular a.h. rules, thus we provide another (and simpler) proof
of decidability, based on the finiteness of backward chaining.

Let us now consider our results w.r.t. two very recent pa-
pers on TGD, [CGK08] and [DNR08]. [CGK08] presents
decidability results going beyond f.e.s.: roughly summarized,
it is shown that if a set of rules only generates facts having
bounded treewidth when seen as graphs (we call such a set
a bounded treewidth set, b.t.s. in short), the deduction prob-
lem becomes decidable. Intuitively, a b.t.s. generates a “tree-
like” graph, and even though this graph can be infinite, to an-
swer a query of finite size, it is not needed to generate more
than a finite number of different “tree patterns”. A f.e.s. is a
b.t.s., since the finite saturated graph generated by a f.e.s. has
bounded treewidth. On the other hand, a f.u.s. is not a b.t.s.
Two concrete decidable fragments are defined in [CGK08].
Guarded TGD (gTGD) are rules such that an atom of the hy-
pothesis contains (“guards”) all variables of the hypothesis;
in weakly guarded TGD (wgTGD), only some variables of
the hypothesis need to be guarded3. gTGD are a subset of
wgTGD, and both are b.t.s. The following examples illustrate
that the decidable classes in both papers are incomparable.

1. {g(x, y, z, t) ∧ p(x, y) ∧ p(y, z) ∧ p(z, t) → p(y, t)}
contains a single rule that is both guarded (gTGD) and
r.r., but it is not a f.u.s.

2. {p(x, y) → p(y, z)} contains a single ID (thus both
guarded and a.h.), but it is not a f.e.s.

3More precisely, these variables occur at an “affected” position
in a predicate, i.e. a position in a predicate that may contain a new
variable generated by forward chaining.



3. {t(x) → s(x, y) ∧ t(y) ; t(x) ∧ t(y) → r(x, y)} is a
f.u.s. (indeed, its GRD satisfies the conditions of Th. 5),
but it is not a b.t.s.

4. {t(v, x) → q(x, y) ∧ p(y, z) ∧ r(z, u) ; r(x, y) ∧
p(y, z) → s(z, u) ∧ s(x, v)} is both a f.e.s. and a f.u.s.
(its GRD has no circuit), but it is not a set of wgTGD.

[DNR08] studies “sets of TGD with universal models”,
which are exactly f.e.s. The main decidable case is the “strat-
ified chase graph”, which can be seen as an instantiation of
the f.e.s. part of Th. 5 with “weakly acyclic” (w.a.) TGD,
this kind of TGD including the r.r. and disconnected rules of
[BM02; Bag04]. The “chase graph” is equivalent to our GRD,
but no constructive characterization of this graph is provided
in [DNR08].

Since f.u.s. and b.t.s. form distinct decidable classes, one
should explore how these sets interact with each other. The
following theorems provide a first answer:

Theorem 7 LetR be a set of rules. If all strongly connected
components of GRD(R) are b.t.s., thenR is a b.t.s.

Since a single rule without self-dependency is a b.t.s., it fol-
lows that the latter example (point 4), though not a wgTGD,
is a b.t.s.

Theorem 8 Let R be a set of rules admitting a partition
(R1,R2) such that R1 is a b.t.s., R2 is a f.u.s. and there
is no edge in GRD(R) from a rule of R2 to a rule of R1.
Then the deduction problem is decidable.

Figure 1 synthesizes the inclusions between the decidable
classes finally obtained. All these inclusions are strict. Decid-
able classes written in italics are abstract classes. Classes in
boldface are generic classes: we provide an algorithm recog-
nizing them, and the size of the recognized class is function
of the number and the size of concrete classes (in standard
font) considered as their input. Note that we have added a
new concrete class: a set of rules with a frontier of size at
most one (noted fr1), which is interesting because it is not a
f.e.s., neither a f.u.s., but is a b.t.s. without being necessar-
ily weakly guarded. We have highlighted (in gray) classes
that form the contributions of this paper. Even if the notion
of acyclic GRD is not new in itself, we have highlighted it
because the optimal characterization of dependencies (Th.3)
is a key contribution of this paper. As for further work, our
study of decidable cases will be continued through a study of
their complexity, pursuing the work in [BM02], [CGK08] and
[DNR08].
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