
A Theoretical and Experimental Comparison of
Algorithms for the Containment of Conjunctive Queries

with Negation

Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

University of Montpellier II, France, {benmohamed,leclere,mugnier}@lirmm.fr

Abstract. We tackle the containment problem for conjunctive queries with nega-
tion, which takes two queries q1 and q2 as input and asks if q1 is contained in q2. A
general approach for solving this problem consists of considering all completions
of q1 (intuitively these completions represent all canonical databases that satisfy
q1) and checking if each completion yields the same answer on q2. Since the total
number of completions of q1 is exponential in the size of q1, several proposals
have aimed at reducing the number (and the size) of the completions checked. In
this paper, we propose a unifying framework for comparing algorithms following
this general approach and define two kinds of heuristics for exploring the space
of completions. Combining these heuristics with both classical kinds of traver-
sals, i.e., depth-first and breadth-first, we obtain four algorithms that we compare
experimentally with respect to running time on difficult instances of the contain-
ment problem.

1 Introduction

This paper is devoted to the containment problem for conjunctive queries with negation
(denoted CQC¬ hereafter). Stated generally, the query containment problem takes two
queries q1 and q2 as input, and asks if q1 is contained in q2 (noted q1 v q2), i.e., if the set
of answers to q1 is included in the set of answers to q2 for all databases (e.g. [AHV95]).
It has long been recognized as a fundamental database problem, which underlies many
tasks such as query evaluation and optimization [CM77][ASU79], rewriting queries us-
ing views [Hal01] or detecting independence of queries from database updates [LS93].
Positive conjunctive queries are considered as the basic database queries [CM77]. Con-
junctive queries with negation extend this class with negation on subgoals.

When only positive conjunctive queries are considered, query containment check-
ing is NP-complete [AHV95]. It can be solved by checking if there is a homomorphism
from q2 to q1. When atomic negation is considered, the problem becomes much more
complex: it is πP

2 -complete1 [FNTU07][CM09]. A general approach for solving it, first
presented in [LS93] for conjunctive queries with inequalities and adapted in [Ull97] for
conjunctive queries with negation, consists in considering all ways of completing q1
with positive information. Intuitively, this amounts to generating representatives of all

1 πP
2 = co-(NPNP)

2 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

database instances that satisfy q1. In [LM07], as in the present paper, negative informa-
tion is also explicitly added. Such queries obtained from q1 by adding missing informa-
tion, either positively or negatively, are called completions of q1 (and total completions
if no more information can be added) hereafter. Then q1 v q2 if and only if there is
a homomorphism from q2 to each total completion of q1. However, the number of (to-
tal) completions of q1 is exponential in the size of q1. Several proposals have aimed at
reducing the number and the size of completions ([WL03],[LM07],[BLM10a]). These
proposals had not been compared yet, neither in depth from a theoretical side nor ex-
perimentally.

In this paper, we first define a unifying abstract framework, which allows us to
express existing algorithms, hence to explain the principles underlying these algorithms,
and to propose new algorithms. This framework relies on a space of completions of q1
and the CQC¬ problem is reformulated as a search problem in this space. The family
of algorithms we consider here perform a traversal of this space, thus build a search
tree. But they essentially differ in the definition of the tree (i.e., how the children of
a node are defined) and the strategy for generating the tree (i.e., in a depth-first or
breadth-first way). Our second contribution consists in the experimental comparison of
these algorithms. More precisely, our analysis yields four algorithm schemes, with both
being close to existing proposals ([WL03],[LM07]); we implemented them, by making
all algorithms benefiting from further specific heuristics experimentally evaluated in
one of our former papers [BLM10a]. The experiments were made on random problem
instances (i.e., pairs of conjunctive queries with negation) known to be difficult.

Paper layout. Section 2 is devoted to basic notions. Section 3 defines the abstract frame-
work and containment checking methods within this framework. Section 4 presents al-
gorithms and compare them experimentally. In section 5 the relationships of existing
proposals with the evaluated algorithms are specified. Section 6 concludes this work
and outlines perspectives.

2 Preliminaries

A conjunctive query with negation (CQ¬) is of the form: q = ans(x1, . . . , xq) ←
p1, . . . , pn, n1, . . . , nm, where each pi (resp. ni) is a positive (resp. negative) subgoal,
1 ≤ n +m, and ans is a special relation (which defines the answer part of the query).
The left part of the query is called its head and the right part is its body. Each subgoal
is of form r(t1, . . . , tk) (positive subgoal) or ¬r(t1, . . . , tk) (negative subgoal) where r
is a relation and t1, . . . , tk is a tuple of terms (i.e., variables or constants). All variables
x1, . . . , xq occur at least once in the body of the query. Without loss of generality, we
assume that the same subgoal does not appear twice in the body of the query. A CQ¬ is
positive if it has no negative subgoal (m = 0). A CQ¬ is Boolean if it has no variable
in its head (we note ans()). In the following, we will focus on Boolean queries because
having a non-empty ans part can only make the query containment problem easier.

As in [LM07], we will see CQ¬ as labeled graphs. More precisely, a CQ¬ q is rep-
resented as a bipartite, undirected and labeled graph Q, called polarized graph (PG),
with two kinds of nodes: term nodes and relation nodes. Each term of the query be-
comes a term node, that is unlabeled if it is a variable, otherwise it is labeled by the

A Theoretical and Experimental Comparison of Algorithms 3

constant itself. A positive (resp. negative) subgoal with relation r becomes a relation
node labeled +r (resp. −r) and it is linked to the nodes assigned to its terms. The la-
bels on edges correspond to the position of each term in the subgoal (see Figure 1 for
an example). For simplicity, the subgraph corresponding to a subgoal, i.e., induced by
a relation node and its neighbors, is also called a subgoal. We note it +r(t1, . . . , tk)
(resp. −r(t1, . . . , tk)) if the relation node has label +r (resp. −r) and list of neigh-
bors t1, . . . , tk. We note ∼r(t1, . . . , tk) a subgoal that can be positive or negative, i.e.,
∼ ∈ {+,−}. Subgoals +r(t1, . . . , tk) and −r(u1, . . . , un) with the same relation but
different signs are said to be opposite. Given a relation node label (resp. subgoal) l, l
denotes the complementary relation node label (resp. subgoal) of l, i.e., it is obtained
from l by reversing its sign. Queries are denoted by small letters (q1 and q2) and the
associated graphs by the corresponding capital letters (Q1 and Q2). We note Q1 v Q2

iff q1 v q2. A PG is consistent if it does not contain two complementary subgoals.

Q2

+s

−p

y

1

1 2

Q1

+p

x

1

+s

−p
1

1 2

z

+p

+s+s

1

1 12 2

ut v
+s

−p
1

21

w
+s

−p
1

21

s

q1 = ans()← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s)
q2 = ans()← p(x), s(x, y),¬p(y), s(y, z),¬p(z)

Fig. 1. Polarized graphs associated with q1 and q2.

A homomorphism h from a PG Q2 to a PG Q1 is a mapping from term nodes of Q2

to term nodes of Q1 that satisfies: (1) if a term node is labeled by a constant, then its
image has the same label (otherwise there is no constraint on the label of its image); (2)
if ∼r(t1, . . . , tk) is a subgoal in Q2 then ∼r(h(t1), . . . , h(tk)) is a subgoal in Q1. This
notion can be seen as an extension to negative subgoals of the well-known query homo-
morphism (classically defined on positive queries). When there is a homomorphism h
from Q2 to Q1, we say that Q2 maps to Q1 by h.

If Q2 and Q1 have only positive subgoals, Q1 v Q2 iff Q2 maps to Q1. When they
contain negative subgoals, only one side of this property remains true: if Q2 maps to
Q1 then Q1 v Q2; the converse is false, as shown in Example 1.

Example 1. See Figure 1: Q2 does not map to Q1 but Q1 v Q2. Indeed, if we “com-
plete” q1 with all possible cases w.r.t. the relation p, we obtain the union of four queries
q1,1 = ans()← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s), p(u), p(v),
q1,2 = ans()← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s),¬p(u), p(v),
q1,3 = ans() ← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s), p(u),¬p(v) and
q1,4 = ans() ← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s),¬p(u),¬p(v).
Each of the queries corresponds to a possible way of completing q1 w.r.t. p. Q2 maps to
each of the graphs associated with them. Thus q1 is contained in q2.

4 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

One way to solve CQC¬ is therefore to generate all “complete” PGs obtained from
Q1 using relations appearing in Q1, and then to test if Q2 maps to each of these graphs.

Definition 1 (Complete graph and completion). Let Q be a consistent PG. It is com-
plete, denoted Qc, w.r.t. a set of relations P , if for each p ∈ P with arity k, for each k-
tuple of term nodes (not necessarily distinct) t1, . . . , tk in Q, it contains +p(t1, . . . , tk)
or−p(t1, . . . , tk). A completionQ′ ofQ is a PG obtained fromQ by repeatedly adding
new relation nodes (on term nodes present in Q), without yielding inconsistency. Each
addition is a completion step. A completion of Q is called total if it is a complete graph
w.r.t. the set of relations considered, otherwise it is called partial.

Theorem 1. [LM07] Let Q1 and Q2 be two PGs (Q1 consistent), Q1 v Q2 iff Q2

maps to all total completions of Q1 w.r.t. the set of relations appearing in Q1.

3 Methods for testing Containment

The complexity of a brute-force algorithm that would generate and test all completions
of q1 is prohibitive:O(2(nQ1

)k×|P|×hom(Q2, Q
c
1)), where nQ1

is the number of term
nodes in Q1, k is the maximum arity of a relation, P is the considered set of relations
and hom(Q2, Q

c
1) is the complexity of checking the existence of a homomorphism2

from Q2 to Qc
1.

Different tracks have been explored to reduce the number of homomorphisms per-
formed. A first one is to reduce the number of considered total completions. [LM07]
introduced the notion of completion vocabulary (denoted V in the following) which re-
stricts the set of relations to consider for total completions: only relations appearing in
opposite subgoals both in Q2 and in Q1 are to be considered. E.g. in Example 1 (Figure
1), V = {p}.

A second studied track is to exploit partial completions. This idea, introduced in
[WL03] and further developed in [LM07], aims at concluding about the containment
before generating all total completions, by using some sufficient conditions on partial
completions for success or failure of the containment.

3.1 The completion space

The completion space of a PG Q1 (w.r.t. a given completion vocabulary) is the set of
partial and total completions of Q1 partially ordered by the relation “subgraph of”. If
Qj is a descendant of Qi, i.e., Qi is a subgraph of Qj , we say that Qi covers Qj . The
successors of a completion are its immediate descendants (note that they only differ
from it by one added subgoal).

Figure 2 shows the completion space of Q1 from Example 1. Q1 has four succes-
sors, namely the partial completions Q1,1, Q1,2, Q1,3 and Q1,4, obtained by adding
respectively +p(u), +p(v), −p(u) and −p(v). From Q1,1 we obtain two total comple-
tions Q1,5 and Q1,6 by adding respectively +p(v) and −p(v) (note that we cannot add
−p(u) because +p(u) is present in Q1,1), and similarly with the others Q1,i. Finally,
there are four total completions of Q1.

2 A brute-force algorithm for homomorphism check it in O(nnQ2
Q1

), where nQ2 is the number
of term nodes in Q2.

A Theoretical and Experimental Comparison of Algorithms 5

Q
1,4Q1,1 Q1,3

Q1,2

Q1,5 Q1,6
Q1,7 Q1,8

Q1

+p(v)

+p(u)
−p(v)

−p(u)

+p(u)

+p(v)

+p(u)−p(v) −p(u) +p(v) −p(v)

−p(u)

Fig. 2. The completion space of Example 1.

The following notion of a covering set is fundamental in this paper:

Definition 2 (Covering set). Let Q1 be a (consistent) query. A covering set of Q1,
noted CS(Q1) = {Q1,1, . . . , Q1,n}, is a set of (partial or total) completions of Q1

such that every total completion Qc
1 of Q1 is covered by a Q1,i.

Trivial examples of CS(Q1) are {Q1} and the set of all total completions of Q1.
The question “does Q1 v Q2 hold ?” can now be recast as “is there CS(Q1) =
{Q1,1, . . . , Q1,n} such that Q2 maps to each Q1,i for i = 1 . . . n ?”

The methods considered in this paper can be seen as exploring the completion space
of Q1, with the aim of finding a covering set of Q1 such that Q2 maps to each element
of this set, or deciding that there is none. More precisely, they exploit the following
property:

Property 1. LetQ1 andQ2 be two PGs, withQ1 consistent. For all covering setCS(Q1),
it holds that: Q1 v Q2 if and only if, for each Q1,i ∈ CS(Q1), Q1,i v Q2.

Proof. IfQ1 v Q2 then for each partial or total completionQ′1 ofQ1,Q′1 v Q2; this is
in particular true for elements of any CS(Q1). Conversely: let Q′1 be a total completion
of Q1. By definition of a covering set, Q′1 is covered by at least one Q1,i ∈ CS(Q1),
thus is a total completion of Q1,i. Since Q1,i v Q2, there is a homomorphism from Q2

to any total completion of Q1,i, in particular to Q′1. ut

This simple framework yields immediate proofs for the correctness of the algo-
rithms studied in this paper.

3.2 Sufficient conditions for concluding

When exploring a current completion Q′1, two kinds of sufficient conditions for con-
cluding about containment or non-containment can be exploited, which are both based
on homomorphism checks. Note that these conditions are not symmetrical.

6 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Sufficient condition for concluding that Q′
1 v Q2 A simple sufficient condition

for the containment of Q′1 in Q2 is the existence of a homomorphism from Q2 to Q′1
(cf. [LM07]). When this test is successful, it allows to “prune” the descendants of Q′1:
then there is necessarily a homomorphism from Q2 to all graphs covered by Q′1. Note
however that it does not allow to conclude that Q1 is contained in Q2.

Sufficient conditions for concluding that Q1 6v Q2 Failure tests try to discover
that there is at least one total completion Qc

1 covered by Q′1 that does not admit any
homomorphism from Q2. These tests lead to a global negative answer, i.e., a negative
answer about the initial containment problem. These failure tests exploit the property
of some special subgraphs of Q2, that must map by homomorphism to any completion
of Q1 (including Q1), otherwise there exists a total completion Qc

1 to which Q2 does
not map. In the following, we call them “necessary subgraphs”.

A first example of necessary graphs is given in [WL03]: the subgraph of Q2 com-
posed of all positive subgoals of Q2. In [LM07], a more general characterization of
such graphs is given: subgraphs without “exchangeable subgoals”; checking whether
a graph is without exchangeable subgoals is NP-complete [MST09], but polynomially
recognizable kinds of such graphs can be used, such as pure subgraphs (or independent
subgraphs, which moreover exploit constraints induced by constants).

Definition 3 (pure subgraph). A PG is said to be pure if it does not contain opposite
subgoals (i.e., each relation appears only in one form, positive or negative). A pure sub-
graph of Q2 is a subgraph of Q2 that contains all term nodes in Q2 (but not necessarily
all relation nodes)3 and is pure.

See Figure 1: there are two pure subgraphs maximal for the inclusion: Q+
2 contains

+p(x), +s(x, y) and +s(y, z); Q−2 contains −p(y), −p(z), +s(x, y) and +s(y, z).
Moreover, the notion of necessary subgraphs goes with a more constrained homo-

morphism test, called compatible homomorphism. Intuitively, a homomorphism from a
necessary subgraph of Q2 to Q1 is “compatible” if it can be extended to a homomor-
phism from Q2 to a total completion of Q1.

Definition 4 (Compatible homomorphism). Let Q2 and Q1 be two PGs and Q′2 be
a necessary subgraph of Q2. A homomorphism h from Q′2 to Q1 is said to be com-
patible w.r.t. Q2 if, for each subgoal ∼r(t1, . . . , tk) in Q2 \ Q′2, the opposite subgoal
∼r(h(t1), . . . , h(tk)) is not inQ1, and for each pair of opposite subgoals inQ2\Q′2, re-
spectively on (c1, . . . , ck) and (d1, . . . , dk), (h(c1), . . . , h(ck)) 6= (h(d1), . . . , h(dk)).

Property 2. [LM07] LetQ1 andQ2 be two PGs andQ′2 be a necessary subgraph ofQ2.
If there is no compatible homomorphism from Q′2 to Q1, then Q1 6v Q2.

3.3 Exploration heuristics of the completion space

The exploration of the completion space can be seen as an iterative procedure maintain-
ing a covering set CS(Q1) and trying to find a “good” covering set, i.e., such that Q2

3 Note that this subgraph does not necessarily correspond to a set of subgoals because some term
nodes may be isolated.

A Theoretical and Experimental Comparison of Algorithms 7

maps to each of its elements, or to show that there is none. Initially, CS = {Q1}. At
each step, the procedure performs the following:

1. pick a current completion Q′1 in CS;
2. check if Q′1 leads to conclude with a global failure;
3. otherwise: if Q2 does not map to Q′1, add to CS some successors of Q′1, while

keeping the property that CS is a covering set of Q1.

When CS has been emptied, the global containment test succeeds. The set of built
completions to which Q2 maps can be seen as a proof that Q1 v Q2.

Two ways of looking for a “good covering” set can be defined, which correspond
to two exploration heuristics, called dichotomic and “contradictAll” hereafter. Note
that, although not explicitly expressed as such, the proposals in [LM07] and in [WL03]
can be seen as examples of these heuristics.

Before specifying them, let us consider the following notions:

Definition 5 (Missing subgoal, h-extension, h-contradiction). LetQ1 andQ2 be two
PGs (Q1 consistent), Q′2 a necessary subgraph of Q2, and h a compatible homomor-
phism from Q′2 to Q1. Given ∼r(t1, . . . , tk) from Q2 \Q′2, the subgoal
∼r(h(t1), . . . , h(tk)) is said to be missing to Q1 w.r.t. h if it is not in Q1. A completion
Q′1 of Q1 is called an h-contradiction if it contains the complementary of a missing
subgoal w.r.t. h; otherwise it is called an h-extension.

The dichotomic heuristic At each step, this heuristic partitions the completion space
into two (disjoint) subspaces, by generating two completions from Q′1 (the currently
considered completion of Q1): these completions are respectively obtained by adding
a subgoal and its complementary. Since completions are consistent, it follows that the
sets of completions covered by these newly generated completions are disjoint.

This method can be further specified by the choice of a necessary subgraph of Q2,
a compatible homomorphism h from this subgraph to Q′1, and a missing subgoal to Q1

w.r.t. h, so that the newly generated completions are respectively an h-extension and an
h-contradiction of Q1.

The correctness of this method is based on the following theorem:

Theorem 2. Let Q1 and Q2 be two PGs. Then Q1 v Q2 iff (1) there is a compatible
homomorphism from a necessary subgraph of Q2 [e.g. a pure subgraph] to Q1 and
(2) Let h be any such homomorphism. If there is a missing subgoal to Q1 w.r.t. h, let
∼r(t1, . . . , tk) be such a subgoal; then Q′1 v Q2 and Q′′1 v Q2, where Q′1 (resp. Q′′1)
is the h-contradiction (resp. h-extension) obtained from Q1 by adding ∼r(t1, . . . , tk)
(resp. ∼r(t1, . . . , tk)).

Proof. Follows from Properties 1 and 2, and the fact that {Q′1, Q′′1} is a covering set of
Q1. ut

Note that, if h is directly a homomorphism from Q2 to Q1, then there is no missing
subgoal, and condition (2) is fulfilled.

The completion space is thus explored as a binary tree with Q1 as root.

8 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Figure 3 illustrates this method on Example 1, with Q−2 as the necessary subgraph.
Let h1 = {x 7→ v, y 7→ w, z 7→ s} from Q−2 to Q1; Q1,1 and Q1,2 are built from Q1,
respectively by adding +p(v) and −p(v). Q2 maps to Q1,1, thus there is no need to
complete Q1,1. Q2 does not map to Q1,2: let h2 = {x 7→ u, y 7→ v, z 7→ w} from Q−2
to Q1,2; Q1,3 and Q1,4 are built from Q1,2, respectively by adding +p(u) and −p(u)
to Q1,2. Q2 maps to Q1,3 and to Q1,4, respectively. Finally, the set proving that Q1 is
included in Q2 is {Q1,1, Q1,3, Q1,4} (and there are four total completions of Q1 w.r.t.
p).

Q1,2

Q1,3 Q1,4

1,1Q

Q1

+p(v) −p(v)

+p(u) −p(u)AND

AND

Fig. 3. A dichotomic search tree of Example 1. Each black dot represents a total completion and
each square a partial one.

The “contradictAll” heuristic This heuristic is directly related to the notion of a com-
patible homomorphism from a necessary subgraph of Q2 to Q′1: at each step, it consists
of choosing such a compatible homomorphism h to produce n h-contradictions, with
each of them being obtained by adding toQ′1 the complementary of one of the nmissing
subgoals to Q′1 w.r.t. h.

The correctness of this method is based on the following theorem:

Theorem 3. Let Q1 and Q2 be two PGs. Then Q1 v Q2 iff (1) there is a compatible
homomorphism from a necessary subgraph of Q2 [e.g. a pure subgraph] to Q1 and (2)
Let h be any such homomorphism; then, for each missing subgoal ∼r(t1, . . . , tk) to
Q1 w.r.t. h, Qi

1 v Q2, where Qi
1 is the h-contradiction obtained from Q1 by adding

∼r(t1, . . . , tk).

Proof. The covering of all total completions is ensured on the one hand by the con-
struction of the n h-contradictions, and on the other hand by the h-extensionQextension

1

(obtained fromQ1 by adding all the missing subgoals toQ1 w.r.t. h) to whichQ2 maps.
We conclude with Properties 1 and 2. ut

Figure 4 illustrates this method on Example 1, with Q+
2 as the necessary sub-

graph. Let h1 = {x 7→ t, y 7→ u, z 7→ v} from Q+
2 to Q1; Q1,1 and Q1,2 are built

from Q1, respectively by adding +p(v) and +p(u). Note that Q2 necessarily maps to
Qextension

1 , obtained from Q1 by adding −p(v) and −p(u). Q2 maps to Q1,1, thus
there is no need to complete Q1,1. Q2 does not map to Q1,2: let h2 = {x 7→ u, y 7→
v, z 7→ w} from Q+

2 to Q1,2; Q1,3 is built from Q1,2 by adding +p(u). As previously,

A Theoretical and Experimental Comparison of Algorithms 9

Q1,3 Q1
extension

Q
extension

1,2

Q1,21,1Q

Q1

AND

−p(u), −p(v)
−p(v)+p(v)

AND
+p(u)

+p(v)

Fig. 4. A contradictAll search tree of Example 1.

Q2 maps to Qextension
12 . Q2 maps to Q1,3. Finally, the set proving that Q1 v Q2 is

{Q1,1, Q1,3, Q
extension
1 , Qextension

1,2 }.
Nevertheless, this space exploration, which does not partition the space, raises an

important problem: it might be the case that the same completion is explored several
times. In the worst case, this heuristic may lead to consider more completions than
the brutal method that explores all total completions. To prevent these multiple explo-
rations, two solutions can be imagined:

1. To forbid the construction of two identical completions. Then the algorithm be-
comes exponential in space because explored completions have to be memorized.

2. To “merge” identical completions at the end of each completion step (this works
only with a breadth-first search algorithm, see Section 4.1). But the algorithm will
be locally (i.e., at each completion step) exponential in space and this merging is
expensive since it requires to pairwise compare the new completions.

In our experiments, we have compared the three alternatives: no prevention of mul-
tiple explorations, Solution 1 and Solution 2.

4 Comparison of Methods and Algorithms

In this section, we present several algorithms implementing the two heuristics presented
in the previous section. Both heuristics perform traversals of the completion space,
which differ in the way they select the successors of a node. Moreover, there are two
classical ways of performing a traversal, namely in depth-first or in breadth-first way.
We will first present two generic algorithms, corresponding to these two exploration
schemes. Then, by concretizing the function that selects the successors of a node, we
obtain the dichotomic or contradictAll heuristics. Thus, we finally obtain four algo-
rithms, that we compare experimentally.

4.1 Breadth-first and Depth-first traversals

Algorithms 1 and 2 are generic algorithms that respectively perform a breadth-first and a
depth-first search of the completion space. Algorithm 1 is iterative, it updates a covering
set denoted by CS. We chose to present Algorithm 2 in a recursive way.

10 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

A negative answer to the test if there is no homomorphism from Q2 allows to con-
clude that Q1 v Q2 (cf. the sufficient condition in Section 3.2). It is an algorithmic
optimization avoiding useless exploration of completions.

Subalgorithm dynamicFiltering(Q). This function corresponds to the sufficient con-
dition for concluding that Q1 6v Q2 (cf. Section 3.2): if there is no compatible homo-
morphism from one (or several) necessary subgraph of Q2 to Q then we can conclude
that Q1 6v Q2.

Subalgorithm selectSuccessors(Q). This function returns a covering set of Q, which
is a subset of the successors of Q. This subset depends on several variables:

1. a necessary subgraph, say Q′2, that has to be mapped to Q;
2. a compatible homomorphism from Q′2 to Q;
3. the chosen heuristic, i.e., dichotomic or contradictAll:

(a) if we consider the dichotomic heuristic, we have also to choose a missing
subgoal ∼ r(t1, . . . , tk) to Q w.r.t. h. The function will then return the set
{Q ∪ {∼r(t1, . . . , tk)}, Q ∪ {∼r(t1, . . . , tk)}}; note that the order in which
these two nodes are then explored is important, as shown in [BLM10a]: explor-
ing first the h-contradiction (i.e., {Q ∪ ∼r(t1, . . . , tk)) is more efficient.

(b) if we consider the contradictAll heuristic, the function will return the set
{Q ∪ {∼r(t1, . . . , tk)}, . . . , Q ∪ {∼s(u1, . . . , uj)}} where
∼r(t1, . . . , tk), . . . ,∼s(u1, . . . , uj) are all the missing subgoals to Q w.r.t. h.

Algorithm 1: breadthCheck(Q1, Q2)
Input: two consistent PGs Q1 and Q2

Result: true if Q1 v Q2, false otherwise
begin

CS ← {Q1};
while CS 6= ∅ do

CS′ ← ∅;
foreach Q′

1 ∈ CS do
if there is no homomorphism from Q2 to Q′

1 then
if dynamicFiltering(Q′

1) = failure then return false;
else CS′ ← CS′∪ selectSuccessors(Q′

1);

CS ← CS′;
return true;

end

Finally, by combining dichotomic and contradictAll heuristics with breadth-first and
depth-first searches, we obtain four algorithms: two breadth-first search ones,
dichotomicBreadthCheck and ContradictAllBreadthCheck; two depth-
first search ones, dichotomicDepthCheck and ContradictAllDepthCheck.
In the next section we compare them experimentally.

A Theoretical and Experimental Comparison of Algorithms 11

Algorithm 2: depthCheck(Q1, Q2)
Input: two consistent PGs Q1 and Q2

Result: true if Q1 v Q2, false otherwise
begin

if there is no homomorphism from Q2 to Q1 then
if dynamicFiltering(Q1) = failure then return false;
else

foreach Q′
1 ∈ selectSuccessors(Q1) do

if depthCheck(Q′
1,Q2) = false then return false;

return true;
end

4.2 Experimental Comparison

We refer the reader to [BLM10a,BLM10b] for details about the experimental method-
ology. We built a random generator of polarized graphs and studied the influence of
several parameters on the “difficulty” of problem instances (number of terms in the
PG/query, percentage of constants, number of distinct relations, arity of these relations,
density per relation, percentage of negation per relation). In the following experiments,
we chose the parameter values shown to yield difficult instances. For each value of
the varying parameter (density of Q1 in the next experiments), we considered 500 in-
stances and computed the mean search cost of the results on these instances. We also
set a timeout at one minute4.

We have made all four algorithms benefit from the improvements studied in
[BLM10a]. Function dynamicFiltering(Q) performs filtering with all pure subgraphs
of Q2 maximal for the inclusion. Function selectSuccessors(Q) relies on a pure sub-
graph that is maximal for inclusion, say Qmax

2 ; the compatible homomorphism h from
Qmax

2 to Q is simply the first one found (as we have no criterion to choose among sev-
eral such homomorphisms); in the case of dichotomic heuristic, the missing subgoal is
randomly chosen among the set of missing subgoals to Q w.r.t. h. About avoiding mul-
tiple explorations, we compared experimentally the solutions proposed above and kept
the best one for each algorithm: ContradictAllBreadthCheck uses a merging
function and ContradictAllDepthCheck memorizes all explored completions.

Figure 5 shows the results obtained by the four algorithms on the same random
CQC¬ instances. We can see that depth-first search algorithms
(dichotomicDepthCheck and ContradictAllDepthCheck) are always bet-
ter than breadth-first search ones. As expected, we can also see that dichotomic explo-
ration is always better than contradictAll one (regardless of search strategy): this is due
to the fact that dichotomic heuristic inherently avoids exploring twice the same com-
pletion, whereas contradictAll heuristic cannot ensure this property without a merging
or memorizing function.

4 With a timeout set at five minutes, breadth-first search algorithms lead to memory overflow.

12 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Percentage of timeouts at a difficulty peak (with density of Q1 = 0.5):
CA-Breadth=25%; D-Breadth=15%; CA-Depth=12%; D-Depth=4%.

Fig. 5. Comparison of the four algorithms.

5 Relationships with existing algorithms

In [LM07], Leclre and Mugnier proposed a depth-first search algorithm based on the
dichotomic heuristic. We optimized this algorithm in [BLM10a], that led to a refined
algorithm named recCheckPlus. This latter algorithm is exactly
dichotomicDepthCheck.

In [WL03], Wei and Lausen proposed a breadth-first search algorithm (denoted by
WL-algorithm hereafter) based on the following theorem, which we reformulate in our
framework:

Theorem 4. [WL03]. Let Q1 and Q2 be two PGs. Then, Q1 v Q2 iff (1) there is a
(compatible) homomorphism from Q+

2 to Q1 and (2) for each such homomorphism h
and for each missing subgoal ∼r(t1, . . . , tk) to Q1 w.r.t. h, Q′1 v Q2, where Q′1 is the
h-contradiction obtained from Q1 by adding ∼r(t1, . . . , tk).

Theorem 3 can be seen as a generalization of Theorem 4: at point (1), it consid-
ers a compatible homomorphism from any necessary subgraph of Q2 to Q1 (instead of
Q+

2), and at point (2), it avoids to test all (compatible) homomorphisms at each com-
pletion step (whereas Theorem 4 proof and WL-algorithm explicitly use this test). More
precisely, Wei and Lausen proposed a space exploration where at each step, all homo-
morphisms from Q+

2 to the current completion are to be considered. The search space

A Theoretical and Experimental Comparison of Algorithms 13

is then explored as a particular AND/OR tree5, as shown on Figure 6. To prove that
Q1 v Q2, one has to prove that ((Q1,1 v Q2)∧. . .∧(Q1,m v Q2))∨. . .∨((Q1,m+1 v
Q2) ∧ . . . ∧ (Q1,v v Q2)).

h1 h2

.

.

. .
.
.

hn

.

.

.

hp hq

.

.

.
.
.
.

.

.

. .
.
.

Q
1

Q1,1 Q1,m Q1,m+1

r~ 1
r~ m r~ m+1

r~

hn−1...

...

... ...

OR

AND AND

OR

Q

v

1,v

Fig. 6. “Wei and Lausen” exploration.

Let us comment on another aspect of WL-algorithm. This algorithm considers only
“new” homomorphisms fromQ+

2 toQ′1 (the current completion), with the aim of avoid-
ing multiple computation of the same homomorphisms. There are several ways of in-
terpreting the notion of a “new” homomorphism:

1. it is new w.r.t. the path from Q1 to Q′1, i.e., it has not been computed during the
generation of this path;

2. it is new w.r.t. the subtree composed of the descendants of Q′1 and their brothers;
3. it is new w.r.t. the entire tree.

The first possibility is necessarily fulfilled, because all explored completions are h-
contradictions. Indeed, added subgoals contradict homomorphisms used throughout the
path from Q1 to Q′1. A new homomorphism according to the second definition is such
that at least one subgoal in Q+

2 is mapped to the subgoal added at the previous comple-
tion step. More precisely, let Q′1 be a completion obtained by adding +r(e1, . . . , ek).
A homomorphism h from Q+

2 to Q′1 is said new if there is +r(t1, . . . , tk) in Q+
2 such

that +r(h(t1), . . . , h(tk)) ∈ Q′1 and h(t1), . . . , h(tk) = e1, . . . , ek. However, this def-
inition of a new homomorphism is unsatisfactory for two main reasons:

1. It does not avoid multiple explorations of the same completion. In Figure 6 for
example, completions Q1,m and Q1,m+1 could be obtained by adding the same
subgoal.

2. It makes WL-algorithm incomplete, i.e., this algorithm can miss solutions. Queries
of Figure 7 illustrate this problem: Q1 v Q2 whereas WL-algorithm concludes
that Q1 6v Q2, because at the second completion step it does not find any new
homomorphism (but it would continue if it considered all homomorphisms).

5 Strictly speaking, it is not exactly an AND/OR tree because one of the halting conditions is
global (which is based on Property 2), i.e., it allows to completely stop the process.

14 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

+r

+r
−r−r

+r

+r
−r−r

+r

Q
2 Q1

1 2

1
2

1

2

1

1 2

1
2

1

c

1

2

yx b

z

2 2

a
1 2

q1 = ans()← r(a, a), r(a, b), r(c, b),¬r(b, c),¬r(c, a)
q2 = ans()← r(x, y), r(z, y),¬r(x, z),¬r(y, z)

Fig. 7. A counterexample to the “new homomorphism” property.

The last possibility makes WL-algorithm incomplete as well: the completion pro-
cess stops whereas it should continue by “reusing” some homomorphisms of other paths
(the previous counterexample works here too: at the second completion step, there are
no “new” homomorphisms w.r.t. the entire tree).

In light of this analysis, it appears that homomorphism novelty is not a good notion
for the needs of the algorithm. It has to consider the novelty of a completion.

In summary, both contradictAllDepthCheck and
contradictAllBreadthCheck are implementations of (a generalization of) the
theorem of [WL03]. Algorithm contradictAllBreadthCheck can be seen as a
clean implementation of the algorithm proposed in the Appendix of [WL03]. Moreover,
it is expressed in a very simple way, which allows to easily check its correctness. Nev-
ertheless, algorithm ContradictAllDepthCheck, which is as simple to express,
is better (cf. Figure 5).

Let us end this section by briefly mentioning another algorithm proposed in
[BLM10a]. Its way of exploring the space is totally different: it builds a candidate cov-
ering set at once, and then check if this set is actually a covering set by transforming it
into a propositional logical formula and checking its unsatisfiability. Then, Q1 v Q2 if
and only if this formula is unsatisfiable. Nevertheless, this algorithm has been experi-
mentally shown less efficient than dichotomicDepthCheck on difficult instances.

6 Conclusion

In this paper, we propose a unifying framework for comparing algorithms solving
CQC¬, and define two kinds of heuristics: dichotomic and contradictAll. Combining
these heuristics with both classical kinds of traversals, i.e., depth-first and breadth-first,
we obtain four algorithms. We compare them experimentally and show that the depth-
first search algorithm with dichotomic heuristic (dichotomicDepthCheck) is more
efficient than the three others.

Real-world queries expressed by a user generally contain constants. In our exper-
iments, we considered queries without any constants because we focused on difficult
instances. Moreover, we checked that CQC¬ difficulty decreases very quickly with the
increasing of the percentage of constants. As for further work, we will study how con-

A Theoretical and Experimental Comparison of Algorithms 15

stants can be exploited in algorithms, with the aim of drastically increasing the size of
queries that can be processed within reasonable time.

Another perspective would be to compare dichotomicDepthCheck with logi-
cal provers solving problems of the same complexity class (Πp

2 -complete), such as the
problem 2-QBF (e.g. [GW99]).

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley, 1995.

[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions.
SIAM J. Comput., 8(2):218–246, 1979.

[BLM10a] K. Ben Mohamed, M. Leclère, and M.-L. Mugnier. Containment of conjunctive
queries with negation: Algorithms and experiments. In DEXA, pages 330–345, aug
2010.

[BLM10b] K. Ben Mohamed, M. Leclère, and M.-L. Mugnier. Deduction in existential con-
junctive first-order logic: an algorithm and experiments. Technical Report RR-10010,
LIRMM, mar 2010.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In 9th ACM Symposium on Theory of Computing, pages 77–90,
1977.

[CM09] M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and
Reasoning—Computational Foundations of Conceptual Graphs. Advanced Informa-
tion and Knowledge Processing. Springer, 2009.

[FNTU07] C. Farré, W. Nutt, E. Teniente, and T. Urpı́. Containment of conjunctive queries over
databases with null values. In ICDT 2007, volume 4353 of LNCS, pages 389–403.
Springer, 2007.

[GW99] I. P. Gent and T. Walsh. Beyond np: the qsat phase transition. pages 648–653. AAAI
Press, 1999.

[Hal01] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

[LM07] M. Leclère and M.-L. Mugnier. Some Algorithmic Improvments for the Containment
Problem of Conjunctive Queries with Negation. In Proc. of ICDT’07, volume 4353 of
LNCS, pages 401–418. Springer, 2007.

[LS93] A. Y. Levy and Y. Sagiv. Queries independent of updates. In VLDB ’93: Proceedings
of the 19th International Conference on Very Large Data Bases, pages 171–181, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[MST09] M.-L. Mugnier, G. Simonet, and M. Thomazo. On the complexity of deduction in
existential conjunctive first-order logic (long version). Technical Report RR-09026,
LIRMM, sep 2009.

[Ull97] J. D. Ullman. Information Integration Using Logical Views. In Proc. of ICDT’97,
volume 1186 of LNCS, pages 19–40. Springer, 1997.

[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe Negation. In
International Conference on Database Theory (ICDT), 2003.

