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Abstract

In this report, we establish complexities of the conjunctive query entail-
ment problem for classes of existential rules (also called Tuple-Generating
Dependencies or Datalog+/- rules). Our contribution is twofold. First, we in-
troduce the class of greedy bounded treewidth sets (gbts) of rules, which cov-
ers guarded rules, and their known generalizations, namely (weakly) frontier-
guarded rules. We provide a generic algorithm for query entailment with
gbts, which is worst-case optimal for combined complexity with bounded
predicate arity, as well as for data complexity. Secondly, we classify several
gbts classes, whose complexity was unknown, namely frontier-one, frontier-
guarded and weakly frontier-guarded rules, with respect to combined com-
plexity (with both unbounded and bounded predicate arity) and data com-
plexity.

1 Introduction

First-order Horn rules (without function symbols except constants) have long been
used in artificial intelligence, as well as in databases under name Datalog. We con-
sider here an extension of these rules that allows to create existentially quantified
variables (ability called value invention in databases [AHV94]). More precisely,
these extended rules are of the form Body → Head, where Body and Head are
conjunctions of atoms, and variables occurring only in the Head are existentially
quantified. E.g., ∀x(Human(x)→ ∃y(HasParent(x, y) ∧ Human(x))). Such rules
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are known in databases as Tuple-Generating Dependencies (TGDs) [BV84] and
have been extensively used, e.g. for data exchange [FKMP05]. Recently, the cor-
responding logical fragment has gained new interest in the context of ontological
knowledge representation. It has been introduced as the Datalog+/- framework
in [CGK08, CGL09, CGL+10], and independently, stemming from graph-based
knowledge representation formalisms [CM09], as ∀∃-rules [BLMS09, BLM10].
This rule-based framework is particularly well-suited to the topical ontological
query answering problem, which consists of querying data while taking ontologi-
cal knowledge into account. In particular, it generalizes the core of new description
logics (DL) tailored for conjunctive query answering [CGL+07, LTW09, BLMS08,
CGL09, BLM10]1. Moreover, in the case the DL-Lite family [CGL+07], it has
been shown that this covering by a Datalog+/- fragment is done without increasing
complexity [CGL09].

The ability to generate existential variables, associated with arbitrarily com-
plex conjunctions of atoms, makes entailment with these rules undecidable [BV81,
CLM81]. Since the birth of TGD, and recently within the Datalog+/- and ∀∃-
rule frameworks, various conditions of decidability have been exhibited. Three
“abstract” classes have been introduced in [BLM10] to describe known decidable
behaviours: an obvious condition of decidability is the finiteness of the forward
chaining (known as the chase in the TGD framework [JK84]); sets of rules ensur-
ing this condition are called finite expansion sets (fes); a more general condition
introduced in [CGK08] accepts infinite forward chaining provided that the facts
generated have a bounded treewidth (when seen as graphs); such sets of rules are
called bounded treewidth sets (bts); then decidability follows from the decidabil-
ity of first-order logic (FOL) classes with the bounded treewidth model property
[Cou90]. The third condition, giving rise to finite unification sets, relies on the
finiteness of (a kind of) backward chaining mechanism. None of these three ab-
stract classes is recognizable [BLM10].

In this paper, we focus on the bts paradigm and its main “concrete” classes.
(Pure) Datalog rules (i.e. without existential variables) are fes (thus bts). Guarded
rules [CGK08] are inspired by the guarded fragment of FOL. Their body has an
atom (the guard) that contains all variables from the body. Guarded rules are bts
(and not fes), they are generalized by weakly guarded rules (wg), in which the
guarding condition is relaxed: only “affected” variables need to be guarded; intu-
itively, affected variables are variables that are possibly mapped, during the forward
chaining process, to newly created variables [CGK08]. wg-rules include Datalog

1The DL constructor called existential restriction (∃R.C) is fundamental in these DL. The logical
encoding of an membership that contains it in its right-part requires an existentially quantified vari-
able in the corresponding rule head. For instance, the above rule example can be seen as the logical
translation of the DL inclusion Human v HasParent.Human.
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rules (in which there are no affected variables). Other decidable classes rely on the
notion of the frontier of a rule (the set of variables shared between the body and
the head of a rule). In a frontier-one rule (fr1), the frontier is restricted to a single
variable [BLMS09]. In a frontier-guarded rule (fg), an atom in the body guards
the frontier [BLM10]. Hence, fg-rules generalize both guarded rules and fr1-rules.
When only affected variables from the frontier need to be guarded, we obtain the
still decidable class of weakly frontier guarded rules (wfg), which generalizes both
fg and wg classes [BLM10]. Of all known recognizable bts classes, wfg is the class
subsuming the most of the others.

Figure 1: Complexity Boundaries. Tight bounds for gbts and ba-fr1 are yet un-
known, we conjecture 3EXPTIME-completeness and EXPTIME-completeness, re-
spectively.

Example 1 (with the usual simplified syntax for rules)
HasParent(x, y),HasParent(y, z)→ isGdParent(z)
is Datalog and fr1 but not guarded;
WorksOn(x, z),WorksOn(y, z),StudentTandem(x, y)→ Grade(x, t),Grade(y, t)
is fg, but is neither fr1, nor guarded, nor Datalog.
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Contrarily to fes and fus, the definition of bts does not provide a constructive en-
tailment procedure. Some of its subclasses, namely guarded and wg, are provided
with an algorithm and their complexity is known [CGK08, CGL09]. However, this
is not the case for the fr1, fg and wfg classes. The aim of this paper is to solve these
algorithmic and complexity issues.

Our contribution is twofold. First, by imposing a restriction on the allowed
derivation sequences, we define a subclass of bts, namely greedy bts (gbts), which
has the nice property of covering the wfg class (thus all bts classes cited above).
gbts are defined by a very simple condition: when such a set is processed in forward
chaining, any application of a rule R from this set maps the whole frontier of R to
terms belonging to the initial facts or to the atoms added by a single previous rule
application. The fundamental property fulfilled by gbts is that to any derivation
is naturally associated a bounded treewidth decomposition of the derived facts,
which can be built in a greedy manner. We provide a generic algorithm for this
class, which is worst-case optimal for data complexity, as well as for combined
complexity in the case where predicate arity is bounded. Secondly, we classify
the wfg, fg and fr1 classes with respect to both combined (with and without bound
on the predicate arity) and data complexities. We also consider the case of rules
with an acyclic (more precisely, hypergraph-acyclic) body and point that body-
acyclic fg-rules coincide with guarded rules from an expressivity and complexity
perspective.

FIG. 1 shows the complexity lines for these classes of rules with three complex-
ity measures, i.e., combined complexity without or with bound on the predicate
arity, and data complexity. Notice that data complexity and bounded-arity com-
bined complexity are not strictly layered. While fg-rules are much easier for data
complexity (PTIME) than for bounded-arity combined complexity (2EXPTIME),
wg-rules are in EXPTIME for both. Precise complexity results obtained are given
in TAB. 1. New results are indicated by a star.

2 Preliminaries

As usual, an atom is of the form p(t1, . . . , tk) where p is a predicate with arity
k, and the ti are terms, i.e. variables or constants. A conjunct C[x] is a finite
conjunction of atoms, where x is the set of variables occurring in C. A fact is the
existential closure of a conjunct. A (boolean) conjunctive query (CQ) has the same
form as a fact, thus we identify both notions. We also see conjuncts, facts and CQ
as sets of atoms. Given an atom or a set of atoms A, we denote by vars(A) and
terms(A) its set of variables and of terms, respectively. Given conjuncts F andQ,
a homomorphism π from Q to F is a substitution of vars(Q) by terms of F such
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Class arity arity Data
unbounded bounded Complexity

gbts in 3EXPTIME ? 2EXPTIME-c ? EXPTIME-c?

wfg 2EXPTIME-c ? 2EXPTIME-c ? EXPTIME-c?

fg 2EXPTIME-c ? 2EXPTIME-c ? PTIME-c ?

fr1 2EXPTIME-c ? 2EXPTIME-c ? PTIME-c ?

wg 2EXPTIME-c EXPTIME-c EXPTIME-c
guarded 2EXPTIME-c EXPTIME-c PTIME-c
ba-fg 2EXPTIME-c ? EXPTIME-c ? PTIME-c ?

ba-fr1 EXPTIME-hard ?(1) EXPTIME-c ? PTIME-c ?

(1) EXPTIME-c if no constants in rules

Table 1: Combined and Data Complexities

that π(Q) ⊆ F (we say that π maps Q to F ). It is well-known that, given two facts
F and Q, F |= Q iff there is a homomorphism from Q to F .

Definition 1 (∀∃-Rule) A ∀∃-rule (existential rule, or simply rule when not am-
biguous) is a formula R = ∀x∀y(B[x,y] → (∃zH[y, z])) where B = body(R)
and H = head(R) are conjuncts, resp. called the body and the head of R. The
frontier of R, noted fr(R), is the set of variables vars(B) ∩ vars(H) = y.

Definition 2 (Application of a Rule) A rule R is applicable to a fact F if there is
a homomorphism π from body(R) to F ; the result of the application of R on F
w.r.t. π is a fact α(F,R, π) = F ∪ πsafe(head(R)) where πsafe is a substitution
of head(R), which replaces each x ∈ fr(R) with π(x), and other variables with
fresh variables. As α only depends on π|fr(R) (the restriction of π to fr(R)), we
also write α(F,R, π|fr(R)).

Definition 3 (Derivation) LetF be a fact, andR be a set of rules. AnR-derivation
of F is a finite sequence (F0 = F ), . . . , Fk s.t. for all 0 ≤ i < k, there is Ri ∈ R
and a homomorphism πi from body(Ri) to Fi s.t. Fi+1 = α(Fi, Ri, πi).

Theorem 1 (Forward Chaining) Let F and Q be two facts, and R be a set of
rules. Then F,R |= Q iff there exists anR-derivation (F0 = F ), . . . , Fk such that
Fk |= Q.

A knowledge base (KB) K = (F,R) is composed of a finite set of facts (seen
as a single fact) F and a finite set of rules R. We denote by C the set of constants
occurring in (F,R) and by P the set of predicates occurring in R. The (boolean)
CQ entailment problem is the following: given a KB K = (F,R) and a (boolean)
CQ Q, does F,R |= Q hold ?
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We now specify some already introduced notions. A fact can naturally be
seen as a hypergraph whose nodes are the terms in the fact and whose hyper-
edges encode atoms. The primal graph of this hypergraph has the same set of
nodes and there is an edge between two nodes if they belong to the same hyper-
edge. The treewidth of a fact is defined as the treewidth2 of its associated primal
graph. A set of rules R is called a bounded treewidth set (bts) if for any fact F
there exists an integer b such that, for any fact F ′ that can be R-derived from
F , treewidth(F ′) ≤ b. A rule R is guarded if there is an atom a ∈ body(R)
(called a guard) with vars(body(R)) ⊆ vars(a). R is weakly guarded (wg) if
there is a ∈ body(R) (called a weak guard) that contains all affected variables
from body(R). The notion of affected variable is relative to the rule set: a vari-
able is affected if it occurs only in affected predicate positions, which are positions
that may contain a new variable generated by forward chaining (see [FKMP05]
for a precise definition). The important point is that a rule application neces-
sarily maps non-affected variables to terms from the initial fact. R is frontier-
one (fr1) if |fr(R)| = 1. R is frontier-guarded (fg) if there is a ∈ body(R)
with vars(fr(R)) ⊆ vars(a). R is weakly-frontier guarded (wfg) if there is
a ∈ body(R) that contains all affected variables from fr(R).

3 Greedy Bounded-Treewidth Sets of Rules

In a greedy derivation, every rule application maps the frontier of the rule into
terms added by a single previous rule application or occurring in the initial fact:

Definition 4 (Greedy Derivation) An R-derivation (F0 = F ), . . . , Fk is said to
be greedy if, for all i with 0 ≤ i < k, there is j < i such that πi(fr(Ri)) ⊆
vars(Aj) ∪ vars(F0) ∪ C, where Aj = πsafe

j (head(Rj)).

Example 2. LetR = {R0, R1} where:
R0 = r1(x, y)→ r2(y, z) and
R1 = r1(x, y), r2(x, z), r2(y, t)→ r2(z, t).
Let F0 = {r1(a, b) ∧ r1(b, c)} and S = F0, . . . , F3 with:
F1 = α(F0, R0, {(y, b)}), A0 = {r2(b, x1)},
F2 = α(F1, R0, {(y, c)}), A1 = {r2(c, x2)},
F3 = α(F2, R1, π2), with π2 = {(z, x1), (t, x2)};
there is no Aj s.t. {π2(z), π2(t)} ⊆ terms(Aj), thus S is not greedy.

To any greedy derivation S of F can be assigned a unique derivation tree
DT(S) built iteratively as follows: the root is a node x0 with terms(x0) = vars(F )∪

2We assume that the reader is familiar with this notion.
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C and atoms(x0) = atoms(F ), and ∀0 ≤ i < k, we add a node xi+1 with
terms(xi+1) = vars(Ai+1)∪ vars(F )∪ C and atoms(xi+1) = atoms(Ai+1). Since
S is greedy, there is at least a j such that πi(fr(Ri)) ⊆ terms(xj). We add an edge
between xi+1 and xj′ , j′ being the smallest integer such that xj′ has this property.
The nodes of DT(S) are also called “bags”.

Property 2 Let S = F0 . . . , Fk be a greedy derivation. Then DT(S) is a tree de-
composition ofFk of width bounded by |vars(F )|+|C|+max(|vars(head(R))|R∈R).

Definition 5 (greedy bounded-treewidth set of rules (gbts)) R is said to be a greedy
bounded-treewidth set (gbts) if (for any fact F ) anyR-derivation (of F ) is greedy.

The class gbts is a strict subclass of bts (e.g. in Example 2: R is fes but not
gbts). It is nevertheless an expressive subclass of bts since it contains wfg:

Property 3 wfg-rules are gbts.

Proof: Let R (from a wfg rule set R) with weak frontier guard g. Assume R is
applied by π and let π(g) = a. Either a ∈ F or a ∈ Ai for some i. ThusR is gbts.

�
The following example shows that gbts strictly contains wfg:

R = r1(x, y), r2(y, z)→ r(x, x′), r(y, y′), r(z, z′), r1(x′, y′), r2(y′, z′);
{R} is gbts, but not wfg (nor fes).

4 An Algorithm for gbts

The intuition underlying the decidability of gbts is that rule applications create a
bounded number of “relevant patterns”. When we have created all possible pat-
terns, “large-enough” to map Q, we can halt the derivation process. In [CGL09], a
specific notion of type is used for that purpose. However, to take non-guarded rules
into account, we need to generalize it. We thus define the ultimate applicability of a
rule, and the related notion of oracle. Sets of oracles generalize types. To simplify
the presentation, we translate Q into a rule RQ = Q → match where match is a
fresh nullary predicate (note that fr(RQ) is empty). The question is now whether
R∪ {RQ} |= match.

Definition 6 (Ultimate applicability, oracle) Let F be a fact, R be a set of gbts
rules, and S = F0(= F ), . . . , Fi+1 be an R-derivation of F (with Fj+1 =
Fj ∪ Aj ,∀0 ≤ j ≤ i), and let xj be the bag of DT (S) associated with Aj .
We say that R ∈ R is ultimately applicable to xj if there is an R-derivation
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F0(= F ), . . . , Fj , . . . , Fi+1, . . . , Fl with a homomorphism π from body(R) to Fl
and π(fr(R)) ⊆ terms(xj) = vars(Aj)∪vars(F )∪C. We say that π|fr(R) is an ora-
cle for the ultimate applicability ofR on xj . An ultimateR-derivation is a sequence
F0, . . . , Fk where ∀0 ≤ i < k, there is R ∈ R and an oracle π|fr(R) for the ulti-
mate applicability of R on some xj with j < i such that Fi+1 = α(Fi, R, π|fr(R)).

Any derivation is an ultimate derivation and an ultimate derivationF0, F1, . . . , Fk
can always be extended to a derivationF0, F

1
0 , . . . , F

i1
0 , F

′
1, . . . , F

′
k−1, F

1
k−1, . . . , F

ik
k−1, F

′
k,

where F ′i contains Fi.
We now define an equivalence relation ∼Q on the bags of a derivation tree

with the following informal meaning: xi ∼Q xj means that a rule body can be
ultimately mapped on xi iff if can be mapped similarly on xj .

Definition 7 (∼Q) Let T be a derivation tree, x and y two bags of T . x ∼Q y iff
there is a bijective substitution ψ of terms(x) by terms(y) s.t. ∀R ∈ R, π is an
oracle for R on x iff ψ ◦ π is an oracle for R on y.

Algorithm 1 behaves as a classical breadth-first forward chaining (also called
“chase” in databases) with two main differences. First, instead of looking for ho-
momorphisms to check the applicability of rules, it uses oracles for ultimate appli-
cability, thus building an ultimate derivation tree. Secondly, ∼Q allows to prune
the ultimate derivation tree.3

Theorem 4 ∼Q Ultimate Saturation is sound and complete for CQ entailment with
R gbts.

Proof: Should we not take into account the∼Q equivalence relation, soundness and
completeness of the algorithm would immediately follow from the correspondence
between rule application and ultimate rule application. However, ∼Q is used to
cut whole subtrees of the derivation tree. To prove that this partial exploration
does not prevent completeness, we have to prove the following property: “if x ∼Q
y and x parent of x′, then there is a child y′ of y such that x′ ∼Q y′”. Thus
exploring only one subtree of two∼Q equivalent bags will be sufficient to preserve
the completeness of the algorithm.

We first build y′ = copy[x←y](x
′) the bag obtained from y “as x′ is obtained

from x”. The bag x′ was obtained by ultimately applying some rule R according
to some oracle π, that mapped fr(R) to terms from atoms(x). Thus, since x ∼Q y,
there exists an oracle ψ◦π that maps fr(R) to terms from atoms(y). The bag y′ thus

3This is necessary to guarantee termination, resembling the blocking techniques applied in DL
tableaux algorithms.
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Algorithm 1: ∼Q Ultimate Saturation
Data: Two facts F , Q, gbts rule setR
Result: YES if F,R |= Q, NO otherwise.
R ← R∪ {RQ};
T ← newTree(x0) ; // x0 is the root
terms(x0)← vars(F ) ∪ C;
Continue← True; Depth← 0 ; // depth of T
while Continue do

Continue← False;
for x ∈ leavesAtDepth(T , Depth) do

for R ∈ R do
for π ∈oracles(R, x)\oracles(R, parent(x)) do

if R = RQ then
return YES;

y← newNode();
terms(y)←vars(πsafe(head(R)))∪vars(F )∪C;
if ¬∃z ∈ nodes(T ) such that y ∼Q z then

addEdge(T, (x, y));
Continue← True;

Depth++;
return NO;

corresponds to that ultimate rule application, and its atoms are built accordingly
(precisely, atoms(y′) = (ψ ◦ π)safe(head(R))).

It remains now to prove that x′ ∼Q y′ i.e., to prove the following property P :
“there exists a bijection ψ′ from terms(x′) to terms(y′) such that π is an oracle for
R in x′ iff ψ′ ◦ π is an oracle for R in y′”. The bijective substitution ψ′ is built
as follows: for any term t of x′ that is already in x, ψ′(t) = ψ(t). Otherwise, we
define ψ′(t) = t′ where t and t′ have been safely rewritten from the same term in
head(R).

We first point out that it is immediate to see that x′′ = copy[y←x](y
′) ∼Q x′.

Indeed, x′ and x′′ are two bags created by the same ultimate rule application, the
second one creating only redundancy. They have thus equivalent oracles (i.e., their
sets of oracles are equals up to the natural bijection from terms(x′) to terms(x′′)).
Should we be able to prove the first direction of property P , the second would then
immediately follow: if π is an oracle on y′, then (first direction of property P ),
there is an oracle π′ on x′′ that is equivalent to an oracle π′′ on x′.

It remains only to check that if π is an oracle for some R on x′, then ψ′ ◦ π is
also an oracle on y′. In order to do that, we generalize the notion of copy: instead
of copying the child of a bag x under a ∼Q equivalent node y, we copy a whole
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subtree of x under y. The definition of the copy of a subtree immediately follows
from the copy of a unique bag, by means of a trivial recursion.

Then we point out that if π is an oracle for R on x′, then there is a subtree
rooted in x′ such that body(R) can be mapped (using a homomorphism π′ that
extends π) to the fact associated with a minimal derivation generating that subtree.
Let us consider a minimal such subtree. Finally, we show that body(R) can also
be mapped to the fact associated with the copy of that subtree under the equivalent
node y, and that ψ′ ◦ π is an oracle of R in y′. The proof is made by induction on
the depth of that subtree. �

Let us know study the complexity of Algorithm 1. If we denote by Tmax the
maximum number of non-equivalent nodes that can be generated, the asymptotic
complexity of Algorithm 1 is Tmax × |R| × [(cost of a call to oracles (R, x)) +
|oracles(R, x)| × (cost of checking the existence of a ∼Q equivalent node)].

Property 5 LetR be gbts,Q a query, F a fact. Let q = maxi(|terms(body(Ri))|),
b = |terms(F )| + maxi(|terms(head(Ri))|) + |C| and w the maximum predicate
arity. Let S be an ultimate derivation of F , x a bag of DT(S). The cost of a call to

oracles(R, x) is in the order of poly(bb, 2b
q+12|P|.q

w+1

).

Proof: See Section 4.1. �
Checking y ∼Q z has a cost O(bb × (|R| × qb)2) and Tmax is upper-bounded

by 2|R|×b
q
, hence the following theorem (with hardness results stemming from wfg

subclass):

Theorem 6 CQ entailment is in 3EXPTIME for combined complexity, 2EXPTIME-
complete when the arity of the predicates is bounded and EXPTIME-complete for
data complexity.

4.1 Computing the set of oracles of a bag

In this section, we show how to compute the set of oracles associated with a bag of
DT (S), where S is an ultimate derivation, and evaluate the cost of this computa-
tion.

Notations: Given a derivation (or ultimate derivation) S of F , we note S(F ) the
last fact of S. By an extension S′ of S = (F0, . . . , Fk), we mean a derivation with
prefix S, i.e., S′ = (F0, . . . , Fk, . . . , F

′). The extension of S = (F0, . . . , Fk)
with (R, π|fr(R)), where R is a rule and π|fr(R) maps fr(R) to Fk is S′ =
(F0, . . . , Fk, α(Fk, R, π|fr(R))). In the following, F denotes the initial fact and
R is a gbts set of rules.
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4.1.1 Alternative derivation tree, alternative (ultimate) patterns and oracles

We define an alternative derivation tree in order to ensure that patterns (which are
defined below) are in finite number. Instead of encoding Ai = πsafei (head(Ri)) in
a bag xi+1, we encode head(Ri) in xi+1, i.e., terms(xi+1) = terms(head(Ri)) ∪
vars(F ) ∪ C. Then, to keep track of π|fr(Ri), we label the edge between xi+1 and
its parent. For convenience, we also define a mapping Ψxi+1 , which assigns to each
term in terms(xi+1) its corresponding term in Fi+1.

Definition 8 (Alternative derivation tree) Let S = (F0, . . . , Fk) be anR-derivation
of F . We build the alternative derivation tree of S (notation ADT (S)) in the fol-
lowing way. The root of the tree is a node x0 such that terms(x0) = vars(F )∪C. We
define Ψx0 as the identity on terms(x0). For all i ∈ {0, . . . , k−1}, we add a node
xi+1 such that terms(xi+1) = terms(head(Ri)) ∪ vars(F ) ∪ C. Since S is greedy,
there is at least one node xj such that Ψxj (terms(xj)) contains πi(fr(Ri)). There
is even a smallest j′ such that xj′ has that property. We add an edge between xi+1

and xj′ , which is labeled by a substitution ji+1 of fr(Ri)∪vars(F )∪C by terms(xj)
such that, for all x ∈ fr(Ri), Ψxj′ ◦ ji+1(x) = πi(x) and ji+1 is the identity on
the other terms. Finally, we define Ψxi+1 : terms(xi+1) → terms(Fi+1), with
Ψxi+1(t) = Ψxj′ (ji+1(t)) if t ∈ domain(ji+1) and the safe substitution operated
to add Ai to Fi otherwise.

The alternative pattern of a bag describes the different ways facts with at most
n terms can be mapped using some terms of the bag.

Definition 9 (Alternative pattern of a bag) Let S = (F = F0, . . . , Fk) be anR-
derivation of F . Let B be a bag of ADT(S). The alternative4 n-pattern of B in S
is the set of all pairs (Gj , πj) such that:

• Gj is a conjunction with at most n terms;

• πj is a substitution of some terms fromGj by terms fromB such that ΨB ◦πj
is extendable to a homomorphism from Gj to Fk.

We are moreover interested in what happens later on in the forward chaining
process, and that is why we define ultimate patterns.

Definition 10 (Alternative ultimate pattern of a bag) Let S = (F = F0, . . . , Fk)
be an R-derivation of F . Let B be a bag of ADT(S). The alternative ultimate n-
pattern of B in S in the union of all the alternative n-patterns of B in S′, for all
extensions S′ of S.

4We call them alternative patterns since we could similarly define patterns on the bags of a deriva-
tion tree.
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From now, we consider that n = maxi(|body(Ri)|) (i.e., n = q in Property 5).
If we are able to compute ultimate patterns, we can compute the set of oracles

for a given bag:

Property 7 (Correspondence between oracles and alternative patterns) Let S be
an R-derivation of F . Let B a bag in DT (S), and B′ the corresponding bag in
ADT (S). GivenR ∈ R, π : fr(R)→ terms(B) is an oracle for the ultimate appli-
cability of R on B iff there exists π′ : fr(R)→ terms(B′) such that (body(R), π′)
belongs to the alternative ultimate pattern of B′ and π = ΨB′ ◦ π′.

Proof: Direct consequences from definitions. �
In the following, we omit the qualifier “alternative” for patterns since all pat-

terns considered are alternative patterns. We keep the distinction between a deriva-
tion tree and an alternative derivation tree.

4.1.2 Computation of (alternative) ultimate patterns

First, we show how to compute the ultimate pattern of the root of the alternative
derivation tree. Then, we show that the ultimate pattern of any bag can be com-
puted in polynomial time (with respect to the number of patterns and the number of
junctions, defined hereafter) as long as the ultimate pattern of its parent is known.
In both computations, we rely on a translation of our problem into a rewriting sys-
tem on terms, which are trees (those terms have thus nothing to do with terms in
Q or in the KB). Those trees represent derivation trees: nodes are intuitively the
same thing as bags. They are labeled by patterns. Edges are labeled by “junctions”
which are equal to the j mappings in an ADT, i.e., represent how terms are shared
between the bags which are abstracted into nodes. The rules of the original prob-
lem are translated into creation rules, and we add update rules in order to maintain
the property that the label of a node is the pattern of the corresponding bag in the
derivation tree.

This translation being done, determining the ultimate pattern of a bag with pat-
tern p boils down to the following question: starting from a tree t consisting of a
single node labeled by p, what is the maximal label (given a natural order on pat-
terns, i.e., inclusion) that can label the root of a term rewritten from t? Put this way,
it does not seem easier to determine the ultimate pattern of a bag. To overcome this
difficulty, we close our set of rewriting rules in such a way that if p can evolve
into p′ after an arbitrary number of rule applications with the initial set of rules,
then there is a rule p→ p′ in the closed set. Then, the problem of determining the
ultimate pattern of a bag of pattern p is reduced to the problem of searching the
maximal p′ such that there exists a rule p→ p′ in the closed set of rules.
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Definition 11 ((J, P )-rewriting system) A (J, P )-rewriting system (or, when not
ambiguous, a rewriting system) is a set of rules of the following forms:

• pi → j(pi, pj)

• pi → p′i

• j(pi, pj)→ j(p′i, pj)

• j(pi, pj)→ j(pi, p′j)

with pi, pj , p′i, p
′
j ∈ P and j ∈ J . Rules of the first kind are called creation rules.

The other rules are update rules.

A creation rule creates a new node labeled by pj , and linked by an edge labeled
j to an existing node labeled by pi. The other rules update the label of an existing
node.

We now define a rewriting system that meets our needs. Let us first notice
that in the alternative derivation tree, all terms are included in B = vars(F ) ∪ C ∪
∪i(vars(head(Ri))). Thus, we can define every pattern as a set of pairs (G, π),
with π being a substitution of a subset of terms(G) by terms(B). We denote by P
the set of all such pairs. We also define the notion of junction:

Definition 12 (Junction) A junction j is a mapping from a subset of B containing
vars(F ) ∪ C to B such that j(c) = c if c ∈ vars(F ) ∪ C.

Rewriting systems act upon terms, whose definition is below.

Definition 13 (Term) A term is a tree whose nodes are labeled by a pattern and
edges by junctions.

We aim at defining a rewriting system that builds the tree of patterns of an al-
ternative derivation tree. Intuitively, this tree of patterns is a term having the same
structure as the ADT, with its nodes being labeled by the pattern of the correspond-
ing bag and its edges by the label of the corresponding edge.

Definition 14 (Tree of patterns of an alternative derivation tree) Let S be a deriva-
tion of F , and ADT(S) be its alternative derivation tree. The tree of patterns of
ADT(S) is a term t built recursively as follows:

• if S is the trivial derivation (restricted to F ), then t is a node, labeled by
pF , the pattern (in S) of the bag containing terms(F ) ∪ C (i.e., the set of
pairs (G, σ) with G being a conjunction over at most n terms and σ being
a homomorphism from G to F ). This node is said to be associated with the
unique bag of ADT (S).
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• if S is a derivation with m rule applications, let t′ be the tree of patterns
associated with them−1 first rule applications. Let v be the node associated
with the bag B to which we add a child B′: we add a child v′ to v and
associate v′ with B′. We label each node of t by the pattern in S of the
bag associated with this node, and we label the edge between v and v′ by j,
where j is the label of the edge between B and B′ in ADT(S).

Let us first have a look at the result in the alternative derivation tree of the
application of (R, π) to S(F ). B being the closest bag to the root containing
π(fr(R)), we add a child B′ to B. What is the pattern of B′? We split the answer
to this question into two parts.

First part. We can first give a lower bound on the pattern of B′: it contains at
least all pairs (G, σ) where σ is a substitution of some terms fromG by terms from
B′ such that ΨB′ ◦σ can be extended to a homomorphism fromG to the atoms that
were added at the last step.

Second part. However, there are possibly homomorphisms that use also atoms
and/or terms that were already in S(F ). Moreover, the last rule application may
have allowed new homomorphisms in other bags. We thus have to update patterns,
by using information of the following kind: if B′ is a child of B and the pattern
of B (resp. B′) contains (G, σ) (resp. (G′, σ′)), then B contains (G′′, σ′′), whose
construction depends on how terms are shared by B and B′; similarly, information
can be propagated from B to B′.

Rules for the first part. Each bag should have a corresponding node in the
mimicking term. We first define the “minimum” pattern of the newly created bag.

Definition 15 (n-pattern associated with a (C, π)) Let C be a conjunction. Let
π be a substitution of terms from C by terms from C. The n-pattern associated
with (C, π) is the set of pairs (G, σ) with G being a conjunction over at most n
terms and σ being a homomorphism from G to π(C).

Using this definition, we propose a set of rules allowing to mimic the creation
of new bags.

Definition 16 (Creation rules associated with (R, π)) Let p be a pattern andR ∈
R. For every π : fr(R) → B such that (body(R), π) ∈ p , we define a cre-
ation rule: p → j(p, phead(R),π), where phead(R),π is the pattern associated with
(head(R), π′), where π′ is such that π′(x) = π′(y) if and only if π(x) = π(y), and
j is a mapping with domain fr(R) ∪ vars(F ) ∪ C, equal to π on fr(R) and to the
identity otherwise.
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Rules for the second part. However, we are not only interested in the minimal
pattern of the generated bag, but in having the exact pattern for every bag in the
derivation. Thus, we add now update rules, which will ensure that a node in the
term is labeled by the pattern of the corresponding bag in the derivation tree.

We first define a union operation on conjunctions.

Definition 17 (G(G1, G2, π1, π2, j)) LetG1 andG2 be two conjunctions of atoms,
B1 and B2 two bags, π1 a substitution of some terms from G1 by terms of B1, π2

a substitution of some terms from G2 by terms of B2, and j a substitution of some
terms from B2 by terms of B1. We assume w.l.o.g. that terms in G1 and G2 are
disjoint. We define G(G1, G2, π1, π2, j) as the conjunct obtained from the atoms
in G1 and G2 by merging terms having the same image by π1 or by j ◦ π2.

Notation. Let T be a set of terms, π1 be a mapping from B1 to T , and π2 be
a mapping from B2 to T . If for every x ∈ B1 ∩ B2, π1(x) = π2(x), we define
π1 ∪ π2(x) from B1 ∪ B2 to T such that π1 ∪ π2(x) = π1(x) if x ∈ B1, and
π1 ∪ π2(x) = π2(x) otherwise.

Definition 18 (Upward / Downward update rule) To every triple (p1, j, p2) ∈
P × J × P , we assign an upward update rule:

j(p1, p2)→ j(p′1, p2)

where p′1 is built in the following way:

• p1 ⊆ p′1

• for all (G1, π1) ∈ p1, (G2, π2) ∈ p2, we add every (G′, π′), where G′ is
a conjunction over at most n terms such that there exists ϕ homomorphism
from G′ to G(G1, G2, π1, π2, j), and π′ is a restriction of (π1 ∪ (j ◦ π2)) ◦ϕ
having a range included in range(π1) ∪ range(j).

We also assign to (p1, j, p2) a downward update rule:

j(p1, p2)→ j(p1, p
′
2)

where p′2 is defined in a similar way: p2 ⊆ p′2 and, for all (G1, π1) ∈ p1, (G2, π2) ∈
p2, we add every (G′, π′), whereG′ is a conjunction over at most n terms such that
there exists ϕ homomorphism from G′ to G(G1, G2, π1, π2, j), and π′ is a restric-
tion of (π′1 ∪ π2) ◦ ϕ with j ◦ π′1 = π1 and range(π′) ⊆ range(π′1) ∪ range(π2).
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In the following, we show that R-derivations of a fact F are “equivalent” to
some rewritings (canonical rewritings, defined hereafter) of pF .

Property 8 Let S be a derivation of F , and R ∈ R. Let B be a bag of ADT (S),
and vB the corresponding node in the tree of patterns t of ADT (S). R is appli-
cable by some π : body(R) → S(F ) with range(π|fr) ⊆ ΨB(terms(B)) iff there
exists π′ such that ΨB ◦ π′ = π|fr(R) and (body(R), π′|fr(R)) ∈ pattern(B) =
label(vB).

Moreover, t′, obtained from t by applying the creation rule associated with
(R, π) as high as possible in t, has the same structure as the tree of patterns of
ADT (S′), where S′ is the extension of S with (R, π).

Proof: By definition of a pattern, (body(R), π|fr(R)) belongs to the pattern of B
iff ΨB ◦ π′ can be extended to a homomorphism from body(R) to F . From the
definition of a tree of patterns, label(vB) = pattern(B). Since in the derivation tree,
the new bag is added as a child as close to the root as possible and t has the same
structure as ADT (S), we conclude that t′ has the same structure as ADT (S′). �

In the following, t′ built as in the previous property is called the primitive tree
of patterns of ADT (S′).

We now show that, after a rule application leading to add a new bag B′ as the
child of a bag B in the alternative derivation tree, we can compute the pattern of
B′ by updating the tree of patterns: after having applied the creation rule to create
the node assigned toB′ and compute its “primitive pattern”, it is sufficient to apply
a downward update rule (from the node assigned to B to the node assigned to B′).

Property 9 Let S be a derivation of F and S′ be the extension of S with (R, π).
Let t be the tree of patterns of ADT (S) and t′ be the primitive tree of patterns of
ADT (S′). Let B′ be the bag created by (R, π) and B its parent in ADT (S′), let
v′ and v be the nodes respectively assigned to B′ and B in t′, and let j be the label
of the edge between v and v′. Let p and p′ be the respective labels of v and v′ in t′.
The label of v′ in the tree of patterns of ADT (S′), i.e., the pattern of B′ in S′, is
p′′ obtained by applying the downward update rule j(p, p′)→ j(p, p′′).

Proof:⇒We first show that the pattern ofB′ in S′ is included in p′′. Let (G,ψ) be
in the pattern of B′. By definition of a pattern, there is a homomorphism ψ′ from
G to S′(F ) that extends ΨB′ ◦ ψ. We define a partition {Go, Gn} of G, where Go
contains the atoms that are mapped to S(F ). Hence, Gn is the inverse image by ψ′

of atoms created at the last step. Thus, (Gn, ψ|Gn
) belongs to p′ and (Go, j ◦ψ|Go

)
belongs to p. Thus, G = G(Go, Gn, j ◦ ψ|Go

, ψ|Gn
, j). Hence, w.r.t. notations in

Definition 18, we have p1 = p, p2 = p′ and p′2 = p′′ and we choose G′ = G,
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ϕ = id, π1 = j ◦ ψ|Go
and π1 = ψ|Gn

.
⇐ Conversely, let (G,ψ) be in p′′. The first possible case is that (G,ψ) be-
longs to p′, and thus it belongs to the pattern of B′. Otherwise, there exists
(G1, G2, ψ1, ψ2) such that G is a conjunction over at most n terms that maps by
some ϕ to G(G1, G2, ψ1, ψ2, j), with (G1, ψ1) ∈ p, (G2, ψ2) ∈ p′, and ψ being a
restriction of (ψ′1∪ψ2)◦ϕ s.t. ψ1 = j ◦ψ′1, and having range included in the terms
of B′. It remains to note that there is a homomorphism from G(G1, G2, ψ1, ψ2, j)
to S′(F ) that extends ΨB′ ◦ (ψ′1 ∪ ψ2), thus ΨB′ ◦ ψ is extendable to a homomor-
phism from G to S′(F ). We conclude that (G,ψ) belongs to the pattern of B′.
�

Definition 19 Let S be a derivation of F and S′ be the extension of S with (R, π).
Let t be the tree of patterns of ADT (S), and t′ be the primitive tree of patterns of
ADT (S′). The update of t′ is done in the following way:

• apply the downward update rule applicable to the bag newly created,

• traverse the tree t′ starting from this node and applying all possible update
rules for each node.

Property 10 Let S be a derivation of F and S′ be the extension of S with (R, π).
Let t be the tree of patterns of ADT (S), and t′ be the primitive tree of patterns of
ADT (S′). The update of t′ is the tree of patterns of ADT (S′).

Proof: By induction. The base case is Property 9. The recursive step is done
similarly to the proof of Property 9. �

Let us point out that we build the tree of patterns of an alternative derivation
tree by using a canonical rewriting sequence, as defined below.

Definition 20 (Canonical rewriting sequence) A rewriting sequence is said to be
canonical if for all creation rule r associated with (R, π) and applied to a term t:

• either r is applied to the root of t,

• or, let v1 be the node to which r is applied, v2 be its parent and let j be
the label of the edge between v1 and v2. r should fulfill that range(π) 6⊆
domain(j).

Moreover, between two applications of creation rules, update rules are applied
until no further modification is possible.

It is easy to associate with such a rewriting sequence leading to a term t a
derivation whose t is the tree of patterns:
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Property 11 With any canonical rewriting sequence r of pF (the pattern associ-
ated with F ), we can associate a derivation S of F such that the term obtained
from pF by applying r is the tree of patterns of ADT(S).

Proof: Built recursively on the length of the rewriting sequence (to each creation
rule corresponds a rule application). �

We order patterns by inclusion.

Definition 21 Let p be a pattern and tp be the term restricted to a node labeled
by p. There exists p∗c such that p∗c is the biggest pattern that can be at the root of
a term rewritten from tp with a canonical rewriting sequence. We call this pattern
the canonical limit of p.

Proof: Arguments: finite number of patterns + monotonicity of rewriting rules +
confluence. �

From Property 10 and Property 11, we obtain the following property:

Property 12 Let F be a fact. The ultimate pattern of F is the canonical limit of
pF .

Proof: Comes directly from the equivalence between derivation sequence and
rewriting sequence shown in previous properties. �

Then, if we denote by l the cost of computing the canonical limit of a pattern,
the cost of the computation of the ultimate pattern of the root of ADT (S) is O(l).

Assuming that we know the ultimate pattern of a bag, we can compute the
ultimate pattern of its child in a similar fashion:

Property 13 Let S be a derivation of F . Let B1 be a bag and B2 be a child of
B1, created by a rule application (R, π). If p1 is the ultimate pattern of B1, then
one can compute the ultimate pattern of B2 in the following way: start from p2,
where p2 is the pattern associated with (head(R), π′), such that π′(x) = π′(y) iff
π(x) = π(y); apply downward update rules on p1, getting p′2, then compute the
canonical limit of p′2. This limit is the ultimate pattern of B2.

Proof: Since p1 is the ultimate pattern of B1, it is useless to update it. The rest of
the proof is the same as for Property 12. �

We have seen that we can compute the ultimate pattern of any bag if we are able
to compute the canonical limit of any pattern in the rewriting system associated
with our set of rules. We focus then on this question in the following. First, we
relax the condition on the rewriting sequence, showing that the canonical limit is
equal to the limit of a pattern.
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Definition 22 Let p be a pattern. There exists p∗ such that p∗ is the biggest pattern
that can be the root of a term rewritten from p. We call this pattern the limit of p.

Property 14 Let p ∈ P . The canonical limit of p is equal to the limit of p.

Proof: We canonize every rewriting sequence, by induction on the length of the
rewriting. First, we associate with the term restricted to the node labeled by p
(on which we apply non-canonized rules) another term restricted to a single node
labeled by p. Each time we apply a rule in the non-canonized sequence, we apply it
to the “correct” node, which is an ancestor of the associated node in the canonized
term. We ensure that the label of the associated term is bigger than the label of the
initial term.
• For the empty rewriting sequence, that is trivial;
• Let us assume that we have built a canonical rewriting sequence with the desired
property. The interesting case is when we apply a creation rule. Let us assume that
we apply it on v in the initial term. Let v′ be the node associated with v. There are
two possibilities: the range of π is not included in the domain of the junction of v′

with its parent, we can freely add the new node below v′. Otherwise, we consider
its first ancestor fulfilling this condition, and add the new node below it. We show
then as in properties 9 and 10 that the conditions on patterns is still fulfilled. �

The only step left it to compute the limit of a pattern. Given a rewriting system
S, we define the closure of S, by adding rules which allow to simulate a succession
of rules in a single step. Closure operations are presented below:

• add pi → pi for any pi

• if pi → pj ∈ S and pj → pk ∈ S, then pi → pk ∈ S

• if pi → ϕ(pi, pj) ∈ S and pj → pk ∈ S, then pi → ϕ(pi, pk) ∈ S

• if pi → ϕ(pi, pj) ∈ S and pj → p′j ∈ S and ϕ(pi, p′j)→ ϕ(p′i, p
′
j) ∈ S then

pi → p′i ∈ S

The closure of a rewriting system is the set of rules obtained by applying clo-
sure operations until a fixpoint is reached. It is well defined, since there is a finite
number of rules. Moreover, we can compute it in polynomial time in P and J . The
key property is the following:

Property 15 Let S be a rewriting system. Let p be a pattern, and tp be the term
restricted to a root labeled by p. There exists a term t′ derived from tp with rules
from S whose root is labeled by p′ if and only if p→ p′ is in the closure of S .
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Proof:⇒We prove by induction on k that for any S, if t can we derived with rules
from S into a term with root labeled by p′ in k steps, then p → p′ belongs to the
k-closure of S .
⇐ We prove by induction on k that for any S , if a rule is added at the kth step
of closure, the same local effect can be achieved in at most 3k operations with the
initial rule set. �

Property 16 The closure of a rewriting system can be computed in polynomial
time in the number of patterns and junctions.

Proof: The cost comes from the computation of the closure. There is a number of
rules which is polynomial in |P |, |J |. At each step of closure, at least one rule is
added, then at most a polynomial number of closure steps are performed. Each step
has a polynomial cost in the number of rules, thus the closure can be computed in
polynomial time in |P |, |J |. �

Corollary 17 The limit of a pattern can be computed in polynomial time in the
number of patterns and junctions.

Proof of property 5:
We can check that the cardinality of J is at most bb and the cardinality of P is at

most 2b
q+12|P|.q

w+1

. Then, from the previous property, the limit of a pattern, and

thus the ultimate pattern of a bag, can be computed in time poly(bb, 2b
q+12|P|.q

w+1

).
By Property 7, the set of oracles for a bag is thus computed with the same com-
plexity.

5 Weakly Frontier-Guarded Rules

First, the EXPTIME-complete data complexity of wfg-rules directly follows from
EXPTIME membership of gbts (SECT. 4) and EXPTIME-hardness of wg-rules [CGK08].

We now prove that w(f)g-rules can be polynomially translated into (f)g-rules.
In particular, this allows us to exploit the 2EXPTIME membership result estab-
lished in the next section for fg-rules. W.l.o.g. we assume here that the initial fact
F does not contain any variable. Then, a homomorphism from a rule body to a
derived fact necessarily maps non-affected variables to constants in C. Thus, by
replacing non-affected variables in rules with all possible constants, we obtain an
equivalent set of rules (Section 5.1). However, this partial grounding produces a
worst-case exponential blow-up in the number of non-affected variables per rule.
We thus provide a way to simulate partial groundings with only polynomial blow-
up (Section 5.2). Note however that this second translation does not preserve the
predicate arity.
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5.1 Translation by Partial Grounding

Given a rule R in a set of rules R, let nav(R) denote the set of variables that
are not affected in R. Let ground(R) denote the set containing all rules ob-
tained by uniformly substituting the non-affected variables of R by constants,
i.e., ground(R) = {σ(R) | σ : nav(R) → C}. Moreover let ground(R) =⋃
R∈R ground(R). Let s = maxR∈R |nav(R)| the maximal number of non-

affected variables per rule.

Lemma 1 Let R be a set of rules, F a fact and Q a query. Then we have that
F,R |= Q if and only if F, ground(R) |= Q.

Proof: For any R ∈ R and Ri ∈ ground(R), let hRi : body(R) → body(Ri)
denote the homomorphism naturally associated with the grounding. Given R ∈
R, let us consider a homomorphism h : body(R) → F . Then, there is Ri ∈
ground(R) and h′ : body(Ri) → F , such that h = h′ ◦ hRi . Conversely, for
any Ri ∈ ground(R) and any h′ : body(Ri) → F , we have a homomorphism
h = h′ ◦ hRi : body(R)→ F . Note that h(head(R)) = h′(head(Ri)). It follows
that any derivation sequence withR can be expressed as a derivation sequence with
ground(R), and reciprocally. �

The following properties are immediate. Note that for a rule R, the number of
rules in ground(R) is equal to |C||nav(R)|.

Property 18 (Properties of ground)

• IfR is weakly (frontier-) guarded, then ground(R) is (frontier-) guarded.

• |ground(R)| is exponential in the number of affected variables per rule and
polynomial in the size of F (more precisely: the size of C).

• ground is arity-preserving.

5.2 A more clever partial grounding

For convenience, we fix bijections #R : nav(R) → [1..|nav(R)|] which for ev-
ery rule, assign numbers to all the non-affected variables. Now let v1, . . . , vm
and v′1, . . . , v

′
s be variable symbols not used in R, where m = |C| and s =

max(|nav(R)|)R∈R.
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We now define the function τ , mapping rules fromR to frontier-guarded rules
as follows:

τ(∀x1...xk(body → (∃y1...yk′head))) = ∀τR(x1)...τR(xk) v1...vm
(τR(body)→ (∃y1...yk′τR(C)))

τR(
∧
i∈I ai) =

∧
i∈I τR(ai)

τR(p(t1, ..., tl)) = p(v1, ..., vm, v
′
1, ..., v

′
s, τR(t1), ..., τR(tl))

τR(t) =
{
v′#R(t) if t ∈ nav(R)
t otherwise.

Note that thereby the arity of all predicates is increased by m+ s. The first m
positions will be used to permanently hold all constants c1, . . . , cm and the next s
positions will serve as a pool for special “safe variables” (i.e., non-affected) which
will be used for our implicit grounding. Now we let

τ(R) := {τ(R) | R ∈ R} ∪ S,

where S contains for every predicate p (let its arity be l) fromR the rules Rp
ci 7→v′j

∀v1, . . . , vm, v
′
1, . . . , v

′
s, x1, . . . , xl (p(v1, . . . , vm, v

′
1, . . . , v

′
s, x1, . . . , xl)

→ p(v1, . . . , vm, v
∗
1, . . . , v

∗
n, x1, . . . , xl))

where v∗j = vi and v∗k = v′k for all k 6= j. Thereby, the rule Rci 7→v′j is used to
realize the bindings the constant ci to the safe variable v′j , which in turn will be
used in the above translation to realize the implicit grounding. S contains m · s
rules for every predicate p, i.e., the total size of τ(R) is polynomially bounded by
the combined size of F andR.

Furthermore,
let

τ(F ) := {τ ′(atom) | atom ∈ F}

with
τ ′(p(e1, . . . , el)) = p(c1, . . . , cm, c1, . . . , c1︸ ︷︷ ︸

s

, e1, . . . , el).

Note that the choice of c1 at positionsm+1, . . . ,m+s is just an arbitrary one.
Similarly,

τ(Q) := {τ ′(atom) | atom ∈ Q}.

Analog to the argumentation above, we see that the size of τ(F ) is polynomi-
ally bounded by the combined size of F andR.

Let us now sketch the ideas of the translation. Any atom having the form
p(c1, . . . , cm, . . . , e1, . . . , el) corresponds to a fact p(e1, . . . , el) originally present
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in K or derived from K. From any such fact, the rules in S allow to generate
all facts of form p(c1, . . . , cm, ci1 , . . . , cis , e1, . . . , el) for any i1, . . . , is in 1 . . .m.
We cannot make τ ′ create all these facts directly as there would be exponen-
tially many (and the translation would not be polynomial anymore). This will
allow to map the non-affected variables added to each rule atom: if an atom
a = p(t1, . . . , x, . . . , tl) ∈ body(R), with x being the ith element in nav(R)
(#R(x) = i), can be mapped to b = p(e1, . . . , cj , . . . , el), with x being mapped to
the constant cj , then the S rules allow to generate from b an atom

p(c1, . . . , cm, ci1 , . . . , cj , . . . , cis , e1, . . . , cj , . . . , el)

to which

τR(a) = p(v1, . . . , vm, v
′
1, . . . , v

′
i, . . . , v

′
s, t1 . . . , v

′
i, . . . , tl)

can be mapped.

Lemma 2 Let F be a fact,R a set of rules and Q a query. Then we have

F, ground(R) |= Q iff τ(F ), τ(R) |= τ(Q).

Proof:
Let us begin with some easily checked remarks:

(1) All atoms initially present in τ(F ) or derived from it are of form
p(c1, . . . , cm, ci1 , . . . , cis , e1, . . . , el), where the cij are constants from C.
(2) The set of atoms S-derivable from a fact p(c1, . . . , cm, . . . , ci1 , . . . , cis , e1, . . . , el)
is exactly the set of atoms p(c1, . . . , cm, ci′1 , . . . , ci′s , e1, . . . , el), where the ci′j are
constants from C, i.e., (ci1 , . . . , cis) can be replaced by any s-tuple of constants.
(3) Let F ′ be a fact, with F ′ = F or is derived from F . Any homomorphism
h : Q → F ′ can be trivially extended to a homomorphism h′ : τ(Q) → τ(F ′),
with for all variable x in Q, h′(x) = h(x). Reciprocally, any homomorphism
h′ : τ(Q)→ τ(F ′) can be restricted to a homomorphism h : Q→ F ′ keeping the
images of variables.
(4) Let R ∈ R and F ′ be a fact, with F ′ = F or is derived from F . Any
homomorphism h : body(R) → F ′ can be extended to a homomorphism h′ :
τR(body(R)) → F ′′, where F ′′ is S-derived from τ(F ′). More precisely, F ′′ is
obtained from τ(F ′) by replacing each m + j-th constant (1 ≤ j ≤ s) in τ(F ′)
atoms by h(t), where #R(t) = j (t is the j-th nav variable in R). According to
remark (2), F ′′ can be obtained from τ(F ′) with S rules. h′ is defined as follows:
for each vi, h′(vi) = ci; for each v′j , with j = #R(t), h′(v′j) = h(t); for each other
variable x, h′(x) = h(x). Reciprocally, any homomorphism h′ : τR(body(R)) to
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F ′′, where F ′′ is S-derived from τ(F ′), can be naturally restricted to a homomor-
phism h : body(R)→ F ′.

We now prove the lemma.
(⇒) Assume F, ground(R) |= Q. Then, there is a derivation sequence from F
to a fact Fk and a homomorphism from Q to Fk, which, by remark (3), can be
extended to a homomorphism from τ(Q) to τ(Fk). Let us show that τ(Fk) can be
indeed τ(R)-derived from τ(F ). From remark (4): if Ri is applicable to a fact F ′

by a homomorphism h, then τ(R) is applicable by an extension h′ of h to a fact
F ′′ S-derivable from τ(F ). Furthermore, from remark (2) τ(α(F ′, Ri, h)) is S-
derivable from α(F ′′, τ(R), h′). Thus, from any ground(R)-derivation sequence
from F to Fk, one can build an τ(R)-derivation from τ(F ) to τ(Fk).
(⇐) Assume τ(F ), τ(R) |= τ(Q). Then, there is a derivation sequence, say D,
from τ(F ) to a fact F ′k and a homomorphism from τ(Q) to F ′k. FromD, we extract
the sequence of applications of τ(R) rules for all R ∈ R. This subsequence yields
a ground(R)-derivation sequence from F to Fq, such that F ′k = τ(Fq). Indeed,
assume, for a given rule R ∈ R, τ(R) is applicable to a fact F ′ by homomorphism
h′. h′ maps nav(R) to a subset of C. LetRi be the rule corresponding to this partial
grounding. Let F be the fact such that F ′ can be S-derived from τ(F ). Then Ri is
applicable toF by the natural restriction h of h′, and by remark (2), α(F ′, τ(R), h′)
is S-derivable from τ(α(F,Ri, h)). Thus, from any τ(R)-derivation from τ(F ) to
F ′k, one can extract a ground(R)-derivation sequence from F to a fact Fq. Since
there is a homomorphism from τ(Q) to F ′k, F ′k is not only S-derivable from τ(Fq)
but is equal to τ(Fq). By remark (3), there is a homomorphism from Q to Fq.

�

Theorem 19 Given F ,R (wfg) and Q, we have that

F,R |= Q iff τ(F ), τ(R) |= τ(Q).

Proof: Consequence of Lemmas 1 and 2. �
By adding the set of variables nav(R) to each atom in R, τ transforms each

weak guard (of body(R) or fr(R)) into a guard. S is a set of rules with atomic
head (furthermore Datalog) thus it is guarded. Hence, if R is a set of wg (resp.
wfg) rules, then fg(R) is a set of g (resp. fg) rules.

Property 20 (Properties of τ )

• IfR is weakly (frontier-) guarded, then τ(R) is (frontier-) guarded.

• |τ(R)| is polynomial in the combined size if R and F (more precisely: the
size of C).
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• τ is not arity-preserving: the arity of predicates grows with the size of C.

Corollary 21 Any instance of CQ entailment with w(f)g-rules can be polynomially
translated into an instance of the same problem with (f)g-rules.

Proof: The size of τ(F ) (resp. τ(R), τ(Q)) is polynomially bounded by the com-
bined size of F and R. By adding nav(R) to each atom in R, τ transforms each
weak guard into a guard. The rules from S are guarded. Hence, ifR is w(f)g, then
τ(R) is (f)g. We conclude with Th. 19. �

6 Frontier-Guarded and Frontier-One Rules

In this section, we show that fg- and fr1-rules are both PTIME-complete for data
complexity and 2EXPTIME-complete for combined complexity no matter whether
predicate arity is bounded or not.

6.1 Combined Complexity of fg- and fr1-rules

In [BGO10], the authors establish the result that deciding entailment of unions of
boolean CQ in the guarded fragment (GF) of FOL is 2EXPTIME-complete. This
result can be used to prove the following theorem.

Theorem 22 CQ entailment for fg-rules is in 2EXPTIME.

Proof: We first observe that every frontier-guarded ∀∃-rule can be translated into
two rules one of which is a guarded ∀∃-ruleand the other is Datalog: take a frontier-
guarded rule

R : ∀x1, . . . , xk(H → (∃y1, . . . , yk′C))

with a frontier guard p(xi1 , . . . , xik′′ ) ∈ H . Then we introduce a new k′′-ary
predicate pR and let separate(R) be the set containing the following two rules.

SR : ∀x1, . . . , xk(H→ pR(xi1 , . . . , xik′′ ))
TR : ∀xi1 , . . . , xik′′ (pR(xi1 , . . . , xik′′ )→ (∃y1, . . . , yk′C))

It is straightforward to see that for any frontier-guarded rule set R, we have
F,R |= Q exactly if F,

⋃
R∈R separate(R) |= Q.

Obviously, TR is guarded (and hence also lies in GF) while SR is range re-
stricted and frontier-guarded (but not necessarily guarded). The latter are the prob-
lematic ones that we have to take care of. Considering a rule of this latter type,
i.e.

SR : ∀x1, . . . , xk(H → pR(xi1 , . . . , xik′′ ))
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it is straightforward that it can be equivalently written as the first-order sentence

S′R : ¬∃x1, . . . , xk(H ∧ ¬pR(xi1 , . . . , xik′′ ))

which in turn is obviously equivalent to the set {S∗, S∗∗} of formulae consisting
of

S∗R : ¬∃x1, . . . , xk(H ∧ p′R(xi1 , . . . , xik′′ ))

and

S∗∗R : ∀xi1 , . . . , xik′′ (p(xi1 , . . . , xik′′ )∧¬pR(xi1 , . . . , xik′′ )→ p′R(xi1 , . . . , xik′′ ))

for a newly introduced predicate p′R (remember that p(xi1 , . . . , xik′′ ) ∈ H). S∗∗R
can be equivalently transformed into

S∗∗∗R : ∀xi1 , . . . , xik′′ (p(xi1 , . . . , xik′′ )→ p′R(xi1 , . . . , xik′′ )∨pR(xi1 , . . . , xik′′ ))

which is in GF (but not a guarded ∀∃-rule, as it contains a disjunction in the head).
So finally, we get that F,R |= Q iff

F ∪ {TR, S∗∗∗R | R ∈ R} ∪ {S∗R | R ∈ R} |= Q (†)

where the first two sets are in GF and the third consists of negated existentially
quantified conjunctions of atoms. Hence we can conceive every S∗R as a negated
conjunctive query ¬QR. Consequently we have

{S∗R | R ∈ R} ≡ {¬QR | R ∈ R} ≡
∧
R∈R
¬QR ≡ ¬

∨
R∈R

QR

which allows to rephrase (†) as

F ∪ {TR, S∗∗∗R | R ∈ R} |= Q ∨
∨
R∈R

QR (‡)

which leaves us with a GF theory on the left hand side and a union of boolean
conjunctive queries on the right hand side. Since the presented translation from the
original problem to UCQ entailment in GF is linear, we have thus established the
theorem. �

To prove the 2EXPTIME-hardness of fr1-rules we adopt and adapt the con-
struction used to show 2EXPTIME-hardness for CQ entailment in the DL ALCI
from [Lut07].

Theorem 23 CQ entailment for fr1-rules with bounded predicate arity is 2EXPTIME-
hard.
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Proof: We show that Lutz’ knowledge base representation of the halting problem
for exponentially space-bounded alternating Turing machines can be expressed by
frontier-guarded ∀∃-rules by applying the following modifications:

1. The acceptance condition is encoded in a “backward-manner” as in the en-
coding used to prove EXPTIME-hardness for Horn-FLE in [KRH07].

2. Negated concepts ¬A are replaced by a conceptB defined to be disjoint with
A.

3. The query is modified and turned into Horn rules. This ensures that infor-
mation about configuration changes can be propagated forward making the
use of disjunction obsolete.

Then we get a rule set R with at most binary predicates encoding the above
mentioned problem and therefore showing the claim.

For our construction, we modify the encoding of computations of the Turing-
Machine in the following way: when visiting an existential state, we enforce the
presence of all successor states instead of nondeterministically picking just one:

R u ∃sm+2.(q u a) v
l

(q′,a′,M)∈δ(q,a)

∃s.(R u Tq′,a′,M ) for all q ∈ Q∃, a ∈ Γ

Obviously, this different encoding necessitates to revisit the way the accep-
tance condition is encoded. Rather than just forbidding that the rejecting state qr
occurs anywhere, we determine whether the initial configuration is accepting by
propagating information of acceptance backwards the computation tree back to the
initial configuration using the concept name Taccept :

R u ∃sm+2.qa v Taccept

R u ∃sm+2.(q u a) u ∃s.(R u Tq′,a′,M u Taccept) v Taccept

for all q ∈ Q∃, a ∈ Γ, (q′, a′,M) ∈ δ(q, a)

R u ∃sm+2.(q u a) u
l

(q′,a′,M)∈δ(q,a)

∃s.(R u Tq′,a′,M u Taccept) v Taccept

for all q ∈ Q∀, a ∈ Γ

We now further modify Tw in a semantics-preserving way in order to obtain a
Horn-ALCrs TBox. First substitute every occurrence of ¬Ai by a new atomic con-
cept Ai, likewise substitute ¬H by H and

d
q∈Q ¬q by Q, then add the following
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set of axioms to Tw: Ai u Ai v ⊥ for i < m, H uH v ⊥, and Q u
d
q∈Q v ⊥.

Note that this encoding is possible as the tertium non datur part of the negation is
not needed for the modeling.

As next observation we find that some of the conditions for configuration trees
which are not in Horn-ALCrs can be discarded or rewritten into Horn form:

• G v
⊔
a∈Γ a u

d
a,a′∈Γ,a 6=a′ ¬(a u a′)

The disjunction on the right hand side can be safely dismissed as the subse-
quent axiomatization realizes that (1) every tape position of the initial config-
uration gets assigned one entry and (2) the interplay of axioms and the way
we rewrite the query into a rule ensures that a complete assignment of tape
entries in one configuration ensures a complete assignment in all successor
configurations.

• (LiuH) v (∀s.((Li+1uAi)→ H)u∀s.((Li+1uAi)→ H))t(∀s.((Li+1u
Ai)→ H) u ∀s.((Li+1 uAi)→ H))
This axiom ensures that there is exactly one position on the tape where the
head is located. By a similar argument as above, we know that the rest of the
axiomatization already ensures that there is at least one head position indi-
cated in every configuration. In order to guarantee that in every configuration
there is at most one head position, we can alternatively use the following ax-
ioms: Li u ∃s.(Li+1 uH uAi+1) v H u ∀s.(Li+1 uAi+1 → H).

• Lm uH v ∀s2.(G→
⊔
q∈Q q) This axiom can be discarded as well, as the

rest of the axioms ensures a deterministic assignment of one q to the head
position.

We now come to the core part of our modification. Recap that the purpose
of the conjunctive query qw = qY ∪ qZ ∪

⋃
i<m q

i
w is to detect cases where tape

entries with the same binary addresses deviate in terms of their entries or the indi-
cated state of the Turing machine. Thereby qY ∪

⋃
i<m q

i
w is used to identify pairs

of corresponding cells (and bind them to variables v and v′) whereas qZ detects de-
viating assignments in order to rule them out. As we aim at enforcing synchronized
entries rather than eliminating models where they are out of sync, we only reuse
the identification part of the query in our rule bodies and define Rsync = {RC |
C ∈ Q ∪ {Q} ∪ Γ} where RC is defined as qY ∪

⋃
i<m q

i
w ∪ {C(v)} → C(v′).

Summing up, we have come up with a set of first-order Horn rules Rsync and
rewritten Lutz’ TBox Tw into a Horn-ALCrs TBox T ′w, such that (using the first-
order semantics) Aw ∪ T ′w ∪ Rsync |= Taccept(a) exactly if the Turing machine
accepts w. We further find that Aw ∪ T ′w ∪ Rsync can be rewritten from Horn-
ALCrs to Horn-ALCI such that ground consequences are preserved (see again
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[Lut07]). Finally, the standard translation into first-order logic of any Horn-ALCI
knowledge base yields a frontier-1 rule base. Likewise, the rewriting of Rsync
yields only ∀∃-rules with frontier size one (note however for Section 7 that these
rules are not acyclic). Consequently we have shown that the word problem of an
alternating ExpSpace-bounded Turing machine can be polynomially encoded into
the entailment problem for frontier-one ∀∃-rules with predicate arity ≤ 2. Hence
we have shown 2EXPTIME-hardness for the latter.

�

6.2 Data Complexity of fg- and fr1-rules

The proof for PTIME membership for data complexity is based on a specific local-
ity property of derivations for fg-rules which is established in the following lemma
4.

Let us first assume that no constant occurs inR and Q (we will introduce them
later). As we are interested in data complexity, we consider thatR andQ are fixed.
Let n be the maximal number of frontier variables occurring inR and let m be the
maximal number of variables occurring in the body of any rule or in Q. Now, let
G denote all the semantically different formulae of the shape

∃x1, . . . , xm(
∧

atom∈Conj
atom)

whereConj is a subset of the set of all atoms obtained from predicatesP and terms
from {x1, . . . , xm, y1, . . . , yn}. Given terms t1, . . . , tn, it suffices to know for
which ϕ ∈ G holds ϕ[y1/t1, . . . , yn/tn] in order to determine what roles t1, . . . , tn
can play in any rule application. Obviously, G is finite, so let |G| = ν. For any
specific ϕ and t1, . . . , tn we need at most m terms (i.e. assignments to the exis-
tentially quantified variables) to witness that ϕ[y1/t1, . . . , yn/tn] holds. Hence, an
upper bound for witnesses for all respective ϕs is wmax := ν ·m.

We now proof two auxiliary lemmas.

Lemma 3 (Derivation Sequence Splitting) Let F,R |= Q witnessed by an ac-
cording derivation sequence F = F0, . . . , Fk. Let moreover a ∈ Fi+1 \ Fi be an
atom with vars(a) ∈ vars(F ). Then there are derivation sequences for F,R |= a
and F ∪ {a}R |= Q both having a length strictly smaller than k.

Lemma 4 Let R be a fg rule set. Let F,R |= a for an atom a = p(z1, . . . , zl)
with vars(a) ⊆ vars(F ) for which there is an according derivation sequence F =
F0, . . . , Fk such that all atoms from Fk \{a} that contain only variables occurring
in F are already present in F . Then there is a set V ⊆ vars(F ) with |V | ≤ wmax

such that F |V ,R |= a where F |V := {b | b ∈ F, vars(b) ⊆ V }.
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Proof: We choose V such that it contains a witness for every satisfied ϕ w.r.t.
z1, . . . , zl as defined above. Now we proof the statement by an induction on the
derivation length k. Note that the case for k = 0 is trivial, as clearly {z1, . . . , zl} ∈
V . For k = 1, we have that a ∈ α(F,R, π). In that case, we can be sure that V
contains a witness for the rule body of R.

For greater k, consider the first step of the derivation sequenceF1 = α(F0, R, π).
Because of the assumption, head(R) must contain at least one existentially quan-
tified variable per atom. Hence, let {y1, . . . , ym} := vars(F1 \ F0) the nonempty
set of variables newly introduced by the first derivation step.

Now we split the derivation sequence starting from F1 (having length k − 1)
at every point where Fi+1 \ Fi = {a′} for an atom a′ with vars(a′) ⊆ vars(F1).
We end up with separate derivation sequences F199Ka′1, F ∪ {a′1}99Ka′2, . . ., F ∪
{a′1, . . . , a′l−1}99Ka′l = a, each satisfying the condition that the finally derived fact
is the only new fact which contains only variables from vars(F1). Moreover, due
to our assumption, none of the a′1, . . . , a

′
l contains variables only from vars(F ).

According to Lemma , each of these derivation sequences has length of at most
k − 1. We now apply the induction hypothesis to identify the variables V ′j ⊆
vars(Fj) with |V ′j | ≤ n such that Fj |V ′j ,R |= a′j . The variables from V ′j ∩vars(F )\
{x1, . . . , xl} are exchanged by substitutes from V such that the set of witnessed ϕs
(w.r.t. the variables contained in a′j) does not change, hence Fj |V ′′j

,R |= a′j still
holds for the modified V ′′j . This is possible due to the former choice of V . Each of
the modified V ′′j that we thus obtain contains only variables from V ∪{y1, . . . , ym},
therefore we can conclude F1|V ∪{y1,...,ym},R |= a. As we already know that
F |V ,R |= (F1 \F0) and {y1, . . . , ym} ⊆ vars(F1 \F0) we also have F |V ,R |= a.

�
Relying on Lemma 4 we next provide a translation of constant-free R and Q

into a Datalog program. The main idea is to “compile away” existential variables
introduced in rule heads by “precomputing” deduction sequences that finally result
in a query match.

Definition 23 Given a constant-free fg-rule setR, we define the Datalog-program
P(R) as follows: Let {y1, . . . , ywR} be a set of variable symbols. Let G denote
the finite set of all atoms with predicates from R and terms from {y1, . . . , ywR}.
Now let P(R) be the set of Datalog rules containing every ∀y1, . . . , ywR(B → h)
(with B ⊆ G and h ∈ G) for which B,R |= h.

We define the Datalog-program P(R, Q) as follows:

• Let {y1, . . . , ywmax} be a set of variable symbols. Let Ground denote the
set of all “groundings” ofP-atoms with symbols from {y1, . . . , ywmax} (note
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that Ground is finite). Now let D be the set of Datalog rules (i.e., such
that var(head) ⊆ var(body)) that contains every ∀y1, . . . , ywmax(body →
head) (with body ⊆ Ground and head ∈ Ground) for which body,R |=
head.5 Then, let P(R, Q) contain D.

• Likewise, for every groundingQ′ ofQ (i.e., obtained fromQ by mapping its
variables to {y1, . . . , ywmax}) and any body ∈ Ground with body,R |= Q′,
let P(R, Q) contain the rule ∀y1, . . . , ywmax(body → match), wherematch
is a new nullary predicate symbol.

Then we get the following lemma:

Lemma 5 ForR (fg) without constants, for every factF , F,R |= Q iffF,P(R, Q) |=
match.

Proof:⇐: all rules of the first kind in P(R, Q) are consequence ofR and the body
of the match rules encode facts built on variables to which Q can be mapped with
a surjective homomorphism.
⇒: First, it is straightforward that F,R |= Q iff F,R∪{Q→ match} |= match.
Let F = F0, . . . , Fk be a derivation sequence for F,R∪{Q→ match} |= match.
We split this derivation sequence starting from F0 at every point where Fi+1 \Fi =
{a} for an atom a with vars(a′) ⊆ vars(F0). We end up with separate derivation
sequences F99Ka1, F ∪{a1}99Ka2, . . ., F ∪{a1, . . . , al−1}99Kal = match, each
satisfying the condition that the finally derived fact is the only new fact which
contains only variables from vars(F ). For every of these derivation sequences
Fj99Kaj we can apply Lemma 4 to find sets of variables Vj ⊆ vars(Fj) such
that Fj |Vj ,R |= aj . Yet, then P(R, Q) contains an according rule which allows to
deduce aj fromFj in one step. Put together this gives a deduction ofF,P(R, Q) |=
match. �

In order to leverage the above lemma for arbitrary fg-rule sets containing con-
stants, we need to transform the task of deciding F,R |= Q into a setting where
constants are excluded. The following definition and lemma provide for this by ap-
plying a partial grounding and subsequently shifting positions taken by constants
into predicates.

Definition 24 Let R be an arbitrary fg-rule set and let Q be a CQ. Let A be the
set of constants occurring in R and Q. For every predicate p of arity k occurring
in R and Q and every partial mapping γ : {1, . . . , k} → A, we let pγ denote

5Here we need entailment checks with any decision procedure. But this can be done independent
of the underlying fact and the created Datalog program is fixed for given R and Q.
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a new (k − |dom(γ)|)-ary predicate. Let ξA map atoms from R and Q to new
atoms by projecting out positions filled by constants from A.6 We lift the function
ξA to conjuncts and rules in the obvious way. Now, letting PGA(R) denote all
partial groundings of R where some universally quantified variables are substi-
tuted by constants from A, we define the rule set cfree(R, Q) = {ξA(R′) | R′ ∈
PGA(R), R ∈ R ∪ {Q→ match}}

Lemma 6 ForR (fg), cfree(R, Q) is fg and constant-free. Given a fact F and as-
suming fixedR andQ, the size of ξA(F ) and the time to compute it is polynomially
bounded by |F |. Moreover F,R |= Q iff ξA(F ), cfree(R, Q) |= match.

The preceding lemma then allows to extend Lemma 5 to fg-rules with con-
stants:

Lemma 7 ForR (fg) holdsF,R |= Q exactly if ξA(F ),P(cfree(R, Q),match) |=
match.

We can now state the following complexity Theorem:

Theorem 24 CQ entailment for fg- and fr1-rules is PTIME-complete for data com-
plexity.

Proof: Thanks to Lemma 7, we have reduced the problem to atom entailment in
Datalog. Noting that P(cfree(R, Q),match) is independent from F and (w.l.o.g.
assuming thatF contains only constants) that ξA(F ) consists only of ground atoms,
PTIME data complexity membership follows from the PTIME data complexity of
entailment in Datalog [DEGV01]. PTIME-hardness for data complexity is a direct
consequence of the same result for propositional Horn logic. �

7 Body-Acyclic fg- and fr1-Rules

Tree-like structures often lead to lower complexity. We focus here fg-rules with an
acyclic body (in the sense of hypergraph-acyclicity). In this section, we study the
complexity of frontier-guarded rules with an acyclic body. The acyclicity notion
considered here is the hypergraph acyclicity stemming from database theory, which
corresponds to the independently defined notion of an acyclic guarded covering
[Ker01] (see [CM09] for details about this equivalence).

To simplify the next notions, we first proceed with some normalization of a set
of fg-rules, such that all rules are either disconnected (they have an empty frontier)
or they have a non-empty frontier and a “variable-connected” body:

6For instance ξ{a,b}(p(x, a, b, c)) = p{2 7→a,37→b}(x, c).
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1. Let R be a rule with a non-empty frontier and let B be the hypergraph as-
signed to body(R). For each node in B assigned to a constant, split it in as
many nodes as hyperedges it belongs to (thus each constant node obtained
belongs to a single hyperedge); let B′ be the hypergraph obtained; let Cf be
the connected component of B′ that contains the frontier guard(s) (if there
are several frontier guards, they are all in the same connected component);

2. build a rule R0 by gathering all connected components of B′ except Cf ; the
body of R0 is made of the conjunction of all these atoms and its head is
restricted to a single nullary predicate p0.

3. build the rule Rf with body made of the atoms from Cf and p0, and head
equal to head(R).

Let us consider an instance (F,R, Q) of the entailment problem, whereR is a
set of fg-rules. We process all non-disconnected rules from R as described above,
which yields an equivalent set of rules. Then, we eliminate disconnected rules
(initial disconnected rules and obtained R0 rules) by integrating them to F as in
[BLM10]: this can be done with d calls to an oracle solving the entailment problem
for fg-rules, where d is the number of disconnected rules.

From now on, we thus assume that all fg-rules have a non-empty frontier and
their body on non-nullary predicates is “variable-connected”, i.e., the associated
hypergraph is connected and cannot be disconnected by the above step 1 (B = B′).
We will also ignore nullary predicates, as they play absolutely no role.

7.1 Body-Acyclic fg-Rules (General case)

LetH be a hypergraph. The acyclicity ofH is usually defined with respect to its so-
called dual graph, whose nodes are the hyperedges of H and edges represent their
intersection. We will use here a close notion, that we call decomposition graph of
a set of atoms, which groups together a guard and the atoms it guards into a single
node.

We assign the following decomposition graph D(S) to a set of atoms S:

• Let {C1, . . . Cp} be a partition of S such that each Ci is guarded, with p
minimal for this property.

• The set of nodes of D(S) is {C1, . . . Cp} and there is an edge CiCj (with
i 6= j) if Ci and Cj share (at least) a variable; each edge CiCj is labeled by
the variables common to Ci and Cj (noted vars(CiCj)).

An edge CiCj of the decomposition graph is said to be removable if there is
another path betweenCi andCj such that the labels of all edges in this path contain
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the label of CiCj (this condition has to do with the so-called running decomposi-
tion property: the set of nodes in which a given variable occurs yields a connected
subgraph of the decomposition graph; removing removable edges keeps this prop-
erty). S is said to be (hypergraph-) acyclic (which corresponds to the fact that the
associated hypergraph is acyclic) if each connected component of its decomposi-
tion graph can be turned into a tree by removing only removable edges (such a tree
is usually called a join tree in databases). It is well known that when a hypergraph
is acyclic, a join tree/forest can be built from it in polynomial time. An fg-rule R
is said to be body-acyclic (ba) if its body is hypergraph-acyclic.

Note that our starting assumption (variable-connected body) ensures that the
decomposition graph of the fg-rules we consider is connected. Let R be a ba-fg
rule and let J be an join tree associated with body(R). Let Cr be a J node that
contains a frontier guard. J is considered as rooted in Cr, which yields a direction
of its edges from children to parents: a directed edge (Ci, Cj) is from a child to its
parent. R is translated into a set of guarded rules {R1, . . . Rp} as follows:

• To each edge (Ci, Cj) is assigned the atom ai = qi(var(CiCj)), where qi
is a new predicate

• To each Ci 6= Cr is assigned the rule:
Ri = (conjunct(Ci) ∧

⋃
(Ck,Ci)

ak)→ ai

• To Cr is assigned the rule
Rr = (conjunct(Cr) ∧

⋃
(Ck,Cr) ak)→ head(R)

Note that the decomposition graph associated with the body of a guarded rule
is restricted to a single node. Thus, guarded rules are trivially ba-fg rules. The
above translation is the identity on guarded rules. The translation is linear in the
size of the rule and arity-preserving (the arity of the new predicates is bounded by
the arity of existing predicates). We conclude that the complexity of conjunctive
query entailment with ba-fg-rules is the same as with guarded rules: for combined
complexity, it is EXPTIME-complete with bounded arity and 2EXPTIME-complete
with unbounded arity; it is in P for data complexity.

The above reduction is polynomial in the size of the rule and arity-preserving.
Thus, previous complexity results on guarded rules apply to ba-fg-rules (in partic-
ular they are EXPTIME-complete for bounded-arity combined complexity, while
fg-rules are 2EXPTIME-complete).

Finally, let us point out that hypergraph-acyclicity of rule bodies alone is not
enough to obtain good properties: that the head of a rule is connected to only
one node of the decomposition graph (thus, that the frontier is guarded) is crucial.
Without this assumption, the entailment problem remains undecidable. This can
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be checked for instance with the reduction from the word problem in a semi-Thue
system, known to be undecidable, to the entailment problem (in a conceptual graph
setting) built in [BM02]. This reduction yields rules with a body restricted to a path
and frontier of size 2.

7.2 Body-Acyclic fg-Rules (Unary/Binary case)

We now consider the special case of predicates with arity bounded by 2, which is
relevant w.r.t. description logics. Let us note ba-fg-2 this rule fragment.

To a set of binary atoms is naturally associated a (multi-)graph (unary atoms
can be ignored for our purpose). The acyclicity notion can be simplified. Let us say
that a cycle in such a graph is a true cycle if it contains only (distinct) variable nodes
and is of length strictly greater than 2 (in other words, multi-edges are allowed).

Property 25 A set of binary atoms has no true cycle if and only if it is hypergraph-
acyclic.

Proof: In the binary case, edges in the decomposition graph contain exactly one
variable. LetGS be the graph of the atom set S andDS be its decomposition graph.
If GS has no true cycle, then any cycle in DS is made of edges labeled by the same
variable; thus, any of these edges is removable, which breaks the cycle. In the
other direction: take a true cycle in GS , which passes through k distinct variables,
k ≥ 2. It yields a cycle in DS with all k edges labeled by a distinct variable. It can
be checked that if DS has a cycle whose edges do not have all the same label (and
in this case this cycle has at least three edges with distinct labels), then it cannot be
made acyclic (f.i., by induction on the number of removable edges in DS). �

Let us now sketch links between the ba-fg-2 rule fragment and Horn descrip-
tion logics, firstly introduced in [HMS05]. Based on the fact that description logics
[BCM+07] are fragments of first-order logic, the logic Horn-L for some DL L is
roughly defined as the axioms of L whose standard translation into FOL and sub-
sequent skolemisation yields Horn clauses. The ba-fg-2 fragment includes the DL
Horn-ALCOISelf(u) (see [KRH07] for a treatment of Horn DLs – ALC denotes
the basic Boolean-closed description logic; O indicates the nominals and is needed
if constants are involved; I stands for role inverse; Self allow concepts of the
form ∃R.Self to indicate roles looping back to their source, (u) indicates role con-
junction). As a consequence of results from [KRH07], deduction of single atom
facts (and hence CQ entailment) in Horn-ALCOISelf(u) is EXPTIME-hard; CQ
answering is known to be in 2EXPTIME as a consequence of results in [CEO09].
However note that ba-fg-2 rules are more expressive than that: they allow for ar-
bitrarily structured rule heads, whereas for Horn-ALCOISelf(u) rule heads are
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required to be essentially tree-structured (a consequence implicitly imposed by the
DL notation).

Still from the results on guarded rules, we get that conjunctive query entail-
ment with ba-fg-2 rules is in EXPTIME for combined complexity and in P for data
complexity. An EXPTIME lower bound easily follows from the fact that standard
reasoning in the much weaker Horn-FLE is already EXPTIME-Hard, as shown in
[KRH07]7. The problem is thus EXPTIME-complete. Since rules translating Horn-
FLE are both guarded and fr18, this lower bound holds for ba-guarded rules and
ba-fr1-rules.

7.3 Body-Acyclic Frontier-1 Rules

PTIME-complete data complexity follows from the proof of Th. 24; about com-
bined complexity, EXPTIME-hardness with bounded arity (thus with unbounded
arity too) follows from the fact that standard reasoning in the weaker DL fragment
Horn-FLE is EXPTIME-hard (see preceding subsection); from EXPTIME member-
ship of guarded rules in the bounded arity case, we conclude that ba-fr1-rules are
EXPTIME-complete with bounded-arity. The only remaining question is whether
they are simpler than ba-fg-rules in the unbounded arity case. We established EXP-
TIME membership for the constant-free variant, and keep trying to prove it for the
general case.

8 Conclusion

We have introduced the notion of greedy bts of existential rules that subsumes
guarded rules as well as their known generalizations and gives rise to a generic
algorithm for deciding CQ entailment. Moreover, we have classified known gbts
subclasses w.r.t. their combined and data complexities. Some interesting open
issues remain, e.g. the exact complexity of gbts in the unbounded predicate arity
case and the recognizability of gbts. Future work will aim at the integration of rules
expressing equality and other properties such as transitivity into this framework,
preserving decidability, and trying to keep the desirable PTIME data complexity of
fg-rules.

7It is known that conjunctive query entailment is at least as difficult as standard reasoning.
8Briefly said, in Horn-FLE , we have u, ∃R.C, >, ⊥, and ∀R.C (only in the right side of

inclusions); no role inclusion, nor role composition.
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